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Abstract. When will sea ice open is a crucial information
::::::::
Knowing

:::::
when

:::
sea

:::
ice

::::
will

:::::
open

::
is

::::::
crucial

:
for navigation and

scientific deployments. This became painfully obvious when the Weddell Polynya, a large hole
::::::
opening

:
in the winter Southern

Ocean sea ice, unexpectedly re-opened
::::::::::
re-appeared in 2016 for the first time in forty years. With no early warning, observations

were limited to chance autonomous sensors, so the much-debated cause of the opening still cannot be determined accurately.

We aim here to create such an early warning system
:::::::::
investigate

::::
here

:::::::
whether

:::
the

:::::::
signature

:::
of

:::
the

::::::
vertical

:::::
ocean

:::::::
motions

::
or

::::
that5

::
of

:::
the

:::::
leads,

:::::
which

:::::::::
ultimately

::::::
re-open

:::
the

::::::::
polynya,

:::
are

:::::::::
detectable

::
in

:::::::::
spaceborne

:::::::
infrared

::::::::::
temperature. From the full historical

sea ice concentration record, we find in fact 30 polynyas since 1980. Then, using the full time series of the spaceborne infrared

Advanced Very High Resolution Radiometer, we determine that these events can be detected in the two weeks before the

polynya opens
::
as

::
a

::::::::
reduction

::
in

:::
the

::::::::
variance

::
of

:::
the

::::
data.

::::
For

:::
the

:::::
three

:::::::::
commonly

::::
used

:::::
T3b,

::
T4

::::
and

:::
T5

:::::::
infrared

:::::::::
brightness

:::::::::::
temperatures,

:::
the

::::::
15-day

::::
sum

:::
and

::::::
15-day

:::::::
standard

::::::::
deviation

::
of

::::
their

:::::::::::
area-median

:::
and

:::::::::
-maximum

:::
are

::::::::::::
systematically

:::::
lower

::::
than10

::
the

:::::::::::
climatology

::::
when

::
a
:::::::
polynya

::::
will

::::
open. Area-average median brightness temperature larger than 253 K in all three bands

and area-maximum larger than 269 K along with a footprint at least larger than 4000 km2 successfully forecasts the polynyas

and does not return any false positive. Or rather, it returned false positives that were in fact events that the sea ice concentration

threshold had missed. Moreover, we find temporal oscillations in
::::::
infrared

:
brightness temperature that could indicate upwelling

of warm water, but also changes of sign in T45 (band 4 – band 5) which could indicate a lead. We hence combine the spaceborne15

infrared data with atmospheric reanalysis, hydrographic mooring data and Sentinel-1 radar imagery and find that all events,

including the 2017 Weddell Polynya, are
:::
may

::
be

:
caused by both atmospheric divergence and oceanic upwelling. That is, the

debate is closed: both parties are correct; the Weddell Polynya is a hybrid.

Copyright statement. TEXT

1 Introduction20

Global changes in the sea ice cover, of which the continuous decrease in summer Arctic sea ice since satellite observations

began in the 1970s is the most dramatic example (Stocker et al., 2014; Notz and Stroeve, 2016), lead to a development in

commercial exploitation of ice-infested waters in both hemispheres (Meier et al., 2014; Schillat et al., 2016). For planning

1



purposesand for navigation, early detection of sea ice opening is urgently needed. Polar researchers would also benefit from

such product. In 2016, the most famous opening in the Antarctic sea ice, the Weddell Polynya (Carsey, 1980), re-appeared for25

the first time in forty years (Swart et al., 2018). Luckily, two autonomous profilers were drifting over the polynya region as it

was opening (Campbell et al., 2019), but these are the only data ever collected during one of its openings. An early-warning

system
:::::::::::
Early-warning, even if it is but a few days, would allow for potentially re-routing autonomous sensors or nearby expe-

ditions and hence obtaining such precious data.

Polynyas are holes formed in the winter pack ice
::::
large

::::::::
openings

::
in

:::
the

:::
sea

::::
ice, in both hemispheres,

:::::
located

:
by the coast or30

offshore
::
in

::
the

:::::
open

:::::
ocean (Morales Maqueda et al., 2004; Smith Jr et al., 2007). By suddenly exposing the comparatively warm

ocean to the cold winter atmosphere, they have a large impact on the entire climate system: they modify the whole water column

(Gordon, 1978), contribute to deep water formation (Martin and Cavalieri, 1989) and hence impact the global ocean circulation

(Heuzé et al., 2015a), and may be responsible for the observed warming of the deepest waters (Zanowski et al., 2015). More-

over, the vertical motion of water that they trigger ventilates the deep ocean and brings nutrients up, making polynyas a biolog-35

ical hotspot (Smith Jr et al., 2007). The largest of them all, the Weddell Polynya or Maud Rise Polynya, opens in austral winter

in the Weddell Sea sector of the Southern Ocean. Until 2016, it had been observed only once, at the beginning of the satellite

era in winters 1974-1976, when it reached a maximum area of 350 000 km2 (Carsey, 1980). Although there was no Weddell

Polynya in the following 40 years, a “halo” of low sea ice concentration did regularly appear in the region (Lindsay et al., 2004;

Smedsrud, 2005; de Steur et al., 2007), suggesting that the process that caused the polynya was still at play. The exact
:::::
1970s40

::::::
polynya

::::
has

::::
been

:::::::::
extensively

:::::::
studied

:::::
using

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Timmermann et al., 1999; Cheon et al., 2015; Cabré et al., 2017)

:
,
:::
but

::
the

::::::
exact,

::::::::::
general-case

:::::::
opening

:
process is still debatedthough, owing to the lack of in-situ data. The many hypotheses fall into

two broad categories:

– the atmospheric argument is based on relationships between the polynya and the strength or persistence of the Southern

Annular Mode, or the strength of the wind itself (e.g. Cheon et al., 2014; Francis et al., 2019; Campbell et al., 2019)
:
,
::
or45

::::
even

::
on

::::::::
moisture

:::::::
transport

:::::::::::::::::
(Francis et al., 2020)

:
;

– the oceanographic argument is two-fold: that the Maud Rise region is weakly stratified, hence prone to deep convection

and polynya events (Kjellsson et al., 2015; Heuzé et al., 2015b; Wilson et al., 2019), and that the polynya opens when

comparatively warm Circumpolar Deep Water is upwelled (Holland, 2001; Martin et al., 2013; Dufour et al., 2017;

Cheon and Gordon, 2019).50

The lack of in-situ data could be compensated by satellite-based observations. The most common method to monitor sea

ice globally consists in daily estimates of sea ice concentration from passive radiometers or spectrometers (Spreen et al.,

2008), mostly in the microwave region (e.g. AMSR-2
:::::::
AMSR-E

:::::::
highest

:
frequency of 89 GHz, or wavelength of approx. 3

mm). Passive microwave
:::::
remote

:::::::
sensing

:
is also commonly used for the determination of sea ice age (Korosov et al., 2018)

::::::::::::::::::::::
(e.g. Maslanik et al., 2007), a proxy for its thickness and salinity. Microwave

::::::
Passive

::::::::::
microwave

::::::
remote

:::::::
sensing

:
products55

have a relatively low horizontal resolution of the order of 3 km, so (active) Synthetic Aperture Radar (SAR) has become

the norm
:::::::
common for high resolution applications such as lead (Murashkin et al., 2018)

:::::::::::::::::::::::
(e.g. Murashkin et al., 2018) or melt
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pond detection (Mäkynen et al., 2014), sea ice drift tracking (Demchev et al., 2017), classification (Aldenhoff et al., 2018)

::::::::::::::::::::::
(e.g. Demchev et al., 2017),

:::::::::::
classification

::::::::::::::::::::::::
(e.g. Aldenhoff et al., 2018) and especially thickness retrievals (e.g. Zhang et al.,

2016). To the best of our knowledge, none of these methods has been used for detecting that sea ice is about to open. Moreover,60

both microwave and SAR are comparatively recent sensors
::::
SAR

::
is

:
a
::::::::::::
comparatively

:::::
recent

::::::::::
technology

::
for

::::
sea

::
ice

:::::::::::
observation,

::::::::
providing

::::::
climate

::::
data

::::
only

:::::
since

:::
the

::::
early

::::::
2000s (Drinkwater, 1998). In contrast, spaceborne infrared imagery has been used

to monitor sea ice since the late 1970s from multi-mission satellites, which gives a higher-than-daily coverage and makes it a

quite robust method (Comiso, 1991). Spaceborne infrared is very sensitive to clouds, and hence has fallen out of fashion for

polar research (Drinkwater, 1998). However, the preliminary study of Heuzé and Aldenhoff (2018) suggests
:::
Our

::::::::::
hypothesis,65

:::::
based

::
on

:::
our

::::::::::
preliminary

:::::
study

::::::::::::::::::::::::
(Heuzé and Aldenhoff, 2018)

:
,
::
is that the upwelling and/or heat loss to the atmosphere caused

by sea ice thinning prior to the Weddell Polynya opening might be
:
is detectable in infrared data.

We here investigate to what extent the nearly 40-year record of
:::::::
whether

:
spaceborne infrared imagery can be used both

for potential early detection of
:
to

::::::
detect

::
an

:
upcoming re-opening of the sea ice, but also to determine the mechanisms that

cause the sea ice to open
:
a
::::::::
polynya.

:::
We

::::
base

:::
our

:::::
study

:::
on

:::
the

:::::::::
Advanced

::::
Very

::::
High

::::::::::
Resolution

::::::::::
Radiometer

:::::
Polar

:::::::::
Pathfinder,70

:::::::
provided

:::
by

:::
the

:::::::
National

:::::::::::::
Oceanographic

::::
and

:::::::::::
Atmospheric

::::::::::::
Administration

:::::::::::::::
(Key et al., 2019). After detailing our processing

in section 2, in particular the cloud masking, we start by verifying how many polynya events have occurred since records

began (section 3.1) and their respective starting dates
:
,
::::
using

:::
the

:::::::::
"Bootstrap

::::
Sea

:::
Ice

::::::::::::
Concentrations

:::::
from

::::::::
Nimbus-7

::::::
SMMR

::::
and

:::::
DMSP

:::::::::::::
SSM/I-SSMIS,

:::::::
Version

::::
3.1"

::::
from

:::
the

::::::::
National

:::::
Snow

:::
and

:::
Ice

::::
Data

::::::
Center

:::::::::::::
(Comiso, 2017). We then determine criteria

on the infrared brightness bands that successfully detect all these events and minimise the amount of false positives (section75

3.2). Finally, as the infrared time series can also show whether the polynya opened from a lead or from upwelling, we further

investigate the events for which we have in-situ data in the vicinity, including the much-debated 2017 Weddell Polynya (section

4).

2 Data and Methods

2.1 Data80

In this study
::
the

:::::::
interest

::
of

:::::::::
readability,

:::
we

::::
now

:::::::
indicate

::::
only

::
the

::::
key

::::::::::::
characteristics

::
of

:::
the

:::
data

:::::
used

::
for

::::
this

:::::
study.

:::
The

::::::
reader

::
is

:::::::::
encouraged

::
to

:::::::
consult

::
the

::::::::::::
corresponding

::::
data

::::::::::
description

:::::
papers

::::
that

:::
we

::::
cite.

::
In

:::
this

:::::
study, we first determine the dates of past

polynya events since 1980 using spaceborne microwave-based sea ice products as reference.
:::::
using

:::
the

::::
daily

:::::::
product

:::::::::
"Bootstrap

:::
Sea

:::
Ice

::::::::::::
Concentrations

:::::
from

::::::::
Nimbus-7

:::::::
SMMR

:::
and

::::::
DMSP

:::::::::::::
SSM/I-SSMIS,

::::::
Version

::::
3.1"

::
at

:::
25

:::
km

::::::::
resolution

::::
from

:::
the

::::::::
National

:::::
Snow

:::
and

:::
Ice

::::
Data

::::::
Center,

:::
and

::::::::
available

::::::::::
continuously

:::::
since

:
1
:::::::::
November

::::
1978

::::::::::::::::::::::::::::::::::::::::::::::
(Comiso, 2017, dataset doi: 10.5067/7Q8HCCWS4I0R)85

:
.

We then study these events using spaceborne infrared data, validated against in-situ hydrographic data and atmospheric

reanalyses
:::
and

:::::::::::
atmospheric

::::::::
reanalysis

::::
data, but also SAR imagery. Our region of interest (red contours on Fig. 1), hereafter

referred to as “the polynya-prone region”,
::
is

:::
the

::::
fixed

::::
778

:::
000

:::::
km2

::::
area

:::
that

:
lies over the topographic feature Maud Rise, in

the eastern Weddell Sea sector of the Southern Ocean (longitude 6◦ W to 12◦ E; latitude 68◦ S to 60◦ S). ,
::::::
where

:::::::
polynyas

::::
and90
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::::
halos

::::
have

:::::
been

::::::::::
consistently

:::::::
reported

::
in

:::
the

:::::::
literature

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Beckmann et al., 2001; de Steur et al., 2007; Campbell et al., 2019)

:
.

