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Abstract. Using a numerical ice flow model, we study changes in ice shelf buttressing and grounding line flux due to localized

ice thickness perturbations, a proxy for localized changes in sub-ice shelf melting. From our experiments, applied to idealized

(MISMIP+) and realistic (Larsen C) ice shelf domains, we identify a correlation between a locally derived buttressing number

on the ice shelf, based on the first principal stress, and changes in the integrated grounding line flux. The origin of this

correlation, however, remains elusive from the perspective of a theoretical or physically-based understanding. This and the5

fact the correlation is generally much poorer when applied to realistic ice shelf domains motivates us to seek an alternative

approach. We therefore propose an adjoint-based method for calculating the sensitivity of the integrated grounding line flux

to local changes in ice shelf geometry. We show that the adjoint-based sensitivity is identical to that deduced from pointwise,

diagnostic model perturbation experiments. Based on its much wider applicability and the significant computational savings,

we propose that the adjoint-based method is ideally suited for assessing grounding line flux sensitivity to changes in sub-ice10

shelf melting.

1 Introduction

Marine ice sheets like that overlying West Antarctica (and to a lesser extent, portions of East Antarctica) are grounded below sea

level and their bedrock would remain so even after full isostatic rebound (Bamber et al., 2009). This and the fact that ice sheets

generally thicken inland leads to a geometric configuration prone to instability; a small increase in flux at the grounding line15

thins the ice there, leading to floatation, a retreat of the grounding line into deeper water, further increases in flux (due to still

thicker ice), and further thinning and grounding line retreat. This theoretical “marine ice sheet instability” (MISI) mechanism

(Mercer, 1978; Schoof, 2007) is supported by idealized (e.g., Schoof, 2007; Cornford et al., 2020) and realistic (e.g., Cornford

et al., 2015; Royston and Gudmundsson, 2016) ice sheet modeling experiments, and some studies (Joughin et al., 2014; Rignot

et al., 2014) argue that such an instability is currently under way for outlet glaciers of Antarctica’s Amundsen Sea Embayment.20

The relevant perturbation for grounding line retreat in the Amundsen Sea Embayment is thought to be intrusions of relatively

warm, intermediate-depth ocean waters onto the continental shelves, which have reduced the thickness and extent of marginal

ice shelves via increased sub-ice shelf melting (e.g., Jenkins et al., 2016). These reductions are important because fringing ice

shelves restrain the flux of ice across their grounding lines farther upstream – the so-called “buttressing” effect of ice shelves
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(Gudmundsson et al., 2012; Gudmundsson, 2013; De Rydt et al., 2015) – which makes them a critical control on the rate of ice25

flux across Antarctic grounding lines into the ocean.

On ice shelves, the driving stress (from ice thickness gradients) is balanced by gradients in membrane stresses (Hutter, 1983;

Morland, 1987; Schoof, 2007). For an ice shelf in one horizontal dimension (x,z), these longitudinal stress gradients provide

no buttressing (Schoof, 2007; Gudmundsson, 2013). For realistic, three-dimensional ice shelves, however, buttressing results

from three main sources: 1) along-flow compression, 2) lateral shear, and 3) “hoop” stress (Wearing, 2016). Compressive and30

lateral shear stresses can provide resistance to extensional ice shelf flow through along- and across-flow stress gradients. The

less commonly discussed “hoop” stress is a transverse stress arising from azimuthal extension in regions of diverging flow

(Pegler and Worster, 2012; Wearing, 2016). Due to the complex geometries, kinematics, and dynamics of real ice shelves, an

understanding of the specific processes and locations that control ice shelf buttressing is far from straightforward.

Several recent studies apply whole-Antarctic ice sheet models, optimized to present-day observations, towards improving35

our understanding of how Antarctic ice shelves impact ice dynamics farther upstream or limit flux across the grounding line.

Fürst et al. (2016) proposed a locally derived “buttressing number” (extended from Gudmundsson, 2013) for Antarctic ice

shelves and used it to guide the location of calving experiments whereby the removal of progressively larger portions of the

shelves near the calving front identified dynamically “passive” shelf regions; removal of these regions (e.g., via calving) was

found to have little impact on ice shelf dynamics or the flux of ice from ice upstream to the calving front. Reese et al. (2018)40

conducted a set of diagnostic, forward-model, perturbation experiments to link small, localized decreases in ice shelf thickness

to changes in integrated grounding line flux (GLF), thereby providing a map of GLF sensitivity to local increases in sub-ice

shelf melting.

Motivated by these studies, we build on and extend the methods and analysis of Fürst et al. (2016) and Reese et al. (2018)

to address the following questions: (1) How do changes in ice-flux across the grounding line relate to local estimates of ice-45

shelf buttressing evaluated on the ice shelf? (2) What are the limitations of locally derived buttressing metrics when used to

assess GLF sensitivity? (3) Can new methods overcome these limitations? Our specific goal is to identify robust methods for

diagnosing where on an ice shelf changes in thickness (here, assumed to occur via increased sub-ice shelf melting) have a

significant impact on flux across the grounding line. Our broader goal is to contribute to the understanding of how increased

sub-ice shelf melting can be expected to impact the dynamics and stability of real ice sheets.50

Below, we first provide a description of the ice sheet model used in our study and the model experiments performed. We

then analyze and discuss the experimental results in order to quantify the correlation between easily evaluated, local buttressing

metrics and modeled changes in GLF. This leads us to propose and explore an alternative, adjoint-based method for assessing

GLF sensitivity to ice shelf thickness perturbations. We conclude with a summary discussion and recommendations.
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a)

b)

Figure 1. (a) Plan view of surface speed for the MISMIP+ and (b) Larsen C Ice Shelf experimental domains. For the Larsen C domain,

velocities have been optimized to match observations from Rignot et al. (2011). Black curves indicate the location of the grounding line. The

location of Larsen C Ice Shelf is shown as the shaded area in the inset in b). A comparison of modeled and observed ice surface speed is

provided in Fig. S1.
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2 Numerical ice sheet model55

2.1 Model description

We use the MPAS-Albany Land Ice model (MALI; Hoffman et al., 2018), which solves the three-dimensional, first-order

approximation to the Stokes momentum balance for ice flow. Using the notation of Perego et al. (2012) and Tezaur et al.

