
Reviewer 1 
 

General comments: 
 
The authors have proposed a method to characterize the magnitude and timing of seasonal 
glacier ice velocity signals by fitting the best possible sinusoid to the velocity data obtained 
from optical remote sensing. It is well known that the optical data has obvious data gaps in 
polar regions during winters and is affected by cloud cover. This method is proposed to 
resolve seasonal velocity variations from such a dataset, but needs a large number of 
(>1000) multi-year velocity observations. The manuscript is well written, but I have a 
couple of points that may be useful to further improve this work. My major concern is 
about the applicability of this method to regions other than polar areas.  
 

Major comments: 
 
P5. I did not understand how observations over finite integration times make it difficult to 
resolve seasonal variability in case of repeat SAR imagery... 
 
The sentence in question is from the abstract, and it previously read:  
 
The task of generating continuous ice velocity time series that resolve seasonal variability is 
made difficult by the finite integration time over which ice velocities are measured... 
 
We have clarified the wording to more effectively convey that measurements of the total 
displacement that occurs over several months to a year will offer no direct insight into velocity 
variability that occurs within those months. The section now reads:  
 
The task of generating continuous ice velocity time series that resolve seasonal variability is 
made difficult by a spotty satellite record that contains no optical observations during dark, 
polar winters. Furthermore, velocities obtained by feature tracking are marked by high noise 
when image pairs are separated by short time intervals, and contain no direct insights into 
variability that occurs between images separated by long time intervals. 
 
...For instance, Sentinel-1SAR data is available throughout the year with a 6-day temporal 
cycle and a number of studies have resolved seasonality using SAR data (e.g. Sentinel-1, 
TanDEM-X).... 
 
The 6-day Sentinel 1 repeat pattern does not reliably translate to continuous global coverage. 
Bandwidth limitations have resulted in minimal Sentinel coverage over Antarctica. Elsewhere, 
such as in southwest Greenland, SAR feature tracking struggles to correlate features between 
repeat images.  
 
Even in the presence of perfect data coverage, short, 6-day integration times present their own 
challenges for feature tracking. Namely, the 1-10 m displacement uncertainty achieved with 
Sentinel 1 SAR image pairs is independent of image temporal separation. This translates to a 
velocity uncertainty on the order of 100 m/yr or more for an image pair separated by 6 days, 



meaning that any seasonal signals smaller than that would likely be difficult to distinguish from 
the scatter of the measurement noise. For example, here is a synthetic case of two years of 
perfect data coverage, without any missing 6-day image pairs. Here we synthetically measure a 
sinusoidal variation with an amplitude of 50 m/yr, but with gaussian displacement error (standard 
deviation 2.5 m) added to each synthetic measurement. Despite perfect coverage with 6-day 
image pairs, the 50 m/yr velocity variation is not clearly evident.  
 

 
 
Matlab code to create the plot above is included at the bottom of this response letter.  
 
...I think the focus of this paper should be optical data, its limitations during polar winters 
and cloud cover and how your method can still resolve seasonality using optical data. 
 
The paper is focused almost entirely on optical data, its limitations, and how our method can still 
resolve seasonality using optical data. However, the method is fully agnostic to whether feature-
tracked velocities were obtained from optical or SAR data, so we have been careful to write the 
paper in a way that does not preclude its application to SAR data.  
 
P30-35. The authors should highlight these significant gaps which still limit our 
understanding of ice dynamics change on different time scales. I agree that a number of 
studies on the seasonal ice dynamics of glaciers in Arctic, Antarctic and other glaciated 
regions are available in bits and pieces, but they do provide a great degree of evidence that 
help us understand the physical processes which govern the ice dynamics on different time 
scales. I can’t imagine how a consistent global mapping of seasonal ice dynamics looks like, 
which the authors have pointed to and how, if accomplished, they better our 
understanding...  
 
The case for consistent, large-scale mapping can be made by drawing a parallel to Rignot et al.’s 
first comprehensive mapping of Antarctic secular ice velocity, which was published in 2011. 
Dozens of regional studies of ice velocity had already been published at that time, yet the 



application of a consistent measurement technique and synthesis into a single map has already 
informed nearly a thousand peer reviewed studies. We allude to the potential insights that could 
be gained from comprehensive mapping with this new sentence, which we have added to the end 
of the paragraph:  
 
 A comprehensive mapping of the world's seasonal ice dynamics would permit direct inter-
comparison of seasonal evolution in regions with different driving processes; provide a basis for 
analysis of long-term changes in seasonal behavior; and supply models with a zeroth-order 
understanding of global ice climatology. 
 
...It is also not clear why such an approach relies on optical imagery, even though we have a 
year-around consistent and global SAR imagery by missions like Sentinel-1. These points 
should be addressed in the Introduction to better form a basis or need for this study. 
 
The method we present is not limited to optical imagery, and can just as easily be applied to SAR 
image pairs. Following this suggestion, we have now clarified that point in the abstract by 
stating,  
 
In this paper, we describe a method of analyzing optical- or SAR-derived feature-tracked 
velocities...  
 
We reiterate in the final paragraph of the Discussion section,  
 
The methods presented in this paper have focused primarily on optical satellite data because no 
other type of sensor provides such a long record of ice velocity. As more radar data become 
available, particularly since the launch of Sentinel 1a/b, the problem of missing winter data will 
be eliminated, but the methods presented in this paper will still hold. 
 
Figure 7. Nice figure. But when I compared this with Figure 4, I drew a couple of points 
that need to be addressed. ITS_LIVE velocity data for Russel Glacier in Greenland is much 
more dense and appears to be well distributed around the year as compared to Byrd 
Glacier, Antarctica...  
 
The apparent difference in data density is likely just a matter of figure size. Figure 4 fills the 
entire page width, and as stated in the caption it shows 14,208 image pairs of Byrd Glacier. In 
contrast, the panels of Figure 7 are much smaller and show 5189 image pairs of Russell Glacier. 
We used the same linewidths and marker sizes in both figures, which likely makes the Russell 
Glacier data appear more dense, given the overall difference in size of the two figures. We 
include the number of image pairs in the caption to clarify this point. 
 
...I wonder how such a large number of wintertime velocities are available in Greenland 
using optical data. Are they averaged for the entire polar wintertime?... 
 
To be clear, no images have been acquired during any winter at Russell Glacier. This is also true 
at Byrd Glacier. Here is a normalized histogram of image collection times for both. We’ve offset 
the dates of the Russell Glacier images by 183 days to allow direct comparison:  



 

 
 
The lower latitude of Russell Glacier (67N) compared to Byrd Glacier (80S) allows a longer 
image collection season at Russell, but still, months go by each winter without any image 
acquisitions. If we wish to inspect feature-tracked velocities directly, all we can do is infer 
average velocities between images captured in the fall and spring, and we display them following 
the standard convention of using a horizontal line to connect the acquisition times of the two 
images. We find horizontal lines alone create a confusing mess to inspect visually, so we place a 
dark dot at the center point of each line. The caption of Figure 4 states,  
 
Light gray horizontal bars connect the acquisition times of each image...Center dates tm are 
shown as dark gray dots for visual clarity. 
 
In Figures 4 and 7, the horizontal bars that span winters and dark dots placed in their centers may 
create the impression that data are available during the winter, but that is simply a convention of 
displaying this type of data because, as far as we know, there isn’t a clearer way to visualize it.  
 
...I expect that this dense and well distributed velocity data is the main reason why you 
have a great sinusoidal fit here, isn’t it? Because ideally the method should resolve the 
missing velocities in winters using the data points for the rest of the year. By the way, it 
appears to me that ITS_LIVE observations in case of Russel Glacier are already resolving 
seasonal variations without applying your proposed method. An example, where velocity 
data is sparse like for Byrd Glacier, would be much more convincing how well your 
proposed method can resolve seasonality... 
 
There are only 5189 ITS_LIVE observations at Russell compared to 14,208 at Byrd. We do not 
have a years-long record of GPS at Byrd for comparison, but the robustness of our results there 
makes it clear that the signal is physical, it is persistent, and it can be resolved by our method 
using any random selection of 1000 or more image pairs.  
 
The central problem our method solves is that velocity variability from feature tracking cannot 
be interpreted by eye when image pairs are separated by months or more. Figure 1 illustrates this 
point—the patterns that appear visually in the image pair data in Figures 4 and 7 do not 
necessarily reflect the underlying patterns of velocity variability, either in amplitude or in phase. 



 
...Russel Glacier is the best case scenario (P270). An example from any mountain glaciers 
from Alaska, European Alps and high Asia would enhance the applicability of the 
proposed method. The optical data is available around the year in these regions and is only 
affected by cloud cover. At present the method is proposed to work in these regions, but the 
potential challenges are not highlighted. 
 
Russell Glacier is not necessarily a best-case scenario within the global ITS_LIVE dataset. As 
far as we can tell, it suffers from rather typical image issues, including summer surface 
meltwater and cloudiness. It was selected for analysis only because of its known seasonality and 
the availability of a decade-long GPS record that we could use for validation. The least-squares 
method we describe does not suffer from winter data gaps, but it does not benefit from the gaps 
either. As we state in the abstract and in the main text, our method is agnostic to data gaps in 
winter.  
 
 

Minor comments: 
 
P5,25 or elsewhere. Instead of using “accelerations”, I would recommend to use “velocity 
variations” because both acceleration and deceleration are governed by physical processes.  
 
We have replaced the word accelerations with the term velocity variations.  
 
P25. Can your approach resolve velocity changes during such short time-scales? If yes, you 
should highlight in the paper what additional information is required in your method in 
order to retrieve such signals. If not, there is no need to include it in the Introduction. 
 
In this introductory paragraph we provide context for the timescales and physical processes that 
we aim to resolve. We indicate that some previous studies have reported on interannual 
variability driven by ocean forcing, while other studies have considered the effects of tides on 
glacier movement. The timescales we wish to resolve are in between fortnightly and interannual, 
but currently the potential influence of ocean forcing and tides on seasonal timescales are not 
well understood. We feel it is appropriate to provide this brief background to help readers place 
this our paper in the context of previous work.  
 
Figure 1. Example-1 shows a hypothetical scenario, especially the velocity time series 
shown in blue. We have plenty of SAR data and derived ice velocities for the polar glaciers. 
What about showing a real case here? 
 
Real cases are shown in Figures 4 and 7, but visually deciphering what’s happening in them is 
nearly impossible. Rather than overwhelm viewers with thousands of image pairs, we created 
this simple (but mathematically precise) cartoon to illustrate the fundamental elements of the 
problem that we solve in this paper.  
 