For reference, we use daily sea ice concentration at 25 km resolution from the National Snow and Ice Data Center, available

continuously since 1978 (?). We also briefly use in section 3.2 the higher resolution sea ice concentration product from the

University of Bremen (Spreen et al., 2008), available since 2002.95

The spaceborne infrared data come from the Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder or APP,

provided by the National Oceanographic and Atmospheric Administation (Key et al., 2019)
::::::::::::
Administration

:::::::::::::::::::::::::::::::::::::::::::
(Key et al., 2019, dataset doi: 10.25921/X2X1-JR34)

. It provides twice-daily, 5 km gridded composites of all available AVHRR
:::::::
infrared brightness temperature data since 1982. We

use only the ones acquired at
::
in

:::
the

::
6h

:::::::
interval

::::::
around

:
2 AM to ensure that we work year-round with dark images

::::
local

:::::
solar

::::
time. The three bands that we use are commonly referred to as T3b (wavelength of 3740 nm), T4 (10800 nm) and T5 (12000100

nm).
::::
Over

:::
the

::::::::::::
polynya-prone

::::::
region,

:::
the

::::
APP

::::
data

:::::::
contain

::
90

::::
000

:::
grid

:::::
cells.

:

For validation
::
To

:::
try

:::
and

::::::
explain

::::::
which

::::::
oceanic

::
or

::::::::::
atmospheric

::::::::
processes

:::
are

::::::::::
responsible

::
for

:::
the

:::::::
infrared

::::::::
brightness

::::::::::
temperature

::::::
signals, we use the hourly 2 m temperature and 10 m horizontal wind components u and v from the European Centre for

Medium-Range Weather Forecasts ERA5 hourly reanalysis, provided on a 0.25◦ grid (
:::::
dataset

:
doi: 10.24381/cds.adbb2d47).

Hydrographic data come from three moorings deployed since 1996 along the Prime Meridian by the Alfred Wegener Institute,105

named AWI229 (Fahrbach and Rohardt, 2012a; Rohardt and Boebel, 2019)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fahrbach and Rohardt, 2012a; Rohardt and Boebel, 2019, dataset doi: 10.1594/PANGAEA.793018 and 10.1594/PANGAEA.898781)

, AWI 230 (Fahrbach and Rohardt, 2012b, c)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fahrbach and Rohardt, 2012b, c, dataset doi: 10.1594/PANGAEA.793080 and 10.1594/PANGAEA.793082)

and AWI 231 (Fahrbach and Rohardt, 2012d). Finally, we also use the
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fahrbach and Rohardt, 2012d, dataset doi: 10.1594/PANGAEA.793089)

:
.
::::
Each

::::::::
mooring

::::::::::
deployment

::::
has

:::::::
different

:::::::::::::
characteristics,

:::
but

::::
they

:::
all

::::::::
measure

:::::::::::
temperature,

:::::::
salinity,

::::::::
pressure,

:::
and

:::::::
current

::::::
velocity

::::
(not

:::::
used

:::::
here)

::
at

:::
up

::
to

:::
15

:::::::::
irregularly

::::::
spaced

:::::
depth

::::::
levels,

:::::
every

:::
15

::::
min,

:::
for

:::
on

:::::::
average

::::
two

:::::
years.

::::
The

:::::::
earliest110

::::::::::
deployments

:::::
were

::
in

::::
April

:::::
1996,

::::
and

:::
the

:::::::
program

::::::::
continues

::
to

:::::
date.

::::::
Finally,

::
to

::::
find

:::
the

:::::::
signature

:::
of

::::
open

:::::
water

:
/
::::
new

:::
ice,

:::
we

:::
use

:::::::
C-Band

:::
HH

:
backscatter information from

::::
four Sentinel-1 SAR

images in the extra-wide swath mode (approx. 40 m resolution) provided by the European Space Agency / Copernicus.
:::
The

::::::
images

::::
were

:::::::
acquired

:::
on

:::
18,

:::
23,

:::
26,

:::
and

:::
30

::::::
August

:::::
2017

::::::
around

::
20

:::::
UTC,

:::
i.e.

:::
3h

::::::
before

:::
the

::::
APP

::::::::::
compositing

::::::
begins.

:
We use

only the HH polarisation, as we do not perform a detailed analysis but rather a qualitative assessment of sea ice conditions.115

2.2 Cloud masking of APP data

Clouds are a known issue for AVHRR data, especially in polar regions (e.g. Drinkwater, 1998). The first cloud filters adapted

to the polar regions were designed by Yamanouchi et al. (1987), which imposed criteria on T4, T34 (T3b minus T4) and T45

(T4 minus T5) to detect thick, high and thin clouds, respectively. Saunders and Kriebel (1988) added a geographical/texture

perspective, imposing criteria on 3 by 3 pixel areas, while Key and Barry (1989) added a temporal perspective, comparing each120

pixel from day to day. But these filters did not perform as well as expected, and we had to wait until Vincent et al. (2008) for

extra criteria on T45 that can detect ice fog
:
,
:::
and

:::::
more

:::::::
recently

:::::::::::::
Vincent (2018)

:
to
::::::
detect

::::
dust.

We aim to create a system that can work on individual images independently, so the approach of Key and Barry (1989) is

not adapted. Likewise, Saunders and Kriebel (1988) is mostly based on day-time images, so not for us. We hence
::
As

:::::::
detailed

::
in
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a) Before cloud masking

T4 brightness temperature (K)

240 250 260

b) After cloud masking

T4 < 245 K

|T3b-T4| > 1.5 K

T4-T5 > 2 K or < 0 K

Figure 1. Brightness
:::::
Infrared

::::::::
brightness

:
temperature T4 from APP (provided by NOAA, Key et al., 2019) on 1 September 2017

::
13

::::::
August

::::
2009 before (a) and after (b) cloud masking. Colours indicate the different masking criteria from Yamanouchi et al. (1987, indigo and green)

::
on

::::
T4

:::::::::::::::::::::::::::
(Yamanouchi et al., 1987, indigo),

::::::
T34

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(as detailed in appendix A, modified from Yamanouchi et al., 1987, green)

:
,
::

and

Vincent et al. (2008, yellow)
::

T45
::::::::::::::::::::::::::::::::::

(Vincent et al., 2008; Vincent, 2018, yellow). Insert indicates the location of the two images.Red

contours on panel a, the location of the so-called polynya-prone region that we use in this study.

::::::::
Appendix

::
A,

::::
after

:::::::::
validation

::::
using

:::
the

::::::::
reference

:::::
cloud

::::
mask

:::::::::::
MYD35_L2

::::
v6.1

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ackerman et al., 2017, dataset doi:10.5067/MODIS/MYD35_L2.006)125

:::
over

:::
the

::::::
period

::
4

:::
July

:::::
2002

:
-
:::
31

::::::::
December

:::::
2018

:::
that

::
is
::::::::
common

::
to

::::
both

::::::::
products,

:::
we

:::::
chose

::
to use the following three criteria

to detect clouds (
::::::
example

:::
on Fig. 1):

– T4 < 245 K (indigo, Yamanouchi et al., 1987)
::::::::::::::::::::::::::
(indigo, Yamanouchi et al., 1987);

– or |T34| > 2 K (green, Yamanouchi et al., 1987)
::
1.5

::
K
::::::::::::::::::::::::::::::::::::::::::::
(green, after Yamanouchi et al., 1987, see appendix A);

– or |T45 |
::
<

:
0
::
K

::
or

::::
T45

:
> 2 K (yellow, Vincent et al., 2008)

::::::::::::::::::::::::::::::::::::
(yellow, Vincent et al., 2008; Vincent, 2018).

:
130

As shown on Fig. 1
:::
and

::
in

:::::::::
Appendix

::
A, these criteria are not perfect , but visual verification (not shown) proves that

:::
but they

are powerful enough to detect most of the clouds.
:::
On

:::::::
average,

::::
only

::::
14%

::
of

:::
the

:::::
cloud

::::::
pixels

::
are

:::::::
missed,

:::
but

::::
15%

::
of
:::

the
::::::
pixels

::
are

::::
also

::::::::
wrongly

:::::::::
eliminated

::
as

::::::
cloudy

:::::
even

::::::
though

::::
they

:::
are

:::::
clear.

:::
We

:::::::
strongly

:::::::
suspect

::::
that

:::
this

::
is
::::::
caused

:::
by

:::
the

:::::::::
difference

5



::
in

:::::::::
acquisition

::::
time

::
of

:::
the

:::::::
images

::::
used

:::
by

::::
each

:::::::
product,

:::
but

:::::
could

:::
not

::::::
verify

:::
this

::
as
:::::

APP
::
is

::::::
directly

::::::::
available

::
as

::
a
:::::::::
composite

::::::
instead

::
of

:::::::
distinct

::::::
images.

:
Moreover, leads and polynyas generate a large heat and moisture flux (e.g. Cheon et al., 2014),135

which we do not want to see masked as a cloud or else we will not detect the polynyas.
:
so

:::
we

:::::
need

:
a
:::::
cloud

:::::
mask

::::
that

::
is

:::
not

::
so

:::::::
sensitive

::::
that

:
it
::::::
would

:::::
mask

:::
the

::::
leads

::::
and

:::::::
polynyas

::::
and

::::::
prevent

:::
us

::::
from

::::::::
detecting

:::::
them.

:::
As

:::
our

:::::
cloud

:::::::
masking

::
is

:::::
based

:::
on

::::::::
published

::::::::
literature

:::
and

::::
that

:::::
cloud

:::::::
masking

::
is

:::
not

:::
the

:::::
topic

::
of

:::
this

::::::
paper,

:::
any

::::::
further

:::::
study

::
of

::::
this

:::::::
question

::::::
would

::
be

:::::::
beyond

::
the

::::::
scope

::
of

:::
this

:::::
paper.

:
Any pixel that meets any of the three criteria listed above is set to NaN in all three bands T3b, T4 and

T5 for our calculations.
:::
The

:::::::
polynya

::::::
events

:::
and

:::
the

:::::
days

::::::
leading

::
to

:::::
them

:::
that

:::
we

:::::
study

::
in

:::
this

:::::
paper

:::::
have

:
a
::::::
similar

:::::::
amount

::
of140

::::
cloud

::::
free

:::::
pixels

::
to
::::
any

::
of

:::
the

::::::::::
non-polynya

:::::
years

::
in

:::
the

:::::
series

::::::
(supp.

:::
Fig.

::::
B1).

:

2.3 Methods

We first detect
::::
There

:::
are

:::::
many

::::::
criteria

::
to

:::::
detect

:
a
:::::::
polynya

:::::
based

::
on

:::
sea

:::
ice

:::::::::::
concentration

:::::::::
thresholds

::::::::::::::::::::::::::::::::::::::::::
(see Mohrmann et al., 2021, and references therein)

:
.
::
In

::::::
section

:::
3.1,

:::
we

:::::
detect

:
polynyas by applying

::::::
already

::::::::
published

::::::::
methods

:::::
based

::
on sea ice concentration thresholds

::::::::
threshold

on each pixel , or
:::
and on the area-average. We show only

:::
the three different thresholds based on the literature in section 3.1145

(Gloersen et al., 1992; Gordon et al., 2007; Campbell et al., 2019)
:::
used

:::
by

::::::::::::::::::::::::::::::::::::::::::::::::::::::
Gloersen et al. (1992); Gordon et al. (2007); Campbell et al. (2019)

, but we tested and visually assessed
:
,
:::::
using

:::
the

:::::::
authors’

:::::::::
experience,

:
each option between 15 and 100% . We calculate the area of

the polynya by simply multiplying the number of contiguous pixels with
::
on

:::
the

::::::::::
single-pixel

:::
sea

::
ice

::::::::::::
concentration.

:::
We

::::::::
compute

::
the

:::::::
polynya

::::
area

:::
by

::::::::
detecting

:::
the

::::::
contour

:::
of

:::
the

:::::::
enclosed

::::
area

::::
with

::
a sea ice concentration lower than the specific thresholds

by the pixel area
::::::::
threshold

:::
(see

:::::
codes

::
if

:::::::
needed). An event is defined as an uninterrupted series of consecutive days with sea ice150

under that threshold (60% for most of the
::
in

:::
this

:
study); if there is a day with higher sea ice concentration in between, a new

event is created.
::
We

::::
will

:::::
show

::
in

::::::
section

:::
3.1

::::
that

::::
there

::::
has

::::
been

:::::
more

::::
than

::
20

:::::::
polynya

::::::
events

::::
over

:::
the

:::
last

:::
40

:::::
years

:::::::
covered

::
by

:::
the

:::
sea

:::
ice

:::::::::::
concentration

::::::::
product,

:::
and

:::
use

:::
the

:::::::
polynya

::::::
events

::::
here

:::::::
detected

::
to

:::::::::
determine

:::
the

::::::::::::
characteristics

::
of

:::
the

:::::::
infrared

::::::::
brightness

::::::::::
temperature

::
in

:::
the

::::
days

:::::::
leading

::
to

::::
each

:::::
event.

