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Abstract. We seek to understand causal connections between changes in sub-ice shelf melting, ice shelf buttressing, and

grounding-line flux. Using a numerical ice flow model, we study changes in ice shelf buttressing and grounding line flux due

to localized ice thickness perturbations – a proxy for changes in sub-ice shelf melting – applied to idealized (MISMIP+) and

realistic (Larsen C) domains. From our experiments, we identify a correlation between a locally derived buttressing number on

the ice shelf, based on the first principal stress, and changes in the integrated grounding line flux. The origin of this correlation,5

however, remains elusive from a physical perspective; while local thickness perturbations on the ice shelf (thinning) generally

correspond to local increases in buttressing, their integrated impact on changes at the grounding line are exactly the opposite

(buttressing at the grounding line decreases and ice flux at the grounding line increases). This and additional complications

encountered when examining realistic domains motivates us to seek an alternative approach, an adjoint-based method for

calculating the sensitivity of the integrated grounding line flux to local changes in ice shelf geometry. We show that the adjoint-10

based sensitivity is identical to that deduced from pointwise, diagnostic model perturbation experiments. Based on its much

wider applicability and the significant computational savings, we propose that the adjoint-based method is ideally suited for

assessing grounding line flux sensitivity to changes in sub-ice shelf melting.

1 Introduction

Marine ice sheets like that overlying West Antarctica (and to a lesser extent, portions of East Antarctica) are grounded below15

sea level and their bedrock would remain so even after full isostatic rebound (Bamber et al., 2009). This and the fact that

ice sheets generally thicken inland leads to a geometric configuration prone to instability; a small increase in flux at the

grounding line thins the ice there leading to floatation, a retreat of the grounding line into deeper water, further increases in

flux (due to still thicker ice), and further thinning and grounding line retreat. This theoretical “marine ice sheet instability”

(MISI) mechanism (Mercer, 1978; Schoof, 2007) is supported by idealized (e.g., Schoof, 2012; Asay-Davis et al., 2016) and20

realistic (e.g., Cornford et al., 2015; Royston and Gudmundsson, 2016) ice sheet modeling experiments, and some studies

(Joughin et al., 2014; Rignot et al., 2014) argue that such an instability is currently under way for outlet glaciers of Antarctica’s

Amundsen Sea Embayment (ASE). The relevant perturbation for grounding line retreat in the ASE is thought to be intrusions

of relatively warm, intermediate-depth ocean waters onto the continental shelves, which have reduced the thickness and extent
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of marginal ice shelves via increased sub-ice shelf melting (e.g., Jenkins et al., 2016). These reductions are important because25

fringing ice shelves restrain the flux of ice across their grounding lines farther upstream – the so-called “buttressing” effect of

ice shelves (Gudmundsson et al., 2012; Gudmundsson, 2013; De Rydt et al., 2015) – which makes them a critical control on

the rate of ice flux from Antarctica to the ocean.

On ice shelves, the driving stress (from ice thickness gradients) is balanced by gradients in longitudinal stress (Hutter,

1983; Morland, 1987; Schoof, 2007) and an ice shelf in one horizontal dimension (x,z) provides no buttressing (Schoof, 2007;30

Gudmundsson, 2013). For realistic, three-dimensional ice shelves, however, buttressing results from three main sources: 1)

along-flow compression, 2) lateral shear, and 3) “hoop” stress (Wearing, 2016). Compressive and lateral shear stresses can

provide resistance to extensional ice shelf flow through along- and across-flow stress gradients. The less commonly discussed

“hoop” stress is a transverse stress arising from azimuthal extension in regions of diverging flow (Pegler and Worster, 2012;

Wearing, 2016). Due to the complex geometries, kinematics, and dynamics of real ice shelves, an understanding of the specific35

processes and locations that control ice shelf buttressing is far from straightforward.

Several recent studies apply whole-Antarctic ice sheet models, optimized to present-day observations, towards improving

our understanding of how Antarctic ice shelves impact ice dynamics farther upstream or limit flux across the grounding line.

Fürst et al. (2016) proposed a locally derived “buttressing number” (extended from Gudmundsson, 2013) for Antarctic ice

shelves and used it to guide the location of calving experiments whereby the removal of progressively larger portions of the40

shelves near the calving front identified dynamically “passive” ice shelf regions; removal of these regions (e.g., via calving)

was found to have little impact on ice shelf dynamics or the flux of ice from ice upstream to the calving front. Reese et al.

(2018) conducted a set of forward model perturbation experiments to link small, localized decreases in ice shelf thickness to

changes in integrated grounding-line flux (GLF), thereby providing a map of GLF sensitivity to local increases in sub-ice shelf

melting.45

Motivated by these studies, we build on and extend the methods and analysis of Fürst et al. (2016) and Reese et al. (2018)

to address the following questions: (1) Do local evaluations of ice shelf buttressing reflect how local perturbations in ice

shelf thickness impact grounding line flux1? (2) What are the limitations of locally derived buttressing metrics when used to

assess GLF sensitivity? (3) Can new methods overcome these limitations? Our specific goal is to identify robust methods for

diagnosing where on an ice shelf changes in thickness (here, assumed to occur via increased sub-ice shelf melting) have a50

significant impact on flux across the grounding line. Our broader goal is to contribute to the understanding of how increased

sub-ice shelf melting can be expected to impact the dynamics and stability of real ice sheets.

Below, we first provide a description of the ice sheet model used in our study and the model experiments performed. We then

analyze and discuss the experimental results in order to quantify how well easily evaluated, local buttressing metrics correlate

with modeled changes in GLF. This leads us to propose and explore an alternative, adjoint-based method for assessing GLF55

sensitivity to ice shelf thickness perturbations. We conclude with a summary discussion and recommendations.

1For example, are the local evaluations of buttressing from Fürst et al. (2016) related to the GLF changes modeled by Reese et al. (2018)?
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a)

b)

Figure 1. (a) Plan view of surface speed for the MISMIP+ and (b) Larsen C Ice Shelf experimental domains. For the Larsen C domain,

velocities have been optimized to match observations from Rignot et al. (2011). Black curves indicate the location of the grounding line.

