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Abstract. Tree-ring δ18O values are a sensitive proxy of regional physical climate, while their δ13C values are a strong predictor 

of local ecohydrology. Utilizing available ice-core and tree-ring δ18O records from the central Himalaya (CH), we found an 

increase in east-west climate heterogeneity since the 1960s. Further, δ13C records from transitional western glaciated valleys 

provide a robust basis for reconstructing about three centuries of glacier mass balance (GMB) dynamics. We reconstructed 

annually resolved GMB since 1743 CE based on regionally-dominant tree species of diverse plant-functional types. Three 15 

major phases became apparent: positive GMB up to the mid-nineteenth century, the middle phase (1870-1960) of slightly 

negative but stable GMB, and an exponential ice-mass loss since the 1960s. Reasons for accelerated mass loss are largely 

attributed to anthropogenic climate change, including concurrent alterations in atmospheric circulations (weakening of the 

westerlies and the Arabian Branch of the Indian summer monsoon). Multi-decadal isotopic and climate coherency analyses 

specify an eastward declining influence of the westerlies in the monsoon-dominated CH region. Besides, our study provides a 20 

long-term context for recent GMB variability, which is essential for its reliable projection and attribution.  

1  Introduction 

Glaciers in the Himalayan-Tibetan orogen are an important component of the regional hydrological cycle, and a major fraction 

of regional potable water is stored and provided by them. However, recent climate warming has imposed a serious alteration 

in the equilibrium of these glaciers (Bandyopadhyay et al., 2019; Bolch et al., 2012; Maurer et al., 2019; Mölg et al., 2014; 25 

Yao et al., 2012; Zemp et al., 2019). High uncertainty prevails in future projections of glacier mass balance (GMB), since 

sound understanding of glacier fluctuations and its response to climate change on multi-decadal timescale is poorly understood 

(e.g., the erroneous statement in the Fourth Assessment Report of the IPCC, Kargel et al., 2011). Reliable projections of future 

Himalayan ice mass loss require robust observations of glacier response to past and ongoing climate change. Long-term 

estimation of GMB is also imperative for regional water security. Currently, coupled glacier-climate models even do not agree 30 

on the sign of change, and hence projections of GMB are ambiguous (Watanabe et al., 2019, Jury et al., 2019; DCCC, 2018). 
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Nevertheless, a consistent picture emerges of net ice mass loss in recent decades, which is highest in the western and central 

Himalaya (except the Karakoram and the Pamir) (Bolch et al., 2012; Brun et al., 2017; Dehecq et al., 2019; Maurer et al., 2019; 

Mölg et al., 2014; Shekhar et al., 2017; Yao et al., 2012).   

The central Himalayan glaciers show a rather homogeneous behaviour (Azam et al., 2018; Bandyopadhyay et al., 2019; Brun 35 

et al., 2017; Dehecq et al., 2019; Kääb et al., 2012; Sakai and Fujita, 2017; Yao et al., 2012). In this study, we focus on the 

transitional climate zone between the western and central Himalaya, where knowledge about multi-decadal glacier dynamics 

in relation to climate change is still missing. Evidence from tree-ring isotopes and hydroclimatic studies from the central 

Himalaya suggest that the glacier mass balance behaviour is primarily determined by the conjoint effect of the winter westerlies 

(WD) and Indian summer monsoon (ISM) (Fig. 1 and references therein). The influence of the ISM declines towards the 40 

northwest Himalaya, and the westerlies progressively become dominant. Towards the eastern Himalaya, the influence of the 

Arabian Sea branch of the ISM declines, and the Bay of Bengal branch dominantly regulates the climate, besides an influence 

of the East Asian monsoon (Benn and Owen, 1998; Bookhagen and Burbank, 2010; Hochreuther et al., 2016; Liu et al., 2014; 

Lyu et al., 2019; Mölg et al., 2014; Sano et al., 2017; Yang et al., 2008; Yao et al., 2012). Monsoon-influenced glaciers, 

particularly those in the transitional climatic zone (such as the western region of the central Himalaya), are more sensitive to 45 

climate warming than winter-accumulation type glaciers (Kargel et al., 2011; Sakai and Fujita, 2017). Moreover, a weakening 

in the moisture delivering systems (i.e., WD and ISM) since the mid-twentieth century had a direct impact on the summer-

accumulation type glaciers in the region (Dahe et al., 2000; Hunt et al., 2019; Joswiak et al., 2013; Khan et al., 2019; Roxy et 

al., 2015, 2017; Sano et al., 2012, 2013, 2017; Singh et al., 2019; Xu et al., 2018; Yadav, 2011). 

In the present study, we attempt to reconstruct glacier mass balance history since the end of the Little Ice Age (since 1743 AD) 50 

in the transition zone between the ISM and the westerly-dominated climate in the central-western Himalaya (Fig. 1). We use 

tree-ring stable isotope (δ13C and δ18O) chronologies of three dominant tree species of two different plant functional types and 

synthesize available regional δ18O chronologies from different archives, including tree-rings and ice-cores across the central 

Himalaya (Fig. 1; Table S1).  

Field-based mass balance measurements are logistically challenging in the Himalaya. Nevertheless, since the 1980s, workers 55 

have endured monitoring of four benchmark glaciers (Pratap et al., 2015; Garg et al., 2017, 2019) of the Uttarakhand Himalaya 

(Fig. 1). Based on a detailed analysis of hypsometric curves and several morphological and glaciological factors of these four 

valley glaciers (DOK, CHO, TIP, DUN: Fig. 1, Table S2) (Bandyopadhyay et al., 2019; Pratap et al., 2015; Garg et al., 2017, 

2019), and building upon previous studies (Shekhar et al., 2017; Bandyopadhyay et al., 2019; Azam et al., 2018), we compiled 

a mean observed glacier mass balance time-series since the 1980s (1982 - 2013) (Fig. 1, Fig. S1, Table S2).  60 

The length of observed mass balance records principally limits our understanding of the response of Himalayan glaciers to 

climate change. Remote sensing techniques provide the best alternative in this regard (Garg et al., 2017, 2019; Maurer et al., 

2019; Kääb et al., 2012; Dehecq et al., 2019; Brun et al., 2017; Bandyopadhyay et al., 2019; DCCC, 2018). Nevertheless, 

observation-based mass balance records cannot be extended beyond a few decades. To understand long-term changes, we must 

rely on proxy data. One valuable proxy is ice-core isotopes, which are yet to be obtained from the Indian Himalaya. Tree-rings 65 
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are another reliable and sensitive proxy allowing the reconstruction of glacier history. They have been widely used in 

mountainous regions around the world (Bräuning, 2006; Duan et al., 2013; Gou et al., 2006; Hochreuther et al., 2015; Larocque 

and Smith, 2005; Linderholm et al., 2007; Nicolussi and Patzelt, 1996; Solomina et al., 2016; Tomkins et al., 2008; Watson 

and Luckman, 2004; Xu et al., 2012; Zhang et al., 2019). Tree-ring width (TRW) is known to bear the influence of non-climatic 

factors like biological tree age, which overlaps climatic signals (Bunn et al., 2019; Zhang et al., 2019). TRW records of 70 

Himalayan evergreen conifer trees (including Cedrus deodara, Abies, Larix, and Picea spp.) have been widely used to 

reconstruct hydroclimate and natural hazards (Borgaonkar et al., 2009, 2018; Cook et al., 2003; Singh et al., 2006; Singh and 