(2015a), this can be expressed as,

−∇ · (2µeε̇1) + ρig
∂s
∂x = 0,

−∇ · (2µeε̇2) + ρig
∂s
∂y = 0,

(1)60

where x and y are the horizontal coordinate vectors in a Cartesian reference frame, s(x,y) is the ice surface elevation, ρi

represents the ice density, g the acceleration due to gravity, and ε̇1,2 are given by

ε̇1 =
(

2ε̇xx + ε̇yy, ε̇xy, ε̇xz

)T
, (2)

and

ε̇2 =
(
ε̇xy, ε̇xx + 2ε̇yy, ε̇yz

)T
. (3)65

The “effective” ice viscosity, µe in Eq. (1), is given by

µe = γA− 1
n ε̇

1−n
n

e , (4)

where γ is an ice stiffness factor, A is a temperature-dependent rate factor, n= 3 is the power-law exponent, and the effective

strain rate, ε̇e, is defined as

ε̇e ≡
(
ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy + ε̇2xz + ε̇2yz

) 1
2 , (5)70

where ε̇ij are the corresponding strain-rate components.

Under the first-order approximation to the Stokes equations, a stress free upper surface can be enforced through

ε̇1 ·n = ε̇2 ·n = 0, (6)

where n is the outward pointing normal vector at the ice sheet upper surface, z = s(x,y). The lower surface is allowed to slide

according to the continuity of basal tractions,75

2µeε̇1 ·n +βu= 0, 2µε̇2 ·n +βv = 0, (7)

where β is a spatially variable friction coefficient, 2µeε̇1,2 represent the viscous stresses, and u is the two-dimensional velocity

vector (u, v). The field β is set to zero beneath floating ice and the basal traction is computed with the SEP3 method described

in Seroussi et al. (2014). On lateral boundaries in contact with the ocean, the portion of the boundary above sea level is stress

free while the portion below sea level feels the ocean hydrostatic pressure according to80

2µeε̇1 ·n = 1
2ρigH

(
1− ρi

ρw

)
n1, 2µeε̇2 ·n = 1

2ρigH
(

1− ρi
ρw

)
n2, (8)
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where n is the outward pointing normal vector to the lateral boundary (i.e., parallel to the (x,y) plane), ρw is the density of

ocean water, and n1 and n2 are the x and y component of n. A more complete description of the MALI model, including the

implementations for mass and energy conservation, can be found in Hoffman et al. (2018). Additional details on the momentum

balance solver can be found in Tezaur et al. (2015a, b).85

2.1.1 GLF computation

The grounding line (GL) is computed as the zero level-set of φ(x,y) := ρiH(x,y)+ρwb(x,y), where H and b are the continu-

ous, piece-wise linear finite element fields for the thickness and the bed topography, respectively, defined on a triangulation of

the domain at hand. As a consequence, the GL is a piece-wise linear curve, separating grounded ice (where φ(x,y)> 0) from

floating ice (where φ(x,y)< 0). The flux F per unit width at a point on the GL is calculated as F :=Hū ·nGL, where ū is the90

vertically averaged velocity, and nGL is the normal to the GL, pointing towards the floating ice region. The integrated ground-

ing line flux, hereafter GLF, is the line integral of F along the GL and it has units [m3 yr−1]. We note that perturbations of

the thickness far from the GL affect the GLF only through changes in the velocity field, whereas perturbations of the thickness

at triangles intersecting the GL also directly affect ice thickness at the GL and, via the flotation condition, also possibly the

position and length of the GL. We further note that ice rises in the model are also surrounded by grounding lines and require95

no special treatment.

2.2 Model configuration

We apply MALI to experiments on both idealized and realistic marine-ice sheet geometries. For our idealized domain and

model state, we start from the equilibrium initial conditions for the MISMIP+ experiments with a mesh resolution of about

2 km, as described in Asay-Davis et al. (2016). For our realistic domain, we use Antarctica’s Larsen C Ice Shelf and its upstream100

catchment area. For the Larsen C domain, the model state is based on the optimization of the ice stiffness (γ in Eq. (4)) and

basal friction (β in Eq. (7)) coefficients in order to provide a best match between modeled and observed present-day velocities

(Rignot et al., 2011) using adjoint-based methods discussed in Perego et al. (2014) and Hoffman et al. (2018). The domain

geometry is based on Bedmap2 (Fretwell et al., 2013), and ice temperatures, which are used to determine the flow factor and

held fixed for this study, are taken from Liefferinge and Pattyn (2013). Mesh resolution is 2 km at the grounding line and105

coarsens to 4 km near the calving front of the ice shelf and 5 km in the ice sheet interior. Following optimization to present-

day velocities, the model is relaxed using a 100-year forward run, providing the initial condition from which the Larsen C

experiments are conducted (as discussed below). The domain and initial conditions were extracted from the Antarctica-wide

configuration used by MALI for initMIP experiments (Hoffman et al., 2018; Seroussi et al., 2019). Both the MISMIP+ and

Larsen C experiments use 10 vertical layers that are finest near the bed and coarsen towards the surface.110
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3 Perturbation experiments

To explore the sensitivity of changes in GLF to small, localized changes in ice shelf thickness, we conduct perturbation ex-

periments analogous to those of Reese et al. (2018). Using diagnostic model solutions, we calculate the instantaneous change

in GLF for the idealized geometry and initial state provided by the MISMIP+ experiment (Asay-Davis et al., 2016). We then

conduct similar experiments for Antarctica’s Larsen C Ice Shelf using a realistic configuration and initial state. The geometries115

and ice speeds for MISMIP+ (steady-state) and Larsen C Ice Shelf (present-day) are shown in Fig. 1.

Our experiments are conducted in a manner similar to those of Reese et al. (2018). We perturb the coupled ice sheet-shelf

system by decreasing the ice thickness uniformly by 1 m at ice shelf grid cells (note that we consider the Voronoi grid dual to

the Delaunay triangulation used by the finite element solver; every point of the Delaunay triangulation coresponds to a Voronoi

cell), after which we examine the instantaneous impact on kinematics and dynamics (discussed further below). For both the120

MISMIP+ and Larsen C domains, the local ice shelf surface and basal elevations are adjusted following perturbations in order

to maintain hydrostatic equilibrium. Lastly, for the MISMIP+ 2-km experiments, we note that, in order to save on computing

costs, we only perturb the region of the ice shelf for which x < 530 km (the area over which the ice shelf is laterally buttressed)

and for which y > 40 km (due to symmetry about the center line). We do, however, analyze the response to these perturbations

over the entire model domain.125

Similar to Reese et al. (2018), we define a GLF response number for our perturbation-based experiments,

Nrp =
R

P
, (9)

where R is the change in the GLF over a year due to a perturbation in the thickness at a single grid cell, and P is the local

volume change associated with the perturbation. The subscript rp denotes the “response” from “perturbation” experiments.