P45: satellite image pairs » optical remote sensing image pairs 
 



The sentence in question reads,  
 
The method we present applies to ice velocity datasets...which have been derived by feature 
tracking techniques applied to satellite image pairs. 
 
As it is written, the sentence is correct because our method also applies to SAR image pairs.  
 
P85: It is not clear how the weights are assigned here. Are these based on residuals? 
 
Line 81-83 states,  
 
We assign the velocity weights wv in the polynomial fit using the formal error estimates σv from 
the ITS_LIVE data such that wv = σv-2.  
 
Figure 4: The colors (blue and green) in the legend and fits are inconsistent. 
 
Fixed. 
 
P105. “Instead, we operate on the displacements associated with each image pair, taken as 
the integrals of velocities” should be shown as a different figure as this is an important step 
of the paper. It would be better to see how various displacement estimates at different 
epochs ranging from days to years are prepared for any sinusoidal fit. 
 
We have taken this suggestion, as we now plot the displacement time series along with the 
velocity time series to make it a bit more clear. Here is the updated Figure 1 and caption:  
 

 
 
The upper panel shows an ice velocity time series in blue, which integrates to form the 
cumulative displacement time series shown in the lower panel. We use satellite images to 
measure ice velocity as the cumulative displacement of crevasses and other glacier features that 
occurs between acquisition times of any two satellite images. Here, four images taken at times t1 
through t4 provide six unique combinations of image pairs that yield the measurements depicted 
as horizontal gray lines connecting the acquisition times of each image pair. Vertical gray lines 



show measurement uncertainty and a black dot is placed at the center times of each image pair 
for visual clarity. A dashed sinusoid is fit to velocity measurements at the center times of each 
image pair to highlight the inadequacy of fitting directly to velocity data for determination of 
seasonal amplitude or phase. This paper describes an alternate, exact approach, wherein 
sinusoids are fit to accumulated displacements, which are then converted to velocity to produce 
the light red velocity sinusoid shown in the upper panel. 
 
P130. I recommend the authors to make a relationship between Va and Vs here. In other 
words, the authors should derive equation 4 from above equations or make a relationship 
between them. What is the goal here? Minimizing the Va? 
 
We see that we failed to explain how we got to Equation 4. It is just the integral of Equation 1, 
but that was not made clear. We have modified the text, which now says  
 
If our first estimates of A and φ are correct, then seasonal variability must have aliased each 
initial estimate of interannual variability by a certain amount va The amount of velocity aliasing 
equates the seasonal displacement over time, which we can obtain by dividing the definite 
integral of Eq. 1 by dt, or... 

 
  



Matlab code 
 
% Dates of first image for years of coverage every six days:  
t = (1:6:365*2)'; 
  
% Dates of second image in each pair:  
t = [t t+6];  
  
% Displacement error in each image pair (m):  
sigma_d = 2.5;  
  
% Corresponding velocity error in each image pair (m/yr):  
sigma_v = sigma_d/(6/365);  
  
% Measurement noise:  
v_noise = sigma_v.*randn(size(t(:,1)));  
  
% Formal estimates of error (equates to 2.5 m in each image pair): 
v_err = sigma_v.*ones(size(t(:,1)));  
  
% "Measured" velocity time series with sinusoidal variation of 50 m/yr  
% amplitude with a max value on day 91 of each year:  
v = 800+sineval([50 91],t(:,1))+v_noise;  
  
% Plot the results:  
itslive_tsplot(t,v,v_err) 
axis tight 
datetick('x','mmm','keeplimits') 
box off 
ylabel 'velocity (m/yr)' 
 
 
 



Reviewer 2 
 

General comments 
 
The authors present a workflow to fit a sinusoidal function to a data set of clustered 
velocity estimates on ice sheets and outlet glaciers. The work is well written, and the 
authors clearly identify the need to extract more concise information of this vast collection 
of Eath observation data. The steps taken by the authors are explained, but in general 
there is a tendency to highlight the strong points of the methodology in their 
argumentation. Being a methodology paper, there might be a reason to keep this 
presentation brief, but it might be more than worthwhile to emphasis points of 
improvement and why certain decisions are taken. 
 
My main concern with this work stems from the property that the authors define seasonal 
variation as a cycle. In this way the reader is pushed into a certain narrative, which limits 
how to approach this issue. The authors are correct about the sinusoidal variation of the 
forcing (the sun and the seasons), but this does not mean the ice velocity has the same 
reaction. Personally, I see the seasonal variation more as a perturbation, to which there is a 
reaction time/response, a peak and fade out/reorganization. Thus a perturbation (including 
a sinus function, but also a lot of other responses) occurs every year, due to surface melt 
run-off, but the time span does not need to extend towards a whole year, as is assumed 
here. If we look at other studies short spikes are clearly visible (Kjeldsen et al. 2017, 
10.1002/2017GL074081; Derkacheva et al.2020; 10.3390/rs12121935), or in the dynamics of 
a surging icecap (Dunse et al. 2015,10.5194/tc-9-197-2015) where a step function is seen, 
that is initiated by meltwater perturbation. So I miss a discussion on how good a sinus-
function is as a model. There is only testing of how good the observations meets the model 
description, and not how good the model fits the observation. Putting everything on 
"background interannual variability" is a bit easy 
 
The primary concern here is that without any regard for the shape, timing, or source of annual 
forcing mechanisms, we have gone ahead with an assumption that a sinusoid is a reasonable 
approximation of any seasonal behavior. To be clear, we have not assumed anything about the 
shape of forcing functions, nor do we directly discuss any potential driving mechanisms in this 
manuscript. Though we do have understanding of how some types of seasonal velocity signals 
evolve, currently, our state of knowledge is such that we do not fully understand where seasonal 
forcing mechanisms exist, what they are, or what their shapes may be.  
 
We do, however, provide a method for gaining insights into a glacier’s response to seasonal 
variability in forcing, and for this we use a sinusoid. The sinusoid does not assume anything 
about the shape of the forcing mechanism or even the shape of glacier’s response. Rather, the 
sinusoid describes the cyclic behavior in the simplest way possible.  
 
We contend that we must understand the most basic level of behavior before we can begin to 
discuss aberrations from it. This means that before we can begin fitting higher order functions or 
investigating how seasonal cycles change from year to year, we must first identify where 



seasonal variability exists, how significant it is in terms of the overall displacement cycle of the 
glacier, and in what season of the year ice velocity tends to reach its maximum.  
 
The value of the sinusoidal approach can be seen in a new preprint by Riel et al. 
(https://doi.org/10.5194/tc-2020-193), which was submitted to The Cryosphere after the reviews 
for our manuscript were posted. Using the exact approach we describe, they map the seasonal 
amplitude and phase of variability to observe traveling waves in Sermeq Kujalleq. The map here 
provides evidence for kinematic behavior that begins at the glacier terminus and travels upstream 
each year.  
 

 
Sermeq Kujalleq does not exhibit perfectly sinusoidal behavior, but the simple two-term 
description of seasonal variability reduces complexity and makes interpretation straightforward. 
If more complex terms are desired, we point out in the paper that additional sinusoids can be 
added, and it eventually it will be possible to build a Fourier series with this approach.  
 
Another question arising is the wording of climatological velocity, I am not able to figure 
out what the authors mean with this term. This directly also brings me to a second point on 
the sinus fitting, as it is treated as a cyclic function similar to (Menchew etal., 2017, 
10.1002/2016JF003971). They look at a tidal time span, where the forces are highly 
repetitive in magnitude and phase. However, if this is the case for seasonal glacier velocities 
is not so clear, as the amplitude of glacier velocity seem to correlate with surface mass 
balance. This has been observed with GPS in Greenland (van deWal et al. 2015, 10.5194/tc-
9-603-2015) or on Nordenskiöldbreen, Svalbard (van Peltet al. 2018 
10.1029/2018GL077252). But the sinus function of the authors does not take the change in 
amplitude, from year to year into account. However, this (to me) would be a climatological 
velocity (if I had to guess what the authors mean). 
 



We have clarified the definition of climatology with the addition of this sentence:  
 
In this paper, we describe a robust method of measuring the climatology—or average seasonal 
cycle—of ice flow dynamics, with the ultimate goal that our method may be used to map the 
typical magnitude and timing of the seasonal glacier dynamics worldwide. 
 
Other influencing phenomena, like the ocean/front position have similar seasonal 
amplitude change (Kehrl et al. 2016, 10.1002/2016JF004133). By putting all these into a 
cyclic function, the signals of phase and amplitude might smooth out. In connection to this, 
at high latitudes, the coverage is concentrated towards the summer season. Hence, how do 
short term perturbation propagate into the velocity estimation? From the synthetic test the 
methodology can be "considered agnostic", but this is true for reconstruction purposes of a 
sinusoidal function. It is also not clear where the authors are after, the onset of speed-up, or 
"identify the seasonal maximum velocity"? Other studies/data/methods are able to find the 
timing of such speed-up events (Altena et al.2017 10.3389/feart.2017.00053, Vijay et al. 
2019, 10.1029/2018GL081503), though not as precise or automatic as presented here, but 
are less constrained. So, there are some issues on the amplitude, but also on the phase. The 
argument of the authors for using a sinus, as it is "elegant" is a bit weak in my opinion. It 
would very much strengthen the manuscript, if these influencing effects/considerations are 
highlighted, as it gives handholds on the way forward. 
 
We clearly hear the reviewers concern that a sinusoid is not a perfect representation of glacier 
variability and that in some cases it may even be a poor representation. We completely agree 
with this assessment but disagree that a sinusoidal approximation is a bad first guess in the 
absence of a universal model of variability. We could assume a sawtooth or step function, or 
even a pricewise model but we’re unconvinced that any of these models would not suffer from 
the same shortcomings. The problem is how can we use heterogeneous data to compare across 
vastly different climate conditions, glacier characteristics, ocean forcing, etc., to identify where 
glaciers are fluctuating seasonally. A sinusoid is the most basic assumption we can make and 
provides a starting point for the contextualization of global glacier variability that will increase in 
nuance and complexity with time. We justify the simplicity of our assumption as it is highly 
generic and provides a logical first step toward global characterization.  
 
The authors have formulated their estimation procedure by decoupling the x- and y-
velocities. Is there a certain reason for this? I can imagine it can be beneficial, to include 
co-variance functions, so outliers in one dimension are also excluded in the other. In 
addition, given these phase angles are estimated independently, do the authors see a 
difference between both axis. If so, this would imply a change inflow direction, if not what 
would that mean? Also, why did the authors do filtering (using the MAD), and not do 
robust least squares, or at least use such procedure in the estimation? Neither is it clear to 
me why several iterations are applied, see 
(https://ccrma.stanford.edu/∼jos/filters/Sum_Sinusoids_Same_Frequency.html), or is the 
estimation not restricted to a yearly cycle? Or is the iteration not done on the residuals? 
 