:

The aim of our work is to eventually produce an automatic system that would be scanning the polynya-prone region, so155

we do not track individual polynyas and instead analyse the
:::::::
infrared brightness temperature time series over the whole region

in section 3.2. For robustness though, we did produce brightness temperature composites centered on each polynya, which

yielded similar results (not shown)
::
We

::::
also

:::::::::
computed

:::::
daily

::::::::
anomalies

:::
of

:::::
these

:::::::
infrared

:::::::::
brightness

:::::::::::
temperatures

::::::
relative

:::
to

::::
daily

::::::::::::
climatological

::::::
values

::::
over

:::
the

::::::
whole

::
38

::::
year

::::::
period

:::::::
covered

:::
by

::::
APP. For each day from 1982 to 2018, we produced

:::::
2019,

:::
we

:::::::
produce time series of the geographical median, standard deviation, minimum and maximum

:::::::
infrared

:
brightness160

temperature over the polynya-prone region for each band, but also anomalies of these brightness temperatures relative to daily

climatological values over the 40 years. Note that we produced a separate climatology using only the years with no polynya,

but found no significant difference (not shown). .
:

Finally, the atmospheric and hydrographic data used in section 4 are directly studied without further processing, except for

the wind components. We produced over each polynya
::
for

::::
each

:::::::
polynya

:::::
event

:
a time series of so-called curl of the wind. We165

cannot compute the wind stress curl per se, as we lack the drag coefficient, which will anyway change depending on whether

the polynya is open or close. So instead, we use a similar method as e.g. Petty et al. (2016) and work with the curl of the wind
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components u and v:

curl =
∂v

∂x
− ∂u

∂y
. (1)

We are not studying the actual values of that curl, only whether it is positive (suggesting divergence that could open a lead) or170

negative (suggesting an upwelling)
:::::::::::::::::::::::::::::::::::::::::::
(suggesting an upwelling, Marshall and Plumb, 2016).

3 Resultsand Discussion
:
:
::
an

:::::::::::::
infrared-based

::::::::
criterion

:::::
valid

:::
for

:::
all

:::::::
polynya

::::::
events

3.1 Polynya dates

Min SIC < 60%

Min SIC < 15%

Mean SIC < 92%

N
u

m
b

e
r

o
f

d
ay

s
m

at
ch

in
g

SI
C

 c
ri

te
ri

o
n

Year

Figure 2. For each year of the NSIDC sea ice time series (1978-2018), number of days between 1st July and 31st October with a polynya

according to the three most common criteria in the literature: black, minimum sea ice concentration (SIC) lower than 15% (e.g. Gloersen

et al., 1992); blue, minimum sea ice concentration lower than 60% (Campbell et al., 2019); red, average sea ice concentration over the
:::::
(fixed)

polynya-prone region lower than 92% (after Gordon et al., 2007).

We start by determining the dates of the polynya events that we want to further study , using the traditional criterion sea

ice
::::::::
according

::
to

:::::
three

::::::::
traditional

:::::::
criteria:

::::
sea

::
ice

::::::::::::
concentration

:::::
(SIC)

:
minimum over the region lower than 15% (black, Fig.175

2)
:::::::::::::::::::::::::::::::::::::
(after e.g. Gloersen et al., 1992, black, Fig. 2) or lower than 60% (blue), and that of average sea ice concentration (SIC )

:::::::::::::::::::::::
(Campbell et al., 2019, blue),

::::
and

:::::::
average

:::
SIC

:
lower than 92% (red).

:::::::::::::::::::::
(Gordon et al., 2007, red).

:::
As

::::::::
explained

::::::::::
previously,

:::
we
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::::
study

:::
the

:::::
fixed

:::::::::::::
"polynya-prone"

::::::
region

::
of

:::::::::
longitudes

::::
6◦W

::
to

:::::
12◦E

:::
and

:::::::
latitudes

:::::
68◦S

::
to

:::::
60◦S. We limit ourselves to the period

1st July to 31st October. As noted by Campbell et al. (2019) already, these methods return qualitatively similar results; it is

only the number of days with each criterionthat differ
:::
that

::::::
differs

:::
for

::::
each

::::::::
criterion. They all agree there was some polynya180

activity in the late 1980s - early 1990s and
::
in

::
the

:
early 2000s, the so-called Maud Rise halo already studied notably by de Steur

et al. (2007). Then, the region was rather quiet until the widely reported 2016-2017 return of the polynya (Swart et al., 2018).

The 60% criterion represented by the blue line probably includes late freeze-up or early melt events. The actual method used

by Campbell et al. (2019) does not use fixed dates for winter, but rather
::::::
instead limits itself to the period that starts one week

after the first 90% SIC and finishes one week before the last 90%. For consistency with the other
:::
two

:
methods, we used fixed185

winter dates for their criterion too
::
all

::::::
criteria. We then visually checked the individual images to separate such late freeze-up /

early melt from the actual polynya events. This visual validation also showed that
::::::::
confirmed

::::
that

:::::::
although

:::::
most

::::::::
sensitive, the

60% criterion performed
::::
used

::
by

:::::::::::::::::::
Campbell et al. (2019)

::::::::
performs best (not shown).

The characteristics of the events thus detected are given in appendix table B1. We have 24 events over 11 years, which yield

:::::
yields 30 polynyas because 5 events have two to four polynyas in the region simultaneously. In the case of the first such double190

in 1996, the two polynyas quickly merged. In October 2004 in contrast, there are originally two polynyas (a large one in the

south; a smaller one in the north-east), then a third opens in the north-west on the same day the largest one splits into two! The

now-two southerly polynyas close two days after, whereas the newly opened one in the north keeps growing and becomes the

largest, ultimately absorbing the other one. Note that all durations make the polynya disappear on 1st November because of

our end date criterion.195

These thirty
::
30 polynyas open at key locations in the region (Fig. 3). The maximum number of polynyas opening at the same

grid cell, nine, is on the north-east flank of Maud Rise, with most of the others opening over Maud Rise or on its south-west

flank. The central role of Maud Rise as shown by Holland (2001) is obvious. There is also a non-negligible number of grid

cells in the southern part of our region with at least one opening. Unlike in models (e.g. Martin et al., 2013), Fig. 3 shows no

opening over the open ocean.200

3.2 Infrared-based early detection criteria

In the previous section, we determined the dates of 24 polynya events (giving 30 actual polynyas) from sea ice data dating

back to 1978. We now investigate, in the timeseries of
::::::
infrared

:
brightness temperature from APP, whether all these events

share something in common, especially in the two weeks
::
15

:::::
days leading up to the event. We present the 30 days prior to the

events in section 4 but we found that for the current purpose, 15 days are enough. As explained in the Methods section, this205

“something in common” needs to be easily detectable by a crude automatised system, hence we computed basic single-image

properties over the entire polynya-prone region(Fig. 4): the geographical median, standard deviation
::::::::
minimum, maximum and

minimum
:::::::
standard

::::::::
deviation. We analyse the range of their values in the 15 days leading to the event (one point per event on

:::
and

:::::::
compare

:::::
them

::
to

:::::
years

::::
with

::
no

::::::::
polynyas

:
(Fig. 4).

We want to find a criterion that would not only robustly detect a polynya, but also not flag any false positive. Fig. 4 shows210

that such criterion will have to be band-dependent. For T3b (cyan diamonds) and T5 (red stars) for example, the geographical
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Figure 3. Out of the 30 polynyas detected, how many start at each location (transparent shading). Background: bathymetry of the re-

gion from GEBCO Compilation Group (2019). Red contours indicate our
:::
the

:::::::::::
polynya-prone region of study for section 3.2, as

:::::
studied in

Heuzé and Aldenhoff (2018)
::
this

:::::::::
manuscript. Yellow dots mark the location of the three moorings used in section 4: AWI229 (north), AWI230

(middle) and AWI231 (south).

minimum is of no use owing to its large spread across the events, whereas it is very specific for T4 (black circles). For T4

and T5, it is
::::::
finding

:
a
::::::
simple

::::::::
threshold

:::::::
criterion

::::
will

:::
not

::
be

::::::::
possible.

:::
For

:::
all

:::::::::::
geographical

:::::::
statistics

:::
and

:::
all

::::::
bands,

:::
the

:::::
range

::
of

the standard deviation that is of no use
:::::::
polynya

:::::
values

:::::
(grey

:::
on

:::
Fig.

:::
4)

::
is

::::::::
contained

::
in

:::
the

:::::
range

::
of

:::
the

:::::
years

::::
with

:::
no

:::::::
polynya

:::::
(pink): the 15-day minimum is always at 0, regardless of the event, and the maximum can also be 0. The geographical median215
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Figure 4. Over the polynya-prone region(red contours on Fig. 3),
::
for

:::
all

:::::
bands,

::::::
whisker

:::
plot

::
of

::
the

:
minimum (x-axis) and maximum (y-axis)

::::::
infrared

::::::::
brightness

:::::::::
temperature over the time period from 14

::
15

:
days before the polynya opens until the day of opening of the geographical

median (top
:
a), standard deviation

::::::::
maximum (top right

:
b), minimum (centre

:
c) and maximum

::::::
standard

::::::::
deviation (bottom

:
d). One point per

polynya event: cyan diamonds for
:::
Grey

::::::
colours

::::
show

:
the temperature band T3b

:::::
values

::
of

::
the

::::
years

:::::
where

::
a

::::::
polynya

::::
opens; black circle

::::
pink,

for T4; red star for T5. Shown both the actual brightness temperature value (left) and the daily anomaly (right), both
:::
same

::::
dates

:
in degree

K
::
all

::::
years.

and maximum look most promising, so we verify how many false positives would be returned by using their smallest values

as a threshold (i. e. for the median for
::::::
minima

:::
are

:::::
larger

:::::
when

::::
there

::
is

:
a
::::::::
polynya;

:::
the

:::::::
maxima,

::::::
lower.

:::
We

:::
find

:::
the

:::::
same

::::::
results

::::
when

:::::::
looking

::
at

::::
T34,

::::
T45

:::
and

::::
T35,

:::
as

::::
well

::
as

::
all

::::::
bands’

:::::::::
anomalies

:::
(not

:::::::
shown).

:
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Figure 5.
:::
For

::
the

:::::
three

:::::
bands,

:
a)
:::::::::

1982-2019
:::::
median

:::::
(thick

::::
line)

:::
and

::
10

::
to

::
90

:::::::::
percentiles

:::::::
(shading)

::::::
infrared

::::::::
brightness

:::::::::
temperature

::::
value

:::
for

:::
each

:::
day

::
of

::::
year.

::
b)

::
to

::
d)

:::::::::
demonstrate

:::
the

:::::
narrow

::::
range

::
of
:::
the

::::::
infrared

::::::::
brightness

:::::::::
temperature

::::
(BT)

::::::
statistics

::::
over

:::
the

::
15

:::
days

::::::
leading

::
to

::::
each

::::::
polynya

::::::
(x-axis)

:::::::
compared

::
to

:::
that

::
on

:::
the

::::
same

::::
date

:
in
:::

all
::::
years

::::::
(y-axis):

::::::
15-day

:::
sum

::
of

:::
the

::::::::::
geographical

::
b)

:::::
median

:::
and

::
c)

::::::::
maximum;

::::::
15-day

::::::
standard

:::::::
deviation

::
of
:::
the

::::::::::
geographical

::
d)

::::::
median

:::
and

::
e)

::::::::
maximum.

::::
One

::::
point

:::
per

::::::
polynya

:::::
event:

::::
cyan

:::::::
diamonds

:::
for

:::
the

:::::::::
temperature

::::
band

:::
T3b;

:::::
black

::::
circle

:::
for

:::
T4;

::
red

:::
star

:::
for

:::
T5.

::::
Thin

::::
black

:::
line

::
is

:::
the

:::
unit

:::
line.

:::
One

::::::
reason

:::
for

::::
the

:::::::::::
impossibility

::
of

:::::::
finding

::
an

::::::::
absolute

::::::::
threshold

::::
may

:::
be

:::
the

:::::::
seasonal

:::::
cycle

::::
both

:::
in

:::::::
infrared

:::::::::
brightness

::::::::::
temperature

:::
and

::
in

::::::::
anomalies

:::::
(Fig.

:::
5a).

::::::::
Polynyas

:::
are

:::::::
detected

:::
any

::::
time

::::::::
between

::::
early

::::
July

:::
and

:::
late

:::::::
October

:::::
(supp

:::::
Table

::::
B1).