Note that both R and P have units of m3 so that Nrp is dimensionless.130

Changes in GLF (quantified by Nrp) in response to a local change in ice shelf thickness are expected to occur via changes

in ice shelf buttressing, which generally acts to resist the flow of ice across the grounding line. To quantify the local ice shelf

buttressing capacity, we calculate a dimensionless buttressing number, Nb, analogous to that from Gudmundsson (2013) and

Fürst et al. (2016),

Nb (n) = 1− Tnn

N0
, (10)135

where Tnn := n ·Tn is a scalar measure of the stress normal to the surface defined by n. The two dimensional stress tensor

T is computed according to the shallow shelf approximation and is defined in Eq. (A6). N0 is the value of Tnn if the ice

was removed up to the considered location and replaced with ocean water (or alternatively, the resistance provided by a static,

neighboring column of floating ice at hydrostatic equilibrium) defined by

N0 :=
1

2
ρig

(
1− ρi

ρw

)
H, (11)140

with ρi and ρw being the densities of ice and ocean water, respectively. For the MISMIP+ experiment, ρi=918 kg m−3 and for

the Larsen C experiment, ρi=910 kg m−3. For both experiments, ρw=1028 kg m−3. We elaborate further on the calculation of
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the buttressing number in Appendix A. While Gudmundsson (2013) chose the unit vector n to be normal to the grounding line

to define the “normal” buttressing number, Fürst et al. (2016) extended his definition to the ice shelf by examining Nb (n) for

n along the ice flow direction and along the direction of the second principal stress. Here, we explore the connection between145

changes in grounding line flux (quantified by Nrp), sub-shelf melting, and local buttressing on the ice shelf (quantified by Nb)

corresponding to arbitrary n (in order to consider all possible relationships on the ice shelf). Note that we do not discuss the

tangential buttressing number defined by Gudmundsson (2013); hereafter, we use “buttressing number” to refer exclusively to

the “normal buttressing number”, as defined above.

4 Results150

4.1 Correlation between buttressing and changes in GLF

A decrease in ice shelf buttressing tends to lead to an increase in GLF (e.g., Gagliardini et al., 2010, also see Fig. 2a) and

intuitively we expect that the GLF should be relatively more sensitive to ice shelf thinning in regions of relatively larger

buttressing. We aim to better understand and quantify the relationship between the local ice shelf buttressing “strength” in

a given direction (characterized by Nb) and changes in GLF (characterized by Nrp). A reasonable hypothesis is that, for a155

given ice thickness perturbation, the resulting change in the GLF is proportional to the buttressing number at the perturbation

location. In Fig. 2, we show the results from all (730) perturbation experiments for MISMIP+, and the corresponding Nrp and

Nb values. We show values of Nb for three different directions, corresponding to the choice of n in Eq. (10): the first principal

stress direction (np1), the second principal stress direction (np2), and the ice flow direction (nf ). In the discussion below, we

frequently refer to these three directions when discussing the buttressing number. In agreement with the findings of Fürst et al.160

(2016), the largest values for Nb occur when it is calculated in the np2 direction. While there appears to be a qualitatively

reasonable spatial correlation between the magnitude of Nrp and Nb when the latter is calculated in the np2 and nf directions

(and less so when calculated in the np1 direction), in Fig. 3 we show that there is no clear relationship between the response

number Nrp and the buttressing number Nb calculated along any of these directions, at least for the case where we consider all

points on the ice shelf.165

In Fig. 4, we show correlations between the modeled value of Nrp and Nb where we ignore points meeting the following

critera: (i) points where the ice shelf becomes unconfined (x > 480 km); (ii) points within 2 cells from the GL; (iii) points

where shear stresses are large according to the metric,

ms =
|σp1−σp2|
|σp1 +σp2|

, (12)

where σp1 and σp2 are the first and second principal normal stresses, respectively, and ms is the ratio of the maximum shear170

stress to the mean normal stress. For the case of (i), a good correlation between Nb and Nrp is not expected for unconfined

flow where buttressing is insignificant (Van Der Veen, 2013). For the case of (ii), complications near the grounding line

(e.g., grounding line movement and geometry change associated with thickness perturbations, as noted in 2.1.1) may give

incorrect GLF response numbers. For the case of (iii), we expect a relatively poor correlation betweenNb andNrp for locations
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Figure 2. GLF number and buttressing number for each of the 730 perturbed grid cells in the MISMIP+ experiments. (a) The spatial

distribution of the GLF response number, Nrp. (b-d) The spatial distribution of the buttressing number, Nb, corresponding to directions (b)

np1, (c) np2, and (d) nf . Black dots indicate grid cells located along the grounding line. The negative Nrp values in (a) correspond to a few

partially-grounded cells in the vicinity of the GL, where the GLF can be reduced by ice shelf thinning. Here the colorbars for (a)–(d) do not

show the full data range. Note that the negative GLF numbers in panel (a) are due to the nonlinear impacts of changes in both ice thickness

and velocity at the GL.

where buttressing occurs primarily via lateral drag, which will be poorly captured by a stress metric (i.e., buttressing number)175

associated with a single direction. In a principal stress framework, shear stress is described by perpendicular normal stresses of

opposite sign. Applying this metric means that we only evaluate correlations between Nb and Nrp for points where ms from

Eq. (12) is < 1 (i.e., where normal stress is dominant over shear stress; see also Fig. S2). When applying criteria (i)-(iii) above

as a spatial filter, the number of points considered is reduced (Fig. 4a) and stronger correlations between Nrp and Nb emerge.

In particular, a stronger correlation between Nrp and Nb occurs when Nb is calculated using np1 (Fig. 4b) or nf (Fig. 4d),180

relative to when using np2 (Fig. 4c).

4.2 Directional dependence of buttressing

The buttressing number at any perturbation point depends on Tnn, which in turn depends on the chosen direction of the normal

vector, n (Eq. (10)). Fürst et al. (2016) calculated Nb using nf and np2 and chose the latter – the direction corresponding to
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Figure 3. (a) Blue dots represent the locations of all perturbation points analyzed (730) for theNrp :Nb linear regression analysis. Black dots

indicate grid cells located along the grounding line. (b-d) Modeled Nrp from perturbation experiments versus predicted Nrp as a function of

Nb calculated along (b) np1, (c) np2, and (d) nf .

the second principal stress (the maximum compressive stress or the least extensional stress) – to quantify the local value of185

“maximum buttressing” on an ice shelf. In Fig. 5a, we plot the linear-regression correlation coefficients (r) for the Nrp :Nb

relationship where the direction of n used in the calculation of Tnn varies continuously from ∆φ=0–180◦ relative to np1 (we

also show how the buttressing number Nb varies as a function of direction in Fig. S3). We find large correlation coefficients

(r > 0.9) when Nb is aligned closely with np1 (∆φ= 0◦ or 180◦) and the smallest correlation coefficient (r < 0.5) when Nb

is aligned with np2 (∆φ= 90◦). Similar conclusions can be reached when examining the variation of r with respect to the190

ice flow direction (Fig. 5b), where correlations are phase shifted by approximately 50◦ counter-clockwise relative to Fig. 5a.