Some of the most compelling insights that we expect to gain from this method will involve 
transverse motion that could not be detected if we were to assume that flow variations only occur 



in the direction of mean flow. For example, we have applied our method to Drygalski Ice Tongue 
and found the same side-to-side motion that has previously been found using in-situ 
measurements (https://ui.adsabs.harvard.edu/abs/2013AGUFM.C21A0624L/abstract).  
 
In addition to floating ice, we may find transverse flow anomalies in grounded areas with strong 
seasonality of basal water pressure. For example, if the basal pressure on one side of a glacier 
rises while the other side remains unchanged, the lopsided acceleration in flow would cause a 
divergence of and change in flow direction, even if only small. The method we describe is able 
to resolve displacements of just a few meters left or right of a mean flowline, meaning the maps 
can be created by separating the x and y components of variability could hint at underlying 
drivers of change.  
 
The authors run tests on synthetic data, by imposing corruption to individual velocity 
estimates. This noise is done on an individual basis, which is partly due to measurement 
noise. But there is also dependent noise, as displacement estimates are derived for pairs of 
images. Hence, when one image is corrupted for some reason, there is a high probability it 
propagates to all displacements it is part of. However, this issue is not included into the 
analysis, though of importance (and due to the synthetic nature, is possible to generate). 
This would give more insights then the 32 velocity estimates, stated now. 
 
The reviewer makes a very good point but there is a subtlety to the data that makes this not the 
case. The largest source of error when tracking features between two images acquired with the 
same viewing geometry (repeat image) is the geolocation error in each image that typically 
manifests itself as a scalar displacement in x and y. These correlated errors have been corrected 
by the autoRIFT algorithm that produces the ITS_LIVE velocity data. The correction process 
works by examining the initial measured velocities over all stable surfaces in an image such as 
rock. The average measured velocity over rock is equates to an offset error across the entire 
scene. After the offset errors are removed in x and y, the remaining errors in each image pair can 
be considered to be uncorrelated.  
 

Minor comments: 
 
In general the manuscript is well written, the authors write in their mother tongue, so 
concerning this issue I am not able to do any better. But for a global audience the wording 
is sometimes a bit hard; I have learned quite a lot of new words. For sake of easy reading, 
and not having to go back and forth to a dictionary, please consider changing words a bit. 
Think of, "unwieldy" or "egregious”. 
 
We appreciate this feedback, as we wish to make our work accessible to all interested readers, 
regardless of personal background. We have looked through the manuscript to ensure that (aside 
from a few necessary technical words) there is no language in this revision that wouldn’t be 
found in in standard English-language news outlets.  
 
I have tried to understand from the text what is done, and also looked in the code to be able 
to zoom into the plots/data. But the provided code and plotting does not work, as some 
functions ("itslive_tsplot" or "itslive_seasonal_deets") are absent. 



 
We appreciate the reviewer’s effort in digging into the code that we included as a supplement to 
the manuscript. It appears this comment regards the make_fig04.m script, which contains the 
code that can be used to recreate Figure 4 of the manuscript. We’ve double-checked and cannot 
identify any missing functions, but it seems likely that the confusion stems from our inclusion of 
the itslive_seasonal_deets function at the end of the make_fig04.m script. It’s a relatively new 
feature that Matlab can call functions that are included at the end of a standard non-function .m 
script, and we’ve taken advantage of the feature to keep our bundle of supplemental code as tidy 
as possible.  
 
Regarding the missing itslive_tsplot function, we note that it is included among the ITS_LIVE 
functions we’ve posted to GitHub (www.github.com/chadagreene/ITS_LIVE). The 
README.txt file that describes what’s included in the supplemental material states at the top 
that some functions necessary to run the scripts are part of the toolboxes on my GitHub page, 
including ITS_LIVE tools, Antarctic Mapping Tools for Matlab (Greene et al., 2017), and the 
Climate Data Toolbox for Matlab (Greene et al., 2019).  
 
title: be a bit more specific, maybe change to "Reconstructing seasonal oscillations" also 
include "glacier ice”. 
 
We note that the application of this method is not limited to glaciers. For example, we have 
applied our method to the Ross Ice Shelf and found the same patterns of seasonal variability 
reported this week by Klein et al. (https://doi.org/10.1017/jog.2020.6).  
 
6: "dark polar winters" > "at high latitudes" 
 
The sentence in question describes the problem of observing seasonal variability using optical 
data, when no optical data are available for several months each year due to lack of sunlight. 
Thus, we describe the situation that there are “...no optical observations throughout dark, polar 
winters.” In our view, the suggested wording, “at high latitudes” does not directly address 
seasonality nor make mention of the solar illumination that’s necessary for optical data 
acquisition. We prefer to keep the wording as it is.  
 
8: "climatological average winter velocities" what is meant here? 
 
We have clarified the definition of climatology with the addition of this sentence:  
 
In this paper, we describe a robust method of measuring the climatology—or average seasonal 
cycle—of ice flow dynamics, with the ultimate goal that our method may be used to map the 
typical magnitude and timing of the seasonal glacier dynamics worldwide. 
 
15: "sufficient quantity of data" is this due to quantity of data, the consistency of 
campaigns/ monitoring programs or simple availability of large computing power. Or is it 
opening up of the archives, making historical flow estimation possible (Cheng et al.2019 
10.5194/isprs-archives-XLII-2-W13-1735-2019). 
 



The conference paper by Cheng et al is intriguing, and if they are able to successfully employ the 
method of processing outlined in that paper, it will be interesting to see what the velocity fields 
from the ARGON era look like. But as far as we can tell, that dataset has not been produced or 
has not been made widely available.   
 
18: "all of the world’s ice" large bodies of glacial ice 
 
We have clarified that annual velocity mosaics are now available for “nearly all of the world’s 
land ice”. 
 
20: "upended glaciology" Remote sensing is able to get geometric information about the 
(sub)surface, and is of great aid. To some extent this is a game changer, but it might be fair 
to also give credit to automatic weather stations, or put it into persective. This have been 
other great advancement in glaciology, think for example of (Ohmuraet al., 1992; 
Oerlemans et al., 1998). 
 
The introductory paragraph briefly mentions some of the recent advancements in remote sensing 
that have gotten us where we are today, and then the paragraph identifies the types of insights we 
want to gain from this new abundance of satellite data. We feel that a discussion of automatic 
weather stations would be a distraction from the main points we wish to communicate in this 
manuscript.  
 
31: There is also an large collection of studies at the intermediate timescale, which isleft out 
here, dealing with surges. For sake of completeness, this might be included 
 
We do reference a paper on surge dynamics by Yasuda and Furuya, but we have tried to keep the 
focus of this manuscript primarily on cyclic behavior. 
 
37: "the logistical challenge of" what is meant here? 
 
We have modified the sentence to now read,  
 
...due in part to the technical challenge of working with optical data in polar regions, where the 
surface is not touched by sunlight for months-long periods each winter. 
 
The technical challenge of working with optical data in polar regions is that several months go 
by each winter when optical data are not collected, because the sun does not illuminate the 
surface during those months. The full text of this manuscript provides a detailed description of 
the technical challenges of working with this data.  
 
39: "robust extraction" using a robust pre-processing technique, is different from a robust 
methodology. Given its stiffness (non adaptive) towards one model (a sinusoidal) this might 
not be a correct formulation. It might be "precise"...? 
 
Following this suggestion, we have changed the word robust to precise.  
 



40: "primarily focused on Antarctica" maybe better: on the ice sheets and their outlets....? 
 
We designed the study with the primary goal of understanding Antarctic seasonal ice dynamics, 
because that’s where data is most limited, and it’s where the fewest studies have been published 
about the subject. The examples we provide and the statistics in all of the synthetic tests are 
based on Antarctic data. Accordingly, we stand by the statement that  
 
Our study is primarily focused on Antarctica, where seasonal variability is poorly understood, 
and where data limitations currently present the greatest challenges to making such 
measurements. 
 
53: "by feature tracking" add: over longer time spans 
 
We have made the suggested change.  
 
55: "the true magnitude" change to "a" instead of "true" or "a well fit" 
 
We have removed the phrase true magnitude, as suggested. The sentence now reads,  
 
...by fitting a cyclic function to the time series of displacements rather than average velocities, 
we show that it is possible to accurately recover the magnitude and phase of seasonal velocity 
variability. 
 
56: I miss another possibility here, which is common practice in inSAR displacement 
estimation, being inversion (e.g.: Bontemps et al. 2018, 10.1016/j.rse.2018.02.023, Li et al. 
2020, 10.1016/j.rse.2020.111695). This does not make it necessary to work with average 
time stamps or a model, and can resolves to very small time steps. 
 
It is unclear how the inversion techniques described by Bontemps et al. or Li et al. should be 
included in this study.  
 
64: " first or second image" first and second? maybe be more clear or use "master-slave" 
"chip-search space" etc.  
 
We note that the community is moving away from the terms master and slave 
(https://comet.nerc.ac.uk/about-comet/insar-terminology/). 
 
The sentence in question states,  
 
Each satellite image may serve as the first or second image in multiple image pairs... 
 
The words “first” and “second” refer to the sequence in time. The suggested wording does not 
adequately convey temporal sequence, and the meaning of “chip-search space” may not be 
widely understood.  
 
100: "most robust means" why is this robust, where do you get the reliability from?  



 
We have removed the word “robust”.  
 
fig4: maybe it is good to note, why there are two groups of points, as one is +- a year and 
the other at short time intervals in summer. btw: the purple line nicely follows the annual 
velocity clusters! 
 
Following this suggestion, we have edited the caption of Figure 4 to describe the two groups of 
points as follows:  
 
The clustering of these 14,208 measurements taken near the grounding line of Byrd Glacier 
typifies ITS_LIVE image pair data, with short Δt measurements providing direct, but noisy 
observations of velocity variability throughout each summer, while much lower-noise winter 
estimates can only give insight into the total displacement that occurs during the dark, winter 
months. 
 
151: I don’t think this is sensitivity, but more an analysis to get an idea how good the 
recovery is. As the model is corrupted with noise and then an attempt is made to 
reconstruct the model. If I understand correctly. 
 
The Sensitivity Analysis section is where we test the sensitivity of the method to several 
different parameters. We determine the sensitivity of the technique to the number of image pairs 
used, the level of background interannual variability, the amplitude of the underlying signal, and 
the phase of the underlying signal. The parameters of these tests are tabulated in Table 1: 
Sensitivity test parameters.  
 