2 Model description

We use the MPAS-Albany Land Ice model (MALI; Hoffman et al., 2018), which solves the three-dimensional, first-order

approximation to the Stokes momentum balance for ice flow. Using the notation of Perego et al. (2012) and Tezaur et al.

(2015a) this can be expressed as,60



−∇ · (2µeε̇1) + ρig

∂s
∂x = 0,

−∇ · (2µeε̇2) + ρig
∂s
∂y = 0,

(1)

where x and y are the horizontal coordinate vectors in a Cartesian reference frame, s(x,y) is the ice surface elevation, ρi

represents the ice density, g the acceleration due to gravity, and ε̇1,2 are given by

ε̇1 =
(

2ε̇xx + ε̇yy, ε̇xy, ε̇xz

)T
, (2)

and65

ε̇2 =
(
ε̇xy, ε̇xx + 2ε̇yy, ε̇yz

)T
. (3)
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The “effective” ice viscosity, µe in Eq. (1), is given by

µe = γA−
1
n ε̇

1−n
n

e , (4)

where γ is an ice stiffness factor, A is a temperature-dependent rate factor, n= 3 is the power-law exponent, and the effective

strain rate, ε̇e, is defined as70

ε̇e ≡
(
ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy + ε̇2xz + ε̇2yz

) 1
2 , (5)

where ε̇ij are the corresponding strain-rate components.

Under the first-order approximation to the Stokes equations, a stress free upper surface can be enforced through

ε̇1 ·n = ε̇2 ·n = 0, (6)

where n is the outward pointing normal vector at the ice sheet upper surface, z = s(x,y). The lower surface is allowed to slide75

according to the continuity of basal tractions,

2µeε̇1 ·n +βu= 0, 2µε̇2 ·n +βv = 0, (7)

where β is a spatially variable friction coefficient, 2µeε̇1,2 represent the viscous stresses, and u is the two-dimensional velocity

vector (u, v). On lateral boundaries in contact with the ocean, the portion of the boundary above sea level is stress free while

the portion below sea level feels the ocean hydrostatic pressure according to80

2µeε̇1 ·n = 1
2ρigH

(
1− ρi

ρw

)
n1, 2µeε̇2 ·n = 1

2ρigH
(

1− ρi

ρw

)
n2, (8)

where n is the outward pointing normal vector to the lateral boundary (i.e., parallel to the (x,y) plane), ρw is the density of

ocean water, and n1 and n2 are the x and y component of n. A more complete description of the MALI model, including the

implementations for mass and energy conservation, can be found in Hoffman et al. (2018). Additional details on the momentum

balance solver can be found in Tezaur et al. (2015a, b).85

Here, we apply MALI to experiments on both idealized and realistic marine-ice sheet geometries. For our idealized domain

and model state, we start from the equilibrium initial conditions for the MISMIP+ experiments, as described in Asay-Davis

et al. (2016). For our realistic domain, we use Antarctica’s Larsen C Ice Shelf and its upstream catchment area. For the

Larsen C domain, the model state is based on the optimization of the ice stiffness (γ in Eq. (4)) and basal friction (β in Eq.

(7)) coefficients in order to provide a best match between modeled and observed present-day velocities (Rignot et al., 2011)90

using adjoint-based methods discussed in Perego et al. (2014) and Hoffman et al. (2018). The domain geometry is based on

Bedmap2 (Fretwell et al., 2013), and ice temperatures, which are used to determine the flow factor and held fixed for this

study, are taken from Liefferinge and Pattyn (2013). Mesh resolution on the ice shelf is between 2 and 4 km and coarsens to

5 km in the ice sheet interior. Following optimization to present-day velocities, the model is relaxed using a 100-year forward

run, providing the initial condition from which the Larsen C experiments are conducted (as discussed below). The domain95

and initial conditions were extracted from the Antarctica-wide configuration used by MALI for initMIP experiments (Hoffman
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et al., 2018; Seroussi et al., 2019). Both the MISMIP+ and Larsen C experiments use 10 vertical layers that are finest near the

bed and coarsen towards the surface. The grounding line position is determined from hydrostatic equilibrium. A sub-element

parameterization is used to define basal friction coefficient values at the grounding line (Seroussi et al., 2014).

3 Perturbation experiments100

To explore the sensitivity of changes in GLF to small, localized changes in ice shelf thickness, we conduct a number of pertur-

bation experiments analogous to those of Reese et al. (2018). Using diagnostic model solutions, we calculate the instantaneous

response of GLF for the idealized geometry and initial state provided by the MISMIP+ experiment (Asay-Davis et al., 2016).

We then conduct a similar study for Antarctica’s Larsen C Ice Shelf using a realistic configuration and initial state. The geom-

etry and steady-state ice speeds for MISMIP+ and Larsen C Ice Shelf are shown in Fig. 1.105

Our experiments are conducted in a manner similar to those of Reese et al. (2018). We perturb the coupled ice sheet-shelf

system by decreasing the ice thickness uniformly by 1 m over grid cells (or square boxes containing a number of grid cells)

covering the base of the ice shelves, after which we examine the instantaneous impact on kinematics and dynamics (discussed

further below). For MISMIP+, we use a uniform hexagonal mesh with a horizontal resolution of around 2 km and we perturb

the thickness at single cells in the mesh. For the Larsen C Ice Shelf, horizontal mesh resolution is spatially variable and – to110

maintain consistency with the experiments of Reese et al. (2018) – we assign each grid cell to fall within one and only one

20×20 km square perturbation “box”, to which thickness perturbations are applied uniformly. Lastly, for the MISMIP+ 2-km

experiments, we note that, in order to save on computing costs, we only perturb the region of the ice shelf for which x < 530

km (the area over which the ice shelf is laterally buttressed) and for which y > 40 km (due to symmetry about the center line).

We do, however, analyze the response to these perturbations over the entire model domain.115

Similar to Reese et al. (2018), we define a GLF response number for our perturbation-based experiments,

Nrp =
R

P
, (9)

where R is the change in the ice (mass) flux integrated along the entire grounding line due to a perturbation in the thickness at

a single grid cell (or box of grid cells in the case of Larsen C), and P is the local mass change associated with the perturbation.