Clearly, the best correlation occurs along a direction somewhere between np1 and nf . Note that we do not see an exact match

between Fig. 5a and Fig. 5b if we shift the angle by 50◦ because the angular difference between np1 and nf varies for the

perturbation locations analyzed.

Fürst et al. (2016) posit that Nb(np2) provides a good local buttressing metric and chose it for identifying regions of max-195

imum buttressing on an ice shelf with the goal of identifying “passive” ice that can be removed without tangibly affecting

the remaining ice. While our results also show that buttressing is greatest in the direction of the second principal stress (which

follows from the definitions of the second principal stress and the buttressing number, see also Fig. S3), we find that buttressing
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Figure 4. (a) Blue dots represent the locations of all perturbation points analyzed (168) for the Nrp :Nb linear regression analysis, based

on the filtering criteria discussed in Section 4.1. Black dots indicate grid cells located along the grounding line. (b-d) Modeled Nrp from

perturbation experiments versus predicted Nrp as a function of Nb calculated along (b) np1, (c) np2, and (d) nf . The correlation coefficient

for each modeled Nrp versus Nb is given by r.
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Figure 5. Correlation coefficients for the linear regression relationship of Nrp :Nb where n is rotated counterclockwise by ∆φ degrees

relative to (a) np1 and (b) nf . The perturbation points analyzed here are the same as in Fig. 4a.

in this direction is not useful for predicting changes in GLF; compared to Nb(np2), Nb(np1) and Nb(nf ) both show a better

correlation with changes in GLF via local, sub-ice shelf melt perturbations. We discuss these differences further in Section 5.200
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Figure 6. An example of the local change (ratio, in %) in (a) the ice thickness gradient in x, (b) ice thickness gradient in y, (c) ice speed, (d)

ice velocity (relative), (e, f) principal strain rates, and (g, h) buttressing number following a local perturbation to the ice shelf thickness. In

(e) and (g), changes (colors) are associated with the np1 direction and for (f) and (h) changes are associated with the np2 direction.

4.3 Perturbation impacts: local, far-field, and integrated changes

We now look more carefully at thickness perturbations on the ice shelf in terms of their local, far-field, and integrated impacts

on changes in geometry, velocity, stress, buttressing, and GLF.

4.3.1 Local perturbation impacts

Local thickness perturbations on the ice shelf alter the local ice thickness gradient; on the upstream side of the perturbation, it205

becomes more negative while on the downstream side it becomes less negative (Fig. 6a, b). These thickness gradient changes

increase the ice speed immediately upstream from the perturbation and decrease it immediately downstream of the perturbation

(Fig. 6c), resulting in anomalous flow convergence towards the perturbation location (Fig. 6d). The resulting impacts on the

principal strain rates (and thus the principal stresses) are increased compression (or decreased extension) along both principal

directions (Fig. 6e, f) and, via Eq. (10), a corresponding increase in the local value of Nb along both principal stress directions210
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a) b)

Figure 7. The change in buttressing number, ∆Nb, at and near to ice shelf thickness perturbations. In (a), the change at the perturbation

location is shown and in (b) the mean change in all immediately neighboring cells is shown. Changes in buttressing are calculated along the

direction ∆φ, rotated counterclockwise relative to the np1 direction. The points analyzed include those in Fig. 4a, which are shown as the

shaded area, with the solid curve representing their mean value.

(Fig. 6g, h). These spatial patterns of change are robust for a number of different perturbation points on the ice shelf (see

Figs. S4 and S5 in the Supplementary Material).

An important caveat applies to the grid cell associated with the location of the perturbation itself, where a decrease in Nb is

seen, sometimes for only the np1 direction but other times for both principal directions (Fig. S5). In Fig. 7, we quantify the local

(at the perturbation location; Fig. 7a) and neighboring (immediately surrounding the perturbation location; Fig. 7b) changes215

in Nb for all of the points analyzed in Fig. 4 and for all possible directions. From Fig. 7, we make two conclusions: 1) the

local change in Nb is generally more positive along the np2 direction (indicating a local increase in buttressing accompanying

a thickness perturbation) and 2) the local and neighboring changes in buttressing are often inconsistent (i.e., a decrease in

Nb at a particular grid cell coincides with an increase in Nb in the neighboring cells). The first conclusion would seem to

argue against using Nb(np2) for quantifying local changes in buttressing in terms of their broader impacts on GLF (because,220

surprisingly, local thinning perturbations are more likely to indicate a local increase in buttressing along the np2 direction).

The second conclusion suggests that analysis over wider spatial scales may be necessary for a consistent understanding of how

local ice shelf perturbations impact GLF.

4.3.2 Far-field perturbation impacts

Away from the immediate vicinity of ice shelf thickness perturbations (i.e., beyond the grid cell where perturbations are225

applied and its immediate neighbors), the resulting changes are more uniform and easier to interpret. The broader pattern of

increased ice speed upstream from a perturbation location can be seen to extend spatially and diffuse with increased distance
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(Fig. 6c). Similar can be observed with respect to changes in principal strain rates and buttressing, at least for the np1 direction

(Figs. 6e and g), where a wide swath of increased extension and decreased local buttressing (as quantified by reductions in

Nb(np1)) coincides with the region of increased ice speed extending upstream to the grounding line. This implied causality –230

a reduction in buttressing on the shelf leads to an increase in GLF upstream – is consistent with our understanding of ice shelf

buttressing. Importantly, we note that a similar understanding based on changes in the np2 direction (Figs. 6f and h) is much

less straightforward due to more complicated spatial patterns and no obvious consistency between reductions in Nb(np2) and

the increases in ice speed that would lead to a corresponding increase in GLF. This interpretation of the far-field effects of

local ice shelf perturbations is consistent when perturbations are applied at a number of different locations on the ice shelf (see235

Figs. S4 and S5 in the Supplementary Material).

A reasonable hypothesis is that the apparent correlation between Nb(np1) and Nrp in Fig. 4b arises because of the connec-

tion, discussed above, between local thickness perturbations, far-field changes in principal stresses and buttressing along the

np1 direction, and increases in ice speed upstream of the perturbation. Similarly, the lack of such a clear connection for local

perturbations and principal stresses and buttressing along the np2 direction may account for the relatively poorer correlation240

between Nb(np2) and Nrp shown in Fig. 4c. Next, we explore how these far-field changes are expressed at the grounding line.