181: "recover", change to we "are able to describe the variation by seasonal cycles" or 
alike. 
 
The passage in question reads,  
 
We conducted several tests to determine the accuracy with which we can recover the amplitudes 
and phases of seasonal cycles in synthetic velocity time series. 
 
We feel that the present wording will be more easily understood than the suggested wording. 
 
258: " is remarkable" subjective wording, please change 
 
Following this suggestion, we have changed the word remarkable to notable.  
 
258: "robust", precise/accurate might fit better 
 
Following this suggestion, we have changed the word robust to precise.  
 
267: "minuscule variations" subjective wording 
 



We have replaced the word minuscule with tiny, to describe the displacements on the order of a 
meter or so that can be detected with this method.  
 
283: " in the climatological sense, nature does not consistently time such events as calving 
or increases in basal water pressure with any greater precision than the method we have 
presented to detect them". What is meant here? 
 
We have added a definition of climatology to clarify that the climatology refers to the average 
seasonal cycle taken over many years.  
 
Transient events such as calving or impulses of water into a subglacial hydrological system often 
occur on a yearly cycle, but the corresponding glacier speedup may only last for a few days. It 
may seem that a spike in velocity only lasting a few days of the year would be poorly represented 
by a sinusoid that continuously varies throughout the year, but this sentence points out that 
mother nature does not time glacier calving to occur on the very same day each year. As a result, 
when we take the average annual cycle from many years of data, we find there is generally a 
season of glacier acceleration rather than just a few days of acceleration.  
 
To illustrate this point, here we consider a glacier whose velocity is exactly 800 m/yr most days 
of the year, but each summer it accelerates by 50±10 m/yr for a duration of 10±3 days, centered 
on June 1±20 days. We generate 1000 years of this pattern, and then consider the mean cycle of 
daily speeds and compare it to the sinsuoid fit. Using the Matlab code provided at the bottom of 
this document, we get the following plot:  
 

 
 
What we see in the daily mean velocity curve is that in the climatological sense, the period of 
high summer velocity lasts for months, even though the average high-velocity event only lasts 
for 10 days. Fitting a sinusoid to the daily means finds a peak velocity on June 1, which is 
exactly the prescribed center date of the high-velocity period. Of course, the amplitude is 
severely underestimated by the sinusoid in this scenario, but the passage in question regards 
timing, not amplitude. It states,  



 
While it is true that a glacier can accelerate in response to a transient event and return to an 
equilibrium velocity within just a few days (Stevens et al., 2015; Andrews et al., 2014), in the 
climatological sense, nature does not consistently time such events as calving or increases in 
basal water pressure with any greater precision than the method we have presented to detect 
them. 
 
285: "In most cases, a sinusoid will likely capture the majority of velocity variance 
throughout the year, and represent the fundamental mode of subannual variability in ice 
velocity." Please justify this claim, as this is the corner stone which the whole study is build 
upon. 
 
We agree that this claim was not well supported, and on reflection we see that it may have been 
untrue. We have removed the claim from the text.  
 
291+: It seems the authors put all the misfits of the sinus model on the inaccuracies of the 
GPS measurements, while this sensor measures all kinds of physics decadal, annual, 
daily,... 
 
We do not claim that the small misfit between GPS and our method is solely the fault of the GPS 
data. Rather, we simply point out that the GPS record contained several long gaps, and it is 
possible that any disagreement between the two methods could reflect the different times during 
which data were collected. Here in the Discussion section it is appropriate to acknowledge the 
possible causes of any mismatch between the GPS and ITS_LIVE data, and consider what that 
might mean for applying this method elsewhere. The passage states,  
 
...the [GPS] receiver’s harsh polar environment has led to several long gaps during which no 
GPS position data were acquired. This suggests that as a means of measuring ice dynamic 
climatology, our method might not only meet, but exceed the performance of the in situ GPS 
receiver while providing insights into dynamic behavior as far back as the mid 1980s. 
 
We feel it is important to point out that GPS data—although absolutely vital to this type of 
work—is not perfect. Most GPS receivers do not collect data over polar winter, yet the method 
of image analysis we describe is able to approximate winter ice velocities. Similarly, very few 
locations on Earth offer GPS measurements even today, yet the ITS_LIVE dataset offers global 
coverage, and in some locations that coverage extends back to the 1980s.  
 
305: "our method can extract" please add "..by describing ice flow as an oscillation ..."in 
some way 
 
Following the suggestion, the passage now reads,  
 
...our method can extract the amplitude of seasonal variability with a precision on the order of 
about 1 m/yr by describing ice flow as an oscillation, provided the level of background 
interannual variability does not overwhelm the overall signal. 
 



309: "independent of the amplitude and phase of the seasonal velocity variability", this is 
not convincingly given.  
 
The sentence in question reads,  
 
Ability to detect seasonal amplitudes is independent of the amplitude and phase of the seasonal 
velocity variability, but phase accuracy benefits with increasing amplitude of seasonal 
variability. 
 
Please see Figures 5g, 5i, and 6a.  
 
313: "fully three dimensional understanding" what is meant here? 
 
We have fixed this sentence. It now reads,  
 
...by providing a method that can be employed independently in the two dimensions of Cartesian 
coordinates, we hope to gain a more complete understanding of how dynamic signals propagate 
through the world's ice. 
 
322: "egregious outliers" egregious=outliers 
 
We have replaced egregious with extreme to make the text more accessible to non-native English 
speakers. To be clear, we are not discussing outliers that are just three or four standard deviations 
away from the mean. Rather, we are discussing the extreme outliers that can land hundreds of 
standard deviations away from the rest of the bunch. We now describe them as extreme outliers.   
 
 
  



Matlab code 
 
% Create synthetic time series:  
N = 1000; % number of years of the time series  
dur = 10 + round(3*randn(N,1)); % (days) duration of fast flow each summer  
dur(dur<1) = 1; % just in case randn resulted in any negative durations. 
st = 153 + round(20*randn(N,1)-dur/2); % DOY of fast flow period.  
vs = 50+20*randn(N,1); % Magnitude of summer speedup  
vs(vs<5) = 5;  % just in case randn made vs negative 
va = 800; % background/winter ice velocity  
  
% Define the rectangular function for each year:  
v = va*ones(N,365);  
for k = 1:N 
   ind = st(k):(st(k)+dur(k)); % indices corresponding to fast-flow event  
   v(k,ind) = va+vs(k);  
end 
  
%% Plot the time series  
  
cm = rand(N,3); % colormap 
figure 
hold on 
for k = 1:N 
   hi(k) = plot(1:365,v(k,:),'color',cm(k,:));  
end 
axis tight 
box off 
hm = plot(1:365,mean(v),'k','linewidth',2);  
  
% Fit a sinusoid:  
ft = sinefit(1:365,mean(v),'terms',3) % Climate Data Tools (Greene et al., 
2019)  
hf = plot(1:365,sineval(ft,1:365),'r','linewidth',2);  
  
datetick('x','mmm','keeplimits')  
ylabel 'glacier speed (m/yr)' 
  
legend([hi(1),hm,hf],'annual data','daily mean','sinusoid 
fit','location','northwest') 
legend boxoff 
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Abstract. Fully understanding how glaciers respond to environmental change will require new methods to help us identify the

onset of ice acceleration events and observe how dynamic signals propagate within glaciers. In particular, observations of ice

dynamics on seasonal timescales may offer insights into how a glacier interacts with various forcing mechanisms throughout

the year. The task of generating continuous ice velocity time series that resolve seasonal variability is made difficult by the

finite integration time over which ice velocities are measured from optical and repeat SAR imagery, and by a spotty satellite5

record that contains no optical observations throughout
::::::
during dark, polar winters.

:::::::::::
Furthermore,

::::::::
velocities

:::::::
obtained

:::
by

::::::
feature

:::::::
tracking

:::
are

::::::
marked

:::
by

:::::
high

:::::
noise

:::::
when

:::::
image

:::::
pairs

:::
are

::::::::
separated

:::
by

:::::
short

::::
time

::::::::
intervals,

::::
and

:::::::
contain

::
no

::::::
direct

:::::::
insights

:::
into

:::::::::
variability

:::
that

::::::
occurs

:::::::
between

:::::::
images

::::::::
separated

::
by

::::
long

::::
time

::::::::
intervals.

:
In this paper, we describe a method of analyzing

::::::
optical-

::
or

:::::::::::
SAR-derived

:
feature-tracked velocities to characterize the magnitude and timing of seasonal ice dynamic variability.

Our method is agnostic to data gaps and is able to recover climatological average winter velocities regardless of the availability10

of direct observations during winter. Using characteristic image acquisition times and error distributions from Antarctic image

pairs in the ITS_LIVE dataset, we generate synthetic ice velocity time series, then apply our method to recover imposed

magnitudes of seasonal variability within ±1.4 m yr−1. We then validate the techniques by comparing our results to GPS data

collected on Russell Glacier in Greenland. The methods presented here may be applied to better understand how ice dynamic

signals propagate on seasonal timescales, and what mechanisms control the flow of the world’s ice.15

1 Introduction

Earth-observing satellites have been in orbit for over half a century, but it was only in 2011 that a sufficient quantity of data had

been collected to complete the first pan-Antarctic map of ice velocity (Rignot et al., 2011). Since then, new satellites have led

to follow-on mappings that identified regions of changing ice flow (Gardner et al., 2018), and today data are being collected at

such a rate that velocity mosaics can be generated every year for nearly all of the world’s
:::
land

:
ice (Joughin, 2017; Mouginot20

et al., 2017; Gardner et al., 2019). So for a field of study that was born in an age of in situ stake networks and dead reckoning,

the data revolution of the past decade has completely upended glaciology. Where once our challenge was to squeeze as much

information as possible from a few sparse field measurements, our biggest challenge now lies in processing massive, often

unwieldy datasets, and finding all the meaningful signals that lie hidden in this new abundance of data.

One of the most direct and insightful ways to understand how ice moves, what controls its flow, and how it responds to25

changes in its environment, is to observe dynamic variability under a wide range of periodic forcings. Long-term trends and

1



interannual variability (e.g., Moon et al., 2012; Christianson et al., 2016; Greene et al., 2017a; Dehecq et al., 2019) can provide a

sense of how glaciers respond to sustained forcing, but on much shorter timescales we are able to see how accelerations
:::::::
velocity

::::::::
variations initiate and what physical processes control a glacier’s movement. Several targeted studies have shown that glaciers

can exhibit observable dynamic responses to ocean tides, and that tidal signals can propagate well inland of the grounding30

line on daily to fortnightly timescales (e.g., Anandakrishnan et al., 2003; Walter et al., 2012; Rosier and Gudmundsson, 2016;

Minchew et al., 2017; Robel et al., 2017), but in many glaciers around the world, a significant gap exists in our understanding

of how ice dynamic changes develop between tidal and interannual timescales.