Yadav, 2013; Yadav and Bhutiyani, 2013; Yadav et al., 2011; Yadav, 2011). Despite of numerous TRW-based climate 

reconstructions, there is only one TRW-derived glacier mass balance reconstruction (Shekhar et al., 2017). Tree-ring stable 

isotopes are a reliable source of past hydroclimate variability because of their sensitivity to local/regional climate, the 75 

coherence in the climatic response, and the well understood control by the environmental conditions regulating tree physiology 

(Levesque et al., 2019, Sano et al., 2012, 2013, 2017; Singh et al., 2019, Zeng et al., 2017). Although many studies 

reconstructed hydroclimate in the Himalaya using tree-ring isotopes (e.g., Sano et al., 2012, 2013, 2017; Singh et al., 2019; 

Xu et al., 2018), glacier mass balance reconstructions from tree-ring isotope series are still not available. Higher growing 

season temperatures stimulate photosynthesis rates. This facilitates stable isotope fractionation process, resulting in decreased 80 

intercellular CO2 concentration and fractionation against the heavier 13C isotope, which leads to increased higher δ13C. Thus, 

climate (temperature) is a bridge that indirectly connects the mass balance of a glacier with tree-ring C isotope ratios. Hence, 

the mass balance can be reconstructed using stable carbon isotope chronologies from trees growing in the proximity of the 

glacier (Zhang et al., 2019).  

In this study, thus, we utilized tree-ring carbon isotope (δ13C) chronologies of three different species belonging to two plant 85 

functional types (PFT) that differ in their annual phenological cycle (Table S1). One PFT includes evergreen conifers (Abies 

pindrow and Picea smithiana) that have been widely used to reconstruct hydroclimatic regimes across the Himalaya and are 

abundantly found in the moist valley regions of the high central Himalaya. Moreover, we investigated the dendroclimatological 

potential of a major dominant species broadleaf deciduous trees species (Aesculus indica), as its growth period (April to 

September) coincides with the warm-wet phase during the Indian summer monsoon (ISM) season (and lacks westerlies’ signal 90 

due to complete winter dormancy). Additionally, we utilized available Dasuopu ice-core and tree-ring isotope chronologies 

from six different locations in the central Himalaya to substantiate our results (Fig. 1). This study aims (i) to identify the tree-

ring parameter (TRW and/or δ13C, δ18O) of deciduous and evergreen tree species containing the strongest mass balance 

signature, (ii) to reconstruct annual glacier mass balance using the identified best proxy chronology, and (iii) to analyse the 

reconstructed mass balance in relation to regional climate, local forcing factors, and large-scale atmospheric circulation.  95 
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2  Materials and Methods 

2.1 Study region and climate 

The present study focuses on the glaciers of the Uttarakhand Himalaya (Indian central Himalaya) in the transitional climate 

zone between the western and the central Himalaya. The study region extends from latitude 30.15° to 31.03° N and longitude 

78.78° to 80.73° E. The highly glaciated upper reaches of the Uttarakhand Himalaya encompass about 1000 glaciers of varying 100 

size, which cover total area about 2850 km2 (Raina and Srivastava, 2008; Bandyopadhyay et al., 2019). Previous studies found 

that glaciers in the region are mainly fed by the ISM (Azam et al., 2018; Sakai and Fujita, 2017). Therefore, glaciers in the 

region are usually classified as summer-accumulation type glaciers (Azam et al., 2018; Sakai and Fujita, 2017). Snow 

accumulation during winter (December–March) is influenced by a precipitation regime driven by mid-latitude westerlies 

(WD). Decadal-scale meteorological records from the study region are available only for lower elevations (< 2000 m asl) (Fig. 105 

1). Therefore, long-term gridded temperature and precipitation datasets were obtained through the Climatic Research Unit 

(CRU TS.3.22, 0.5 latitude x 0.5 longitudes, 1901-2015) (Harris et al., 2014). However, given the limitations of the CRU 

precipitation dataset in high-altitude regions, we, complemented it with existing meteorological records (Singh et al., 2019). 

Analyses of meteorological records indicate that mean annual precipitation is ~800 mm, of which the warm-wet summer 

months (April-September) receive about 80%. Mean annual temperature varies around 4°C, with a minimum (-7°C) in January 110 

and maximum (13.5°C) in June (Fig. S2). As previously mentioned, studies indicate an increasing trend in temperature, while 

precipitation during both ISM and WD seasons show a recent declining trend. As local climate is the common factor 

influencing both glacier mass balance and the physiology and growth of the trees growing in the valleys, we first analyzed tree 

growth-climate relations (Fig. S3). Averaged monthly temperature and total monthly precipitation over a period spanning from 

October of the preceding year to September of the current growth year were correlated with δ13C chronologies of the species 115 

(as δ13C is a strong predictor of local climatology) (Fig. S3). In addition, various climatological indices (SST, ENSO, ENSO-

Modoki, PDO, and IOD) were obtained from the archive (http://climexp.knmi.nl) to analyse large-scale climatic relations. 

2.2 Glacier mass balance data 

Four benchmark valley glaciers that are distributed across the Uttarakhand Himalaya namely Dokriani (DOK), Chorabari 

(CHO), Tipra Bamak (TIP) and Dunagiri (DUN) have been individually monitored for their mass balance over the time-period 120 

from 1982 to 2013 (with a few gap years, Fig. 1; Table S2) (Pratap et al., 2015; Garg et al., 2017, 2019). Two glaciers (DOK 

and CHO) lie in the Garhwal Himalaya, while two (DUN and TIP) are located in the Kumaun Himalaya (India). We used the 

available glaciological mass balance records to produce best possible time-series (Table S2). We built a mean mass balance 

time-series based upon previous studies (Shekhar et al., 2017; Bandyopadhyay et al., 2019; Borgoankar et al., 2009) and the 

premises that the glaciers show a homogeneous behaviour to changes in the regional climate and that their mass balances show 125 

a high inter-correlation (Azam et al., 2018). Given the same climatic forcing owing to the location in the humid central 

Himalaya and the similar geomorphological characteristics (Garg et al., 2017, 2019) (Table S2), the four valley glaciers should 
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generally correlate well (Solomina et al., 2016). Ideally, land-terminated valley type glaciers of a simple configuration and 

hypsometry are most suitable to infer paleoclimatic information (Solomina et al., 2016). The four studied glaciers are of this 

kind and are therefore designated by workers as 'benchmark glaciers'. The glaciers are of similar small size (except DUN), 130 

have simple shapes and moderate elevation ranges, and thus their recent deglaciation responded to changes in the climate 

equivalently (Table S2). A surface ice velocity study (Table S2) confirmed a similar response-time of these glaciers (Garg et 

al., 2019). Geomorphological features determining glacier hypsometry primarily regulate the response of an individual glacier 

to changes in the climate. Thus, we prepared hypsometric curves of these four benchmark glaciers (Fig. S1), which were 

convex for the DOK and CHO glaciers, while they were concave for the TIP and DUN glaciers. These curves and other similar 135 

glacio-morphological indices (Garg et al., 2017, 2019) (Table S2) provide a reasonable basis to compile these individual mass 

balance time-series (Shekhar et al., 2017; Bandyopadhyay et al., 2019). 