The subscript rp denotes the “response” from “perturbation” experiments2. Note that Nrp is dimensionless.120

Distal changes in GLF (quantified by Nrp) in response to a local change in ice shelf thickness are assumed to occur via

changes in ice shelf buttressing, which generally acts to resist the flow of ice across the grounding line. To quantify the local

ice shelf buttressing capacity, we calculate a dimensionless buttressing number, Nb, analogous to that from Gudmundsson

(2013) and Fürst et al. (2016),

Nb (n) = 1− Tnn

N0
, (10)125

2To distinguish from other approaches to be discussed below.
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where Tnn := n·Tn is a scalar measure of the stress normal to the surface defined by n.N0 is the value that Tnn would take if

the ice was removed up to the considered location and replaced with ocean water3, and it is defined asN0 := 1
2ρi (1− ρi/ρw)gH ,

with ρi and ρw being the densities of ice and ocean water, respectively4. While Gudmundsson (2013) chose the unit vector n

to be normal to the grounding line to define the “normal” buttressing number, Fürst et al. (2016) extended his definition to the

ice shelf by examiningNb (n) for n along the ice flow direction and along the direction of the second principal stress. Here, we130

explore the connection between changes in grounding line flux (quantified by Nrp), sub-shelf melting, and local buttressing on

the ice shelf (quantified by Nb5) corresponding to arbitrary n (in order to consider all possible relationships on the ice shelf).

Below, we refer to Tnn as the “normal stress”. The tensor T is defined as follows, based on the two dimensional shallow shelf

approximation6,

T =





4µeε̇xx + 2µeε̇yy 2µeε̇xy

2µeε̇yx 4µeε̇yy + 2µeε̇xx



 . (11)135

We elaborate further on the calculation of the buttressing number in Appendix A. Additional details of ice shelf dynamics

based on the shallow shelf approximation can be found in Greve and Blatter (2009).

4 Results

4.1 Correlation between buttressing and changes in GLF

A decrease in ice shelf buttressing tends to lead to an increase in GLF (e.g., Gagliardini et al., 2010, also see Fig. 2a) and140

intuitively we expect that the GLF should be relatively more sensitive to ice shelf thinning in regions of relatively larger

buttressing. We aim to better understand and quantify the relationship between the local ice shelf buttressing “strength” in

a given direction (characterized by Nb) and changes in GLF (characterized by Nrp). A reasonable hypothesis is that, for a

given ice thickness perturbation, the resulting change in the GLF is proportional to the buttressing number at the perturbation

location.145

In Fig. 2, we show the results from all (730) perturbation experiments for MISMIP+, and the corresponding Nrp and Nb

values. For Nb, we show the values corresponding to three different directions, corresponding to the choice of n in Eq. (10);

the first principal stress direction (np1), the second principal stress direction (np2), and the ice flow direction (nf ). In the

discussion below, we frequently refer to these three directions when discussing the buttressing number. In agreement with the

findings of Fürst et al. (2016), the largest values for Nb occur when it is calculated in the np2 direction. While there appears150

to be a qualitatively reasonable spatial correlation between the magnitude of Nrp and Nb when the latter is calculated in the

3Or alternatively, the resistance provided by a static, neighboring column of floating ice at hydrostatic equilibrium.
4For the MISMIP+ experiment, ρi=918 kg m−3 and for the Larsen C experiment, ρi=910 kg m−3. For both experiments, ρw=1028 kg m−3.
5Note that we do not discuss the tangential buttressing number defined by Gudmundsson (2013)). Hereafter, we use “buttressing number” to refer exclu-

sively to the “normal buttressing number”, as defined above.
6While we employ a three-dimensional, first-order Stokes approximation here (Tezaur et al., 2015a), the depth-varying and depth-averaged solutions

converge to the same value on ice shelves, where basal resistance is zero.
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Figure 2. The 730 perturbation points for the MISMIP+ experiments. (a) The spatial distribution of the GLF response number, Nrp. (b-d)

The spatial distribution of the buttressing number,Nb, corresponding to directions (b) np1, (c) np2, and (d) nf . Black dots indicate grid cells

located along the grounding line. The negativeNrp values in (a) correspond to a few partially-grounded cells in the vicinity of the GL, where

the GLF can be reduced by ice shelf thinning. Here the colorbars for (a)–(d) do not show the full data range.

np1 and np2 directions (and less so when calculated in the nf direction), in Fig. 3 we show that there is no clear relationship

between the response number Nrp and the buttressing number Nb calculated along any of these directions, at least for the

case where we consider all points on the ice shelf. In Fig. 4, however, we show correlations (Figs. 4b–d) between the modeled

value of Nrp and Nb where we have removed points for which the flow is weakly buttressed (x > 480 km, where the ice shelf155

starts to become unconfined) and where the minimum distance to the grounding line is less then 12 km (Fig. 4a). In this case,

stronger, near-linear Nrp :Nb relationships emerge. In particular, a stronger correlation between Nrp and Nb occurs when Nb

is calculated using np1 (Fig. 4b), relative to when using np2 (Fig. 4c) or nf (Fig. 4d).

4.2 Directional dependence of buttressing

The buttressing number at any perturbation point depends on Tnn, which in turn depends on the chosen direction of the normal160

vector, n (Eq. 10). Fürst et al. (2016) calculated Nb using nf and np2 and chose the latter – the direction corresponding to

the second principal stress (the maximum compressive stress or the least extensional stress) – to quantify the local value of

“maximum buttressing” on an ice shelf. In Fig. 5a, we plot the linear-regression correlation coefficients (r) for the Nrp :Nb
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Figure 3. (a) Blue dots represent the locations of all perturbation points analyzed (730) for theNrp :Nb linear regression analysis. Black dots

indicate grid cells located along the grounding line. (b-d) Modeled Nrp from perturbation experiments versus predicted Nrp as a function of

Nb calculated along (b) np1, (c) np2, and (d) nf .

relationship where the direction of n used in the calculation of Tnn varies continuously from ∆φ=0–180◦ relative to np1 (we

also show how the buttressing numberNb varies according to direction, starting from np1, in Fig. S1). We find large correlation165

coefficients (r > 0.9) when Nb is aligned closely with np1 (∆φ= 0◦ or 180◦) and the smallest correlation coefficient (r < 0.5)

whenNb is aligned with np2 (∆φ= 90◦). Similar conclusions can be reached when examining the continuous values for r with

respect to the ice flow direction (Fig. 5b), where correlations are phase shifted by approximately 50◦ counter-clockwise relative

to Fig. 5a. Clearly, the best correlation occurs along the direction between np1 and nf . Note that we do not see an exact match

between Fig. 5a and Fig. 5b if we shift the angle by 50◦ because the angular difference between np1 and nf varies slightly170

between individual grid cells where thickness perturbations are applied (distributions for the angular difference between np1

and nf are shown in Fig. S2).