4.3.3 Perturbation impacts on buttressing and ice flux at the grounding line

To understand how local perturbations in ice shelf thickness impact GLF, we now examine changes in the buttressing number

and ice speed at and normal to the grounding line. To quantify this relationship, we define Υgl,

Υgl = Corr(∆Nb,∆u) =
cov(∆Nb,∆u)

s(∆Nb)s(∆u)
, (13)245

where ∆Nb = Nbp−Nbc and ∆u = up−uc and with the subscripts p and c denoting the “perturbed” and “control” (i.e.,

initial) model states, respectively. ∆Nb and ∆u denote vectors of the changes in the buttressing number and ice speed normal

to the GL, respectively, for all GL cells along the main trunk of the ice stream (red points in Fig. 8). Υgl, a correlation coefficient,

is an integrated measure of the consistency between the magnitude and the sign of the change in buttressing number and ice

speed between the control and perturbation experiments, with cov and s representing the covariance and the standard deviation,250

respectively.

By plotting values of Υgl mapped to their respective perturbation locations on the ice shelf (Fig. 8), we show there is

generally a negative correlation between speed and buttressing at the GL: in response to a thickness perturbation on the ice

shelf, buttressing decreases and speed (and hence flux) across the GL increases, in line with our general understanding of

buttressing. In Fig. 8a, we show a reference case for which Tnn in Eq. (10) (and hence in Eq. (13)) is calculated normal to255

the grounding line. In this case, the Nb values in Eq. (13) are calculated along the GL as defined by Gudmundsson (2013)

(Υgl = Υgl(ngl), where ngl is the direction normal to the grounding line). In Fig. 8b and c, we show Υgl(np1) and Υgl(np2),

respectively. As expected, the correlation is strongly negative for Υgl(ngl) (Fig. 8a) and we find that Υgl(np1) is a close match

(Fig. 8b). While much of the shelf under consideration also shows a negative correlation for Υgl(np2), the correlations are
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generally weaker and there are regions near the center of the shelf, and closer to the grounding line where the correlation260

switches sign, implying an increase in buttressing (as calculated in that direction) accompanying an increase in GLF (Fig. 8c).

In addition to the results for the three discrete normal directions discussed above, a continuous analysis of Υgl as a function

of the normal stress direction is shown in Fig. 9 where we plot Υgl at each perturbation point and for all directions in the

range of ∆φ= 0–180◦ relative to np1. This correlation is generally negative and stronger for buttressing numbers calculated

near the np1 direction (∆φ closer to 0◦ or 180◦) and weaker (or even strongly positive) approaching the np2 direction. This265

analysis connects the local perturbations and far-field impacts described above with changes in integrated GLF, providing a

further means for understanding the correlation between Nb(np1) and Nrp in Fig. 4b.

4.3.4 Summary of local versus integrated impacts of ice shelf perturbations

The changes in ice speed and buttressing at the grounding line quantified by Figs. 8 and 9 must be the result of perturbations

initiated on the ice shelf that have propagated (here, instantaneously) to the grounding line, where increases in speed are asso-270

ciated with increased extension along np1 and, according to Eq. (10), decreased buttressing associated with the np1 direction.

Intuitively, these increases in ice speed at the grounding line must be triggered by the loss of buttressing on the shelf, initiated

here via small and highly localized ice thickness (thinning) perturbations. As shown and argued above, however, it is difficult

to understand the integrated impacts of these perturbations on GLF based on changes in locally derived quantities alone, in par-

ticular, the locally derived buttressing number,Nb. One would come to very different conclusions regarding how a perturbation275

impacts local buttressing depending on both the spatial scale of the area around a perturbation being examined and the principal

direction used for calculating Nb (e.g., Figs. 7a and b). Over wider spatial scales, however, we do find consistency between the

impacts of local perturbations on geometry, stresses, local buttressing, ice speed, and changes in GLF (Figs. 6, 8, 9). While we

hypothesize that it is this consistency that lies behind the apparent correlation between Nb and Nrp in Fig. 4b, we still lack the

detailed physical understanding behind that correlation that would be required for us to apply it with confidence.280

Further, we show in the Supplementary Material and Table S01 that the correlation between may be spurious, perhaps due

to correlations with some other common variable. Finally, in the next section we show that this tenuous correlation between

Nb and Nrp breaks down almost entirely when applied to a realistic ice shelf.

4.4 Application to Larsen C Ice Shelf

We apply a similar set of analyses, as discussed above for the MISMIP+ domain, to a realistic, Larsen C ice shelf domain.285

For this domain, with complex geometry and spatially variable ice temperature (and associated ice rigidity), the relationship

between Nb(np1) and Nrp becomes much weaker relative to that for the MISMIP+ domain. Fig. 10 shows that using the shear

metricms (Eq. (12)) to filter locations reduces the scatter betweenNb(np1) andNrp. However, even when retaining only points

with low shear contributions, the relationship is nonlinear without a clear functional form. Furthermore, restricting analysis to

the low shear regions where the relationship is stronger excludes the majority of the ice shelf, including most of the regions of290

where the GLF response number is large (see also Fig. 13a below). We find a similar result when coarsening the analysis to use

20 × 20 km boxes for the analysis, as was done for the Nrp calculations performed by Reese et al. (2018); a strong correlation
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Figure 8. Spatial distribution of the correlation coefficient Υgl from Eq. (13) over the MISMIP+ domain for buttressing number changes

calculated parallel to (a) ngl, (b) np1 and (c) np2 (colors). Υgl is a measure of the correlation between changes in buttressing number and

ice speed along the grounding line. The black-dashed line represents the grounding line and the red dots indicate the area of the grounding

line for which values of Υgl are calculated for each perturbation on the ice shelf, as shown in Fig. 4a.
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Figure 9. Correlation between the change in buttressing number and the change in ice speed across the grounding line (i.e., Υgl from Eq. (13))

for the entire MISMIP+ grounding line. The horizontal axis shows how Υgl varies as a function of the direction n used to define the normal

stress, rotated counterclockwise from np1 by ∆φ. Values from the maps in Figs. 8a and b plot at ∆φ values of 0 and 90 degrees, respectively.