It is certainly understood that many mountain glaciers speed up and slow down throughout the year (Burgess et al., 2013;

Armstrong et al., 2017; Yasuda and Furuya, 2015; Kraaijenbrink et al., 2016), and that some of Greenland’s glaciers respond to35

seasonal cycles of subglacial hydrology or calving dynamics (Joughin et al., 2008; Howat et al., 2010; Bartholomew et al., 2010;

Sole et al., 2013; Moon et al., 2015; King et al., 2018). Seasonal variability has even been reported in a few studies of Antarctic

glaciers (Nakamura et al., 2010; Zhou et al., 2014; Greene et al., 2018); but to date, no global-scale mapping of seasonal

dynamics of the world’s ice has been completed, due in part to the logistical
:::::::
technical challenge of working with optical data in

polar regions, where the surface is not touched by sunlight for months-long periods each winter.
::
A

::::::::::::
comprehensive

::::::::
mapping

::
of40

::
the

:::::::
world’s

:::::::
seasonal

:::
ice

::::::::
dynamics

::::::
would

:::::
permit

:::::
direct

::::::::::::::
inter-comparison

:::
of

:::::::
seasonal

::::::::
evolution

::
in

::::::
regions

::::
with

::::::::
different

::::::
driving

::::::::
processes;

:::::::
provide

::
a

::::
basis

:::
for

::::::::
analysis

::
of

:::::::::
long-term

:::::::
changes

::
in

::::::::
seasonal

::::::::
behavior;

::::
and

::::::
supply

::::::
models

::::
with

::
a
:::::::::::
zeroth-order

:::::::::::
understanding

::
of
::::::
global

:::
ice

::::::::::
climatology.

:

In this paper, we describe a method that allows for the robust extraction of seasonal changes in ice flow , and
:::::
precise

:::::::
method

::
of

:::::::::
measuring

:::
the

::::::::::
climatology

:::
—or

:::::::
average

:::::::
seasonal

:::::::::
cycle—of

::
ice

:::::
flow

::::::::
dynamics,

::::
with

:::
the

:::::::
ultimate

::::
goal

::::
that

:::
our

:::::::
method may45

be used to map the
:::::
typical

:
magnitude and timing of the seasonal dynamics of all the world’s ice

::::::
glacier

::::::::
dynamics

:::::::::
worldwide.

Our study is primarily focused on Antarctica, where seasonal variability is poorly understood, and where data limitations

currently present the greatest challenges to making such measurements. We test the sensitivity of our method on several

thousand synthetic ice velocity time series, then validate it by applying the method to satellite data covering Russell Glacier in

Greenland, where we compare our results to GPS observations that show persistent seasonality.50

2 Feature-tracked velocity data

The method we present applies to ice velocity datasets such as GoLIVE (Scambos et al., 2016) or ITS_LIVE (Gardner et al.,

2019), which have been derived by feature tracking techniques applied to satellite image pairs. For a detailed review of the

principles of feature tracking we refer readers to Scambos et al. (1992) or Fahnestock et al. (2016), but for the work presented

here it is essential to know only that feature-tracked velocities are measured as the integrated surface displacement that occurs55

between the acquisition times of two satellite images of a given location. That is, each measurement represents an average

velocity between image acquisition dates, and the required passage of time between images precludes direct measurement

of instantaneous velocity at any given time. As a result, any high-frequency variability that occurs between images is not

represented, and seasonality may appear missing or deprecated in velocity measurements obtained by feature tracking
::::
over

::::
long
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Figure 1. Example scenario: For a true continuous
:::
The

:::::
upper

::::
panel

:::::
shows

:::
an ice velocity time series like the one shown in blue, feature

tracking measures
::::
which

::::::::
integrates

::
to

::::
form

::
the

:::::::::
cumulative

::::::::::
displacement

::::
time

:::::
series

:::::
shown

::
in

::
the

:::::
lower

:::::
panel.

:::
We

:::
use

::::::
satellite

::::::
images

::
to

::::::
measure

:::
ice velocity as the total

::::::::
cumulative

:
displacement

::
of

:::::::
crevasses

:::
and

::::
other

:::::
glacier

:::::::
features that occurs between

::::::::
acquisition

::::
times

::
of

:::
any

:::
two satellite imagesof the flowing ice. Here, four images taken at times t1 through t4 provide six unique combinations of image pairs that

yield six velocity
::
the measurements , which are depicted as horizontal gray lines connecting the acquisition times of each image pair. Vertical

gray lines show measurement uncertainty and a black dot is placed at the center times of each image pair for visual clarity. The pink
:
A
:
dashed

sinusoid is fit to velocity measurements at the center times of each image pair to highlight the inadequacy of fitting directly to velocity data

to determine the
::
for

:::::::::::
determination

::
of

::::::
seasonal

:
amplitude or phaseof seasonal variability. This paper describes an alternate, exact approach,

wherein sinusoids are fit to accumulated displacementsrather than
:
,
:::::
which

::
are

::::
then

:::::::
converted

::
to

:
velocity time series

:
to

::::::
produce

:::
the

::::
light

:::
red

::::::
velocity

::::::
sinusoid

:::::
shown

::
in

:::
the

::::
upper

:::::
panel.

::::::::
timespans

:
(Fig. 1). Nonetheless, by fitting a cyclic function to the time series of displacements rather than average velocities,60

we show that it is possible to recover the true
::::::::
accurately

::::::
recover

:::
the

:
magnitude and phase of seasonal velocity variability.

This paper focuses primarily on the Landsat image pairs that populate the ITS_LIVE dataset, in part because their record

extends back as far as 1985 in some locations. The long Landsat record may help ascertain a climatological seasonal cycle

of ice dynamics at any given location; however, we face the limitation that optical satellites like Landsat do not collect data

throughout the dark winters in polar regions, where land ice is most prevalent (see Fig. 2). Despite the lack of direct observation65

in winter, we will show that the magnitude and timing of seasonal variability can be accurately retrieved from Landsat data,

regardless of when in the year the maximum velocity occurs.

For any given 240×240 m pixel in Antarctica, the ITS_LIVE dataset may contain from a few dozen to more than 10,000

velocity measurements (see Fig. 3), which are taken as the ice displacement observed between two satellite images collected on

different days. Each satellite image may serve as the first or second image in multiple image pairs, resulting in many overlapping70

measurements of ice velocity, as shown in Fig. 4. Georegistration error of each image leads to some visible disagreement

3



Figure 2. Antarctic image pair acquisition times. Over 1.8 million Landsat image pairs provide Antarctic ice velocities in the ITS_LIVE

dataset. a: The seasonal cycle of Landsat image collection shows the effects of the solar cycle on Antarctic sampling. The cycle is repeated

for visual continuity over the summer. b: Images
::::::::::
Displacement

:::::
fields

:
in
:::
the

:::
ITS

:
_
::::
LIVE

::::::
dataset are

:::::::
processed

::
for

:::
all

::::
image

::::
pairs

:
separated by

16 to 544 days, with half of all image pairs representing 80 days of displacement or less, but a distinct secondary peak corresponds to a ∆t

value of 1 year.

between the overlapping velocity measurements, but despite the noise, a coherent pattern of interannual variability is apparent

as the clusters of velocity measurements move up or down from year to year.

3 Method of analyzing image pair velocity data

3.1 Assess and remove interannual variability75

The first step toward quantifying seasonal variability for any pixel is to remove any interannual variability from the time

series. Interannual variability can be determined by smoothing the velocity data using any of several common methods. A

polynomial fit is robust and computationally efficient, but requires choosing a polynomial order, which is subjective and can

lead to overfitting or underfitting the data. Alternatively, a moving average makes no prior assumption about the shape of

the velocity curve, and can adapt to any arbitrary interannual variability. After exploring several approaches, we find the best80

results by first detrending the time series with a low-order polynomial, then using a hybrid of a moving average and a spline

fit, which we describe below.

When assessing interannual variability, we temporarily ignore the duration over which each image pair measured ice dis-

placement, and simply assign the average velocity to the center date tm of each image pair. Using the range of times tm in the
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Figure 3. ITS_LIVE velocity data statistics. Maps of a: the number of image pairs that contribute to each 240×240 m pixel in the

ITS_LIVE summary velocity mosaic and b: the standard deviation of annual velocity mosaics from 2013 to 2018. Histograms in panels c

and d show only the values from a and b that correspond to grid cells with at least 100 contributing image pairs and whose mean velocity

is at least 15 m yr−1. Displacement errors σd shown in panel e result from satellite image georegistration error, and when divided by values

of ∆t corresponding to each image pair results in the velocity errors σv shown in panel f. Because displacement errors are distributed

symmetrically, the bimodal distribution of velocity errors roughly correspond to the two peaks of ∆t values over which velocity is measured

(shown in Fig. 2). Vertical lines in panels c–e indicate median values of 1153 image pairs per grid cell, 4.2 m yr−1 interannual variability,

and 4.9 m displacement error.

time series, we require at least two years of velocity data and detrend using a polynomial whose order is chosen as one quarter85

of the range of tm in years, rounded up to the nearest integer. The result is that for up to four years of data, the time series is

linearly detrended; from four to eight years of data, the time series is quadratically detrended, and so on. We assign the velocity

weights wv in the polynomial fit using the formal error estimates σv from the ITS_LIVE data such that wv = σ−2
v . An example

of a fourth-order polynomial fit to the velocity data is shown in Fig. 4.

After detrending the time series with a weighted polynomial fit, we characterize any residual interannual variability with a90

spline fit to the mean velocities of each year. We take the weighted mean velocity of all measurements whose tm lies within

183 days of winter solstice of that year. We assign the weighted mean velocity of each year to the weighted mean date of those

velocities, then interpolate with a shape-preserving piecewise cubic hermite polynomial to obtain a measure of interannual

variability corresponding to each image pair’s center date tm.
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Figure 4. Velocity time series for an ITS_LIVE pixel. These
:::
The

:::::::
clustering

::
of
:::::

these 14,208 measurements taken near the grounding line

of Byrd Glacier typify
:::::
typifies ITS_LIVE image pair data, with short-∆t measurements providing direct, but noisy observations of velocity

variability throughout each summer, while much lower-noise winter estimates can only give insight into the total displacement that occurs

during the dark, winter months. Light gray horizontal bars connect the acquisition times of each image pair and vertical bars show ±1σv

uncertainty. Center dates tm are shown as dark gray dots for visual clarity.