Fürst et al. (2016) posit that Nb(np2) provides the best buttressing metric and chose it for identifying regions of maximum

buttressing on an ice shelf. Here, however, we find that, compared to Nb(np2), Nb(np1) and Nb(nf ) show a better correlation

with changes in GLF via local, sub-ice shelf melt perturbations. We return to and discuss these differences further below in175

Section 5.
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Figure 4. (a) Blue dots represent the locations of all perturbation points analyzed (142) for theNrp :Nb linear regression analysis. Black dots

indicate grid cells located along the grounding line. (b-d) Modeled Nrp from perturbation experiments versus predicted Nrp as a function of

Nb calculated along (b) np1, (c) np2, and (d) nf . The correlation coefficient for each modeled Nrp versus Nb is given by r.

a) b)

Figure 5. Correlation coefficients for the linear regression relationship of Nrp :Nb where n is rotated counterclockwise by ∆φ degrees

relative to (a) np1 and (b) nf . The perturbation points analyzed here are the same as in Fig. 4a.
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a) b)

Figure 6. Histograms for the maximum (red) and minimum (blue) percent speed increases in grid cells adjacent to a thickness perturbation

point, plotted as a function of angular distance with respect to (a) np1 and (b) nf . Points analyzed are those from Fig. 4a.

4.3 Local, far-field, and integrated impacts of changes in buttressing

We now examine how local thickness perturbations on the ice shelf lead to local changes in geometry and velocity, and in turn,

local changes in buttressing. Our aim is to better understand how perturbations affect buttressing locally (on the ice shelf) and,

in turn, impact the overall buttressing and ice flux at the grounding line.180

4.3.1 Changes in geometry, velocity, and buttressing in the vicinity of ice shelf thickness perturbations

To better understand the local impacts of a perturbation on the local ice velocity at each perturbation location, we calculate

both the maximum and the minimum increase in ice speed7 among neighboring cells (i.e., two values for each perturbation

point) and the orientation of these neighboring cells relative to the np1 and nf direction at the perturbation point. The results

are plotted as histograms in Fig. 6. Note that for our hexagonal mesh, there are six neighboring cells adjacent to each perturbed185

cell so that only a discrete number of directions (6) can be examined. The maximum and minimum speed increases cluster at

0–45◦ and near 60–90◦ relative to np1, respectively (Fig. 6a). A similar relationship is seen in Fig. 6b, where the maximum

and minimum speed increases cluster near 0◦ and 60◦, respectively, relative to nf . Hence, the maximum ice speed increases

near a perturbation are generally more closely aligned with the np1 and nf directions and minimum ice speed increases are

more closely aligned with the np2 direction8. This suggests that local ice shelf thickness perturbations induce local speed190

changes along a favored direction, which here aligns closely with the ice flow direction, or nf . This finding is supported by

Gudmundsson (2003), who used an idealized ice flow model experiment to demonstrate that, following perturbations to the

basal roughness or slipperiness, the group velocity of that perturbation propagates primarily along the main ice flow direction.

7Here, we use speed changes as a proxy for changes in the local ice flux near perturbation points on the ice shelf because, (1) thickness changes are minimal

and (2) changes in speed can be approximately interpreted as changes in velocity because directional changes are small.
8Note that neighboring cells to a perturbation are distributed along discrete angles, so that there are generally not neighboring cells exactly along the np2

direction.

10

https://doi.org/10.5194/tc-2020-12
Preprint. Discussion started: 11 February 2020
c© Author(s) 2020. CC BY 4.0 License.



420 440 460 480 500 520
40

50

60

70

80

y 
(k

m
)

a)

5.0

2.5

0.0

2.5

5.0

420 440 460 480 500 520
40

50

60

70

80
b)

5.0

2.5

0.0

2.5

5.0

420 440 460 480 500 520
40

50

60

70

80

y 
(k

m
)

c)

0.0050

0.0025

0.0000

0.0025

0.0050

420 440 460 480 500 520
40

50

60

70

80
d)

420 440 460 480 500 520
40

50

60

70

80

y 
(k

m
)

e)

0.010

0.005

0.000

0.005

0.010

420 440 460 480 500 520
40

50

60

70

80
f)

0.010

0.005

0.000

0.005

0.010

420 440 460 480 500 520
x (km)

40

50

60

70

80

y 
(k

m
)

g)

0.010

0.005

0.000

0.005

0.010

420 440 460 480 500 520
x (km)

40

50

60

70

80
h)

0.010

0.005

0.000

0.005

0.010

Figure 7. An example of the local change (ratio, in %) in (a) the ice thickness gradient in x, (b) ice thickness gradient in y, (c) ice speed,

(d) ice velocity (relative), (e, f) principal strain rates, and (g, h) buttressing number following a local perturbation to the ice shelf thickness.

In (e) and (g), changes (colors) are associated with the np1 direction and for (f) and (h) changes are associated with the np2 direction. The

white- and black-dashed lines show the direction of np1 and np2 at the perturbation location, respectively.

Local thickness perturbations on the ice shelf alter the local ice thickness gradient; on the upstream (grounding line) side

of the perturbation, the thickness gradient will decrease and on the downstream (calving front) side it will increase (Fig. 7a,195

b). Locally, the result is an increase in compression (or a decrease in extension) along both principal stress directions (Fig. 7e,

f) and, via Eq. (10), a corresponding increase in the local buttressing number calculated along both principal stress directions

(Fig. 7g, h).