Thus, the blue shaded region represents all possible maps for all possible values of buttressing direction. The thick black curve represents the

mean value of Υgl for any given map.

exists for only a small area near the center of the ice shelf (Fig. S6). Even weaker relationships are found for the np2 and nf

directions. Thus, while there clearly is some link between Nb(np1) and Nrp for a realistic ice shelf, it is far too tenuous to be

used in a predictive way and likely differs across and between ice shelves.295

Overall, for a realistic ice shelf like Larsen C with a complex geometry and flow field, we find it even more difficult to

demonstrate robust relationships between the local ice shelf buttressing number and changes in GLF. This is, at least in part,

likely due to the fact that, for more complex and realistic domains, there is no dominant direction of buttressing controlling ice

flux across the grounding line. These findings further diminish our confidence in using locally derived buttressing numbers for

assessing the sensitivity of GLF to changes on the ice shelf. For this reason, we explore an alternative and more robust method300

for quantifying how ice shelf thickness perturbations affect flux at the grounding line.

4.5 Adjoint sensitivity

While our goal throughout this study has been to find a simple and robust metric for diagnosing GLF sensitivity to ice shelf

thickness perturbations, the challenges and complications discussed above suggest that this may not be possible. This motivates

our investigation of a wholly different approach, which provides a GLF sensitivity map analogous to that from Reese et al.305

(2018). But rather than computing the GLF change due to a perturbation applied individually at each of n model grid cells (thus
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Figure 10. a) Larsen C model domain colored by the shear metric, ms (Eq. (12)). b) Scatter plot of Nb(p1) and Nrp colored by different

values of ms.

requiring n diagnostic solves), we use an adjoint-based method that allows for the computation of the sensitivity at all n grid

cells simultaneously at the cost of a single adjoint-model solution. Briefly, this method involves the solution of an auxiliary

linear system (the adjoint system) to compute the so-called Lagrange multiplier, a variable with the same dimensions as the

forward-model solution for the ice velocity. Here, the matrix associated with the system is the transpose of the Jacobian of the310

first-order approximation to the Stokes flow model (Perego et al., 2012). In addition, the adjoint method requires computation

of the partial derivatives of the first-order model residual and the GLF with respect to the velocity solution and the ice thick-

ness. Here, we compute the Jacobian and all the necessary derivatives using automatic differentiation (Tezaur et al., 2015a).

Additional details of the adjoint-based method and calculations are giving in Appendix C.

A similar approach has been proposed by Goldberg et al. (2019). That work primarily assessed the adjoint sensitivity of315

the volume above floatation with respect to sub-ice shelf melting of Dotson and Crosson ice shelves in West Antarctica. In

contrast to our approach, Goldberg et al. (2019) compute transient sensitivities because their quantity of interest (volume

above floatation) is time dependent.

The adjoint-based sensitivity has units of volume flux per year per meter of ice thickness perturbation (m2 yr−1). We

nondimensionalize this value, dividing it by the area of the perturbed cell and multiplying it by the one year period over which320

we consider the perturbation, so that it is dimensionless and comparable to Nrp, and refer to it as Nra (where the subscript a

is for “adjoint”). In Figs. 11 and 12, we demonstrate the application of this method to the MISMIP+ and Larsen C domains by

comparing GLF sensitivities deduced from 730 and 1000 points (i.e., from the respective perturbation experiments discussed
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above for the MISMIP+ and Larsen C domains, respectively) with those deduced from a single adjoint-based solution. The

comparison demonstrates that the two approaches provide a near exact match.325

As might be expected based on the discussion above, the two methods disagree in regions very near to the grounding line

(see Fig. 13c). This discrepancy is likely a consequence of large non-linearities near the grounding line, as suggested by the

fact that the agreement between the two methods improves as the size of the perturbation decreases (from 10 m to 0.001 m;

see Fig. 13), the only change being the magnitude of the applied perturbation). This might be exacerbated by the sliding law

adopted in this work, which results in abrupt changes in the basal traction across the grounding line. Other sliding laws, e.g.330

Brondex et al. (2017), allow for a smoother transition at the grounding line and might mitigate this problem. We also note that

some isolated cells adjacent to the grounding line exhibit negative sensitivities (a decrease in ice flux following a decrease in

ice thickness), opposite those exhibited by the rest of the ice shelf. We attribute these to partially grounded cells, for which the

sensitivity may be more akin to that expected for grounded ice (i.e., a direct relationship between ice thickness and ice flux).

The adjoint sensitivity map represents a linearization of the GLF response to thickness perturbations. As long as the perturba-335

tions are small enough, one can approximate the GLF response by multiplying the sensitivity map by the thickness perturbation.

Comparison of Nra and Nrp for different perturbation sizes (Fig. 13) suggests that this is reasonable for perturbations on the

order of <10 m for points on the ice shelf that are not too close to the GL. At the same time care should be taken when inter-

preting the sensitivities – based on either the perturbation- or adjoint-based methods – in the vicinity of grounding lines. This

is especially important when considering that the near-grounding-line region is also that with the largest sensitivities (Figs. 11a340

and 12a). Because these sensitivities may be inaccurate, they provide an argument for applying high spatial resolution near

the grounding line; coarse resolution near the grounding line will extend the region over which inaccurate sensitivities may be

assessed. More accurately assessing the sensitivities near the grounding line may require the application of perturbations with

both magnitudes and spatial scales that are more realistic than the infinitesimal, highly localized perturbations explored here.

The adjoint method provides sensitivity maps over the entire ice shelf, including around islands, promontories, and along the345

grounding line itself, which is generally the part of the ice shelf where the GLF is the most sensitive to thickness perturbations

(e.g., see Figs. 11a and 12a and Fig. 1 in Reese et al. 2018). Thus, despite the added complexity in its computation, the adjoint-

based method provides significant advantages over the simpler but more ad hoc (i.e., perturbation-based) analysis methods

discussed above.
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a) b)

Figure 11. (a) Grounding line flux sensitivity for the MISMIP+ domain derived from the adjoint model approach. (b) Perturbation- (Nrp;

x-axis) versus adjoint-based (Nra; y-axis) sensitivies plotted against one another (perturbation locations are shown by circles in the inset,

where the grounding line grid cells are shown by the black dots.)

a) b)

Figure 12. (a) Grounding line flux sensitivity for the Larsen C domain derived from the adjoint model approach. (b) Perturbation- (Nrp;

x-axis) versus adjoint-based (Nra; y-axis) sensitivies plotted against one another (perturbation locations are shown by circles in the inset,

where the one outlier in b) is at the calving front (red triangle), and the grounding line in is shown by the black curve.)
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Figure 13. Comparisons between perturbation- and adjoint-based sensitivities (Nrp and Nra, respectively) for ice thickness perturbation of

(a) 0.001 m, (b) 0.01 m, (c) 1 m and (d) 10 m for perturbation points near the grounding line (<3 km) indicated by the dots on the inset map

in (a). Red dots represent grid cells next to the grounding line and blue dots represent grid cells on the ice shelf proper.
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5 Discussion and Conclusions350

The current interest in better understanding the controls on the MISI is due to the potential for future (and possibly present-day,

ongoing) unstable retreat of the West Antarctic ice sheet (e.g., Joughin et al., 2014; Hulbe, 2017; Konrad et al., 2018). Because

a loss of ice shelf buttressing is a primary cause of increased GLF (and thus an indirect control on the MISI), recent attention

has focused on better understanding the sensitivity of ice shelf buttressing to increases in iceberg calving and sub-ice shelf

melting. In this study, we have attempted to better characterize and quantify how local thickness perturbations on ice shelves –355

a proxy for local thinning due to increased sub-ice shelf melting – impact ice shelf buttressing and GLF.