In the method described thus far, most summer image pairs whose ∆t is small contribute much less to the weighted mean95

annual velocities than do long ∆t image pairs that span winter. This is because velocity error by any feature-tracking algorithm

stems strictly from displacement error σd, while timing error is essentially zero. So although summer offers more image

pair measurements, their shorter ∆t values are associated with greater velocity error σv and therefore they are significantly

downweighted in the calculation of annual mean velocities. In other words, it is possible that either due to the higher weights

of winter velocities or the higher quantity of measurements available during summer, the weighted mean annual velocities could100

be biased toward one season or the other. We account for this possibility by iteratively solving for interannual and seasonal

variability, as we describe later in Section 3.3.

3.2 Assess seasonal variability

We characterize the magnitude and timing of seasonal variability as a simple sinusoid that can be applied in the x and y

directions separately to build a two dimensional understanding of how ice moves throughout the year. Limitations of the105

sinusoidal approximation are discussed later in Sect. 6, but we justify our approach as it is the simplest , most robust means of
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describing cyclic behavior, and by nature it is constrained to capture the sum total of ice displacement that occurs throughout

the year.

After characterizing interannual variability, we subtract it from the velocity time series at the center date of each image pair.

The residuals vr after removing interannual variability can then be assumed to contain only seasonal variability and noise. To110

address blunders, we remove outliers whose absolute value exceeds 2.5 robust standard deviations of vr (see Appendix A).

The remaining task is to fit a sinusoid to the vr time series, but given that each velocity measurement is a single value that

represents several weeks to more than a year, we cannot fit a sinusoid directly to the velocity time series or assume that values

of vr correspond to the image pair center dates tm. Instead, we operate on the displacements associated with each image pair,

taken as the integrals of velocities vr.115

We seek to define seasonal velocity variability vs in the form

vs(t) =Asin

(
2π(φ+ t)

t+φ

T
::::

)
+C0, (1)

where A and φ are the amplitude and phase of the seasonal velocity cycle, respectively, and t represents time in decimal years
:
,

:::
and

:::::
T = 1

:::::
year

::
is

:::
the

::::::
period

::
of

:::::::::
oscillation. By our method, the constant C0 is ideally zero after detrending and removing

interannual variability, but we include it here in case some residual offset is present in the vr time series.120

For a more robust least-squares solution, we employ a trigonometric identity to rewrite Eq. 1 as

vs(t) = C1 sin(

(
2πt)

t

T
:

)
+C2 cos(

(
2πt)

t

T
:

)
+C0, (2)

which is related to Equation 1 by A=
√
C2

1 +C2
2 and φ= atan2(C2,C1).

Again, we cannot solve Eq. 1 or Eq. 2 directly with image-pair velocities, because they do not represent instantaneous

velocity at any known times t. Instead, image pair data track displacements, which equate to the integral of velocities between125

times t1 and t2 when the two images were acquired. Accordingly, we can take the definite integral of Eq. 2 to solve for the

seasonal displacement cycle ds as,

ds =
C1

2π
C1

T

2π
:::::

[
cos(

(
2πt1)

t1
T
::

)
− cos(

(
2πt2)

t2
T
::

)]
+
C2

2π
C2

T

2π
:::::

[
sin(

(
2πt2)

t2
T
::

)
− sin(

(
2πt1)

t1
T
::

)]
+C0(t2− t1).

(3)

We solve for the coefficients of Eq. 3 using a least-squares approach with weights given by wd = (σv ·∆t)−2. This type of

approach has previously been applied to study Earth deformation (e.g., Hetland et al., 2012), and is similar to an approach that130

has been used to analyze ice dynamic responses to tidal forcing (Milillo et al., 2017; Minchew et al., 2017).

By employing Eq. 3 to solve forA and φ, we obtain a first approximation of the seasonal variability of ice velocity. However,

the possibility remains that the initial estimate of interannual variability may have been partly aliased by seasonal variability

due to uneven temporal sampling. Thus, we refine our estimates of interannual and seasonal variability by iterative means.
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3.3 Iteratively refine interannual and seasonal variability estimates135

If our first estimates of A and φ are correct, then we know that the amount by which seasonal variability
:::::::
seasonal

:::::::::
variability

::::
must

::::
have

:
aliased each initial estimate of interannual variability is given by

::
by

::
a

::::::
certain

::::::
amount

:::
va.

::::
The

::::::
amount

:::
of

:::::::
velocity

::::::
aliasing

:::::::
equates

:::
the

:::::::
seasonal

:::::::::::
displacement

::::
over

:::::
time,

:::::
which

:::
we

:::
can

::::::
obtain

::
by

:::::::
dividing

:::
the

:::::::
definite

::::::
integral

::
of

::::
Eq.

:
1
:::
by

:::
∆t,

::
or

:

va =
A

2π∆t
{cosA

T

2π(t2− t1)
:::::::::::

[
cos
::

(
2π(t2 +φ)

t2 +φ

T
:::::

)
− cos

(
2π(t1 +φ)

t1 +φ

T
:::::

)]
}. (4)

After obtaining initial estimates of A and φ, we subtract va from the original detrended velocity measurements and repeat140

the process of calculating interannual and seasonal variability. In most cases, we find that initial estimates of A and φ are

reasonably close to their true values, and that just a few iterations are sufficient to yield accurate final estimates of seasonal

amplitude and phase. We explore the number of requisite iterations in Sect. 4.3 and show the effects of iterating in Fig. 5.

Figure 4 shows an example of our method applied to a time series of 14,208 ITS_LIVE image pairs acquired in a single

pixel near the grounding line of Byrd Glacier, Antarctica. Because no strong long-term velocity trends are present, the green145

fourth-order polynomial fit is relatively flat, albeit with a slight downturn at the unconstrained end of the time series. The blue

curve of interannual variability follows the multi-year rises and falls of velocity much more closely, and is uncontaminated

by seasonal variability on this tenth iteration of the solution. The red curve adds seasonal variability with an amplitude of 23

m yr−1 to the interannual variability, and given that it is a least-squares solution, it represents the only solution that minimizes

the misfit between the curve and all available observations. Indeed, while at first glance it may appear visually that the timing150

of image acquisitions themselves are the only seasonal pattern in the ITS_LIVE data plotted in Fig. 4, close inspection shows a

persistent pattern of summer slowdown in the image pair data that becomes especially clear after the 2013 launch of Landsat 8.

4 Sensitivity analysis

To assess uncertainty of our method, we generate synthetic random continuous velocity time series, then artificially sample

them using random subsets of image acquisition times from Landsat image pairs that cover Antarctica. We then apply the meth-155

ods described in Section 3 to determine how accurately seasonal ice dynamics can be measured, and under what conditions.

4.1 Synthetic time series generation

Any synthetic velocity time series used for testing should resemble the true nature of ice dynamics in its variability on all

timescales. Accordingly, we create realistic interannual variability by matching the distribution of the standard deviations of

velocities in each grid cell in the ITS_LIVE annual velocity mosaics from 2013 to 2018. Figure 3 shows a map of interannual160

variability for the grid cells that contain all six years of data, and a histogram of those values for grid cells that contain at least

100 total image pairs and a minimum mean velocity of 15 m yr−1. Within this subset, the median interannual variability is

characterized by a standard deviation of 4.2 m yr−1.

8



To create each synthetic time series of interannual variability, we generate uniformly distributed random values centered

about zero, at daily temporal resolution. We apply a first-order low-pass Butterworth filter with a cutoff period of 548 days165

to each random time series to ensure that no annual cycles are present, and then we discard the first and last 548 values of

each time series to eliminate edge effects of the filter. We then scale the remaining time series such that its standard deviation

matches a prescribed level of interannual variability.

Our handling of interannual variability is an attempt to mimic the observable ways in which Antarctic glaciers speed up and

slow down from year to year. Ideally, we would also carry forth in a similar manner for seasonal variability, imposing cyclic170

behavior that matches the true character and distribution of the types of seasonal variability that exist in nature. However, as

the intent of this paper is to develop the methods that will be necessary to understand where and how ice velocities vary on

seasonal timescales, we cannot at present create synthetic seasonal variability distributions to match what truly exists in nature.

Instead, to each synthetic time series we add a sinusoid with a period of 365.25 days, a random phase, and a random amplitude

between 0 and 100 m yr−1.175

4.2 Synthetic time series sampling

Each synthetic time series is artificially sampled using characteristic acquisition times and error distributions from Antarctic

Landsat-derived ITS_LIVE image pairs. In Fig. 3 we see that among grid cells containing at least 100 image pairs, and whose

mean velocity is at least 15 m yr−1, we can expect a median of 1153 image pairs per grid cell. Accordingly, we use the

acquisition times (Fig. 2) and corresponding error estimates (Fig. 3) from random subsets of 1153 image pairs (sampled from180

all 1.8 million Antarctic image pairs) to artificially sample each synthetic time series. Each synthetic velocity measurement

is calculated from the cumulative sum of daily velocities that occurred between the first and second image in a given pair,

but before dividing the total displacement by the time ∆t between images, a random gaussian value of displacement is added

according to the formal error estimates associated with that image pair in the ITS_LIVE dataset. The result is a time series

of synthetic measurements that resemble the acquisition times and error characteristics of ITS_LIVE image pairs, but whose185

underlying continuous velocity signal it represents is known.

4.3 Seasonal amplitude and phase recovery

We conducted several tests to determine the accuracy with which we can recover the amplitudes and phases of seasonal cycles

in synthetic velocity time series. The parameters of each test are detailed in Table 1.

In the first test, we sought to understand how many iterations are necessary to achieve a stable solution. In this test, we190

generated 10,000 synthetic velocity time series, each having interannual variability with a standard deviation of 4.2 m yr−1.