::
It220

:
is
::::
thus

:::
not

:::::::::
surprising

:::
that

:
a
::::::::
threshold

::::
that

:::::
would

::::::::::
successfully

::::::
detect

:
a
:::::::
polynya

::
in

:::::::
August,

::::
when

:::
the

:::::::::
brightness

::::::::::
temperature

::
is

::
at

11



::
its

::::::::
minimum

:::
but

:::::::::
anomalies

::
in

:::
T4

:::
and T5 , either 243.1 or 252.6 K, see Fig. 4). There are 3443 days with infrared data that are

between 1st July and 31st October in the years with no polynya event. For the individual bands, only the temporal maximum of

the geographical median and the temporal maximum of the geographical maximum, in absolute values (left, top and bottom,

y-axis, Fig. 4), that wrongly detect fewer than 1000 days. That is not good enough.
:::
are

::::::
largest,

::::::
would

:::
fail

::
in

:::::::
October

:::
as

:::
the225

::::::::::
temperature

:
is
::::::
higher

:::
and

:::::::::
anomalies

:::::
lower

::::
(Fig.

::::
5a).

What
::::::
Instead,

:::
the

::::::::
narrower

:::::
range

::
of

::::::
values

::::::
during

:
a
:::::::
polynya

::::::
shown

::
on

:
Fig. 4 reveals is that we need sacrifice only one or

two polynya events to be much more restrictive. More specifically, few polynya points have a geographical median lower than

253 K, and a geographical maximum that does not exceed 269 K (268 K for T5). Similarly for the daily anomalies, most of

the geographical maxima exceed 18 K. Combining these three criteria, we obtain only 36 false positives. That is a remarkable230

improvement. We can also create an extra criterion based on the size of the signal detected: in our 24 polynya events, across

the three bands, they all had on average more than 4000 km2 of pixels affected. Note that we are not talking about the size of

the polynya here, only the footprint on the brightness temperature data. If we add this final size restriction, we are left with 12

false positives (Table ??). But are they really false positives?
::::::
suggests

::::
that

:
a
::::::::
criterion

:::::
based

::
on

:::
the

::::::::::
persistance

::
of

::::::
values

::::
may

::
be

::::
more

::::::::
adapted.

::::::
Indeed,

:::
we

::::
find

:::
that

:::::
years

::::
with

:::::::
polynyas

:::::
have

::::::::::::
systematically

:::::
lower

::::::
15-day

:::
sum

:::
or

::::::
15-day

:::::::
standard

::::::::
deviation235

:::
than

:::::
their

::::::::::
non-polynya

:::::::::::
counterparts,

::
in

::::
any

::::
band,

:::::
with

:::
any

:::::::::::
geographical

:::::::
statistics

::::::::
although

:
it
::
is
:::::::
clearest

::::
with

:::
the

:::::::::::
geographical

::::::
median

:::
and

:::::::::
maximum

::::
(Fig

:
5
::
b

::
to

::
d).

:::
We

::::
find

:::
the

::::
same

:::::
result

:::::
when

:::::
using

:::
the

::::::
overall

::::::::::
climatology

::::::
instead

::
of

::::
only

:::
the

:::::
years

::::
with

::
no

:::::::
polynya.

::::
We

:::
find

:::
no

::::
false

:::::::
positive.

:

For each false positive, i.e. day detected by our brightness temperature criteria but not by sea ice concentration criterion of

section 3.1, minimum sea ice concentration in the polynya-prone region from low resolution NSIDC (prior to 2002) or higher240

resolution AMSRE from the University of Bremen (since Oct 2002). The last column provides further comments based on

visual inspection.

::
In

::::::::
summary,

::
a
:::::::
polynya

::
is
:::::
going

:::
to

::::
open

::
if
::::

the
::::::
15-day

::::
sum

::
or
:::::::

15-day
:::::::
standard

::::::::
deviation

:::
of

:::
its

:::::::::::
geographical

::::::
median

:::
or

::::::::
maximum

::::
over

:::
the

::::::::::::
polynya-prone

::::::
region

::
is

:::::
lower

::::
than

:::
the

::::::
15-day

::::
sum

::
or

::::::::
standard

::::::::
deviation

::::::::
produced

:::::
using

:::
the

::::::::::
climatology

:
at
:::
the

:::::
same

::::
date.

::::
See

:::
also

::::
Fig.

::
6

::
for

::
a
::::::::
summary

::
in

::::::::
flowchart

:::::
form.

::::
Such

::::
low

::::::::
variability

:::::
could

:::
be

::::::::::
atmospheric

::::::
driven,

:::
the

:::::
result245

::
of

:
a
:::::::::::::
blocking-event.

::::::::
Studying

:::
the

::::
large

:::::
scale

::::::::::
atmosphere

::::::::
dynamics

::
is

::::::
beyond

:::
the

:::::
scope

:::
of

:::
this

::::::
paper,

:::
and

:
a
:::::

brief
::::::::::
comparison

::
of

:::
the

:::
2-m

:::
air

::::::::::
temperature

::::
over

:::
the

::::::::::::
polynya-prone

:::::
region

:::
in

::
the

:
15 Sept 1997 90 % Halo 20 July 1998 86 % Halo

:::
days

:::::::
leading

::
to

::::
each

:::::
event

:::::
(supp.

::::
Fig.

::
B)

::::::
shows

:
a
:::
lot

::
of

:::::::::
variability

::
in

:::
the

::::::::::
atmosphere.

::::
That

:::
is,

::::::::::
pronounced

::::::
changes

:::
in

::::::::::
temperature

:::
for

::::
each

::::
event

::::
(e.g.

:::
up

::
to

::::
25◦

:::::::
increase

::
in

:
2 July 2001 0 % Late freeze-up 18 Sept 2010 62 % Halo or leads 22 Aug 2011 60 % Tiny

polynya250

After visual examination, 4 of these false positives were late freeze-up. They all occurred in the first half of July, so a more

restrictive winter date definition could solve this , potentially involving sea ice thresholds as in Campbell et al. (2019). Of the

remaining 8, the majority had the typical halo appearance, with sea ice concentration between 60
::::
days

:::
for

:::
the

::::
first

::::::
event),

and 90%. Some had even been mentioned in past publications (e.g. Smedsrud, 2005; Campbell et al., 2019), albeit with large

uncertainties.The most obvious results were for the two latest dates,
::
no

:::::::::
consistency

:::::::
among

:::
the

:::::
events

::
in

:::::::::
magnitude

::::
and

::::
sign255

::
of

:::
the

:::::::::
variations.

:::
The

::::::::
blocking

::::::::::
explanation

::::::
seems

:::::::
unlikely

:::
and

::::::
would

:::::::
anyway

::
be

::
in
::::::::::

opposition
::
to

:::
the

:::::
latest

:::::::
research

:::
on

:::
the

12



Date Min SIC Comments 10 Oct 1982 81 % Halo 12 July 1983 0 % Late freeze-up 7 Oct 1984 85 % Halo 13 July 1986 60 % Late freeze-up

17 Aug 1986 71 % Leads? 3 July 1987 0 % Late freeze-up 31 Aug 1990 90 % Halo

T3b T4 T5

Set to 
NaN if

<240 K or 
>280 K

Set to 
NaN if

<240 K or 
>280 K

Set to 
NaN if

<240 K or 
>280 K

Set all to NaN if T4<245 K

Set all to NaN if |T34|>1.5 K

Set all to NaN if T45 <0 or >2 K

Cloud masking,
Section 2.2 and 
Appendix A

For each day and each band, compute the 
”geographical statistics”
• Geographical median;
• Geographical minimum;
• Geographical maximum;
• Geographical standard deviation.

For each band, compute climatology

APP daily brightness temperature

Extract the geographical statistics of the 15 
days leading to each polynya event

For each band, each geographical statistics
and each polynya event, compute:
• 15-day minimum
• 15-day maximum
• 15-day sum
• 15-day standard deviation

(Fig 4)

(Fig 5)

Section 3.2

NSIDC daily sea ice concentration

If day between July and October and 
sea ice concentration <60 %, 

mark as polynya

Visually verify presence of polynya

Group consecutive days as one event

Section 3.1

For each band, compare to climatology

If 15-day sum or standard deviation lower than
climatological value over same days, polynya is coming

(valid for T3b, T4 and T5; no outlier if using the 
geographical median or geographical maximum) 

Criterion found:

Figure 6.
::::
Flow

::::
chart

::::::::::
summarising

:::
our

::::::
methods

:::
and

:::
the

::::::
findings

::
of

::::::
section

:::
3.2.
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::::::::::
atmospheric

::::::
drivers

::
of

:::
the

:::::::
Weddell

:::::::
polynya

::::::::::::::::::::::::::::::::::::::::::
(see e.g. Francis et al., 2019, and references therein).

::
It
::
is

::::
thus

::::
more

:::::
likely

::::
that

:::
the

::::::::::::
low-variability in 2010 and 2011, where we could verify the sea ice concentration at a much higher resolution in the University

of Bremen datasets (Spreen et al., 2008). There, leads and small polynyas were directly apparent, proving the necessity of high

resolution data for climate research . In summary, the criteria on the infrared brightness temperature did not return any false260

positive, or at least any that cannot easily be removed by simply checking the date. If anything, it successfully detected 8 extra

events that the sea ice concentration criterion had missed
:
is
:::

the
::::::

result
::
of

:::::
latent

::::
heat

:::::::::
exchanges

::
in

:::
the

:::::::::::::::::::
ocean-ice-atmosphere

::::::
system

::
as

:::
sea

:::
ice

::::
melts

::::
and

::::::::
refreezes.

We have completed our objective and determined brightness temperature thresholds
:::::::::
determined

::
a
::::::
method

:::::
based

:::
on

:::::::
infrared

::::::::
brightness

::::::::::
temperature

::::
data

:
to detect a polynya before it opens. Instead of stopping here, can

::::
Can we extract more information265

out of the infrared data
::::
these

:::::::
infrared

:::::::::
brightness

:::::::::::
temperatures? For example, an answer to the much debated “why did the

polynya open”? One option is the difference between bands T4 (most adapted to ice) and T5 (most adapted to open ocean) or

T45, where T45 < 0 means lead (Vincent et al., 2008). Unfortunately, out of the 24 events, all of them (
:::
see

::::
e.g. Fig. 7aand

supplementary Fig. ??) had a minimum T45 lower than 0 in the 14 days before the event. Which
::::
This

:
would mean that all of

them had a lead somewhere in the polynya-prone region
:
,
:::::
which

::
is

:::::::
possible. The other option is that, as pointed out

:::::::::::
hypothesised270

by Heuzé and Aldenhoff (2018), oscillations in the
::::::
infrared

:
brightness temperature in the days before the polynya might reflect

oceanic convective movements. The argument is that as the warm water is being upwelled, more heat is going through the ice;

same as the ice thins, melted from below by that warm water. But likewise, all polynya events exhibit such oscillations, albeit

with a frequency varying from 1 to 3 days depending on the band and event (
::
see

::::
e.g. Fig. 7b and cand supplementary Figs

?? and ??). In conclusion, we cannot determine the cause of the polynya opening from the infrared images alone. In the next275

section, we investigate this further, using in-situ validation data.

3.3 Why did the polynyas open? An infrared-based discussion

14
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Days before polynya Days before polynya Days before polynya

Figure 7. Example time series of geographical a) minimum
::::::
infrared brightness temperature difference T45 (T4 minus T5); b) median and c)

maximum
::::::
infrared brightness temperature for all three bands, over the 14 days leading to the polynya event (date of the event in the panel

title). For b) and c), thin dashed cyan line indicates T3b, thick black line T4, and red line T5.The figures with all events are given in the

appendix.
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4
::::::::::
Discussion:

:::
can

::::::::
infrared

:::::::::
brightness

:::::::::::
temperature

::::::
reveal

::::
why

:::
the

::::::::
polynyas

::::::
open?

There are two ways to open a polynya (Morales Maqueda et al., 2004):

– sensible heat / open ocean polynyas form when the sea ice is melted from below by the ocean. It requires that a com-280

paratively warm water mass is upwelled, which should be visible in oceanic mooring data. A negative curl of the wind

would indicate Ekman pumping, i.e. that the atmosphere is favourable to upwelling. Finally, positive air temperatures

before the opening would contribute to the melting;

– latent heat / coastal polynyas in contrast form when the sea ice is pushed away by the wind. A positive curl of the wind

would indicate such divergence.285

From the infrared images, both mechanisms are possible: the oscillations in brightness temperature suggest an upwelling of

warm water, but simultaneously
::::
could

::::
also

::::
warm

:::
air

::::::::
intrusions

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(warm air discussed for the 2017 Weddell Polynya by Francis et al., 2020)

:
.
:::::::::::::
Simultaneously a negative T45 suggests that leads open. We hence now augment our spaceborne infrared data with atmo-

spheric and hydrographic data for clarification.

The data coverage for the atmosphere is much better than for the hydrography, so we start with the atmosphere. The curl290

of the wind at the location of the individual 30 polynyas (listed in Table B1) alternates between negative and positive values

for all polynyas (supp Fig. B3, negative curl / upwelling is blue, positive curl / divergence is red). That is, all polynyas have

been preceded by both upwelling-prone and divergent winds. Note that the required timing is unclear: for divergence, e.g.