 

    

Figure 1. (A) The study region at the transitional climate zone of central-western Himalaya (WCH) showing tree-ring sampling 

sites, meteorological and aethalometer stations and four benchmark glaciers of the Uttarakhand Himalaya (B: Dokriani Glacier; 

C: Chorabari Glacier; D: Tipra Bamak; E: Dunagiri Glacier). Tree-ring sites from WCH include: (1) Manali (Sano et al., 2017), 
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(2) Uttarakashi (Singh et al., 2019), and (3) Jageswar (Xu et al., 2018). 'Dasuopu Ice-core' site in the eastern part of central 

Himalaya (ECH) has been indicated as blue dotted circle (Thompson et al., 2000), while tree-ring sites of ECH are: (5) Ganesh 

(Xu et al., 2018), and (6) Bhutan (Sano et al., 2013). The fourth tree-ring site (‘Humla’, Sano et al., 2011) has been indicated 

between WCH and ECH. 

2.3 Tree-ring data 

The three tree species utilized in this study are ubiquitously distributed species throughout the central western Himalaya have 

been used earlier to reconstruct past climatic variations. The collected species occupy both aspects of a glacier valley, stretching 140 

from near treeline to down-slope towards the valley. About 20 to 30 increment core samples of healthy tree individuals (to 

minimize the influence of non-climatic factor on growth) were collected from higher elevation sites (2500 - 3800 m asl) from 

two representative glacial valleys (Dokriani: DOK and Pindar: PIN) encompassing the basin in the Indian central Himalaya 

(Fig. 1). Tree-ring isotopic signals (particularly δ18O) are coherent over a large area, as shown by high inter-species and inter-

site correlations in the Himalaya (Sano et al., 2012, 2013, 2017; Xu et al., 2018; Grießinger et al., 2019; Table S1). Recently, 145 

Singh et al. (2019) reconstructed regional ISM precipitation derived from δ18O chronologies of the same three tree species 

from the DOK valley, and found high inter-species and inter-site correlations. Due to unavailability of long-term tree-ring 

stable isotope records from PIN valley, we utilized δ13C chronologies of the three tree species from the DOK valley. 

In summary, we adopted a methodology to reconstruct glacier mass balance history from tree-rings that was successfully tested 

before (Nicolussi and Patzelt, 1996; Duan et al., 2013; Zhang et al., 2019). We used standard dendrochronological methods 150 

and techniques to develop tree-ring width (TRW) and stable isotope chronologies. Then, we calibrated the climate response 

using linear regression models, and tested the reliability of our reconstruction. The leave-one-out cross-validation method 

(LOOCV; Michaelsen, 1987; Yadav and Bhutiyani, 2013; Duan et al., 2013; Zhang et al., 2019) was used to verify our 

reconstruction, given the relative shortness of glacier mass balance data (23 years: 1982-2013 after omitting gap years of 1990-

1992, 1996, 1997, 2001-2003 and 2011) (Table S3). 155 

2.3.1 Tree-ring width chronology development 

Two core samples per tree were collected at breast height using 5.15 mm diameter increment corers. Standard 

dendrochronological procedures (Fritts, 1976; Holmes, 1983) such as mounting and surface smoothing were applied to render 

the ring boundaries clearly visible. TRW of the samples was measured at a resolution of 0.001 mm using a LINTABTM system 

interfaced with a computer. Cross-dating was performed by matching variations in ring-widths in all cores to determine the 160 

absolute age of each ring. Dating and ring-width measurement quality control was conducted using the COFECHA computer 

program (Holmes, 1983). Coherent growth pattern between species revealed a common regional climate signal affecting 

growth of the trees. However, TRW chronologies of all species only showed a weak correlation with glacier mass balance 

data, and hence were not used for any reconstruction efforts. 
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2.3.2 Stable carbon isotope chronology development 165 

Five trees per species were selected for stable isotope analyses based on best TRW inter-series matches. Each year’s growth-

rings were dissected with precaution with a sharp scalpel under the microscope. To remove any possible juvenile effect, the 

innermost approximately 30-40 rings of each tree core were omitted from the analyses. Wood samples were grounded using 

an ultracentrifuge mill (Retsch ZM1). Extraction of cellulose from whole wood and carbon isotope analysis was carried out at 

the Institute of Geography, University of Erlangen-Nuremberg, Germany. Cellulose was extracted from the wood samples 170 

using the method of Wieloch et al. (2011). Isolated cellulose was homogenized using an ultrasonic method (Laumer et al., 

2009) and freeze-dried. Before the pooling procedure, we checked co-relatedness in all five individual time series at 20-year 

intervals in the entire chronology. About 270 µg of cellulose was weighed into tin capsules with a micro balance (ME36S, 

Sartorius, Germany). The carbon isotope analyses were performed with an elemental analyzer (NC 2500, Carlo Erba, Italy) 

linked to an isotope-ratio-mass spectrometer (IRMS; DeltaPlus, Thermo-Finnigan, Germany). Prior to isotope analyses, 175 

samples were thoroughly dried in a vacuum drying cabinet at 60°C. Isotope values were calibrated with international (IAEA-

CH7, USGS-41) and laboratory standards (peptone). The analytical precision was equal to or better than 0.2 ‰. Carbon (δ13C) 

values of samples were calculated by comparison with isotope ratio-predetermined peptone and cellulose lab standards and 

certified international isotope standards (IAEA-601, IAEA-602, IAEA-CH7, USGS-41), which were inserted frequently in the 

course of sample measurements. Isotope ratios are presented in the common δ notation against PDB as: 180 

δ13C =  [
(

13C
12C

)sample

(
13C
12C

)PDB
− 1] × 1000 (‰)                                                

The final tree-ring carbon isotope chronology was corrected to incorporate isotopically light carbon released by the burning of 

fossil fuels and increasing CO2 concentration, as proposed by McCarroll and Loader (2004) and McCarroll et al. (2009). The 

correction procedure applied here has the advantage of being objective, as it effectively removes any declining trend in the 

δ13C series post 1850 CE, which is attributed to the physiological response to increased atmospheric CO2 concentrations 185 

(McCarroll et al., 2009). 

2. 4 Statistical analyses 

Tree growth–climate relationships were analysed applying simple Pearson correlation analysis. The relationship with glacier 

mass balance was analysed using the pair-plot correlation package 'Performance Analytics' (Carl et al., 2010) in R (Table S4, 

S5, Fig. S3). Correlations were computed between monthly temperature and rainfall data and the tree-ring δ13C chronology for 190 

a window from the previous year's October to the current year's September. 

To better visualize the comparison between our reconstructed glacier mass balance time-series and other hydroclimatic 

reconstruction series from the monsoon dominated central Himalayan region (Fig. 1), data time-series were standardized using 

Z-scores and smoothed with 11-year fast Fourier transform to highlight common climate signals. 
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Based on correlation analysis, a linear regression model (Briffa and Jones, 1990, Cook et al., 1994) was used to perform the 195 

reconstruction using LM module in R (ggplot2 package, Wickham, 2016). The leave-one-out cross-validation method 

(LOOCV; Michaelsen, 1987) was used for the entire calibration period (1982–2013) and to verify the reconstruction (Table 

S3). This method is most suitable when the length of observed records is short (Shah et al., 2013; Shekhar et al., 2017; Yadav 

and Bhutiyani, 2013; Vehtari et al., 2017; Zhang et al., 2019). In this method, each observation is successively withdrawn; a 

model is estimated on the remaining observations, and a prediction is made for the omitted observation. The LOOCV analysis 200 

was performed using package 'caret' (Kuhn et al., 2015). Rigorous statistics, including sign test, the reduction of error (RE), 

and the correlation coefficients were calculated to evaluate the similarity between observed and estimated values. Sign test 

measures the degree of association between two series by counting the number of agreements and disagreements. The series 

are highly correlated if the number of similarities is significantly larger than the number of dissimilarities. The RE statistic 

provides a rigorous test of the association between actual and estimated series. Any positive value indicates the predictive 205 

capability of the model. A positive RE is an evidence of a valid regression model (Fritts, 1976). In addition, other rigorous 

statistics, viz., root mean square error, coefficient of efficiency (CE), and Durbin–Watson (DW) test were carried out to 

evaluate the linear regression model (Table S3).  