Importantly, while we find that the overall spatial pattern of the change in buttressing is quite complex, variable, and depends

on the location of the perturbation, the general pattern of the local change (at or within a few grid cells of the applied pertur-200

bation) is that of an increase in the buttressing number (see also Figs. S3 and S4 in the Supplementary, analagous to Fig. 7,

which show similar patterns but for different perturbation locations). This is further confirmed in Fig. 8, where we show that,

in response to local ice shelf thickness perturbations, for all points analyzed in Fig. 4 there is an increase in the buttressing

number associated with both the np1 and np2 directions, and for every direction in between (the larger increase in Nb along

the np2 direction emphasizes that the local ice flow is always more compressive (or less extensional) along the np2 direction).205

As we discuss next, this finding of locally increased buttressing for all perturbations applied to the ice shelf is at odds with our

desire to interpret the local buttressing number in terms of changes in GLF.
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Figure 8. The change in buttressing number ∆Nb at the neighboring cells with maximum ice speed increase at all perturbation points.

Changes in buttressing are calculated along the direction ∆φ, rotated counterclockwise relative to the np1 direction. The points analyzed

include those in Fig. 4a, which are shown as the shaded area, with the solid curve representing their mean value.

4.3.2 Changes in buttressing and ice flux at the grounding line

To understand how perturbations propagate across the ice shelf and impact the grounding line, we examine changes in the

buttressing number and the ice speed normal to the grounding line following local perturbations in thickness on the ice shelf.210

To quantify this relationship, we define Υgl,

Υgl = Corr(∆Nb,∆u) =
cov(∆Nb,∆u)
σ(∆Nb)σ(∆u)

, (12)

where ∆Nb = Nbp−Nbc and ∆u = up−uc and with the subscripts p and c denoting the perturbation and the “control”

(i.e., the initial condition) experiments, respectively. ∆Nb and ∆u denote vectors of the changes in the buttressing number

and the ice speed, respectively, for all cells along the grounding line. Υgl, a correlation coefficient, is an integrated9 measure of215

the consistency between the magnitude and the sign of the change in the buttressing number and ice speed between the control

and perturbation experiments, with cov and σ representing the covariance and the standard deviation, respectively.

By plotting values of Υgl mapped to their respective perturbation locations on the ice shelf, we show that there is generally

a negative correlation between speed and buttressing at the GL: increases in speed (and hence flux) across the GL correlate

with decreases in buttressing at the GL (Fig. 9). This negative correlation is substantially stronger when the buttressing number220

is calculated along the np1 direction (Fig. 9a) than along the np2 direction (Fig. 9b). Carrying this analysis one step further,

9Integrated in the sense that the correlation coefficient takes into account the entire grounding line.
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Figure 9. Spatial distribution of the correlation coefficient Υgl from Eq. (12) over the MISMIP+ domain for buttressing number changes

calculated parallel to (a) np1 and (b) np2 (colors). Υgl is a measure of the correlation between changes in buttressing number and ice speed

along the grounding line. The black-dashed line represents the grounding line, along which values of Υgl are calculated for each perturbation

on the ice shelf, as shown in Fig. 4a.

in Fig. 10 we plot Υgl for each perturbation point (span along the y axis) and for all directions (span along the x axis) in the

range of ∆φ= 0–180◦ relative to np1. Again, this correlation is generally negative and substantially stronger for buttressing

numbers calculated close to the np1 direction (i.e., for ∆φ closer to 0◦ or 180◦).

4.3.3 Local versus integrated impacts of changes in buttressing225

The changes in ice speed and buttressing at the grounding line that are quantified by Figs. 9 and 10 must be the result of

perturbations initiated on the ice shelf that have propagated (instantaneously) to the grounding line, where increases in speed

are associated with increased extension along np1 and, according to Eq. (10), decreased buttressing associated with the np1

direction. Intuitively, these increases in ice speed at the grounding line must be triggered by the loss of buttressing on the

shelf. However, as discussed in the previous section, local perturbations and changes in buttressing on the shelf – as quantified230

by the changes in buttressing number calculated in all directions – are clearly not representative of the integrated changes

in buttressing that are “felt” upstream at the grounding line (i.e., local increases in buttressing on the shelf versus decreases

in buttressing at the grounding line). This casts doubt on the utility of assessing the GLF sensitivity using locally derived

buttressing numbers on the ice shelf (a discussion we return to below). The apparent correlation between Nrp and Nb(np1)

(Fig. 4b) may be partially explained by Figs. 9a and 10, which suggests that np1 may be the dominant direction controlling235
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Figure 10. Correlation between the change in buttressing number and the change in ice speed across the grounding line (i.e., Υgl from

Eq. (12)) for the entire MISMIP+ grounding line. The horizontal axis shows how Υgl varies as a function of the direction n used to define

the normal stress, rotated counterclockwise from np1 by ∆φ. Values from the maps in Figs. 9a and b plot at ∆φ values of 0 and 90 degrees,

respectively. Thus, the blue shaded region represents all possible maps for all possible values of buttressing direction. The thick black curve

represents the mean value of Υgl for any given map.

the ice flux across the grounding line for the MISMIP+ domain. In the next section, we apply a similar set of analyses to a

realistic ice shelf and in doing so, demonstrate that these same correlations, already tenuous, are much more difficult to extract

and interpret for realistic domains.

4.4 Application to Larsen C Ice Shelf

To explore whether the correlations between modeled and predicted Nrp found for the MISMIP+ test case hold for realistic ice240

shelves, we apply a similar analysis to the Larsen C domain. In this case, the computational mesh resolution varies, from finer

near the grounding line (2 km) to coarser towards the center of the ice shelf and calving front (4 km). In order to be comparable

to the experiments and results of Reese et al. (2018), we use (approximately) 20 km × 20 km boxes for the application of

ice-thickness perturbations, where the number of grid cells contained within each perturbation “box” is adjusted to sum to

their correct total area10. Additionally, to investigate the impacts of the complex geometry of the Larsen C Ice Shelf (i.e., the245

grounding line shape, the existence of ice rises, etc.), we perform two sets of perturbation experiments for which the 20 km ×
20 km averaging boxes either do or do not include perturbations applied to cells near the grounding line.