Francis et al. (2019) says that it can open the ice within 12 hours, but to the best of our knowledge, no such specific value has

been published for the upwelling.295

The air temperature is not particularly helpful either, not least because
::
We

::::
first

:::::::::
investigate

:::::::
whether

:::
the

::
air

::::::::::
temperature

::::::
would

::
be

::::
high

::::::
enough

::
to
:::::
melt

:::
the

:::
sea

::
ice

:::::
from

::::::
above.

::::::::::::
Unfortunately, we do not know what the melting point will be

::
of

:::
the

:::
sea

:::
ice

::
is

::
for

:::::
each

:::::
event, as we do not know the salinity of the sea ice or that of its snow layer;

:::::
snow

::::
layer

::::::
whose

::::::::
thickness

::
is

::::::::
unknown

::
as

::::
well. Nandan et al. (2017) puts an upper limit to 20 g/kg, which yields a freezing temperature of -1.1 ◦C (IOC, SCOR and

IAPSO, 2010), and 0 ◦C if the sea ice is old and/or the snow layer fresh. Out of the 30 polynyas, 15 reach either of these300

freezing temperatures (supplementary Fig. B). The main caveat here though is that the air temperatures are not given at the

surface of the ice, but at 2 m height where it probably is colder. Moreover, these are reanalysis data, not actual observations at

the polynya location, and hence are somewhat uncertain.
:::
may

::
be

::::::
colder.

:
All that we can say then is that three events remain

::::::
polynya

::::::
events

:::
are

:
colder than or around -10 ◦C

:::
over

:::
the

:::::
entire

:::::::
15-day

:::::
period

::::
that

::::::::
preceeds

:::
the

:::::::
polynya

:::::::
opening, but for all

the others it might have been warm enough to melt . Our conclusion for now
::
the

:::
sea

:::
ice.

:
305

:::
The

:::
air

::::::::::
temperature

::::
data

:::::
alone

::::
could

::::
not

::::
shed

::::
light

::
on

:::
the

:::::::
process

::::::::::
responsible

::
for

:::
the

:::::::
opening

::
of
:::

the
::::::::
polynya;

:::
can

:::
the

:::::
wind

:::
data

::::::
deliver

:::::
more

:::::::::
conclusive

:::::::
results?

::::
The

::::
curl

::
of

:::
the

:::::
wind

::
at

:::
the

:::::::
location

::
of

:::
the

:::::::::
individual

::
30

::::::::
polynyas

::::::
(listed

::
in

:::::
Table

::::
B1)

::::::::
alternates

:::::::
between

:::::::
negative

::::
and

::::::
positive

::::::
values

:::
for

::
all

::::::::
polynyas

:::::
(supp

::::
Fig.

:::
B3,

::::::::
negative

:::
curl

:
/
:::::::::
upwelling

::
is

::::
blue,

:::::::
positive

::::
curl

:
/
:::::::::
divergence

::
is

::::
red).

:::::
That

::
is,

:::
all

::::::::
polynyas

::::
have

:::::
been

::::::::
preceded

::
by

:::::
both

::::::::::::::
upwelling-prone

:::
and

::::::::
divergent

::::::
winds.

:::::
Note

::::
that

:::
the

:::::::
required

:::::
timing

::
is
:::::::
unclear:

:::
for

:::::::::
divergence,

::::
e.g.

:::::::::::::::::
Francis et al. (2019)

:::
says

::::
that

:
it
::::
can

::::
open

:::
the

:::
ice

:::::
within

:::
12

:::::
hours,

:::
but

::
to

:::
the

::::
best310
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::
of

:::
our

::::::::::
knowledge,

::
no

::::
such

:::::::
specific

:::::
value

:::
has

:::::
been

::::::::
published

:::
for

:::
the

:::::::::
upwelling.

:::
All

:::
that

:::
we

::::
can

:::::::
conclude

:::
for

::::
now

::::
then

:
is that

the atmospheric reanalysis data did not provide a satisfactory discrimination.
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Figure 8. Climatological temperature along the Prime Meridian, from Locarnini et al. (2018), showing the comparatively warm Circumpolar

Deep Water in red. The diamonds indicate the location of the mooring sensors used for our analysis; for moorings 229 and 230, white

indicates the older deployment (229-5, in 2002-2005, and 230-2, in 1999-2000) and cyan, the more recent one (229-13, in 2016-2019, and

230-4, 2002-2005); for mooring 231, only deployment 231-5 (2002-2005) could be used here. Salinity section available as supplementary

figure B4.

We hence finish this paper with a more in-depth analysis of the three individual polynya events for which we have mooring

data in the vicinity. Five mooring deployments coincide with a polynya event: one mooring (230-2) for 1999, three (229-5,

230-4, 231-5) for 2004, and one (229-13) for 2017. We want to determine if 1)
:::::::
whether we see in the mooring data upwelling of315

the comparatively warm and salty Circumpolar Deep Water (CDW), and 2) whether such upwelling is in sync with the
:::::::
infrared

brightness temperature oscillations. Unfortunately, for four out of five deployments, we are limited in the top 500 m to one

sensor at the surface and all the others in the CDW (Fig. 8
:::
and

:::::
supp.

::::
Fig.

:::
B4). We lack sensors in the top 100 m. Moreover,

the surface sensor often had only temperature data, not salinity, and in the case of 229-13 for the 2017 polynya, there was

no surface sensor data available; luckily, there were Sentinel-1 images. All we can study are variations in the CDW, both the320

suspected heaving of its core (Dufour et al., 2017) or its cooling as convection begins (Gordon, 1978). As sensors at the same

depth returned different values but similar variability (not shown), we will not comment on the mooring values per se but only

on their changes.

Conditions in the 30 days leading to the 24 October 1999 polynya. First, for the infrared criteria from section 3.2: a)

geographical median over the polynya-prone region for the brightness temperature band T3b (cyan), T4 (thick black) and T5325
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(red); b) geographical min over the polynya-prone region of the brightness temperature difference T45 (T4 minus T5). c) curl

of the wind speeds as in supp Fig. B3. Finally, temperature (blue) and salinity (orange) timeseries from mooring 230-2 (see

Fig. 8) at 0 (d), 380 (e) and 480 (f) m depth. Grey boxes in the background highlight the time periods discussed in the text.

In
::
To

:::::::
improve

::::::::::
readability,

::
as

:::
the

::::
three

::::::
events

::::::
present

:::
the

:::::
same

::::::::::::
characteristics,

:::
we

:::::::
discuss

:::
here

:::::
only

::::
2017

:::
but

:::::::
provide

::
in

:::
the

:::::::
appendix

:::
the

::::::
figures

:::
for

:
1999 (

::::
supp Fig. B5) , the most notable variation is the dip in all infrared bands (panel a) and in T45330

(panel b) 18 days before the polynya, mere hours after a warming and salinification of both deep sensors (panels e and f). The

surface sensor (panel d)unfortunately shows variations that are of the level of the sensitivity of the instrument, and hence is not

very useful. Then for two days, temperature and salinity at 480 m depth oscillate with a near 12 hour frequency, only to stop

13
::

and
:::::
2004

:::::
(supp

::::
Fig.

::::
B6).

::
In

::::::::
agreement

:::::
with

::::::
section

:::
3.2,

:::::
from

::
22

:
days before the polynya, at the onset of the continuous increase in all infrared bands335

until 6 days before the polynya. Over that same period, the CDW depths cool down while the surface might be warming. All

this seems to have started after afew hours of negative curl of the wind (panel c), suggesting that we might be witnessing an

upwelling event from 13 to 7 days before the polynya. Finally, 4 days before the polynya, we see oscillations in all infrared

bands and a strong negative T45. This immediately follows a sudden warming and salinification at 380 m depth (and to a

lesser extent 480 m ) before an intense cooling. In conclusion, in 1999, it seems that we first had upwelling 13 days before the340

polynya, convection starting 8 days before, and maybe leads 4 days before.

The 2004 event
::::
2017

:::::
event,

:::
the

::::
time

:::::
series

:::
of

:::
the

:::::::::::
geographical

::::::
median

:::::
shows

:::::
little

:::::::::
variability,

::
in

::
all

::::::
bands

::::
(Fig.

::::
9a).

:::::
There

:::
may

:::
be

::
an

::::::::::::
anticorrelation

:::::
with

:::
the

:::::::::::
hydrographic

::::
data

::
at

:::
310

::
m

::::
and

:::
410

::
m

:::::
depth

:
(Fig. B6) starts with a surprising decrease by

2 ◦C of the surface temperature 24 days before the event (panel d). All the other depths are rather stable until 18 days before

the polynya, where they start having high frequency variability, especially at 170 and 220 m (panels eand f, respectively),345

correlated between salinity and temperature (warmer and saltier alternating with cooler and fresher). At the same time, the

:::
9d,

::
e),

::::
with

::
a
:::::
more

::::::
marked

::::::::
increase

::
in

:
infrared brightness temperature in all bands oscillates while increasing to 260 K as

average (panel a). Then starting 15 days before the polynya, the curl of the wind (panel c) becomes and stays negative for three

days while the CDW oscillations continue and reach the deeper levels; to us, this obviously suggests upwelling. Following the

lowest T45 of this series (-0.6 K, panel b) and divergent winds 11 days beforethe polynya, both the temperature at depth and350

the brightness temperatures increase again but without a change in salinity, which might indicate a lead. The final period in

the two days before the polynya is more convincing: strong divergence in the wind, brightness temperature increases, but all

depths see a cooling. We suspect that this indicates that a lead opened following the divergence, that the ocean is losing heat to

the atmosphere, and that the infrared data detects that heat (and moisture) exchange to the atmosphere. Note that we showed

only the mooring that had the most data , but all three moorings agree. For this event as well then, there might have been both355

leads and upwelling. Luckily for the last event that we will look at, radar images are available.

Conditions in the 30 days leading to the 9 October 2004 polynya. First, for the infrared criteria from section 3.2: a)

geographical median over the polynya-prone region for the brightness temperature band T3b (cyan), T4 (thick black) and

T5 (red); b) geographical min over the polynya-prone region of the brightness temperature difference T45 (T4 minus T5). c)

curl of the wind speeds as in supp Fig. B3. Finally, temperature (blue) and salinity (orange) timeseries from mooring 231-5360
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(see Fig. 8) at 0 (d), 170 (e), 220 (f), 270 (g), 320 (h), 370 (i), 420 (j) and 470 (k) m depth. Grey boxes in the background

highlight the time periods discussed in the text.

Finally,
:
as

:
the 2017 event (Fig. 9) shows the same patterns again: an increase in variability along with a low

:::::
water

::
at

:::::
depth

:::::::
becomes

::::::
colder

:::
and

::::::
fresher

::::
(first

::::
grey

:::::
band,

:::
16

::::
days

:::::::
before),

:::
but

:::
this

::::::::::
relationship

::
is

:::
not

:::::::::
significant.

::::
The

:::::::::
alternance

::::
seen

::
in

:::
the

:::::::
mooring

::::
data

:::::::
between

::::::::
cold/fresh

::::
and

:::::::::
warm/salty

:::::
along

::::
with

:::::::
changes

::
in

:::::
their

::::::::
variability

::::
does

:::::::
suggest

::::
that

::::::
vertical

::::::::::
movements365

::
are

::::::
taking

::::::
place,

::
so

:::
we

::::::
cannot

:::::
reject

:::
the

:::::::::
upwelling

::::::
theory.

:::::
Over

:::
the

:::::
same

::::::
period,

::::::::
divergent

:::::
winds

:::::
(red)

:::::
blow

:::
and

:
T45 and

divergent winds 15-14 days before the polynya (lead?) , but also a synchronous increase in infrared brightness temperature

and temperature and salinity at depth (upwelling?). But this time, we have
::::::::
decreases

::::
(Fig.

:::
9b,

:::
c),

::
so

:::
we

::::::
cannot

:::::
reject

:::
the

::::
lead

:::::
theory

::::::
either.

:::::::::::::
Complementing

:::
our

:::::::::::
interpretation

::::
with

:
high resolution Sentinel-1 SAR imagesto verify our hypothesis. What we

see first is a sudden warming and salinification at depth from 19 to 16 days before the polynya (panels d and e). Straightafter,370

we again observe a decrease in T and S along with high frequency variability, just before the usual T45 lead signature (panel

b); the ,
::
a

::::::::
qualitative

:::::::
analysis

:::::::
reveals

:::
that

::::
over

::::
that

::::
same

::::::
period

:::
the ice is closedthen on the SAR image. Five days later, or 11

days before the event, there are leads all around the area on the SAR image. One can imagine that the surface cooling resulting

from the lead opening may have been strong enough to initiate convection, which would explain the apparent warming at 310

and 410 m.
::::
Note

::::
that

:::
the

:::::::
mooring

::
is

:::
2.5◦

::
to
:::
the

::::
west

::
of
:::
the

:::::
SAR

::::::
image;

:::
the

::::::
motion

::
in

:::
the

::::
water

:::::::
column

::
at

:::
the

:::::::
mooring

:::::::
location375

:::
may

::::::::
therefore

::::
also

::
be

:::::::::
indicative

::
of

:::::::::
horizontal

::::::::
advection

::
in

::::::::
response

::
to

::::
more

:::::
local

::::::::
upwelling

::
at
:::
the

:::::
exact

:::::::
location

::
of

:::
the

:::::
lead.