Spatial and temporal correlations (moving correlations) were used to identify the coherence between reconstructed mass 

balance and gridded (0.5°×0.5°) temperature, precipitation, SST, ENSO, ENSO-Modoki, PDO, and IOD for the studied region 210 

in the central Himalaya. The variability of the climate and glacier mass balance reconstruction in the frequency domain was 

investigated using the multi-taper method (MTM) of spectral analysis (Mann and Lees, 1996) and wavelet transform (Grinsted 

et al., 2004) to identify periodicities and their temporal variability in the reconstructed data.  

3 Results and discussion 

3.1 Annual glacier mass balance reconstruction 215 

The detailed results on analysed relationship between δ13C and compiled glacier mass balance as well as with available climate 

datasets are presented in Table S4 and S5. Descriptive statistics of δ13C chronologies and inter-species correlation (for common 

period) are shown in Table S1. Uncorrected and corrected δ13C chronologies (McCarroll and Loader, 2004) of the PFTs are 

illustrated in figure S6. The mean difference in the isotopic composition of the two conifer species is ~0.53 ‰ (Abies pindrow, 

1743-2015: -22.19 ± 0.7 ‰; Picea smithiana, 1920-2015: -22.72 ± 0.65 ‰).The mean δ13C value of broadleaf deciduous 220 

species (Aesculus indica) is -24.31± 0.82 ‰. The difference (1.6 - 2.1 ‰) between δ13C time-series of two PFTs indicates a 

higher level of isotope discrimination in the broadleaf species relative to conifers. Further, break-point analysis indicated 1954 

as a year of change in the isotopic composition. Irrespective of the PFTs, a mean ~5 % decline in isotopic composition was 

noted after 1954 relative to the pre-1950s level (Fig. S6). For the broadleaf species, slopes of the trends for the periods prior 

and after 1954 are -0.001 ‰ yr-1 and -0.032 ‰ yr-1, respectively. For the conifers, they are -0.0007 ‰ yr-1 and -0.025 ‰ yr-1, 225 

respectively (P < 0.001). ∆13C time-series of broadleaf species showed an increasing trend since 1954, with an average rate of 
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0.15 ‰ yr-1, while it remained stable for the conifers (0.003 ‰ yr-1) (Fig. S6). Nevertheless, a significant and positive inter-

species correlation exists between them. This indicates an influence of common and coherent climatic factors on the 

physiological processes. Climate-response functions indicate that for both PFTs, correlation strength between δ13C and  mean 

annual temperature (MAT) or mean annual precipitation (MAP) remained similar (MAT; Abies pindrow: r = -0.215, P <  0.05, 230 

n = 66; Aesculus indica: r = -0.281, P < 0.05, n = 66; Picea smithiana: r = -0.405, P < 0.001, n = 66), (MAP; Abies pindrow: 

r = 0.243, P < 0.05, n = 66; Aesculus indica: r = 0.115, P < 0.05, n = 66; Picea smithiana: r = 0.185, P < 0.05, n = 66). Results 

on monthly and seasonal climate-response function analyses are provided in supplementary material (Fig. S3, Table S5). 

A weak correlation between TRW and glacier mass balance could arise due to sensitivity issues (Bunn et al., 2019). At high-

elevations in a valley environment, temperature and precipitation signals mix and make TRW records difficult to interpret 235 

(Bunn et al., 2019). In view of this, we resorted to tree-ring isotopes (δ13C) of the species that are known to be sensitive to 

climate. Interestingly, we found a strong correlation only between δ13C of our studied conifer species and compiled glacier 

mass balance (Abies pindrow: r = 0.596, P < 0.001, n = 23 and Picea smithiana: r = 0.631, P < 0.001, n = 23). The correlations 

are strong enough to establish a significant calibration model (Shah et al., 2013; Shekhar et al., 2017; Yadav and Bhutiyani, 

2013; Vehtari et al., 2017; Zhang et al., 2019). In contrast, correlation with the deciduous species (Aesculus indica: r = 0.343, 240 

P = 0.1101, n = 23) is weak during summer (April-September) and non-significant during winter. This could be due to a lack 

of storage of winter-time climate signals, as the species remains physiologically active only during wet-warm period from 

April to September. Therefore, we utilized both evergreen conifer species for our reconstruction (Table S4). A linear regression 

model was employed for the reconstruction of annual glacier mass balance (GMB) over the past 273 years and the 

corresponding empirical equation is:  245 

GMB = 8.4526 + 0.3839 * δ13Cconifers 

Where, δ13Cconifers is the mean chronology of Abies pindrow and Picea smithiana and GMB is annual glacier mass balance 

(meter water equivalent; m w.e.). The detailed model statistics are presented in Table S3. Model and calibration–verification 

statistics indicate the reliability and strength of our reconstruction model (Table S3; Fig. S4; Fritts, 1976; Vehtari et al., 2017). 

Validation tests including the number of sign agreements between the reconstructed series and observed mass balance records, 250 

and cross-correlation between reconstruction and measurements are significant (P < 0.001) (Fig. S4). However, the error 

estimates are based on measured mass balance data of only 23 years (1982–2013, with gap of few years), so a possibility of 

uncertainty still exists in the reconstruction, particularly during the pre-observation period. Nevertheless, the use of sensitive 

isotope chronology (δ13C) and the combination of two conifer species in this study may help to minimize several factors 

responsible for higher uncertainty, such as sensitivity issues, decreasing sample size and temporal variability, which is 255 

unavoidable with TRW.  

3.2 Three major phases in the mass balance dynamics 

Historical records of glacier change are rare from the Himalaya. However, available studies provide evidence that the monsoon-

influenced southeast Tibetan Plateau (TP) glaciers and those of the central Himalaya have responded synchronously to the 
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change in climate. In contrast, glaciers in the western regions of the Himalaya-Tibet orogen behaved asynchronously (Solomina 260 

et al., 2016; Owen et al., 2008; Kaspari et al., 2008; Liu et al., 2013; Hochreuther et al., 2015; Xu et al., 2012; Bräuning et al., 

2006). Studies highlight the relative importance of two moisture delivery systems (westerlies and Asian summer monsoon) in 

driving regional glacier fluctuations; how variations in moisture delivery systems have changed at millennial to glacial-

interglacial timescale and their impact is even perceptible at interannual to decadal timescale (Hou et al., 2017, Mölg et al., 

2014).  265 

In a gross regional sense, the current state-of-the-knowledge suggests that since the last glacier advance (LIA: 1500 – 1850 

CE) glaciers are in a general state of retreat, whereby the role of regional climate in regulating regional glacier fluctuations 

has increased gradually (Mayewski and Jeschke, 1979; Mayewski et al., 1980). Therefore, across the Himalaya this period 

(1850s onwards) is characterized by dominancy of retreat, advance, and/or standstill regimes (Mayewski and Jeschke, 1979; 

Mayewski et al., 1980; Bolch et al., 2012; Rowan, 2016; Solomina et al., 2016). Available records from the central Himalaya 270 

indicate a state of glacier retreat since the 1850s, regardless of the glacier type (Mayewski and Jeschke, 1979), with a recent 

acceleration in ice mass loss as indicated by remote sensing studies (Maurer et al., 2019; Bandyopadhyay et al., 2019).  