10We note that the actually area may vary slightly from 400 km2 depending on the number and area of the variable resolution grid cells that are included in

each perturbation “box”.
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Figure 11. (a) The locations of the 20 km× 20 km perturbation boxes (15, solid blue dots). The red and black dotted lines are the grounding

line and the boundary of model domain, respectively. (b) The Nrp :Nb correlation coefficients for each direction rotated counterclockwise

from the direction of np1 (as in Figure 5a but for the Larsen C domain).

Analogous to Fig. 5a for the MISMIP+ test case, Fig. 11b shows the Nrp:Nb correlations for the Larsen C model domain

(including only perturbation points that are >50 km away from both the calving front and grounding line). As found previ-

ously, calculating Nb using Tnn along np1 provides a good overall correlation between Nb and Nrp (∆φ= 0◦ or 180◦) while250

calculating Nb using Tnn along np2 provides the worst overall correlation (∆φ= 90◦).

In Fig. 12 we redo the same analysis but for points nearer to the grounding line (including points that are more than 20

km away from the calving front and the grounding line). This changes the values of r and also the relationship between the

correlation coefficient and the alignment relative to np1; the direction aligned with np2 still gives the worst Nrp:Nb correlation

but the direction aligned with np1 no longer gives the best correlation. This indicates that thickness perturbations at these255

locations are propagating in a more complex way on a real ice shelf, especially for perturbation points that are close to the

grounding line. We expect that the correlations would further degrade as additional perturbation points closer to grounding line

are included in the analysis.

In the supplement, we include figures showing the the maximum and minimum ice speed increases in the vicinity of pertur-

bation cells, local changes in geometry and buttressing, and the correlations between the changes of buttressing number and260

ice speed on the ice shelf and along the grounding line (i.e., figures analogous to Figs. 6, 7, 8 and 10 but for the Larsen C

domain instead). As for the MISMIP+ domain, the directions of maximum ice speed increase for Larsen C are also aligned

closely with the ice flow direction (Fig. S5). Similarly, we find that the ice speed increase following thickness perturbations on

the Larsen C shelf increase buttressing locally (Fig. S6, S7). We do not, however, find any clear correlation between changes

in buttressing number and ice speed along the grounding line for Larsen C (Fig. S8).265

Overall, for a realistic ice shelf like Larsen C with a complex flow field, it is difficult to find the robust, directionally

dependent relationships seen for the more idealized, MISMIP+ domain. This is likely because, for more complex and realistic
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Figure 12. (a) The locations of the 20 km × 20 km perturbation boxes (solid blue dots). The red and black dotted lines are the grounding

line and the boundary of model domain, respectively. (b) The Nrp :Nb correlation coefficients for each direction rotated counterclockwise

from the direction of np1 (as in Figure 11b but including additional analysis points closer to the grounding line and calving front).

domains, there is no dominant direction of buttressing controlling ice flux across the grounding line. This finding further

diminishes our confidence in attempting to use a simple metric like a locally derived ice shelf buttressing number. For this

reason, we now explore an alternative and more robust method for quantifying how thickness perturbations affect flux at the270

grounding line.

4.5 Adjoint sensitivity

Our goal throughout this study has been to find a simple and robust metric for diagnosing GLF sensitivity to ice shelf thickness

perturbations. However, the complications discussed above suggest that this may not be possible, motivating our investigation

of a wholly different approach. This approach provides a GLF sensitivity map analogous to that provided by the Reese et al.275

(2018) finite perturbation-based experiments (and those conducted here). But rather than computing the GLF change due to

a perturbation applied individually at each of n model grid cells (thus requiring n diagnostic solves), we use an adjoint-based

method that allows for the computation of the sensitivity at all n grid cells simultaneously for the cost of a single adjoint-

model solution. Briefly, this method involves the solution of an auxiliary linear system (the adjoint system) to compute the

so-called Lagrange multiplier, a variable with the same dimensions as the forward-model solution for the ice velocity. Here,280

the matrix associated with the system is the transpose of the Jacobian of the first-order approximation to the Stokes flow model

(Perego et al., 2012). In addition, the adjoint method requires computation of the partial derivatives of the first-order model

residual and the GLF with respect to the velocity solution and the ice thickness. Here, we compute the Jacobian and all the

necessary derivatives using automatic differentiation (Tezaur et al., 2015a). Additional details of the adjoint-based method and

calculations are giving in Appendix B.285
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A similar approach has been proposed by Goldberg et al. (2019). That work primarily assessed the adjoint sensitivity of

the volume above floatation with respect to sub-ice shelf melting of Dotson and Crosson ice shelves in West Antarctica. In

contrast to our approach, Goldberg et al. (2019) compute transient sensitivities because their quantity of interest (volume

above floatation) is time dependent.

The adjoint-based sensitivity has units of mass flux per year per meter of ice thickness perturbation (kg a−1 m−1). We290

normalize this value by the mass change per year due to the thickness perturbation so that it is dimensionless and comparable

to Nrp, and refer to it as Nra (where the subscript a is for “adjoint”). In Figs. 13 and 14, we demonstrate the application of

this method to the MISMIP+ and Larsen C domains by comparing GLF sensitivities deduced from 730 and 1000 individual

diagnostic model evaluations (i.e., the respective perturbation experiments discussed above11) with those deduced from a single

adjoint-based solution. Note that for some cells adjacent to the grounding line, the negative sensitivity values may be caused by295

partially grounded cells (i.e., a thinning of ice thickness there may induce a decrease in ice flux across the grounding line). The

comparison in Figs. 13 and 14 demonstrates that the two approaches provide a near exact match. As might be expected based

on the discussion above, the two methods disagree in regions very near to the grounding line (see Fig. 15c). This discrepancy is

likely a consequence of the high non-linearities near the grounding line, as suggested by the fact that the agreement between the

two methods improves as the size of the perturbation decreases (from 10 m to 0.001 m; see Fig. 15). This might be exacerbated300

by the sliding law adopted in this work, which results in abrupt changes in the basal traction across the grounding line (other

sliding laws allowing for a smoother transition at the grounding line, e.g. Brondex et al. (2017), might mitigate this problem).