Sinusoidal seasonal variability was added to each time series, characterized by a random phase and a uniform distribution of

amplitudes between 0 and 100 m yr−1. Each time series was then synthetically sampled using the acquisition times and error

characteristics of 1153 random image pairs in the ITS_LIVE dataset. Following the method described in Sect. 3, we analyzed

each time series by assessing interannual variability in the synthetic measurements, removing it, removing outliers, and then195

obtaining the amplitude and phase of each seasonal cycle. After accounting for any aliasing that would have been caused by the
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Table 1. Sensitivity test parameters. To understand how various factors influence measurement sensitivity, we isolate and vary a number of

key characteristics of the synthetic time series and the data analysis method. In the first test, we vary only the number of iterations described

in Section 3.3, to determine how many iterations are necessary to achieve a stable solution. We then test the effects of sampling velocity time

series with 32 to 10,000 synthetic image pairs. In the remaining tests, we prescribe characteristics of the synthetic velocity time series to

understand the influence of interannual variability, the amplitude of the seasonal cycle, and the timing of the seasonal cycle on measurement

accuracy.

interannual seasonal seasonal image times

test iterations N image pairs rms (m yr−1) amplitude A (m yr−1) phase & velocity errors Figure

iterations 1–15 1153 4.2 0–100 0–2π RFD 5a,b

N image pairs 10 32–10,000 4.2 0–100 0–2π RFD 5c,d

interannual rms 10 1153 0–3500 0–100 0–2π RFD 5e,f

seasonal amplitude 10 1153 4.2 0–500 0–2π RFD 5g,h

seasonal phase 10 1153 4.2 0–100 0–2π RFD 5i,j

overall Antarctic 10 RFD RFD 0–100 0–2π RFD 6

RFD indicates randomized from distribution of all 1.8 million Antarctic ITS_LIVE image pairs.

seasonal amplitude and phase (Sect. 3.3) that were measured in the first iteration, we conducted a second iteration of assessing

interannual and seasonal variability. We then followed with a third iteration, and so on, up to 15 iterations. Results in Fig. 5a,b

show that solutions tend to converge after the first few iterations, but it is possible that in some situations more iterations could

be necessary, depending on sampling and the characteristics of the velocity time series. Accordingly, we use 10 iterations in all200

of the tests that follow.

We conducted a second test to determine how many image pairs are necessary to detect seasonal cycles in a velocity time

series. We found that with just 32 image pairs, we were able to recover phase with sufficient accuracy to correctly identify the

season of maximum velocity (Fig. 5c,d). We also found that performance improves dramatically with increasing image pairs,

until errors in phase and amplitude approach their asymptotes between 500 and 1000 image pairs. Beyond that, the number of205

image pairs used in the analysis has a negligible impact on the accuracy of seasonal signal detection.

In a third test, we found that one factor more than any other threatens the accuracy of seasonal variability detection. Given a

velocity time series sampled by 1153 image pairs, seasonal amplitude error increases approximately linearly with the level of

background interannual variability (Fig. 5e,f). This is because despite our attempts to account for interannual variability, it is

inevitable in a time series of finite length that some residual variability will influence the least-squares fit of the seasonal cycle.210

Nonetheless, if we consider ±45 days of phase uncertainty to be a threshold that indicates accurate detection of the season

of maximum velocity, our method performs adequately in the presence of interannual variability with a standard deviation

exceeding 100 m yr−1. Further analysis suggests that for any level of interannual variability, the amplitude of the seasonal

cycle must be at least one third of the standard deviation of interannual variability to reliably be detected (see Sect. A1). We

note, however, that because we have used the simple metric of the standard deviation of velocity to describe all forms of215
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Figure 5. Sensitivity test results. The tests outlined in Table 1 indicate that a–b: amplitude and phase errors level off after the first few

iterations of removing interannual variability and solving for seasonal variability; c–d: at least 500 to 1000 image pairs are necessary for the

most accurate, stable solutions; e–f: strong interannual variability can drastically affect seasonal amplitude and phase detection; g: seasonal

amplitude measurement uncertainty is independent of the seasonal ice velocity amplitude itself, but h: seasonal phase is measured most

accurately when the seasonal ice velocity amplitude is strong; and i–j: although some faint residual effects of the seasonal bias in sampling

persist after 10 iterations, amplitude and phase accuracy are effectively independent of the timing of the seasonal ice velocity variability.

interannual variability, it is likely that our method will perform better than these error estimates suggest wherever interannual

variability is dominated by a long-term trend.

The final four panels of Fig. 5 provide valuable insights into the capabilities and sensitivities of our seasonal detection

method. Most notably, that for a constant level of background interannual variability, seasonal amplitude errors are independent

of the amplitude of the seasonal cycle. However, phase detection benefits with increasing seasonal amplitude. This should not220

be surprising, as a signal must not only exist, but also be sufficiently strong for its phase to be accurately measured. The last two

panels of Fig. 5 show that for all practical purposes our seasonal amplitude and phase estimates can be considered insensitive

to the timing of the underlying seasonal signal, despite having no images during winter.

Thus far we have determined that 10 iterations are more than sufficient for the model of seasonal variability to converge. We

have also found that our measurements can be considered agnostic to the timing of ice velocity variability and to the timing225

of satellite image acquisitions, when applied to at least 500 to 1000 image pairs. With this understanding, we now apply our

method to 100,000 synthetic time series that typify the interannual ice velocity variability and satellite image acquisitions that

have been measured across the Antarctic continent as a whole. Interannual variability in the synthetic time series was randomly

sampled from the distribution shown in Fig. 3d and a uniform distribution of seasonal amplitudes from 0 to 100 m yr−1 were

added to the interannual variability. Each synthetic ice velocity time series was observed with a number of synthetic image230
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Figure 6. Pan-Antarctic seasonal signal recovery. Following the parameters of the final test in Table 1, we examine the performance of our

method using the complete distributions of Antarctic Landsat image acquisition times, ITS_LIVE velocity errors, and measured Antarctic

interannual ice velocity variability. Among the results where 500 or more image pairs were used to analyze the time series, amplitude

uncertainty was found to be 1.4 m yr−1 and phase uncertainty is 2 days. For visual clarity, only 10,000 randomly selected results are shown

of the 100,000 tests we performed for overall Antarctic parameter distributions.

pairs taken randomly from the distribution of values in Fig. 3c that exceed 500 image pairs, and displacement errors randomly

sampled from the distribution in Fig. 3e were added to each synthetic measurement before dividing by the times ∆t that

separate each image pair. The results of this test, shown in Fig. 6, indicate that with the Landsat images that have been acquired

to date, we should be able to measure seasonal amplitudes within ±1.4 m yr−1 and phase within about ±2 days.
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Figure 7. GPS validation at Russell Glacier, Greenland. Hourly time series of a–b: detrended positions of a GPS receiver are shown as

raw data in light blue and the sum of interannual variability and a sinusoid fit in dark blue. The amplitudes of positional seasonal variability

are only 4.5 m in the easting (x) direction and 1.8 m in the northing (y) direction, yet these minor seasonal displacements are easily detected

by applying the methods described in Sect. 3 to ITS_LIVE Landsat image pair velocities. c–d: Velocity measurements from 5189 ITS_LIVE

image pairs are plotted in gray with our fit to the measurements in red. The blue velocity curves are simply the time derivatives of the

corresponding GPS position curves plotted in panels a and b. The level of agreement between the two independent measurements is detailed

in Table 2.

5 Validation with in situ GPS observations235

To confirm that we can extract seasonal ice velocities from feature-tracking data, we compare an in situ GPS position time

series against results obtained by applying our method to ITS_LIVE velocities that were generated from 15 m resolution

optical Landsat 7 and 8 imagery. We focus on Russell Glacier in Greenland, where GPS data provide more than a decade

of observations and where seasonal velocity variability has previously been reported Van de Wal et al. (2015). We use the

GPS-derived positions from the PROMICE (Van As, 2011) KAN_L station (64.4822◦N, 49.5358◦W, 530 masl; see Appendix240

B). Although we ultimately aim to characterize Antarctic seasonality, we use this record from Greenland because we are not

aware of any such decade-long GPS records in Antarctica that offer winter position data and capture seasonal cycles of glacier

movement that can be used for validation. The ITS_LIVE data covering Greenland are identical to the Antarctic image pair

data, so we directly apply the methods discussed above without any adjustments. Likewise, our methods could just as easily be

applied to ITS_LIVE data covering Alaska, the Canadian Arctic, Svalbard, the Russian Arctic, Patagonia, or High Mountain245

Asia.
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Table 2. ITS_LIVE analysis compared to GPS. The secular mean velocities and x and y components of the seasonal characteristics of

the glacier velocity time series shown in Fig. 7. Despite an imperfect overlap in the
:::
The acquisition times

::::
dates

:
of the two independent

measurements
::::
differ

::::::
slightly,

:::
yet agreement is within a few percent by every measure. Uncertainty estimates are described in Appendix A2.

GPS ITS_LIVE difference

secular mean v̄x -102.4 -104.0 -1.6 m yr−1

vs,x amplitude 28.5 28.8±0.9 0.3 m yr−1

day of max vs,x Dec. 27 Dec. 13±5 -14 days

secular mean v̄y -30.6 -29.5 1.2 m yr−1

vs,y amplitude 11.5 12.4±0.9 0.9 m yr−1

day of max vs,y Jan. 3 Jan. 1±11 -2 days

Figure 7a,b shows the
:::::::
linearly detrended GPS position data, along with a model fit that represents the sum of interannual

variability and a seasonal sinusoid fit to the position data (see Appendix B). From the GPS data, we obtain velocity time series

by taking the time derivative of the position fits, which are shown in Fig. 7c,d. As we expect when taking the derivative of a

sinusoid, the peaks in velocity occur 91 days before peaks in position, and velocity amplitudes are 2πyr−1 times the amplitudes250

of the seasonal position fits.

We compare the GPS velocity time series to velocities obtained from 5189 ITS_LIVE image pairs in the pixel closest to

the
::::
fixed

:
median location of the GPS receiver throughout the course of its data collection. Key findings are listed in Table 2.

Secular mean velocities in the x and y directions measured by the two independent datasets agree on the order of 1 m yr−1.

Seasonal velocity amplitudes also show agreement on the order of 1 m yr−1, as we expect on this glacier where interannual255

variability has a standard deviation of 3.6 m yr−1 in the x direction and 3.4 m yr−1 in the y direction (see Appendix A2).

The largest disagreement in Table 2 lies in the phase of the x direction, which at 14 days is only about 4% of a year. We

note further that disagreements listed in Table 2 do not necessarily reflect errors in the ITS_LIVE data or the methods we have

employed to process it. Rather, disagreements may simply reflect that the GPS receiver did not record data from late 2010 to

mid 2012, and no GPS data were recorded during two of the winters that followed. Meanwhile, we use ITS_LIVE data from260

images that were collected more than a year before the start of the GPS record, but image pair data have not yet been processed

corresponding to the final months of the GPS record. In addition to these differences in timing of data collection, we also

note that the GPS record represents a Lagrangian measurement of ice velocity, whereas the ITS_LIVE data record an Eulerian

measurement at a pixel that the GPS receiver passed through only once in its decade-long life. Nonetheless, agreement between

the GPS solutions and our method of image pair data analysis is remarkable
::::::
notable, and lends credence to this method as a265

robust
::::::
precise

:
means of measuring seasonal variability in ice velocity.
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6 Discussion

The method we present in this paper requires a multi-year record with at least several hundred image pairs to confidently

identify the amplitude and phase of seasonal variability. Some key regions of interest, such as Totten Glacier in Antarctica, do

not yet offer enough cloud-free images to meet this threshold, so a few more years of data collection may be required before270

our methods can be successfully implemented there. In addition, it may be difficult or impossible by our methods to detect

seasonality in places of interest such as Pine Island and Thwaites glaciers, which are currently undergoing dramatic interannual

change that could confound our measurements of seasonal variability.