Our 273 yearlong GMB reconstruction agrees with the general retreat of glaciers since the mid-19th century (Fig. 2). Smoothing 

of the reconstruction with an 11-year moving average and break-point analyses revealed three distinguishable main phases: 

(1) a phase of positive mass balance up to ~1870 CE, coincident with the LIA in the central Himalaya; (2) reorganisation of 275 

Northern Hemisphere atmospheric circulation following the LIA and progressively increasing influence of regional climate 

could have resulted in a phase of near zero or stable mass balance that lasted up to 1960s and (3) a phase of accelerated ice 

mass loss since the 1960s. The latter phase corresponds to a global glacial retreat and can be attributed to increasing 

temperatures, combined with a decline in ISM and westerly circulations, and anthropogenic climate change (e.g., Bollasina et 

al., 2011). 280 

Hydroclimatic evidence such as regional and composite tree-ring δ18O chronologies from the monsoon-influenced region (from 

southeast TP to central Himalaya) (An et al., 2014; Singh et al., 2019; Grießinger et al., 2011; Wernicke et al., 2017; Liu et al., 

2014; Sano et al., 2012, 2013, 2017; Shi et al., 2012; Xu et al., 2018) and speleothems and Dasuopu ice-core record from the 

central Himalaya (Thompson et al., 2000; Kaspari et al., 2008; Denniston et al., 2000; Kotlia et al., 2012; Kotlia et al., 2015; 

Liang et al., 2015) show that regional climate changed since the 1860s, with a reorganisation of hemispheric atmospheric 285 

circulation. Consequently, regional hydroclimate abruptly shifted towards a drier phase concurrent with the changes in 

atmospheric circulation. These records show a spatially coherent signal and serve as a validation test of the accuracy of our 

GMB reconstruction (Fig. 2). Particularly, tree-ring and speleothem δ18O records (Singh et al., 2019, Sano et al., 2012, 2013, 

2017; Xu et al., 2018; Kotlia et al., 2015; Liang et al., 2015) from our study region (Fig. 1) indicate increased westerly 

precipitation prior to 1860-70 CE (Murari et al., 2014; Yang et al., 2008), which resulted in a phase of positive mass balance. 290 

Increased winter snowfall could be anticipated from a southward shift of southwesterly winds due to reduced Northern 

Hemisphere air temperatures during the LIA (Rowen, 2016). The stronger influence of mid-latitude westerlies in driving 

glacier variability in monsoonal high Asia (Mölg et al., 2014) may have led to higher snowfall and positive mass balance prior 
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to 1870s as observed in our reconstruction (Fig. 2). Regional temperature reconstructions (Zhu et al., 2011, Borgaonkar et al., 

2018, Yadav et al., 2011) also suggest a cold and cloudy climate prior to 1850, which was followed by warmer and sunnier 295 

climate thereafter (Liu et al., 2014; Xu et al., 2012). Indeed, a brief phase of negative GMB trend during the 1770s to 1790s 

could be the result of warmer winter temperatures (Huang et al., 2018) and below-average snow accumulation during mega-

droughts as observed around this period (Cook et al., 2010; Thompson et al., 2000; Kaspari et al., 2008) (Fig. 2). The close 

correspondence between reconstructed mass balance and regional hydroclimate reconstructions supports the notion of 

hemispheric synchronicity to climate change prior to 1860-70 CE (Solomina et al., 2016). However, gradual changes in 300 

regional oscillations in temperature and moisture delivery sources in the Himalaya-Tibet orogen, particularly a change in the 

interplay of ISM and westerlies could have induced regionally distinguished climate zones with specific behaviour of glacier 

dynamics (section 3.3). 

Glacial history during the late-Holocene and LIA in our studied region (Murari et al., 2014; Saha et al., 2019), and the above 

mentioned proxy records and climate dynamics studies (Mölg et al., 2014; Khan et al., 2019) indicate an out-of-phase 305 

relationship between the westerlies and ISM influence. Therefore, regardless of the strength of the westerlies (Joswiak et al., 

2013), ISM weakening since the 1860s tended to shift the regional hydroclimate towards a drier and a warmer climate. This 

could have favoured ice mass loss that led to a slightly negative mean mass balance (-0.046 ± 0.134 m w.e., ±SD) during the 

middle phase (1870-1959) in our reconstruction. Timing of our reconstructed glacier advancement or recession is consistent 

with records of cold periods during the early 19th (1815–1825) and 20th century (1900–1910) (Zech et al., 2003). A brief period 310 

of declining mass balance from 1865 to 1885 could be ascribed to warm winter temperatures observed during 1848 to 1894 

(Huang et al., 2018), and the late Victorian Great Drought during 1875-1878 (Singh et al., 2018; Cook et al., 2010). The 

slightly negative but stable mean GMB observed from 1920 to 1960 is consistent with reported mass balances from the 

Himalaya (Bolch et al., 2012), and pluvial conditions from enhanced ISM activity during 1920 to 1960 (Sinha et al., 2015).  

Severe glacial mass loss (-0.437 ± 0.191 m w.e.) since the 1960s corresponds to a further and prominent shift towards drier 315 

conditions arising out of the weakening of both the ISM and westerlies (Dahe et al., 2000; Hunt et al., 2019; Basistha et al., 

2008, Singh et al., 2019, Sano et al., 2012, 2013, 2017). Increasing regional and global temperatures coupled with progressive 

regional industrialization may have exacerbated the retreat rates. We observed a doubling of average ice mass loss rate (-0.577 

± 0.022 m w.e. year-1) (±SE) in the last thirty years compared to 1960-1985 (-0.275 ± 0.022 m w.e. year-1). An extensive 

remote sensing-based study encompassing the last forty years observed a consistent and similar trend of glacier loss across the 320 

Himalayan transect (Maurer et al., 2019). For our study region, Bandyopadhyay et al. (2019) computed mean weighted mass 

balance as -0.61 ± 0.04 m w.e. year-1 (2000-2014), while we observed -0.65 ± 0.02 m w.e. year-1 (excluding the very large-

sized Gangotri Glacier). Similarly, several geodetic mass balance estimates from the western-central Himalayan region are 

comparable (-0.4 to -0.8 m w.e. year-1) to our results and are within the error limits of earlier studies (DCCC, 2018; 

Bandyopadhyay et al., 2019; Maurer et al., 2019).     325 

In recent decades, along with the decreasing intensity of moisture influx (ISM and WD), the importance of regional temperature 

in regulating mass balance behaviour has been gradually increasing (Fig. 3). Several studies from the eastern Himalaya-Tibet 
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orogen have emphasised on the increased influence of regional temperature in determining mass balance behaviour (Bräuning, 

2006; Yang et al., 2008). Our results confirm historical observations made in the early 19th century (without the availability of 

geochronological data to constrain the timing) that the central Himalayan glaciers have been receding since 1850 CE 330 

(Mayewski and Jeschke, 1979; Rowen, 2016). The rate of ice mass loss accelerated since the 1960s and almost doubled in the 

last thirty years with respect to pre-1985. Here, our results contradict the notion of UNEP (2009) that 'despite the widespread 

shrinkage of the Himalayan glaciers in area and thickness, the nature of shrinkage has not changed significantly over the last 

100 years' (UNEP, 2009). 

