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Abstract. Snow and ice albedo schemes in present day climate models often lack a sophisticated radiation penetration scheme
and do not explicitly include spectral albedo variations. In this study, we evaluate a new snow albedo scheme in the regional
climate model RACMO?2 for the Greenland ice sheet, version 2.3p3, that includes these processes. The new albedo scheme
uses the two-stream radiative transfer in snow model TARTES and the spectral-to-narrowband albedo module SNOWBAL,
version 1.2. Additionally, the bare ice albedo parameterization has been updated. The snow and ice broadband and narrow-
band albedo output of the updated version of RACMO?2 is evaluated using PROMICE and K-transect in-situ data and MODIS
remote-sensing observations. Generally, the modeled narrowband and broadband albedo is in very good agreement with satel-
lite observations, leading to a negligible domain-averaged broadband albedo bias smaler-than-0-00+for the interior. Some
discrepancies are, however, observed close to the ice margin. Compared to the previous model version, RACMO2.3p2, the
broadband albedo is considerably higher in the bare ice zone during the ablation season, as atmospheric conditions now alter
the bare ice broadband albedo. For most other regions, however, the updated broadband albedo is lower due to spectral effects,

radiation penetration or enhanced snow metamorphism.

1 Introduction

The absorption of shortwave radiation is an important component of the surface energy balance of snow-covered surfaces
(Van den Broeke et al., 2005; He et al., 2018b; Warren, 2019). A drop in the surface reflectivity for solar radiation, i.e., albedo,
leads to more absorbed energy in the snowpack, which in turn leads to higher snow temperatures or melt. This melt-albedo
feedback is initiated once snow starts to melt and the snow structure is altered, lowering the albedo (Van As et al., 2013; Jakobs
etal., 2019). It is therefore imperative for regional and global climate models (RCMs and GCMs, respectively) to capture snow
albedo correctly in order to reproduce the current climate and to make future climate projections for snow covered glaciated
regions such as the Greenland ice sheet (GrIS).

The albedo of snow and ice is highly spectrally dependent and also depends on various other quantities. For clean snow, the
spectral albedo, i.e. the albedo as a function of wavelength, is almost one for near-ultraviolet (near-UV, 300-400 nm) and visible
light (400-750 nm), but drops for near-infrared (near-IR, 750-1400 nm) and is low and fluctuating for infrared (IR) radiation
(Fig. 1d, Warren and Wiscombe (1980); Warren et al. (2006); Gardner and Sharp (2010); Dang et al. (2015); Picard et al.
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(2016)). Impurities like soot and dust lower the spectral albedo significantly in the near-UV and visible part of the spectrum
(Hansen and Nazarenko, 2004; Doherty et al., 2010; Dumont et al., 2014; Tuzet et al., 2017). Snow metamorphism, which
leads to increased snow density and grain radius, alters the albedo as well, especially for the (near-)IR radiation (Wyser and
Yang, 1998; King et al., 2004; Tuzet et al., 2019; He and Flanner, 2020). With coarser grains, the-likelihood-fortight-to-light
has to travel longer through ice before it has the opportunity to reflect off a grain’s surface out of the snowpack reduees;-than

for fine-grained snow, hence lowering the albedo (Wiscombe-and-Warren;1980;-Gardner-and-Sharp; 2010; Picard-et-al520
with a small grain radius, for example, has a high albedo (typically larger than 0.8), while firn and ice, for which the grain
radius has grown due to metamorphism, have a lower albedo (typically approximately 0.55 for ice and 0.7 for firn). Likewise,
snow grain shape impacts the probability for light to reflect out of the snowpack (Libois et al., 2013; He et al., 2018a)—1t,
but Dang et al. (2016) show that a model with spherical grains can still accurately reproduce the measured spectral albedo by.
adjusting the grain radius. To summarize, it is thus essential to consider the spectral albedo of snow and ice when modeling the
snowpack or ice melt.