We see that three days later, i.e. 8 days before the polynya, the leads have refrozen, so it is more likely is that the convection

started as the ice formed again and ejected brine. The convection would bring down the cooled water from the surface to 310,

410 m depth, hence their cooling (as observed in reality and in models, Gordon, 1978; Smith Jr et al., 2007; Martin et al.,

2013; Cheon and Gordon, 2019). And although we lack images between 8 and 4 days before the polynya, the fact that new380

freshly-refrozen leads appeared closer to the centre of the polynya area suggest that the ice opened again. In conclusion, the

ice was very dynamic in 2017, with multiple openings and closing of leads potentially initiating the oceanic convection.

In summary, our results agree with both the oceanographic (von Schuckmann et al., 2019; Cheon and Gordon, 2019) and the

atmospheric (Francis et al., 2019; Campbell et al., 2019) arguments. All three events that we could study in details show both

upwelling
:::
The

:::::::
mooring

::::
data

:::::
show

:
a
::::::

signal
:::
that

::::
may

:::
be

:::
that

::
of
::::::::::

upwelling, and wind-induced leads
::
are

::::::
visible

:::
on

::::
SAR

::::::
images.385

That is, the Maud Rise polynya presents the characteristics of both a sensible and latent heat polynya. Such a phenomenon has

in fact been observed recently in a polynya off Alaska, and dubbed “hybrid polynya” (Hirano et al., 2016). Maybe it is time to

admit that there has been no consensus in forty years because the Weddell Polynya is a hybrid polynya too.

5 Conclusions

The aim of this paper was to determine criteria on
::
38

:::::
years

::
of

:
spaceborne infrared imagery (AVHRR / APP) to detect an390

upcoming reopening of the Weddell Polynya. Using the NSIDC
:::::::
/Comiso

::::::::
Bootstrap

:
sea ice concentration, we first generated a

time series of past polynya events over Maud Rise and obtained 24 events since 1980, or 30 polynyas as some days had several

polynyas opened simultaneously (Fig 2). The widely accepted narrative is that there had been no polynya in the Weddell Sea
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Polynya-4-8-20-24-28

Polynya-4-8-12-16-20-24-28

Days before the event

T3b
T4
T5

b) Geographical minimum of T45 (K)

a) Geographical median brightness temperature, all bands (K)

c) Curl of the wind speeds

Temperature (°C) Salinity (psu)

d) T and S at 310 m depth

e) T and S at 410 m depth
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1.0

0.4
34.67

34.68

0

-0.6

-1.2

248

252

256

63.4°S

63.8°S

64.2°S
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16 days before 11 days before 8 days before 4 days before

σ0 (dB)-60 -40 -20 0

Figure 9. Conditions in the 30 days leading to the 3 September 2017 polynya. First, for the infrared criteria from section 3.2: a) geographical

median over the polynya-prone region for the
:::::
infrared

:
brightness temperature band T3b (cyan), T4 (thick black) and T5 (red); b) geographical

min
:::::::
minimum

:
over the polynya-prone region of the brightness temperature difference T45 (T4 minus T5). c) curl of the wind speeds as in

supp Fig. B3. Temperature (blue) and salinity (orange) timeseries from mooring 229-13
:::::
located

::
at
:::::
64◦S,

:::
0◦E

:
(see Fig. 8) at 310 (d), and

410 (e) m depth. Finally, Sentinel-1 images for four of these days, captured around 19 local time; observe the dark streaks made by leads.

Red line indicates constant incidence angle; 0, the centre of the polynya region. Grey boxes in the background highlight the time periods

discussed in the text. [Contains Sentinel-1 data, August-September
:::::
August 2017]

since “the” Weddell Polynya of 1974-1976 when the polynya unexpectedly re-opened in 2016 (e.g. Swart et al., 2018). Yet,
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our study is but one of many that found once again that there has in fact been many polynyas
:
/
:::::
halos in the region in the forty395

years in between (e.g. Lindsay et al., 2004; Smedsrud, 2005; de Steur et al., 2007; Campbell et al., 2019).

Investigating the
:::::::
Although

:::
no

:::::::
absolute

:::::::
infrared

:::::::::
brightness

::::::::::
temperature

::::::::
threshold

:::::::
criterion

:::::
could

:::
be

:::::
found,

:::
all

:::::::::::
geographical

:::::::
statistics

::::::
exhibit

::
a

:::::::
reduced

::::::::
variability

:::
in

:::
the

:::
two

:
weeks leading to each of these 24 events , we found four criteria based on

the area-average and area-maximum daily infrared brightness temperature in all bands that, when combined
:::
any

::
of

::::
these

::::::
events

::::::::
compared

::
to

:::
the

:::::
same

:::
date

::
in
:::
the

::::
rest

::
of

:::
the

::::::
dataset

:::
and

:::
in

::
the

:::::::::::
climatology.

::::
The

::::::
15-day

:::
sum

::::
and

::::::
15-day

:::::::
standard

:::::::::
deviation,

::
in400

::::::::
particular

::
of

:::
the

::::::::::
geographical

:::::::
median

:::
and

:::::::::
maximum, successfully detected the events without finding false positives. Or rather,

we thought it had returned 12 false positives, but a closer inspection (Table ??) revealed that these simply were smaller polynya

events. The simplicity of this method, based on one data type, needing only one daily image, and scanning an entire region

rather than looking for a moving point, means that it could easily be automated. The
:::
The

:
next step would be to check whether

these criteria are still valid for other Antarctic open ocean polynyassuch as the Cape Darnley Polynya (Ohshima et al., 2013),405

but also coastal polynyas (e.g. the Amundsen Sea Polynya Randall-Goodwin et al., 2015) or even Arctic polynyas (e.g. North

Water and North Greenland polynyas, Preußer et al., 2015; Ludwig et al., 2019).

Finally, we investigated whether spaceborne infrared data could be used to answer the forty-year old debate: is it the ocean

or the atmosphere that causes the Weddell Polynya to open? Using the infrared data combined with atmospheric reanalysis,

mooring hydrographic time series and even Sentinel-1 SAR imagery, we found evidence of both (Figs. B5-
::::
Fig. 9). We found410

obvious signatures
::::::::
signatures

::::
that

::::
may

::
be

::::
that of warm water upwelling and deep convection (e.g. Holland, 2001; Martin et al.,

2013; Dufour et al., 2017; Cheon and Gordon, 2019) but also of wind-driven lead opening (e.g. Gordon et al., 2007; Cheon

et al., 2014; Campbell et al., 2019; Francis et al., 2019). Our results suggest that there should not be any debate in fact: both

parties are correct, and
::::
This

:::::::
suggests

:::
that

:
the Weddell Polynya probably is

:::
may

:::
be a hybrid one, as happens for some Arctic

polynyas (Hirano et al., 2016).415

This study also proved the crucial role of
:::::
freely

::::::::
available high resolution products . SAR imagery is widely used for lead

detection in the Arctic (Murashkin et al., 2018), but as Sentinel satellites pass over the same spot only every 4 days at best,

they are of limited use for operational purposes. We need more high resolution instruments in space, onboard more satellites.

Moreover, this study would
:::
for

:::
the

::::
polar

::::::::
regions,

:::
but

::
it

:::::
would

::::
also

:
not have been possible without continuous observation

programs, both in space (AVHRR) and at sea (moorings). These must be maintained, as long time series are crucial not just for420

statistical exercises like here, but also to monitor climate change in the fast-changing polar regions (Stocker et al., 2014).

Code availability. Codes available at https://github.com/cheuze/Polynya_EGU_TC

Data availability. Sea ice data freely available online at https://nsidc.org/data/nsidc-0079.

APP infrared data freely available at https://www.ncei.noaa.gov/data/avhrr-polar-pathfinder/access.

ERA5 data freely available at https://cds.climate.copernicus.eu/cdsapp/dataset/reanalysis-era5-single-levels.425
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Mooring data freely available on PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.[dataset numbers in reference list].

Sentinel-1 data freely available at https://scihub.copernicus.eu/

22

https://doi.pangaea.de/10.1594/PANGAEA
https://scihub.copernicus.eu/


Appendix A:
:::::::::
Validation

::
of

:::
the

:::::
cloud

::::::::
masking

::
In

::::::
section

:::
2.2,

:::
we

:::::
detect

:::::
cloud

:::::
pixels

:::::
using

::
the

:::::::
infrared

:::::::::
brightness

::::::::::
temperature

::::::::
thresholds

::
of

:::::::::::::::::::::
Yamanouchi et al. (1987),

:::::::::::::::::
Vincent et al. (2008)

:
,
:::
and

::::::::::::
Vincent (2018)

:
.
:::
We

::::
here

:::::
verify

::::
their

:::::::
methods

:::::
using

::
the

:::::
Level

::
2

::::::
MODIS

::::::
Cloud

:::::
Mask

::::::
product

::::::::::
MYD35_L2

::::
v6.1

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ackerman et al., 2017, product DOI:10.5067/MODIS/MYD35_L2.006)430

:
,
:::::::
obtained

::::
from

:
https://search.earthdata.nasa.gov/

:::
(last

::::::::
accessed

:
5
:::::::
January

::::::
2021).

:::
We

:::::::
obtained

::
all

:::::::::::
MYD35_L2

:::::::
granules

:::::::
available

:::::
from

:
4
::::
July

:::::
2002,

::::
when

:::
the

:::::::
product

:::
was

::::
first

::::::::
available,

::
to

::
31

:::::::::
December

:::::
2018,

:::
over

::::
the

:::::
region

::
in

:::
the

:::::::
latitude

:::::
range

:::::
68◦S

::
to

::::
60◦S

::::
and

::
in

:::
the

::::::::
longitude

:::::
range

:::::
6◦W

::
to

:::::
12◦E,

:::::::
totalling

::::::
nearly

::
65

::::
000

::::::::
granules.

:::::::
Latitudes

::::
and

:::::::::
longitudes

:::::
were

:::::::
available

:::::
from

:::
the

::::::::
matching

::::::::::
geolocation

::::
files

::::::::::
(MYD03).

:::
For

::::::::::
comparison

::::
with

:::
the

:::::
APP

::::
data

:::::::
analysed

::::
here,

:::
we

::::
kept

::::
only

:::
the

::::::::
granules

:::
that

::::
were

::::::::
collected

:::::::
between

:::::
three

:::::
hours

:::::
before

::::
and

::::
three

:::::
hours

::::
after

::
2
:::
am

::::
local

:::::
solar435

::::
time.

::
In

:::
that

::::
time

:::::::
interval,

:::
we

::::
kept

::::
only

:::
the

:::::::
granules

:::::
where

:::
the

:::::
cloud

::::
mask

::::
was

:::::::::
determined

:::::::::::::::::::::::::::::::::
(first bit field equal to 1, Strabala, 2005)

:
,
:::::::
resulting

::
in

:
a
:::::::
number

::
of

:::::::
granules

:::::
used

:::
here

:::::::
varying

:::::::
between

::::
one

:::
and

::::
three

:::
for

::::
each

::::
day.

:::
For

:::::
each

:
1
:::
km

:::
by

:
1
:::
km

:::::
pixel

::
in

::::
each

::::
such

:::::::
granule,

:::
that

:::::
pixel

::
is

::::::
cloudy

::
if

::::
both

::
bit

:::::
fields

::
2
:::
and

::
3
:::
are

:::::
equal

::
to

::
0,

::::
and

::::
clear

::::::::
otherwise

::::::::::::::
(Strabala, 2005).

::
A
::::::
further

::::
test

:::
(not

:::::::
shown)

:::::
where

:::::
both

:::::::
”cloudy”

::::
and

:::::::::
”uncertain

:::::
clear”

:::::
(bits

:
2
::::

and
::
3

:::
set

::
to

::
00

::::
and

:::
01

:::::::::::
respectively)

::::
were

::::::
treated

:::
as

::::::
cloudy

::::::
yielded

::
no

:::::::::
significant

:::::::::
difference.

:::::::
Finally,

:::
we

::::::::::
interpolated

:::
the

::::::::::
MYD35_L2

:::::
cloud

:::::
mask

::::
onto

:::
the

:
5
:::
km

::::
grid

::::
used

:::
by

::::
APP.