 

Figure 2. (A) Recontructed glacier mass balance for the western-central Himalaya (WCH) since 1743 AD (coloured inset indicates annual 

and pentadal mass change rate since the 1960s with std. errors). (B) Annual snow accumulation record derived from Dasuopu Ice Core 

from the central eastern Himalaya (Thompson et al., 2000). Dark lines indicate 11-year moving averages. Vertical dashed lines are results 

of break-point analyses that reveal three major phases in the reconstruction.           

 3.3 Increasing regional heterogeneity 335 

Substantial evidence exists from the monsoon-influenced Himalaya-Tibet orogen (Fig. 1) suggesting that LIA glacial 

fluctuations were more or less synchronous prior to 1850s (Hochreuther et al., 2015; Bräuning, 2006; Yang et al., 2008; Xu et 
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al., 2012; Mayewski and Jeschke, 1979; Rowen, 2016, Owen et al., 2008). Following the LIA, a global readjustment in 

atmospheric circulation resulted in a southward shift of the Inter Tropical Convergence Zone (ITCZ). It broadly affected the 

Asian summer monsoon and the region progressively moved towards a drier phase, subsequent to a breakdown in ITCZ and 340 

Northern Hemisphere temperature relation since the mid-nineteenth century (Reidely et al., 2015; Xu et al., 2012). 

Nevertheless, the strength of the westerlies in the region remained unaffected until the mid-twentieth century (Joswaik et al., 

2013; Hunt et al., 2019; Khan et al., 2019). Thus, depending upon the geographical location and proximity to the oceans, a 

distinct regionality developed, with a decline in summer monsoon precipitation. The middle phase (mid-nineteenth to mid-

twentieth century) in our reconstructed GMB and in the annual snow accumulation recorded in Dasuopu ice core support this 345 

point of view (Fig. 2). During this period, cryospheric mass balance turned slightly negative, with a gradual decline in summer 

precipitation, which was more prominent towards the western part (Fig. 2, 3). 

 

Figure 3a. (A-C) Coherence in the anomalies (Z-scores) of glacier mass balance, summer monsoon precipitation (Singh et al., 2019) 

(B), and CRU temperature. (C). Dark lines indicate 11-year moving averages. (D) Enhanced correlation between glacier mass 

balance and temperature after the 1960s and the effect of the global warming hiatus of the late 1990s. (E-F) 51-year running 

correlations of glacier mass balance with precipitation (Singh et al., 2019) (E), and temperature (HadCRUT4) (F). 
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Figure 3b. (A-F) Anomalies (Z-scores) of six central Himalayan tree-ring δ18O series (Manali: Sano et al., 2017; Uttarakashi: Singh 

et al., 2019; Jageswar: Xu et al., 2018; Humla: Sano et al., 2012; Ganesh: Xu et al., 2018; Bhutan: Sano et al., 2013). Dark lines 

denote 21-year moving averages. (G-L) Corresponding right panels indicate low frequency temporal correlations (51-year running 

correlations) with reconstructed glacier mass balance. Different behaviour of regional δ18O chronologies, particularly a phase shift 

in WCH chronologies (Manali, Uttarakashi and Jageswar) is prominent after the mid-twentieth century (dashed vertical line).                     

Dendroglaciological and paleoclimate studies suggest that on a centennial timescale temperature changes remain the prime 

factor for glacier fluctuations rather than precipitation changes (Yang et al., 2008; Wang et al., 2019). After the mid-twentieth 

century (1960s), the role of temperature increased in determining mass balance behaviour, concurrent with a further decline in 350 

moisture influx both from ISM and WD (Roxy et al., 2015, 2017; Dahe et al., 2000; Hunt et al., 2019; Basistha et al., 2008, 

Singh et al., 2019, Sano et al., 2012, 2013, 2017). Correlation analysis indicate a high coherence of GMB dynamics with CRU 

temperature data after the 1960s (r = -0.78, P < 0.001). Interestingly, reconstructed GMB even sensitively responds to the 
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effect of slowdown in global temperature increase since the late 1990s (warming hiatus) (Fig. 3a). In contrast, correlations 

with gridded precipitation including that of northern India and ISM rainfall indicate a low association. However, we observed 355 

a high coherence (at both low and high frequencies) with local δ18O reconstructed summer monsoon precipitation derived from 

several regionally dominant tree species (Singh et al., 2019) (Fig. 3a). Moreover, we also found a tight correspondence with 

regional (Fig. 1) tree-ring δ18O chronologies; the strength of which declined towards the eastern central Himalaya (Fig. 3b, 

Table S6). Results indicate an abrupt change in hydroclimate after the mid-twentieth century, which is particularly prominent 

in the western part of the central Himalaya. Moving correlations (51-year) between GMB and tree-ring δ18O chronologies 360 

indicated a phase shift in the western part, which is more prominent relative to the eastern central Himalaya after the 1960s 

(Fig. 3b).  

Regional tree-ring δ18O chronologies constitute sensitive records that exemplify regional hydroclimatic heterogeneity and 

show that the drivers of glacier fluctuations in the western part of the central Himalaya (WCH) are somewhat different from 

the eastern central Himalaya (ECH) (Fig. 3b). Here, we contend that caution should be applied when referring to the glaciers 365 

in WCH as summer-accumulation type glacier. We showed that over the WCH (compared to ECH), the westerlies still have a 

significant impact on annual mass balance behaviour. Earlier studies confirm that glaciers in the ECH and further east are 

mainly fed by summer monsoon precipitation and thus are undisputedly classified as summer-accumulation type glaciers 

(Sakai and Fujita, 2017). However, our results reveal a contrasting hydroclimate relation between WCH and ECH, with an 

opposite behaviour of moving correlation patterns (51-year) between records of regional glacier/snow accumulation and tree-370 

ring δ18O series (Fig. 4). When comparing the δ18O chronology of the deciduous species (Aesculus indica) growing in WCH, 

we find a correlation pattern strikingly similar to ECH, rather than to WCH. In contrast to conifer species that take up snowmelt 

water containing winter precipitation isotopic signals in the early growing season (Huang et al., 2019), the broadleaf deciduous 

species takes up soil water mostly after leaf flush and full canopy development in May (Negi, 2006). At this time of the year, 

the snowmelt signal may already be gone, so the species does not reflect the winter precipitation signal. These results support 375 

our interpretation that the winter westerlies have a strong impact on the annual mass balance of glaciers in WCH compared to 

ECH. The correlation patterns indicate an abrupt phase change in WCH since the 1960s, while correlation in ECH remains 

stable, suggesting a super-positioning role of temperature and differential precipitation seasonality derived from the westerlies 

and the two branches of the ISM (AS and BoB) (Fig. 2, 4). 

Analyses of tree-ring δ18O records and water stable isotope ratios from the central Himalaya specify greater influence of the 380 

Arabian Sea branch of the ISM in WCH, the strength of which declines towards the eastern Himalaya (Sano et al., 2017). 

While, the climate in ECH is dominantly regulated by the Bay of Bengal branch, along with some influence of East Asian 

summer monsoon (Sano et al., 2013; 2017; Sinha et al., 2015; Liu et al., 2014). At the north-western periphery of ISM 

incursions in WCH, moisture flux from the Arabian Sea competes with the influence from the Bay of Bengal (Sano et al., 

2017). Thus, the role of the Arabian Sea branch increases in WCH, particularly when the Bay of Bengal branch is relatively 385 

weak (Sano et al., 2017).  
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Figure 4. Low frequency correlations between regional cryospheric dynamics and hydroclimate. Blue line indicates 51-year 

moving correlations between reconstructed glacier mass balance (GMB) and regional tree-ring δ18O (Manali, Uttarakashi and 

Jageswar) from western part of the central Himalaya (WCH). The abrupt phase shift since the 1960s is peculiar for WCH. Green 

line indicates 51-year moving correlations in the eastern central Himalaya (ECH) between annual snow accumulation from 

Dasuopu ice-core (Thompson et al., 2000) and regional δ18O (Ganesh and Bhutan). While, the red line indicates 51-year moving 

correlations between GMB and tree-ring δ18O of a dominant deciduous species (Aesculus indica) growing in WCH. Its similarity in 

the coherence with that of ECH is remarkable and illustrative of the summer monsoon influence during the annual growing period 

(April-September).   