Since incoming solar radiation also varies greatly as a function of wavelength (Gates, 1966; Leckner, 1978), the broadband
albedo, i.e., the wavelength-integrated spectral albedo, is also altered by atmospheric properties, like clouds and water vapour,
and by the solar zenith angle (SZA) (Dang et al., 2015). The SZA impacts the spectral distribution of incoming light, as
Rayleigh scattering by the atmosphere is more effective for targer-shorter wavelengths, but also alters the angle of incidence
into the snowpack (Solomon et al., 1987; Gardner and Sharp, 2010; Van Dalum et al., 2019). A large SZA results in a shallow
angle of incidence, increasing the probability for light to scatter out of the snowpack, which increases the spectral albedo. In
addition, upper snow layers are often characterized by small grains, enhancing the spectral albedo even further. However, this
increase of spectral albedo at large SZA is I partly mitigated by the red shift of the incoming direct-beam radiation due
to enhanced Rayleigh scattering in the atmosphere. During cloudy conditions, radiation is more likely to scatter, changing the
weighted average SZA and thus the spectral albedo. Furthermore, clouds and water vapour alter the spectral distribution of
radiation at the surface by filtering out IR radiation. Subsequently, the blue shift of incoming radiation under cloudy conditions
leads to an increase of the broadband albedo even if the snow structure remains unaltered.

RCMs and GCMs commonly perform their radiative calculations for the atmosphere on a limited number of spectral bands.
The albedo of such a spectral band is defined as the narrowband albedo. These-modelshowever;often-Some of these models do
, but more often they do not use the-narrowband-albede;-butnarrowband albedos and determine a broadband albedo instead, by-
passing its spectral bands and neglecting any spectral albedo variations. Recently, progress has been made in the development
of new snow albedo parameterzations and coupling schemes, which allows for the use of spectral bands and more physical
processes to be included (Libois et al., 2013; Van Dalum et al., 2019).

In this study, we improve the snow and ice albedo parameterization in the polar version of the Regional Atmospheric Climate
Model (RACMO?2) and present version 2.3p3. The polar (p) version of RACMO?2 is a model developed to simulate the climate

and atmosphere-surface interaction of glaciated regions, in particular Greenland (e.g., Noél et al., 2018) and Antarctica (e.g.,
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Van Wessem et al., 2018). The snow albedo scheme of previous RACMO?2 versions (2.1 to 2.3p2) uses-used an adjusted version
of the parameterization of Gardner and Sharp (2010) to derive a broadband albedo. Therefore, RACMO?2 until now did not
include explicit spectral albedo or spectral irradiance effects, nor an adequate radiation penetration scheme. Introducing a new
snow albedo parameterization that includes these processes is therefore timely.

RACMO2.3p3 uses a new snow albedo parameterization using the Two-streAm Radiative TransfEr in Snow model (TARTES,
Libois et al., 2013) coupled with the Spectral-to-NarrOWBand ALbedo (SNOWBAL) module version 1.2 (Van Dalum et al.,
2019). This set-up provides appropriate narrowband albedos for all 14 shortwave spectral bands utilized in RACMO2. TARTES
also considers radiation penetration for its surface albedo calculations and provides estimates of energy absorption in the snow-
pack. Additionally, the new snow albedo parameterization is used to update-the-develop a new ice albedo scheme.

Here, we present and evaluate the broadband and narrowband albedo modeled by RACMO2.3p3 for the GrIS, and compare
it with remote sensing data, in-situ observations and the broadband albedo modeled by the previous iteration of RACMO2, ver-
sion 2.3p2. The remainder of this manuscript is made up of six sections. Section 2 summarizes the changes made in RACMO2
and introduces the remote sensing and in-situ observational data sets. Section 3 and Sect. 4 evaluate the new RACMO?2 version
with these data sets. Comparisons between the albedo modeled by RACMO2 version 2.3p3 and 2.3p2 are shown in Sect. 5.
Finally, the sensitivity to the chosen impurity concentration of snow is analyzed in Sect. 6, and results are discussed and con-
clusions are drawn in Sect. 7. The impact of the model improvements on the climate, surface mass balance and surface energy

balance of the GrIS ice sheet will be discussed in a forthcoming publication.