The adjoint sensitivity map represents a linearization of the GLF response to thickness perturbations. As long as the perturba-

tions are small enough, one can approximate the GLF response by multiplying the sensitivity map by the thickness perturbation.

Comparison of Nra and Nrp for different perturbation sizes (Fig. 15) suggests that this is reasonable for perturbations on the305

order of <10 m for points on the ice shelf that are not too close to the GL. At the same time care should be taken when inter-

preting the sensitivities – based on either the perturbation- or adjoint-based methods – in the vicinity of grounding lines. This

is especially important when considering that the near-grounding-line region is also that with the largest sensitivities (Figs.

13a and 14a). Because these sensitivities may be inaccurate, they provide an additional argument for applying high spatial

resolution near the grounding line; coarse resolution near the grounding line will extend the region over which inaccurate310

sensitivites may be assessed. More accurately assessing the sensitivities near the grounding line may require the application of

perturbations more realistic in both magnitude and spatial scale, as opposed to the infinitesimal, highly localized perturbations

explored here.

The adjoint-method provides sensitivity maps over the entire ice shelf, including around islands, promontories, and along the

grounding line itself, which is generally the part of the ice shelf where the GLF is the most sensitive to thickness perturbations315

(e.g., see Figs. 13a and 14a above and Fig. 1 in Reese et al. (2018)). Thus, despite the added complexity in its computation, the

adjoint-based method provides significant advantages over the simpler but more ad hoc analysis methods discussed above.

11For Larsen C, we conduct perturbation experiments at individual grid cells to allow for a closer comparison with the adjoint method.
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Figure 13. (a) Grounding line flux sensitivity for the MISMIP+ domain derived from the an adjoint model approach; (b) Perturbation- (Nrp;

x-axis) versus adjoint-based (Nra; y-axis) sensitivies are plotted against one another (perturbation locations are shown by circles in the inset,

where the grounding line grid cells are shown by the black dots.)

Figure 14. (a) Grounding line flux sensitivity for the Larsen C domain derived from the adjoint model approach; (b) Perturbation- (Nrp;

x-axis) versus adjoint-based (Nra; y-axis) sensitivies are plotted against one another (perturbation locations are shown by circles in the inset,

where the one outlier in b) is at the calving front (red triangle), and the grounding line in is shown by the black curve.)
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Figure 15. Comparisons between perturbation- and adjoint-based sensitivities (Nrp and Nra, respectively) for ice thickness perturbation of

(a) 0.001 m, (b) 0.01 m, (c) 1 m and (d) 10 m for perturbation points near the grounding line (<3 km), as shown as the red solid circles in

the inset in (a).
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5 Discussion and Conclusions

The current interest in better understanding the controls on the MISI is due to the potential for future (and possibly present-day,

ongoing) unstable retreat of the West Antarctic ice sheet (e.g., Joughin et al., 2014; Hulbe, 2017; Konrad et al., 2018). Because320

a loss of ice shelf buttressing is a primary cause of increased GLF (and thus an indirect control on the MISI), recent attention

has focused on better understanding the sensitivity of ice shelf buttressing to increases in iceberg calving and sub-ice shelf

melting. In this study, we have attempted to better characterize and quantify how local thickness perturbations on ice shelves –

a proxy for local thinning due to increased sub-ice shelf melting – impact ice shelf buttressing and GLF.

Two previously used approaches for assessing GLF sensitivity to changes in ice shelf buttressing – the flux response number325

(Nrp) and the buttressing number (Nb) – are reasonably well correlated in some situations. This correlation is, however, highly

dependent on the direction chosen to define buttressing. Specifically, we find that the choice of the normal vector used when

calculating Nb dictates whether there is a general correlation or lack of correlation between Nrp and Nb. Here, for both

idealized and realistic ice shelf domains, we find a stronger correlation between Nrp and Nb when the normal stress used in

calculating the buttressing number corresponds to the first principal stress or the ice flow direction, whereas the correlation is330

much weaker when Nb is calculated in the direction associated with the second principal stress.

These findings appear at odds with the interpretation from previous efforts of Fürst et al. (2016), who argue that buttressing

provided by an ice shelf is best quantified byNb calculated in the direction of np2. These seemingly contradictory findings may

be partially rectified by considering the different foci of Fürst et al. (2016) versus the present work: while Fürst et al. (2016)

primarily focused on how the removal of passive shelf ice (identified by Nb(np2)) impacted ice shelf dynamics, as quantified335

by the change in ice flux across the calving front, our focus is specifically on how localized ice shelf thickness perturbations

impact the change in ice flux across the grounding line12. While changes in calving flux are likely to impact the amount of

buttressing provided by an ice shelf, they do not directly contribute to changes in sea level. For this reason, changes in GLF are

arguably the more important metric to consider when assessing the impacts of changes in ice shelf buttressing.

Of concern in applying the apparent correlation between Nrp and Nb (relatively difficult and easy quantities to calculate,340

respectively) to diagnose Nrp from observations or models is the lack of a clear physical connection between local changes

in buttressing on the ice shelf and integrated changes in flux at the grounding line. Here, we show that localized thinning on

the shelf generally leads to a local increase in Nb. Yet these same perturbations consistently result in a decrease in buttressing

and an increase in ice flux across the grounding line. This finding suggests that local evaluations of buttressing on the ice shelf

need to be interpreted with caution, as they may not be meaningful with respect to understanding and quantifying changes in345

GLF. It is also possible that the correlations we find between Nrp and Nb are simply fortuitous, and thus not meaningful in any

physical way 13.