It is pertinent here to mention about differential influence and behaviour of the two branches of the ISM. Although the Arabian 

Sea (AS) and the Bay of Bengal (BoB) are part of the Indian Ocean, crucial ocean-atmosphere interaction experiments have 

shown that they possess distinctly different features (Saikranthi et al., 2019). They are strongly different in terms of sea surface 390 

temperature (SST) and background atmosphere and related precipitating systems. The monsoonal winds and low-level 

Findlater jet are stronger over the AS than BoB. Tropospheric thermal inversions are more frequent and stronger over the AS 

than BoB. The variability in SST is larger over the AS than over the BoB. The SST in the AS cools between 10º and 20 º N 

during the monsoon season, whereas warming occurs in all oceans between the same latitudes (Misra et al., 2019; Saikranthi 

et al., 2019; Roxy et al., 2015). Thus, AS plays a predominant role in regulating the ISM rainfall variability, which appears to 395 

be particularly impactful for the prevailing climate in the WCH.  

Compelling evidence suggests increased warming over the Indian Ocean since the mid-twentieth century. However, warming 

over the AS is monotonous for more than a century, at a rate faster than in any other region of the tropical oceans (Roxy et al., 

2015, 2017; Misra et al., 2019). Currently, the AS is the largest contributor to the trend in global mean SST. The abnormal 

warming over the AS tends to weaken the land-ocean thermal contrast and hence has been implicated for a weakening of the 400 

ISM since the mid-twentieth century (Roxy et al., 2015, 2017). Besides, warming over the AS has also been shown to reduce 
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the magnitude of the westerlies, as their interaction enhances the moisture convergence over the AS, leading to decreased 

precipitation from the westerlies (Misra et al., 2019). This mechanism may explain the decline in precipitation frequency, 

snowfall, and total precipitation amount from the westerlies since the mid-twentieth century (Hunt et al., 2019; Das et al., 

2002; Shekhar et al., 2010, Kumar et al., 2015, Khan et al., 2019). Tree-ring δ18O records from Bhutan to the southeast TP 405 

(Sano et al., 2013; Hochreuther et al. 2016; Lyu et al. 2019) show more or less unaltered conditions during the 20th century. 

Thus, weakening of the BoB branch as indicated in some studies (Roxy et al., 2017) needs reappraisal. However, irrespective 

of the strength or variability of the Bay of Bengal monsoon branch, accelerated ice mass loss since 1960s could be possibly 

ascribed to the combined effect of a decline in moisture influx form the Arabian Sea and the westerlies.       

Given the importance of the westerlies (Mölg et al., 2014) and their weakening, as reflected in the decline of the indices of the 410 

Arctic Oscillation and North Atlantic Oscillation (Hunt et al., 2019; Peings et al., 2019), we focus on El Nino-Southern 

Oscillation (ENSO), the Indian Ocean dipole (IOD), and the Pacific Decadal Oscillation (PDO), which are all known to 

strongly modulate the summer monsoon precipitation. Hydroclimatic studies from the monsoon-dominated Himalaya-Tibet 

orogen indicate a pervasive but temporally unstable coherence. Low frequency coherences between tree-ring δ18O derived 

regional hydroclimatic reconstructions and the above indices of atmosphere-ocean interaction appear to strengthen in recent 415 

decades (Sano et al., 2012, 2013, 2017; Singh et al., 2019; Hochreuther et al. 2016; Lyu et al. 2019). In accordance, our results 

too show a strong correlation at multi-decadal timescale between tree-ring δ18O chronologies available from WCH and the 

above indices (Fig. 5). 
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Figure 5. (A-C) Temporal correlation behaviour at multi-decadal timescale (51 years) between tree-ring δ18O chronologies 

available from the western central Himalaya (Manali: Sano et al., 2017; Uttarakashi: Singh et al., 2019; Jageswar: Xu et al., 

2018), Nino4 SST (violet line) (A), ENSO Modoki (orange line) (B), and Pacific Decadal Oscillation (PDO: red line) (C). 

(D)Strengthening decadal correlations between glacier mass balance and oceanic indices after the 1960s. (E) Spectral analysis 

plot of glacier mass balance (GMB) time-series reflecting low-frequency variations preserved in GMB reconstruction.  

Tree-ring δ18O chronologies from the monsoon-dominated Himalaya generally contain a 2-5 years cyclic signal, which is 

coherent with the ENSO cycle (Xu et al., 2018, Singh et al., 2019; Sano et al., 2012, 2013, 2017). However, spectral analysis 420 

of our GMB time-series showed significant periodicities (P < 0.05) at decadal and multi-decadal scales, which reflect low 

frequency variations preserved in the reconstruction (Fig. 5E). Lack of high frequency periodicities indicates a minor role of 

ENSO in modulating glacial hydroclimate on interannual or shorter timescale. Low periodicity was also found in a regional 

reconstruction of mass balance (Shekhar et al., 2017). Cross-correlations between reconstructed GMB and Nino4 SSTs 

revealed a weak negative correlation (r = -0.25, P < 0.05, 1901-2015). Interestingly, weak and non-significant negative 425 

correlations between a δ18O based summer monsoon rainfall reconstruction for our study region and SST (Singh et al., 2019) 

during 1909-1926 and 1957-2015 coincides with a negative GMB trend (Fig. 2), while, significantly strong negative 

correlations observed during 1870-1908 and 1927-1956 coincide with positive GMB trends (Fig. 2). This indicates a clear 

influence of SSTs on mass balance behaviour particularly for the WCH at low frequency timescale. Wavelet coherence 

analyses of reconstructed GMB with annual Nino4 SST revealed unstable common frequency composition in the different 430 

series over time, indicating a wobbly linkage with the change in SSTs (Fig. S5), as observed in previous studies of regional 

hydroclimate (Sano et al., 2012, 2013, 2017; Singh et al., 2019; Hochreuther et al. 2016; Lyu et al. 2019). Similarly, we noted 

a weak correlation with other indices (Fig. S5). However, decadal correlations between GMB and these indices strengthen 

after the 1960s (Fig. 5), indicating a negative influence of monotonous ocean warming on mass balance dynamics through 

precipitation feedback.  435 

A lack of strong coherence in the high frequency bands between GMB dynamics and SST indices is possible because once the 

monsoon circulation sets in, the local weather begins to decouple from the circulation. There is complete absence of monsoon 

footprint on regional glaciers both from atmospheric drivers and from mass-balance perspectives (Mölg et al., 2014). Point-

scale micrometeorological experimentation and surface energy balance analyses of a typical glacier from WCH (Pindari 