Two previous approaches for assessing GLF sensitivity to changes in ice shelf buttressing – the flux response number (Nrp)

and the buttressing number (Nb) – only show significant correlations with one another only over regions with a relatively small

shear component. In addition, this correlation is highly dependent on the direction chosen to define buttressing. Specifically,

we find that the choice of the normal vector used when calculating Nb dictates whether the correlation between Nrp and Nb360

is significant or not. Here, for both idealized and realistic ice shelf domains, we find a weak correlation between Nrp and Nb

when the normal stress used in calculating the buttressing number corresponds to the second principal stress direction (np2).

The correlation is stronger (though sometimes still fairly weak) when Nb is calculated in the direction associated with the first

principal stress (np1) or the ice flow (nf ).

These findings appear at odds with the interpretation from previous efforts of Fürst et al. (2016), who argue that buttressing365

provided by an ice shelf is best quantified by Nb calculated in the direction of np2. The seeming contradiction may be partially

rectified by considering the different foci of Fürst et al. (2016) versus the present work: while Fürst et al. (2016) primarily

focused on how the removal of passive shelf ice (identified by Nb(np2)) impacted ice shelf dynamics, as quantified by the

change in ice flux across the calving front, our focus is specifically on how localized ice shelf thickness perturbations impact

the change in ice flux across the grounding line1. While changes in calving flux are likely to impact the amount of buttressing370

provided by an ice shelf, they do not directly contribute to changes in sea level. For this reason, changes in GLF are arguably

the more important metric to consider when assessing the impacts of changes in ice shelf buttressing.

Of significant concern in applying the apparent correlation between Nrp and Nb (relatively difficult and easy quantities

to calculate, respectively) is the lack of a clear physical connection between local changes in buttressing on the ice shelf and

integrated changes in flux at the grounding line. Here, we show that localized thinning on the shelf can lead to either increases or375

decreases in the local buttressing metric Nb, depending on both the direction of the normal stress chosen and the neighborhood

over which these changes are estimated. Yet these same perturbations consistently result in a net decrease in buttressing and

consequently a net increase in grounding line flux. While this can often be understood through the detailed spatial analysis

of the impacts for a single perturbation (e.g., Section 4.3 and Fig.6), this finding suggests that local evaluations of buttressing

on the ice shelf alone should be interpreted with extreme caution, as they may not be physically meaningful with respect to380

1While Fürst et al. (2016) also discuss the impact of perturbations on the flux across the grounding line, this is a secondary focus of their paper and mostly

discussed in the Supplementary Material.
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understanding overall changes in GLF. It is also possible that the correlations we find between Nrp and Nb are fortuitous or

spurious, giving us further pause in attempting to apply them in a predictive sense.

Practically speaking, however, these nuances may be irrelevant; when realistic and complex ice shelf geometries are con-

sidered, clear and robust relationships between Nrp and Nb are elusive or absent. For the Larsen C domain considered here,

strong, positive correlations are only found to exist over a small, isolated region near the center of the ice shelf; proximity to385

the grounding line, the calving front, complex coastlines, islands, and promontories all serve to degrade these correlations sig-

nificantly, reducing the utility of the buttressing number as a simple metric for diagnosing GLF sensitivity on real ice shelves.

Further, defining “proximity”, and hence an adequate distance away from these complicating features or other filtering metric,

appears to be largely arbitrary. Lastly, it is precisely these more complex regions, close to the ice shelf grounding lines, where

sub-ice shelf thinning will result in the largest impact on changes in GLF (as demonstrated in Figs. 11a and 12a ).390

Considering these complexities, we propose that assessing GLF sensitivities for real ice shelves requires an approach anal-

ogous to the perturbation method used by Reese et al. (2018). Due to the computational costs and the experimental design

complexity associated with the perturbation-based method we propose that an adjoint-based method is the more efficient way

for assessing GLF sensitivity to changes in buttressing resulting from changes in sub-ice shelf melting. Future work should

focus on applying these methods to assessing the sensitivities of real ice shelves, based on observed or modeled patterns of sub-395

ice shelf melting, and assessing how these sensitivities change in time along with the evolution of the coupled ocean-and-ice

shelf system.
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Appendix A: Calculation of the buttressing number

At the calving front, the stress balance is given by,

σ ·n =−pwn, (A1)

where σ is the Cauchy stress tensor, n is the unit normal vector pointing horizontally away from the calving front, and pw is

the water pressure against the calving front provide by the ocean. In a Cartesian reference frame, this gives two equations for420

the stress balance in the two horizontal directions,

σxxnx +σxyny =−pwnx,

σxynx +σyyny =−pwny.
(A2)

Expressing the Cauchy stress as the sum of the deviatoric stress and the isotropic pressure (σ = τ − pI) and assuming that the

vertical normal stress σzz is hydrostatic gives,

p= ρig(s− z)− τxx− τyy. (A3)425

Combining Equations A2 and A3 gives,

(2τxx + τyy)nx + τxyny =−pwnx + ρig(s− z)nx,

τxynx + (2τyy + τxx)ny =−pwny + ρig(s− z)ny.
(A4)

On ice shelves, the left hand terms in Equations A4 can be taken as invariant in the z direction and by vertically averaging A4

we obtain

(2τxx + τyy)nx + τxyny =
1

2
ρig(1− ρ

ρw
)Hnx,

τxynx + (2τyy + τxx)ny =
1

2
ρig(1− ρ

ρw
)Hny.

(A5)430

If we define the two-dimensional stress tensor T as,

T =

2τxx + τyy τxy

τxy 2τyy + τxx

 , (A6)
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we can write Eq. (A5) as

Tn =N0n, (A7)

where N0 = 1
2ρig(1− ρi/ρw)H is the average pressure exerted by the ocean against the calving front (as defined in Eq. (11)).435

The buttressing number, defined by

Nb = 1− n ·Tn

N0
, (A8)

is thus a scalar measure of the balance between this average ocean pressure and internal stress within the ice shelf. For the case

of Nb = 0, these two exactly balance such that stresses within the ice shelf do not further restrain or compel the ice flow.