:
440

:::
For

::::
APP,

:::
we

:::::::
consider

::::
that

:
a
:::::
pixel

:
is
:::::
clear

::
if

:
it
:::::::
matches

:::
all

::::
three

:::::::
criteria:

–
::
T4

::
>

::::
245

::
K

:::::::::::::::::::::
(Yamanouchi et al., 1987)

:
;

–
:::::::
|T34|6

:
2
::
K

:::::::::::::::::::::
(Yamanouchi et al., 1987)

:
;

–
:::
and

:
0
::
K
::
6
::::
T45

::
6

::
2

::
K

:::::::::::::::::::::::::::::
(Vincent, 2018; Vincent et al., 2008)

:
.

:::
For

::
all

:::
90

:::
000

:::::
pixels

:::
of

::::
each

::::
daily

::::
file,

:::
we

::::::::
determine

::::::
where:

:
445

–
::::
both

::::::::::
MYD35_L2

:::
and

:::::
APP

:::::
detect

::
no

:::::
cloud

:::::
(cyan

:::
on

::::
supp.

::::
Fig.

:::::
A1d);

:

–
::::
both

::::::::::
MYD35_L2

:::
and

:::::
APP

:::::
detect

:
a
:::::
cloud

::::::
(grey);

:

–
::::::::::
MYD35_L2

::::::
detects

::
no

:::::
cloud

:::
but

:::::
APP

::::
does

::::::::
(orange);

–
::::::::::
MYD35_L2

::::::
detects

:
a
:::::
cloud

:::
but

::::
APP

:::::
does

:::
not

::::::
(black).

:

:::
The

::::
case

:::::
where

:::::::::::
MYD35_L2,

::::
used

::
as
::::::::
reference

:::::
here,

::::::
detects

:
a
:::::
cloud

:::
but

::::
APP

::::
does

:::
not

::
is
::::::::::
problematic

::::
and

:
is
:::
the

::::
one

::
we

:::::
want450

::
to

::::::::
minimise.

:::::
Over

:::
the

::
17

:::::
years

::::::::
common

::
to

::::
both

::::::::
products,

:::::::::
restricting

::::::::
ourselves

:::
to

:::
the

:::::
period

::
1
::::
July

:
-
:::

31
:::::::
October

:::::::
studied

::
in

:::
this

::::::::::
manuscript,

:::
this

::::
case

:::::::
happens

:::
on

:::::::
average

::
to

:::::
19.1%

:::
of

:::
the

:::::
pixels

:::::
(supp.

:::::
Table

::::
A1).

::::
The

:::::::
opposite

:::::
case,

:::::
where

::
a
::::
clear

:::::
pixel

:
is
::::::::
wrongly

:::::::
detected

::
as

::::::
cloudy

::
by

:::::
APP

:::
and

:::::::::
eliminated

:::::
from

::
the

::::::
study,

:::::::
happens

::
on

:::::::
average

::
to

::::::
12.4%

::
of

:::
the

:::::
pixels

::::::
(supp.

:::::
Table

::::
A1).

:::
We

::::::::::
investigated

:::
the

:::::::
possible

:::::
cause

:::
for

:::::
these

:::::::::::
misdetections

:::
by

::::::::
randomly

:::::::
plotting

:::
and

::::::::::
scrutinising

:::::::::
individual

:::::
days.

:::
We

::::
here455

::::::
present

::::
only

:::
one

::
of
::::::

them,
::
10

:::::::::
September

:::::
2014,

::
as

::
it
::
is

::::::::
relatively

::::
easy

::
to

:::::::
analyse

::::
even

::
to

:::
the

::::::::
untrained

:::
eye

::::::
(supp.

:::
Fig.

:::::
A1).

:::
We

::::::
focused

:::
on

:::
the

:::::
pixels

:::::
where

:::
the

::::::::
reference

::
is
::::::
cloudy

:::
but

::::
APP

::
is
:::::
clear

:::::
(black

::::
dots

::
on

:::::
supp.

::::
Fig.

::::
A1c

:::
and

:::
d).

:::::
These

:::::
pixels

::::
fall

::
in

:::
two

:::::::::
categories:

:
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Table A1. Characteristics
:::
For

::
all

::::
years

::::
from

::::
2002

::
to

:::::
2018,

::::::
between

::
1

:::
July

:::
and

::
31

:::::::
October

:::::
(dates of the events detected

:::::
winter

::
for

:::::::
polynya

:::::::
detection in section 3.1

::
this

::::::::::
manuscript), with sea ice concentration < 60% criterion

::::::
median

::::::::
percentage

::
of

:::::
pixels: start date, latitude

:::
that

:::
are

:::::
cloudy

::::::::
according

::
to

::
the

::::::::
reference

::::
cloud

:::::
mask

:::::::::
MYD35_L2

:::
but

::::
were

:::
not

::::::
detected

:::
by

:::
the

:::::
criteria

::::::
applied

::
to

::::
APP

:
(lat., in degree North

:::
first

:::::
column)and longitude (lon., ;

::::
that

::
are

::::
clear

:
in degree East) of the centre

:::::::
reference, maximum area (

::
but

::::
were

:::::::::
incorrectly

::::::
detected

::
as

::::::
cloudy

in km2) and duration
:::
APP

:
(
:::::

second
:::::::
column);

::::
which

:::
are

:::::::
detected in days

:::
both

::::::
products

::
as
:::::

clear
::
or

:::::
cloudy

:::::
(third

:::::
column).

:::
First

::::
line

:
is
:::::
when

::::::
applying

:::
the

::::::
original

:::::::::::::::::::
Yamanouchi et al. (1987)

::::::
criterion

::::::::
|T34|> 2

::
K;

::::::
second

:::
line,

:::::
when

::::::::
modifying

:
it
::
as

:::::::
explained

::
in
:::
this

::::::::
appendix.

::::::
Cloudy

:
in
::::::::::
MYD35_L2

::::::
Cloudy

:
in
::::
APP

: ::::
Both

::::
agree

::::::::
|T34|> 2

:
K
: :::::

19.1%
:::::
12.4%

::::
64.5%

:

:::::::::
|T34|> 1.5

::
K

:::::
14.4%

:::::
15.5%

::::
67.4%

:

–
:::
they

:::
are

:::
on

:::
the

::::
edge

::
of

::
a

:::::
cloud,

:::
and

::::::
hence

::::
may

::::
have

::::::
moved

:::::::
between

:::
the

:::::::::
acquisition

::
of

:::::::::
MY35_L2

::::
and

:::
that

::
of

:::::
APP;

–
::
or

::::
they

:::::::::
correspond

::
to

:::::::
|T34|>

:::
1.5

::
K

::::::::::
(highlighted

::::
with

::::::
yellow

::::
core

:::
on

::::
supp.

::::
Fig.

:::::
A1d).

:
460

:::
The

::::
first

::::
case

:::::
cannot

:::
be

::::::
further

:::::::
verified,

::
as

::::
APP

::
is

::::::::
composed

::
of
::
a
::::::
mosaic

::
of

::::::
images

::::::::
acquired

::::
over

:
a
::
6h

::::::::
window.

:::
For

:::
the

::::::
second

:::
case

::::::::
however,

:::
we

::::::::
modified

:::
the

:::::::
criterion

:::
for

:::::
cloud

::::::::
detection

::
in
:::::

APP
::::
from

:::::::
|T34|>

::
2
::
K

::::::::::::::::::::::
(Yamanouchi et al., 1987)

::
to

:::::::
|T34|>

:::
1.5

::
K,

:::
and

:::::::::
performed

:::
the

::::::::::
comparison

:::::
again.

::::
The

:::::::::::
improvement

:::
was

::::::::::
significant,

::::
with

:::::::
"missed"

::::::
pixels

:::::::::
decreasing

::::
from

::::::
19.1%

::
to

:::::
14.4%

::::::
overall

::::::
(supp.

::::
Table

::::
A1).

::::
The

:::::::::
agreement

:::::::
between

:::
the

:::
two

::::::::
products

::::
even

::::::::
increased

::::
from

::::::
64.5%

::
to

::::::
67.4%.

:::
By

:::::::::
decreasing

::
the

::::
T34

::::::::
threshold

:::
we

::::::::
increased

:::
the

:::::::::
sensitivity

::
of

:::::
APP,

:::::::
resulting

::::::::::::
unfortunately

::
in

::
an

:::::::
increase

::
in

:::
the

:::::::
number

::
of

::::::
pixels

:::::::
wrongly465

:::::::
detected

::
as

::::::
cloudy

::::
from

::::::
12.4%

::
to

::::::
15.5%.

:

::
In

:::::::::
conclusion,

:::
we

:::::
apply

:::::::::
throughout

::::
this

:::::
paper

:::
the

:::::::
modified

::::::
criteria

:::
for

:::::
clear

:::::
pixels:

:

–
::
T4

::
>

::::
245

::
K

:::::::::::::::::::::
(Yamanouchi et al., 1987)

:
;

–
:::::::
|T34|6

:::
1.5

::
K

::::::::::::::::::::::::::::::::::::::::
(after Yamanouchi et al., 1987, and this appendix)

:
;

–
:::
and

:
0
::
K
::
6
::::
T45

::
6

::
2

::
K

:::::::::::::::::::::::::::::
(Vincent, 2018; Vincent et al., 2008)

:
.470

:::
For

:::
the

:::::
entire

:::::
period

::::::::
common

::
to

:::
the

::::
two

::::::::
products,

::::
these

::::::
criteria

::::
fail

::
to

:::::
detect

::::::
14.4%

::
of

:::
the

:::::
pixels

::
as

:::::::
cloudy,

:::
but

::::
also

:::::::
wrongly

:::::
detect

:::::
15.5%

:::
of

:::
the

:::::
pixels

::
as

::::::
cloudy

:::::
when

::::
they

:::
are

:::::
clear.

:::
As

::::
these

::::
two

:::::
values

:::::::
balance

:::
out

:::
and

::::
that

::::
they

:::
are,

:::
to

::::
some

::::::
extent

::
at

::::
least,

::::::
caused

:::
by

::
the

:::::::::
difference

::
in

:::::::::
acquisition

::::
time

::
of

:::
the

::::
two

::::::::
products,

::
no

::::::
further

:::::
action

::
is

:::::
taken

::
to

:::::::
estimate

:::
the

:::::::
accuracy

:::
of

:::
our

::::::
results.
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Figure A1.
::
10

::::::::
September

:::::
2014.

::::::
Infrared

::::::::
brightness

::::::::::
temperatures

:::
T3b

:::
(a)

:::
and

:::
T4

:::
(b),

::
on

:::
the

::::
same

::::::
colour

::::
scale,

:::
and

::::
their

::::::::
difference

::::
T34

::
(c).

:::
On

::::
these

::::
three

::::::
panels,

:::
two

::::
large

:::::
cloud

::::::
systems

:::
are

:::::
visible

::
at

::
the

:::
top

:::
and

::::::
bottom

::::
(low

::::
T34),

:::
and

::::::
smaller

:::::
clouds

::
to

:::
the

::::
right

::::
(large

:::::
T34).

:::::::::
Comparison

::
of

::
the

:::::
cloud

::::
mask

:::::
based

::
on

::
the

::::
APP

::::
data

:::
and

::
the

::::::::::
MYD35_L2

:::::::
reference

:::
(d):

::::
cyan

::
for

::::
light

:::::
pixels

:
in
:::::
both,

:::
grey

:::
for

:::::
cloudy

:::::
pixels

:
in
:::::

both,
:::::
orange

:::
for

::::
pixels

::::
clear

::
in
:::

the
::::::::::
MYD35_L2

:::::::
reference

:::
but

::::::
detected

::
as

::::::
cloudy

:::
with

::::
APP,

::::
and

::::
black

:::
for

::::
pixels

::::::
cloudy

::
in

::
the

::::::::
reference

::
but

::::::::
incorrectly

:::::::
detected

::
as

::::
clear.

:::::
These

::::
black

:::::
pixels

:::
are

:::
also

:::::::
indicated

::
on

:::
(c).

::
A

:::::
yellow

::::
core

:::::::
highlights

::::
these

:::::::
incorrect

:::::
black

::::
pixels

:::::
where

:::
the

::::::
absolute

::::
value

::
of

::::
T34

:
is
:::::
larger

:::
than

:::
1.5

::
K,

:::
i.e.

:::
that

:::
are

:::::::
correctly

::::::
detected

::
as

:::::
cloudy

:::::
when

::
the

:::::::
threshold

:::
on

:::
T34

::
is

::::::
lowered

::::
from

:
2
::
K

::
to

:::
1.5

::
K.
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Appendix B:
:::::::::::::
Supplementary

:::::
tables

::::
and

::::::
figures475

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

C
lo

u
d

-f
re

e
p

ix
el

s 
(%

)
Any day
15 days leading to polynya
Polynya start day

Figure B1.
::
For

::::
each

:::
day

::
of

:::
the

::::
year,

::::::::
percentage

:::
of

::::
cloud

:::
free

:::::
pixels

::::
(out

::
of

:::::
90000)

:::
for

:::
any

::::
year

::::::
sampled

:::
by

::::
APP

:::::
(grey),

:::
for

:::
the

::
15

::::
days

:::::
leading

::
to

:
a
:::::::
polynya

::::
event

:::::::
(orange),

:::
and

:::
the

:::
days

::
a

::::::
polynya

::::
opens

:::::
(red).