2 Model and observational data sets
2.1 Regional climate model

The Regional Atmospheric Climate Model (RACMO?2), integrates the atmospheric dynamics of the High Resolution Limited
Area Model (HIRLAM, Undén et al., 2002), version 5.0.3, with the surface and atmospheric processes of the European Center
for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), cycle 33r1 (ECMWF, 2009). The polar
version of RACMO?2, version 2.3p2, from now on abbreviated to Rp2, is adapted for glaciated regions-tiles by using a multilayer
snowpack that interacts with the atmosphere and involves processes within the snow column, such as melt and refreezing. Rp2
is introduced in more detail in No€l et al. (2018). At the lateral boundaries, RACMO?2 is forced with ERA-Interim data (Dee
et al., 2011). In the new RACMO?2 version, 2.3p3, from now on abbreviated to Rp3, two components have been adjusted, the

multilayer firn module and the snow and ice albedo parameterizations for glaciated regions.
2.1.1 Multilayer firn module updates

In Rp3, the multilayer firn module has been rewritten to improve

four-modifications-have-been-implementedcode efficiency and reduce numerical diffusion. As the surface albedo depends on



90 the structure of the snowpack, any changes made to the multilayer firn module are therefore also important to discuss. The

update of this module consists of four modifications.
Firstly, Rp2 uses-used a prognostic fresh snow layer, which is effectively a sublayer of the uppermost snow model layer. In

Rp3 this fresh snow layer is removed; instead, the uppermost layers are allowed to be very thin, i.e., in the order of millimeters,

thus containing fresh snow only. For heat diffusion calculations, these thin layers are treated as a single layer to maintain

95 numerical stability. If melt or refreezing occurs in one of these layers, their individual temperature is estimated obeying the
temperature gradient and conserving their combined heat content.

Secondly, in Rp2 layers below a threshold thickness merge-merged with the first layer below. In Rp3, a layer merges with

the adjacent layer having most similar density and grain size. Furthermore, undesired numerical diffusion is avoided by im-

plementing mass redistribution if a thin layer merges with a thick layer. A layer containing glacial ice is not allowed to merge

100 with layers that are formed locally, i.e., by snow deposition on this grid point. This allows for the formation and preservation

of layers with ice lenses.

Thirdly, internal energy absorption heats subsurface snow layers and can induce melt. In Rp3, melt ;-eaused-by-heating-due
to-radiation-penetration;-will only thin a subsurface snow layer, i.e., a layer with a density below 700 kg m~2, and not change

its density. For ice layers, i.e., with a layer density larger than 830 kg m ™3, enly-a-density-reduetion-takes-place-melt creates

105 pore space, reducing the layer density and no thinning occurs. For firn with intermediate densities, the induced layer thinning

fraction linearly decreases from 1 to 0 between 700 kg m~3 and 830 kg m~3. The resulting density is adjusted accordingly.
Melting of the uppermost layer always leads to thinning, regardless of its density.

Finally, the initialized ice density is increased from 910 kg m™ 10 917 kg m™? - Note that-the densityof - bare-fee fayer

is-s ¢ = ayer, which is more in agreement with observations

110 (Bader, 1964). and is used to convert the effective grain radius into a SSA. Furthermore, as ice layers melt, pore space is

created, which lowers the layer density. The lower density for bare ice layers then indicates that air bubbles are present within

the ice.