Appendix B: Relationship between buttressing number and backstress440

Thomas (1979) defines the concept of “back-pressure” or “back stress”, which was formalized by Thomas and MacAyeal

(1982) and MacAyeal (1987) as the stress provided by lateral shearing and compression around ice rises in excess of that of a

freely spreading ice shelf. While the concept was conceived as applying along the grounding line (Thomas, 1979; MacAyeal,

1987), it was extended to any material surface within an ice shelf (Thomas and MacAyeal, 1982; MacAyeal, 1987). This older

concept of a normal pressure characterizing downstream ice shelf conditions is reminiscent of the buttressing number defined445

by Gudmundsson (2013) and extended by Fürst et al. (2016) as the buttressing number (Nb), defined in Eq. (A8) (and Eq. (10)).

Here we show that backstress is equivalent toNb calculated in the along flow direction and normalized by the hydrostatic stress.

We follow Van Der Veen (2013) and Cuffey and Paterson (2010) and define back force, FB , as the difference between the

driving force of an ice shelf, FD and the resistive force from longitudinal stretching, FL:

FB = FD −FL. (B1)450

The driving force for an ice shelf is

FD =
1

2
ρig(1− ρi

ρw
)H2, (B2)

and the longitudinal stretching force for a freely spreading ice shelf is

FL =H(2τfxx + τfyy), (B3)

where τfxx and τfyy are the along-flow and across-flow deviatoric stresses, respectively. Therefore,455

FL =HT fxx, (B4)

according to Eq. (A6), where T fxx is the along-flow stress in the along-flow coordinate system, equivalent to the normal stress

along the flow direction, nf ·Tnf , in the x,y coordinate system. To obtain the backstress,Bs, as a stress normal to a vertically-

oriented material surface, divide Eq. (B1) by thickness (force per unit width divided by thickness):

Bs =
FB
H

=
FD
H
− FL
H
. (B5)460
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However, if we observe that the driving stress of an ice shelf is the hydrostatic stress, N0 (Eq. (11)), multiplied by the

thickness,

FD =N0H, (B6)

combined with Eq. (B4), we can rewrite the backstress as

Bs =N0−nf ·Tnf . (B7)465

Dividing (normalizing) by N0 then gives

Bs
N0

= 1− nf ·Tnf
N0

=Nb(nf ), (B8)

which is analogous to Eq. (A8) above.

This result, while fairly straightforward to arrive at, brings together the current concept of “buttressing” at the grounding

line (as defined by Gudmundsson (2013) and extended to “buttressing number” on the ice shelf by Fürst et al. (2016)), with the470

much older concept of ice shelf “backstress” (e.g., Thomas and MacAyeal, 1982).

Appendix C: Adjoint calculation of GLF sensitivity

The adjoint method is often used to compute the derivative (or “sensitivity”) of some quantity (here, the GLF) that depends on

the solution of a partial differential equation, with respect to parameters (here, the ice thickness) (see, e.g., Gunzburger (2012)).

It is particularly effective when the number of parameters is large because it only requires the solution of an additional linear475

system, independent of the number of parameters. In the discrete case, the GLF is a function of the ice speed vector, u, and the

ice thickness vector, H. Using the chain rule, we compute the total derivative of the GLF with respect to the ice thickness as:

d(GLF)

dH
=
∂(GLF)

∂u

∂u

∂H
+
∂(GLF)

∂H
. (C1)

Here
∂u

∂H
denotes the matrix with components

(
∂u

∂H

)
ij

=
∂ui
∂Hj

. Similarly
∂(GLF)

∂u
and

∂(GLF)

∂H
are row vectors with com-

ponents
∂(GLF)

∂uj
and

∂(GLF)

∂Hj
respectively. The first term on the right-hand side of Eq. (C1) accounts for the fact that a480

perturbation of the thickness would affect the ice velocity, which in turn would affect the GLF. The second term on the right-

hand side of Eq. (C1) accounts for changes in the GLF directly due to changes in thickness and is non-zero only when the

thickness is perturbed at triangles intersecting the GL. In this case, a thickness perturbation would affect the position/length of

the GL and the thickness of the ice at the GL.

In order to compute
∂u

∂H
, we write the finite element discretization (Tezaur et al. (2015b)) of the flow model (Eq. (1)) in the485

residual form c(u,H) = 0 and differentiate with respect to H:

0 =
dc

dH
=
∂c

∂u

∂u

∂H
+
∂c

∂H
. (C2)
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Here J :=
∂c

∂u
is a square matrix referred to as the Jacobian. It follows that

∂u

∂H
is solution of

J
∂u

∂H
=− ∂c

∂H
. (C3)

Note that this corresponds to solving many linear systems, one for each column of
∂u

∂H
(i.e. for each entry of the ice thickness490

vector). We can then compute the sensitivity as

d(GLF)

dH
=−∂(GLF)

∂u

(
J−1 ∂c

∂H

)
+
∂(GLF)

∂H
. (C4)

The main idea of the adjoint-based method is to introduce an auxiliary vector variable λ for solution of the adjoint system

JTλ=−
(
∂(GLF)

∂u

)T
(C5)

and then to compute the sensitivity as495

d(GLF)

dH
= λT

∂c

∂H
+
∂(GLF)

∂H
. (C6)

Equations (C4) and (C6) are equivalent, but the latter has the advantage of requiring the solution of a single linear system

given by Equation (C5). In MALI, the Jacobian and the other derivatives,
∂c

∂H
,
∂(GLF)

∂u
, and

∂(GLF)

∂H
, are computed using

automatic differentiation, a technique that allows for exact calculation of derivatives up to machine precision. For automatic-

differentiation, MALI relies on the Trilinos Sacado package (Phipps and Pawlowski, 2012). As a final remark, we note that the500

term
∂c

∂H
requires the computation of shape derivatives, because a change in thickness affects the geometry of the problem.

This is not the case for two-dimensional, depth-integrated flow models (e.g., as in Goldberg et al. (2019)), or when using a

sigma-coordinate to discretize the vertical dimension.

We conclude this section pointing out that the sensitivity
d(GLF)

dH
depends on the local refinement of the mesh and it

vanishes as the mesh is refined. This is particularly important in the case of nonuniform meshes, because the sensitivity map505

would strongly depend on the refinement. In order to overcome this issue it is advisable to scale the sensitivity pre-multiplying

it by the inverse of the mass matrix (in a finite element context) or, similarly, dividing it point-wise by the measure (area) of

the dual cells, as done in this paper to compute Nra. We refer to Li et al. (2017), Section 6, for an in-depth analysis, in the

optimization context.
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