Glacier, Fig 1) also indicate a tight land-atmosphere coupling during the summer- as well as in the winter-accumulation 440 

seasons. The coupling turned negative and remained weak only during the transition phases (pre- and post-monsoon), making 

it amenable to atmospheric perturbances (Singh et al., 2019). Thus, any repeated atmospheric alterations during the summer 

monsoon season such as active or break periods may not be able to strongly influence the mass balance dynamics. However, 

critical transition phases, particularly the pre-monsoon melt season has the potential to shape mass balance on decadal or even 

longer timescale (Mölg et al., 2014; Singh et al., 2019).  445 

The pre-monsoon season is also important for the onset of summer accumulation season (during ISM). Numerical experiments 

and simulations in the Himalaya-Tibet orogen have identified seasonal changes during the pre-monsoon that lead to the onset 

of ISM. The Tibetan plateau maintains a large-scale thermally driven vertical circulation, which initially remains unconnected 
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from the monsoon circulation. Rising motion exists only on the far western side of the Plateau during winter. Gradually, it 

extends towards the eastern side as the pre-monsoon season progresses. The ISM onset over the region is thus an interaction 450 

process between the plateau-induced circulation and northward migrating rain-bearing depressions from AS and BoB. It is 

thus highly possible that warming-induced decline in winter-spring snow cover, particularly over the western TP could alter 

this interaction process and monsoon onset. The weakening of the relationship between snow cover over the western TP and 

ISM rainfall could be a possible manifestation (Zhang et al., 2019). Studies have affirmed that atmospheric conditions during 

the pre-monsoon season are pivotal in determining mass balance even at the decadal or longer timescale (Mölg et al., 2014). 455 

These studies also suggest anti-correlated precipitation variability between ISM and mid-latitude circulation during the pre-

monsoon season. The interaction between these large-scale circulations in this region is largely determined by the position of 

thermally driven subtropical jet streams (Peings et al., 2019; Hunt et al., 2019). Thus, a possibility emerges that anthropogenic 

factors influencing tropospheric warming could alter the position of jet streams and annual mass balance behaviour, 

particularly in the transitional climate zone in the WCH. 460 

3.4 Local forcing factors 

Our study region has experienced an enhanced warming trend during pre-monsoon season since the 1960s that has amplified 

in the last 2-3 decades (Lau et al., 2010; Gautam et al., 2009, 2010; Xu et al., 2009; Prasad et al., 2009). This is most likely 

due to increased aerosol loading, enhanced atmospheric water vapour content (Mortin et al., 2016), and anthropogenic 

greenhouse (CO2) emissions. These factors increase radiative heating rates, aid to net atmospheric warming and create a 465 

positive feedback loop to tropospheric warming. Enhanced tropospheric warming has the potential to alter the position of the 

subtropical westerly jet and as described earlier, determines ISM strength by influencing the AS branch and ultimately the 

glacier mass balance.  

Of the local factors influencing tropospheric heating, greenhouse forcing of CO2 emissions is pervasive. Studies suggest an 

inverse geological relation between glaciation events and atmospheric CO2 concentration (Willeit et al., 2019; Macdonald et 470 

al., 2019). Causes of enhanced CO2 concentration over the Himalaya include deforestation, increased frequency of forest fires, 

regional industrialization, and emission and transport of greenhouse gases. Beside major contributions from anthropogenic 

activities, sub-glacial carbonate weathering, especially sulphide oxidation process coupled to carbonate carbonation is a 

potential source of CO2 to the atmosphere. Fast kinetics associated with these processes in glacial environments is also 

responsible for present day atmospheric CO2 concentration (Shukla et al., 2019). Our corrected chronologies (∆13C) (McCarroll 475 

and Loader, 2004), showed an effect of rising atmospheric CO2 concentrations on tree physiology, which was prominent for 

the deciduous trees (Fig. S6). The current regional annual radiative forcing due to CO2 is about 1.7 Wm-2, which is almost 

fivefold to that of early 20th century. A peak in the transport of dust and greenhouse gases from the Indo-Gangetic plain occurs 

during the pre-monsoon season, and we anticipate enhanced seasonal CO2 radiative forcing during this critical transitional 

phase.  480 
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Climate sensitivity studies suggest that surface temperature change is higher for aerosols than for greenhouse gases due to its 

strong longwave effect (Chakraborty and Lee, 2019). The severe lack of aerosol data precludes drawing of any conclusions on 

black carbon induced ice/snow melting in the Himalaya. Some space-borne studies utilizing ground radiometric measurements 

indicate that absorbing aerosols have favoured a localized warming over the western-central Himalaya (0.26 ± 0.09 °C/decade) 

(Gautam et al., 2010). Related studies from Tibetan glaciers suggest that black carbon aerosol deposition is a significant factor 485 

contributing to the observed rapid glacier retreat (Xu et al., 2009; Zhao et al., 2017).  

To get an estimate of radiative forcing due to ambient concentrations of black carbon aerosols over glacier environment, we 

utilized data of two existing aethalometer stations from our study region (Fig. 1; Gangotri glacier: 30° 58' 48'' N, 79° 4' 48'' E, 

3600m asl, Negi et al., 2019; and Dokriani (DOK) glacier: 30°51’6.86” N, 78°45’8.55” E, 3900 m asl). Annual mean radiative 

forcing (at atmosphere) due to black carbon aerosols (computed as described by Dumka et al., 2016) was +10.1 ± 3.0 Wm-2 490 

for the Dokriani glacier, and +7.4 ± 2.2 Wm-2 for the Gangotri glacier, respectively. The lower value for the Gangotri glacier 

could be due to its location on the leeward side. In support of these results, we found similar mean annual values and diurnal 

to seasonal dynamics in aerosol radiative forcing with that of sites on the southeastern TP (Zhao et al., 2017; Li et al., 2018; 

Zhang et al., 2017). Although we were not able to compute seasonal radiative forcing arising out of black carbon aerosols 

and/or dust, we anticipate many-fold enhanced pre-monsoonal radiative forcing. These observations indicate the significant 495 

contribution of the local forcing factors associated with anthropogenic climate change.  

4  Conclusions 

We present a 273 year-long ice mass loss record from the Uttarakhand Himalaya, which is the only record of annual mass 

balance variability from the Himalaya so far. Utilizing coherent analyses of tree-ring stable isotope chronologies of regionally 

dominant tree species and synthesizing oxygen isotope chronologies from different regional archives, we show that ice mass 500 

loss in the region has accelerated since the mid-20th century to its highest levels during the past 273 years. Stable isotope 

chronologies of three species of diverse plant functional types and well calibrated δ13C-derived mass balance reconstruction 

indicate a mean rate of mass loss of -0.437 ± 0.025 m w.e. year-1 since 1960. The reconstructed mass balance reveals three 

major phases. Mass balance remained positive prior to 1860-70s. Slightly negative but stable mass balance up to 1960s, and a 

highly negative mass balance since then. Further, our results suggest a doubling of average ice mass loss rate (-0.577 ± 0.021 505 

m w.e. year-1) in the last thirty years as compared to 1960-1985 (-0.275 ± 0.022 m w.e. year-1). Isotopic and climate coherency 

analyses indicate that reconstruction is consistent with regional climatic variability and indicate a significant influence of the 

westerlies in this transitional climate zone of the central Himalaya. The current trend in ice mass loss goes along with increased 

anthropogenic aerosol and, CO2 loading and with a concurrent change in climatological factors, including a decline of the 

westerlies and the strength of the Arabian Sea branch of the Indian summer monsoon. These results present observational 510 

support to calibrate and validate coupled regional climate-glacier models. Improvements in glacier mass-change assessments 

are still possible and necessary. We suggest that incorporating growth increments of shrubs growing in the alpine zone could 
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be complemented to provide robust estimates of glacier response to future climate scenarios and modelling studies of glacier 

contributions to regional runoff.  
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