Nonetheless, Fig. 7 illustrates the sensitivity of our method to minuscule
:::
tiny variations in glacier flow when conditions are

favorable. The vertical scale of the upper panels spans just ±15 m; yet, by our method of analyzing 15 m resolution Landsat275

Band 8 images, we are able to detect minor nuances in position that occur entirely within this range. We know of no other

sensor or dataset that can offer such insights into these kinds of subtle variabilities of ice flow that have occurred over the past

few decades.

The most significant limitation of the method we present may lie in our approximation of seasonal variability as a sinusoid.

Where seasonal dynamic variability has previously been documented, it has been found that in some cases a sawtooth function280

or other higher-order fits might match seasonal variability more closely than a sinusoid (Moon et al., 2014; Van de Wal et al.,

2015; Vijay et al., 2019). In particular, although events such as springtime calving or summer melt may occur on an annual

cycle, a glacier’s complete response to them may only last for only a few days (Schoof, 2010). To approximate such events as

smoothly varying sinusoids will underestimate the magnitude of any brief glacier acceleration, while potentially giving a false

sense that the ice responds to an impulse event continually throughout the entire year.285

Despite the tendency of a sinusoid to oversimplify complex time series, we contend that no other description of seasonal

variability is as elegant or robust over decadal timescales, and that understanding seasonal ice dynamics must begin with a

zeroth order description of the amplitude and phase of ice velocity variability. While it is true that a glacier can accelerate in

response to a transient event and return to an equilibrium velocity within just a few days (Stevens et al., 2015; Andrews et al.,

2014), in the climatological sense, nature does not consistently time such events as calving or increases in basal water pressure290

with any greater precision than the method we have presented to detect them.

In most cases, a sinusoid will likely capture the majority of velocity variance throughout the year, and represent the
:::
The

:::::::
approach

:::
we

:::::::
present

:::::::
captures

:::
the

:
fundamental mode of subannual variability in ice velocity . The approach we present

:::
and

conserves all ice displacement that occurs throughout the year, and the
:
.
::::
The simple two-term explanation of amplitude and

phase provides a robust description of seasonality that is less prone to error than higher-order fits such as three-term sawtooth295

functions. By providing a simple measure of amplitude and phase, we offer a straightforward method to compare how neigh-

boring glaciers respond to a common seasonal forcing or investigate how dynamic signals propagate upstream or downstream

in a given glacier.

In Sect. 5 we applied our method to ITS_LIVE velocity measurements and compared against GPS position data, with the

intention that the in situ GPS station would provide a reliable ground-truth reference. However, although the two independent300
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measurements show close agreement whenever GPS data were logged, the receiver’s harsh polar environment has led to sev-

eral long gaps during which no GPS position data were acquired. This suggests that as a means of measuring ice dynamic

climatology, our method might not only meet, but exceed the performance of the in situ GPS receiver while providing insights

into dynamic behavior as far back as the mid 1980s. The particular ITS_LIVE grid cell we have
:
in

:::::::::
Greenland

:::
that

:::
we

:
analyzed

in this paper is hardly unique in its potential to provide historical context, as decades-long velocity records exist in most of the305

240×240 m pixels which cover nearly all of the world’s ice.

The methods presented in this paper have focused primarily on optical satellite data because no other type of sensor provides

such a long record of ice velocity. As more radar data become available, particularly since the launch of Sentinel 1a/b, the

problem of missing winter data will be eliminated, but the methods presented in this paper will still hold. When an abundance

of feature-tracked velocities from radar become available, Eq. 3 may then be easily modified to include additional terms to310

simultaneously solve for cyclic velocity variability on tidal timescales as well as seasonal variability.

7 Conclusions

Given a relatively continuous time series of at least 500 to 1000 image pairs, our method can extract the amplitude of seasonal

variability with a precision on the order of about 1 m yr−1
::
by

::::::::::
describing

:::
ice

::::
flow

::
as

:::
an

:::::::::
oscillation, provided the level of

background interannual variability does not overwhelm the overall signal. We find that if the amplitude of seasonal variability315

is at least a third of the standard deviation of interannual variability, the method we describe can reliably detect the season of

maximum ice velocity. Ability to detect seasonal amplitudes is independent of the amplitude and phase of the seasonal velocity

variability, but phase accuracy benefits with increasing amplitude of seasonal variability.

With the method we describe, we may begin to map seasonal ice dynamic variability on a global scale, in a consistent

and meaningful manner; and by providing a method that can be employed independently in the two dimensions of Cartesian320

coordinates, we hope to gain a fully three dimensional
::::
more

::::::::
complete understanding of how dynamic signals propagate through

the world’s ice.

Code and data availability. Data analysis in this paper relied upon Antarctic Mapping Tools for MATLAB (Greene et al., 2017b) and the

Climate Data Toolbox for MATLAB (Greene et al., 2019). All data analyzed in this paper and code necessary to generate the figures are

included as a supplement to the paper, or are available online at http://www.github.com/chadagreene. PROMICE data is freely available at325

http://www.promice.dk. ITS_LIVE global image-pair velocity data is freely available at its-live.jpl.nasa.gov.

Appendix A: Additional uncertainty analysis

Phase and amplitude uncertainty in Sect. 4.3 were calculated from the differences between imposed and recovered values.

Differences in phase were wrapped such that their absolute values did not exceed 182.62 days. During this work, we found

that in some cases, simple standard deviations of differences could be strongly influenced by a few egregious
:::::::
extreme outliers,330
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and as a result, standard deviations of differences (and similarly, root-mean-square errors) did not reflect the true gaussian

distributions of errors. So for a more robust and meaningful measure of error distributions, we define σ as 1.4826 times the

median of the absolute value of differences.

A1 Seasonal uncertainty from interannual variability

In addition to the tests described in Sect. 4.3, we analyzed 120,000 synthetic time series to better understand the scenarios in335

which interannual variability may confound our ability to detect seasonal cycles in an ice velocity time series. For every unique

combination of 31 values of seasonal amplitudes from 0 to 1000 m yr−1 and 26 values of interannual variability from 0 to 3500

m yr−1, we generated 150 synthetic time series, sampled them with 1153 synthetic image pairs, and attempted to recover the

seasonal cycles we imposed. A striking relationship emerged, shown in Fig. A1, in which we see a strong demarcation between

a zone of accurate phase detection and a zone where phase cannot be determined with any confidence.340

Letting phase uncertainty of 45 days be the threshold indicating whether the season of maximum ice velocity can be ac-

curately determined, in Fig. A1 we see that above the noise floor of about 1 m yr−1 seasonal amplitude, the 45 day phase

uncertainty contour marks an approximately linear relationship between interannual variability and seasonal amplitude. In-

deed, the dashed blue line that nearly coincides with the 45 day phase uncertainty contour shows the simple slope whereby

seasonal amplitude is one third of the standard deviation of interannual variability, with zero offset from the origin. This tells345

us that there is a quite simple relationship between the amplitude of a seasonal cycle, the level of background interannual

variability, and our ability to detect phase—As long as the seasonal amplitude is above the noise floor of about 1 m yr−1 and

interannual variability does not exceed three times the amplitude of the seasonal cycle, we can accurately detect the seasonal

cycle.

A2 Uncertainty estimates for ITS_LIVE/GPS comparison350

The values of seasonal amplitude and phase uncertainty listed in Table 2 were each calculated as the robust standard deviations

of amplitude and phase errors from 5000 synthetic time series sampled by 5189 image pairs. In the x direction, ITS_LIVE

image pairs indicate an interannual variability of 3.85 m yr−1 in our pixel of interest, with a seasonal amplitude of 28.8 m yr−1

and a maximum velocity occurring around December 13th of each year. We generated 5000 synthetic time series matching

these criteria, and were able to recover the 28.8 m yr−1 seasonal amplitude within σ=0.87 m yr−1 and phase within σ=4.7355

days. Similarly for the y direction, from 5000 synthetic time series with an interannual variability of 3.38 m yr−1, seasonal

amplitude of 14.4 m yr−1, and maximum velocity occurring on January 1 of each year, we recover seasonal amplitudes within

σ=0.91 m yr−1 and phase within σ=10.7 days.

Appendix B: GPS processing

We use hourly position data from the PROMICE KAN_L GPS station on Russell Glacier (Van As, 2011). The KAN stations360

utilize the Trimble SAF270-G antenna with a single L1 frequency to minimize power usage. L1 signals have previously been
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Figure A1. Interannual variability and seasonal signal detection. The dark green region of this plot indicates scenarios in which phase

can be accurately detected with 1153 image pairs. When seasonal amplitudes are above the noise floor of about 1 m yr−1, the amplitude of

seasonal variability must be at least a third of the standard deviation of interannual variability to be detected, and this relationship is marked

by a dashed blue line. The linear relationship coincides with the 45 day phase uncertainty contour that determines whether the season of

maximum ice velocity can be accurately measured.

used in studies of short-term ice motion with success in the Russell Glacier region (e.g., Van de Wal et al., 2015). Positions are

recorded hourly during the spring/summer observation period and daily over winter. In addition to position data, PROMICE

reports information about horizontal dilution of precision (HDOP) and station tilt data; both of which are used in addition

to position data to perform post-processing quality control. HDOP provides information on uncertainties related to satellite365

geometry, and we discard positions for which the HDOP exceeds a value of 5. We manually remove offsets of a few meters

that occurred during four site visits on 28 April 2015, 16 July 2016, 1 Sept 2017, and 28 Aug 2018. We then remove any

outliers, which we define as all points whose detrended x or y positions lie more than 2.5 robust standard deviations (see

Appendix A1) away from zero. After detrending the position data we remove interannual variability following the spline-

fitting method described in Sect. 3.1, then fit sinusoids to the residual x and y position time series using the sinefit function370

in MATLAB (Greene et al., 2019). The detrended raw position data are shown in Fig. 7 along with a model fit, which is taken

as the sum of interannual and seasonal variability.
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