26



Table B1.
::::::::::
Characteristics

::
of
:::
the

:::::
events

::::::
detected

::
in
::::::
section

:::
3.1,

::::
with

::
sea

:::
ice

::::::::::
concentration

::
<

:::
60%

::::::::
criterion:

:::
start

::::
date,

::::::
latitude

::::
(lat.,

:
in
::::::

degree

:::::
North)

:::
and

:::::::
longitude

::::
(lon.,

::
in

:::::
degree

::::
East)

::
of

:::
the

:::::
centre,

::::::::
maximum

:::
area

::
(in

:::::
km2)

:::
and

::::::
duration

::
(in

:::::
days).

:::
The

:::
last

:::
two

:::::::
columns

::
are

:::
the

::::::
median

::::::::
percentage

::
of

::::::::
cloud-free

::::
pixels

::::
(out

::
of

:::::
90000)

::::
over

:::
the

::
15

::::
days

::::
prior

::
to

::
the

::::::
polynya

:::::::
opening,

::
as

::::
well

::
as

::
the

::::::::::::::::
minimum-maximum

::::::
interval

::
of

:::
that

::::::::
percentage.

Start date centre lat. centre lon. max. area duration
::::::::
cloud-free,

::::::
median

::::::::
cloud-free,

:::::::
min-max

17 July 1980 -63.9 2.2 5625 3
:::
N/A

:::
N/A

15 July 1991 -64.1 4.7 12500 5
::::
34%

::::::
21-45%

24 Oct 1991 -63.7 5.1 5000 8
::::
27%

::::::
16-41%

23 Oct 1992 -63.8 5.4 25625 9
::::
23%

:::::
8-35%

13 Aug 1994 -63.7 3.2 21875 6
::::
33%

:::::
2-56%

20 Aug 1994 -63.9 4.2 7500 5
::::
30%

:::::
2-42%

6 Sept 1994 -64.0 5.0 18125 15
::::
24%

:::::
7-41%

18 Oct 1996 -63.4 5.6 9375 11
::::
38%

::::::
14-52%

22 Oct 1996
-63.7 3.7 9375 7

41% 14-55%
-63.6 6.6 625 1

30 Oct 1996 -63.4 5.6 625 1
::::
43%

::::::
14-62%

27 July 1999
-67.7 -4.4 9375 1

30% 12-76%
-66.6 -0.2 10000 2

24 Oct 1999 -66.4 -0.2 14375 8
::::
38%

::::::
18-46%

29 Aug 2000 -66.4 -1.3 21875 3
::::
34%

::::::
14-46%

27 Oct 2000 -65.1 1.0 1250 2
::::
32%

::::::
13-41%

30 Oct 2000
-65.2 1.8 6875 2

31% 9-36%
-64.2 6.8 14375 2

9 Oct 2004
-67.6 4.9 5000 4

39% 24-78%
-63.8 5.7 8125 17

13 Oct 2004

-67.5 2.0 4375 2

33% 24-50%-66.6 5.6 7500 2

-63.7 1.7 33125 14

9 Oct 2005 -63.9 2.2 1875 2
::::
40%

::::::
11-65%

27 July 2016 -64.2 6.5 2500 3
::::
47%

::::::
20-69%

31 July 2016 -64.1 5.7 625 1
::::
47%

::::::
20-69%

2 Aug 2016 -64.3 6.3 43125 8
::::
47%

::::::
20-69%

11 Aug 2016 -65.0 3.9 17500 4
::::
35%

::::::
22-54%

3 Sept 2017 -63.9 3.7 3125 5
::::
42%

::::::
18-80%

13 Sept 2017 -64.3 4.2 71875 49
::::
41%

::::::
18-75%
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Time series of the geographical median brightness temperature for all three bands, over the 14
::
15

:
days leading to the polynya event (date of

the event in the panel title). Thin dashed cyan line indicates T3b, thick black line T4, and red line T5. x-axis: Days before the polynya event;

y-axis:
::
Air

:
temperature in K

:::::
degree

::
C.

Time series of
::::::::
Horizontal

:::::
dashed

::::
lines

::::::
indicate

:
the geographical maximum brightness

::::::
freezing temperature for all three bands, over the 14

days leading to the polynya event
::::
young

::::
salty

:
(date of the event in the panel title

:::
-1.1

:::

◦C) . Thin dashed cyan line indicates T3b, thick black

line T4, and red line T5. x-axis: Days before the polynya event; y-axis: temperature in K.
::
or

::::
older

::::
fresh

::
(0

:::

◦C)
:::
sea

::
ice

Time series of the geographical median brightness temperature for all three bands, over the 14
::
15 days leading to the polynya

event (date of the event in the panel title). Thin dashed cyan line indicates T3b, thick black line T4, and red line T5. x-axis:

Days before the polynya event; y-axis:
:::
Air temperature in K

:::::
degree

::
C.

Time series of
:::::::::
Horizontal

::::::
dashed

:::::
lines

:::::::
indicate

:
the geographical maximum brightness

:::::::
freezing

:
temperature for all three

bands, over the 14 days leading to the polynya event
:::::
young

::::
salty

:
(date of the event in the panel title

:::
-1.1

:::

◦C) . Thin dashed

cyan line indicates T3b, thick black line T4, and red line T5. x-axis: Days before the polynya event; y-axis: temperature in K.
::
or

::::
older

:::::
fresh

::
(0

:::

◦C)
:::
sea

:::
ice

Figure B2. Time series of the geographical minimum brightness
:
2
::
m

::
air temperature difference T45 (T4 minus T5) over

::
at the 14 days leading

to the polynya event (date
::::::
location of the event in the panel title). x-axis: Days before the polynyaevent; y-axis: temperature difference in K.

Time series of the geographical median brightness temperature for all three bands, over the 14
::
15

:
days leading to the polynya event (date of

the event in the panel title). Thin dashed cyan line indicates T3b, thick black line T4, and red line T5. x-axis: Days before the polynya event;

y-axis:
:::
Air temperature in K

:::::
degree

::
C.

Time series of
::::::::
Horizontal

:::::
dashed

::::
lines

::::::
indicate

:
the geographical maximum brightness

::::::
freezing temperature for all three bands, over the 14

days leading to the polynya event
::::
young

::::
salty

:
(date of the event in the panel title

:::
-1.1

:::

◦C) . Thin dashed cyan line indicates T3b, thick black

line T4, and red line T5. x-axis: Days before the polynya event; y-axis: temperature in K.
::
or

::::
older

::::
fresh

::
(0

:::

◦C)
:::
sea

::
ice
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Figure B3. Time series of the curl of the wind at the location of the polynya, over the 15 days leading to the polynya event (date of the event

in the panel title). x-axis: Days before the polynya event; y-axis: Curl of the wind as ∂v
∂x
− ∂u

∂y
, with the 10 m horizontal wind speeds u and v

in ms−1 (see Methods).
:
A

::::::
positive

:::
curl

::::
(red)

:::::::
indicates

:::::::::
divergence;

::::::
negative

::::::
(blue),

::
the

::::::::
possibility

::
of

::::::::
upwelling.
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Figure B4. Time series of
::::::::::

Climatological
::::::
salinity

:::::
along the 2 m air temperature at

:::::
Prime

:::::::
Meridian,

::::
from

:::::::::::::::
Zweng et al. (2018),

:::::::
showing

:
the

::::::::::
comparatively

::::
salty

:::::
CDW

::
in

:::
red.

::::
The

:::::::
diamonds

:::::::
indicate

::
the

:
location of the polynya

::::::
mooring

::::::
sensors

::::
used

:::
for

:::
our

:::::::
analysis;

::
for

::::::::
moorings

:::
229

:::
and

:::
230, over

::::
white

:::::::
indicates the 15

::::
older

:::::::::
deployment

::::::
(229-5,

:
in
:::::::::

2002-2005,
:::
and

::::::
230-2,

:
in
:::::::::

1999-2000)
:::
and

:::::
cyan,

::
the

:::::
more

:::::
recent

:::
one

::::::
(229-13,

::
in

:::::::::
2016-2019,

:::
and

:::::
230-4,

:::::::::
2002-2005);

:::
for

::::::
mooring

::::
231,

::::
only

::::::::
deployment

:::::
231-5

::::::::::
(2002-2005)

::::
could

::
be

::::
used

::::
here.
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Polynya-4-8-12-16-20-24-28

Polynya-4-8-12-16-20-24-28

Days before the event

b) Geographical minimum of T45 (K)

a) Geographical median brightness temperature, all bands (K)

c) Curl of the wind speeds

Temperature (°C) Salinity (psu)

d) T and S at 0 m depth

e) T and S at 380 m depth

f) T and S at 480 m depth
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34.70
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Figure B5.
::::::::
Conditions

::
in

:::
the

::
30

:
days leading to the

:
24

:::::::
October

::::
1999

:
polynyaevent .

:::::
First,

::
for

:::
the

:::::::
infrared

:::::
criteria

:::::
from

:::::
section

::::
3.2:

::
a)

:::::::::
geographical

::::::
median

::::
over

:::
the

:::::::::::
polynya-prone

:::::
region

::
for

:::
the

::::::
infrared

::::::::
brightness

:::::::::
temperature

::::
band

::::
T3b (date

:::::
cyan),

::
T4

:::::
(thick

:::::
black)

:::
and

:::
T5

::::
(red);

::
b)

::::::::::
geographical

:::
min

::::
over

::
the

:::::::::::
polynya-prone

:::::
region

:
of the event in

::::::::
brightness

:::::::::
temperature

:::::::
difference

::::
T45

:::
(T4

:::::
minus

:::
T5).

::
c)

:::
curl

::
of

:
the

panel title
::::
wind

:::::
speeds

::
as

::
in

::::
supp

:::
Fig.

:::
B3.

::::::
Finally,

:::::::::
temperature

::::
(blue)

::
and

::::::
salinity

:::::::
(orange)

:::::::
timeseries

::::
from

:::::::
mooring

:::::
230-2

:::
(see

:::
Fig. x-axis:

Days before
::
8)

:
at
::
0
:::
(d),

:::
380

::
(e)

:::
and

::::
480

::
(f)

::
m

:::::
depth.
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b) Geographical minimum of T45 (K)

a) Geographical median brightness temperature, all bands (K)

c) Curl of the wind speeds

d) T and S at 0 m depth

e) T and S at 170 m depth

f) T and S at 220 m depth

g) T and S at 270 m depth

h) T and S at 320 m depth

i) T and S at 370 m depth

j) T and S at 420 m depth

k) T and S at 470 m depth

Polynya-4-8-12-16-20-24-28
Days before the event

Polynya-4-8-12-16-20-24-28

Polynya-4-8-12-16-20-24-28
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Figure B6.
::::::::
Conditions

::
in

:
the

::
30

::::
days

:::::
leading

::
to
:::
the

:
9
::::::
October

:::::
2004 polynyaevent; y-axis.

::::
First,

:::
for

:::
the

::::::
infrared

:::::
criteria

::::
from

::::::
section

::
3.2: Air

:
a)
::::::::::
geographical

::::::
median

::::
over

::
the

:::::::::::
polynya-prone

:::::
region

:::
for

::
the

:::::::
infrared

:::::::
brightness

:
temperature in degree C

::::
band

:::
T3b

::::::
(cyan),

::
T4

:::::
(thick

:::::
black)

:::
and

::
T5

:::::
(red);

::
b)

::::::::::
geographical

:::
min

::::
over

::
the

:::::::::::
polynya-prone

::::::
region

::
of

::
the

::::::::
brightness

:::::::::
temperature

::::::::
difference

::::
T45

:::
(T4

:::::
minus

:::
T5). Horizontal

dashed lines indicate
::
c)

:::
curl

::
of the freezing

::::
wind

:::::
speeds

::
as

::
in

::::
supp

:::
Fig.

:::
B3.

::::::
Finally,

:
temperature for young salty (-1.1 ◦C

:::
blue) or older fresh

:::
and

:::::
salinity

:
(
::::::
orange)

::::::::
timeseries

::::
from

::::::
mooring

:::::
231-5

:::
(see

:::
Fig.

::
8)
::
at

:
0 ◦C

:
(d)sea ice,

:::
170

:::
(e),

::::
220

::
(f),

:::
270

:::
(g),

::::
320

:::
(h),

:::
370

::
(i),

:::
420

:::
(j)

:::
and

:::
470

::
(k)

::
m

:::::
depth.
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Climatological salinity along the Prime Meridian, from Zweng et al. (2018), showing the comparatively salty CDW in red.

The diamonds indicate the location of the mooring sensors used for our analysis; for moorings 229 and 230, white indicates

the older deployment (229-5, in 2002-2005, and 230-2, in 1999-2000) and cyan, the more recent one (229-13, in 2016-2019,

and 230-4, 2002-2005); for mooring 231, only deployment 231-5 (2002-2005) could be used here.
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