2.1.2 Snow albedo

Rp2 uses-used a plane-parallel broadband snow albedo scheme based on Gardner and Sharp (2010), that depends-depended

115 indirectly on wavelength in the form of tuning parameters, and is limited to two snow layers. This albedo scheme parameterizes
parameterized albedo variations due to a changing SZA, grain radius, cloud cover, impurities, and an altitude-dependent atmo-
spheric optical thickness, the latter for clear-sky conditions (Kuipers Munneke et al., 2011). In RACMO?2, the first two snow
layers are often very thin, i.e. a few millimeters for fresh snow and up to a few centimeters for older snow, thus effectively
neglecting almost all radiation penetration.

120 In Rp3, the Two-streAm Radiative TransfEr in Snow model (TARTES, Libois et al., 2013) coupled with the Spectral-to-
NarrOWBand ALbedo (SNOWBAL) module (Van Dalum et al., 2019) is implemented. TARTES is a spectral albedo model

based on the radiative transfer equation (Jiménez-Aquino and Varela, 2005) and asymptotic analytical radiative transfer theory

Kokhanovsky;2004)-assuming Rayleighseattering(Kokhanovsky, 2004; He and Flanner, 2020) using the geometric-optics method,
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which allows for a vertically inhomogeneous snowpack. Grain radius, grain shape, snow layer density, impurity concentration
and type, and SZA are all explicitly resolved. In this study, all grains are spherically shaped. TARTES is able to calculate a
spectral albedo for any wavelength between 199 and 3003 nm and returns the absorption of radiation within the snowpack for
both incoming direct, i.e., no atmospheric scattering, and diffuse radiation, i.e., light that is scattered by the atmosphere, of
which the latter is considered to be a direct beam with a SZA of 53°.

In order to couple TARTES with the IFS physics within RACMO2, which employs 14 contiguous shortwave spectral bands
(Fig. 1d), the SNOWBAL module has been developed (Van Dalum et al., 2019). Since both the spectral albedo and the incoming
solar radiation can vary within a spectral band, SNOWBAL selects the predefined representative wavelengths for the given

atmospheric condition that would provide the correct effective narrowband albedos by TARTES. Using simply the wavelength

of the center of the spectral bands increases the root-mean-square error (RMSE) of the broadband albedo by approximatel

0.05 and 0.04 for clear-sky direct and clear-sky diffuse radiation, respectively, and increases even more for cloudy conditions
Van Dalum et al., 2019). The representative wavelength depends on the SZA for clear-sky diffuse radiation, SZA and vertically

integrated water vapour for clear-sky direct radiation, and ice and liquid water path for cloudy conditions. The difference

between cloudy-diffuse and clear-sky diffuse albedo are thus only related to cloud and SZA induced spectral shifts in radiation.
Furthermore, direct radiation dominates the clear-sky albedo signal except for very high SZA. As full radiation calculations are

only performed every hour, the average SZA of the next hour is used as long as the sun is above the horizon. Excluded are bands
13 and 14, for which the narrowband albedo can safely assumed to be zero (Gardner and Sharp, 2010; Van Dalum et al., 2019).
For the other bands, three narrowband albedos are determined, i.e., for direct and diffuse radiation for clear-sky conditions, and
for diffuse radiation for cloudy conditions. Clear-sky and total-sky narrowband and broadband albedos are then determined
using the modeled radiative fluxes. Note that clear-sky and total-sky albedo are identical if no clouds are present. Finally, for
evaluation with the seven MODIS narrowband albedos, clear-sky diffuse radiation albedos are also explicitly derived for these
bands.