12While Fürst et al. (2016) also discuss the impact of perturbations on the flux across the grounding line, this is a secondary focus of their paper and mostly

discussed in the Supplementary Information.
13We note that the correlations we discuss here, between Nrp, Nb(nf ), and Nb(np1) were alluded to in the Supplement from Fürst et al. (2016), where

they note that “Outside the [Passive Shelf Ice] area, melting will affect the buttressing potential. Consequences for upstream tributary glaciers are then best

estimated from buttressing in the flow direction.”
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Practically speaking, however, these distinctions and concerns may be irrelevant; when realistic, complex ice shelf geome-

tries are considered, it is not possible to define or even identify clear relationships between Nrp and Nb. For the Larsen C

domain considered here, strong, positive correlations are only found to exist over a small, isolated region near the center of the350

ice shelf. Proximity to the grounding line, the calving front, complex coastlines, islands, and promontories all serve to degrade

these correlations significantly, reducing the utility of the buttressing number as a simple metric for diagnosing GLF sensitivity

on real ice shelves. Further, it is precisely these more complex regions close to the ice shelf grounding lines where sub-ice shelf

thinning will result in the largest impact on changes in GLF (as demonstrated here in Figs. 13a and 14a ).

Considering these complexities, we propose that assessing GLF sensitivities for real ice shelves requires an approach much355

more analogous to the perturbation method used by Reese et al. (2018). Due to the computational costs and the experimental

design complexity associated with the perturbation-based method we propose that an adjoint-based method is the more efficient

way for assessing GLF sensitivity to changes in buttressing resulting from changes in sub-ice shelf melting. Future work should

focus on applying these methods to assessing the sensitivities of real ice shelves, based on observed or modeled patterns of sub-

ice shelf melting, and assessing how these sensitivities change in time along with the evolution of the coupled ocean-and-ice360

shelf system.
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Appendix A: Calculation of the buttressing number

At the calving front, the stress balance is given by,

σ ·n =−pwn, (A1)

where σ is the Cauchy stress tensor, n is the unit normal vector pointing horizontally away from the calving front, and pw380

is the sea water pressure. In a Cartesian reference frame, this gives two equations for the stress balance in the two horizontal

directions,

σxxnx +σxyny =−pwnx,

σxynx +σyyny =−pwny.
(A2)

Expressing the full stress as the sum of the deviatoric stress and the isotropic pressure (σ = τ−p) and assuming that the vertical

normal stress σzz is hydrostatic gives,385

p= ρig(s− z)− τxx− τyy. (A3)

Combining Equations A2 and A3 gives,

(2τxx + τyy)nx + τxyny =−pwnx + ρig(s− z)nx,

τxynx + (2τyy + τxx)ny =−pwnx + ρig(s− z)nx.
(A4)

By vertically integrating Equation A4 and approximating the depth-integrated viscosity as µ= µH , we obtain

(2τxx + τyy)nx + τxyny =
1
2
ρig(1− ρ

ρw
)Hnx,

τxynx + (2τyy + τxx)ny =
1
2
ρig(1− ρ

ρw
)Hny.

(A5)390

If we define the two-dimensional stress tensor T as,

T =





2τxx + τyy τxy

τxy 2τyy + τxx



 , (A6)

then we will have the buttressing number (Nb) as

Nb = 1− n ·Tn
N0

, (A7)

where395

N0 =
1
2
ρig(1− ρi

ρw
)H. (A8)
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Appendix B: Adjoint calculation of GLF sensitivity

The adjoint method is often used to compute the derivative (or “sensitivity”) of some quantity (here, the GLF) that depends on

the solution of a partial differential equation, with respect to parameters (here, the ice thickness) (see, e.g., Gunzburger (2012)).

It is particularly effective when the number of parameters is large because it only requires the solution of an additional linear400

system, independent of the number of parameters. In the discrete case, the GLF is a function of the ice speed vector, u, and the

ice thickness vector, H. Using the chain rule, we compute the total derivative of the GLF with respect to the ice thickness as:

d(GLF)
dH

=
∂(GLF)
∂u

∂u
∂H

+
∂(GLF)
∂H

. (B1)

Here
∂u
∂H

denotes the matrix with components
(
∂u
∂H

)

ij

=
∂ui
∂Hj

. Similarly
∂(GLF)
∂u

and
∂(GLF)
∂H

are row vectors with com-

ponents
∂(GLF)
∂uj

and
∂(GLF)
∂Hj

repsectively. In order to compute
∂u
∂H

, we write the finite element discretization (Tezaur et al.405

(2015b)) of the flow model (Eq. (1)) in the residual form c(u,H) = 0 and differentiate with respect to H:

0 =
dc
dH

=
∂c
∂u

∂u
∂H

+
∂c
∂H

. (B2)

Here J :=
∂c
∂u

is a square matrix referred to as the Jacobian. It follows that
∂u
∂H

is solution of

J
∂u
∂H

=− ∂c
∂H

. (B3)

Note that this corresponds to solving many linear systems, one for each column of
∂u
∂H

(i.e. for each entry of the ice thickness410

vector). We can then compute the sensitivity as

d(GLF)
dH

=−∂(GLF)
∂u

(
J−1 ∂c

∂H

)
+
∂(GLF)
∂H

. (B4)

The main idea of the adjoint-based method is to introduce an auxiliary vector variable λ for solution of the adjoint system

JTλ=−
(
∂(GLF)
∂u

)T
(B5)

and then to compute the sensitivity as415

d(GLF)
dH

= λT
∂c
∂H

+
∂(GLF)
∂H

. (B6)

Equations (B4) and (B6) are equivalent, but the latter has the advantage of requiring the solution of a single linear system

given by Equation (B5). In MALI, the Jacobian and the other derivatives,
∂c
∂H

,
∂(GLF)
∂u

, and
∂(GLF)
∂H

, are computed using

automatic differentiation, a technique that allows for exact calculation of derivatives up to machine precision. For automatic-

differentiation, MALI relies on the Trilinos Sacado package (Phipps and Pawlowski, 2012). As a final remark, we note that the420

term
∂c
∂H

requires the computation of shape derivatives, because a change in thickness affects the geometry of the problem.

This is not the case for two-dimensional, depth-integrated flow models (e.g., as in Goldberg et al. (2019)), or when using a

sigma-coordinate to discretize the vertical dimension.
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