In this manuscript, ‘albedo’ without further specification refers to the broadband albedo. White-sky—albede—-(W-SA)and
black-sky-albedo-(BSA)refer-Clear-sky direct (CSdir) and clear-sky diffuse (CSD) albedo refers to surfaces illuminated only
by diffuse-and-direetradiation-direct radiation or diffuse radiation, respectively. H-no-clouds-are-present-the- WSA-and-BSA-can
Combined, they are referred to clear-sky albedo. The clear-sky and cloudy-sky albedo can in turn be combined to a elear-sky

2.1.3 Bare ice albedo

In Rp2, a background bare ice albedo (BIA) field is defined for the entire ice sheet and used if one of the upper two snow
layers are identified as bare ice. The BIA field is prescribed by the lowest five percent of the 16-day diffuse albedo product
(MCD43A3v5, Schaaf and Wang (2015)) of 1 km MODIS data, for the period 2000-2015 (Fig. 1a). The MODIS albedo field
is resampled to the model grid, and the BIA is limited to values between 0.3 for dark ice in the ablation zone, and 0.55 in the

accumulation zone under perennial snow (No€l et al., 2018).
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Figure 1. (a) Lowest five percent of the MODIS MCD43A3v5 1 km 16-day clear-sky diffuse albedo field for glaciated areas for the period
2000-2015. Fhe-As this albedo field is used to determine a bare ice albedo field, it is limited between 0.30 for dark ice in the ablation zone,
and 0.55 in the accumulation zone under perennial snow for consistency with RACMO?2 (Noél et al., 2018). (b) Bare ice impurity field that

is implemented in RACMO2.3p3 for glaciated grid points. Here, all impurities are soot. (¢) In blue, fitting the specific surface area (SSA) to
clean bubble-free-blue ice albedo, which is assumed to be 0.6. The fitted SSA equals 0.788 m? kg 1. In red, the impurites-soot concentration

as a function of albedo required to successfully convert the MODIS albedo field into an impurity field. For both lines, clear-sky conditions
are assumed for a SZA of 60° and RACMO?2 irradiance profiles are used to convert narrowband to broadband albedo. (d) Spectral albedo for
clean fresh snow (in black), and for an ice profile with the fitted SSA of 0.788 m? kg~ for various impurity concentrations. The first twelve
spectral bands of RACMO?2 are indicated by vertical dotted lines and black numbers. Red bars and numbers indicate the seven MODIS
spectral bands. The albedo for the impurity-cases with soot concentrations of 0.2 and 1.5 pg g~ ! are indicated with corresponding colored
dots in (c).

As we do not want to bypass TARTES for bare ice, we derived a representative specific surface area (SSA) and impu-
rity concentration field to be used for bare ice te-mimie-albedo calculations to resemble the broadband MODIS albedos.
Firstly, we assume that clean bubble-free-blue ice has an albedo of approximately 0.6 (Reijmer-et-al;2001)-and-that-the
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Reijmer et al., 2001; Dadic et al., 2013). Blue ice is t

rates, but no melt, and has a high bubble content, leading to a relatively high albedo. The bare ice albedo is subsequently low-

ered by standing water, bubbles-and-impurities;-and-surface roughness and impurities. Furthermore, we assume that MODIS
bare ice albedos are valid for clear-sky conditions (Wang et al., 2012; Casey et al., 2017). As-FARTESTARTES, however.

RARAANRRAAAARARR

does not use Mie-scattering theory, which would be preferable for ice (Gardner and Sharp, 2010) -bubbles-cannetbe-modeled

expheitly; nor-ean-water-be-ineladedand cannot model bubbles or liquid water explicitly. Hence, albedos ranging from 0.30 to

0.55 observed for the GrIS are obtained by increasing the impurity-eontentsoot content, with the absorption cross section for
soot that is determined by Kokhanovsky (2004). Using a semi-infinite layer with the density of ice, a SSA value of 0.788 m?

kg~! (4.152 mm grain size, which is an order of magnitude larger than the typical grain radius for snow (Warren, 2019)) is

found to provide an albedo 0.6 (Fig. 1b). Despite using-Rayleigh-seatteringnot using Mie-scattering theory, the spectral curve

in TARTES for this SSA value resembles the expected curve for bare ice quite well, especially in the (infra)red part of the
spectrum (Fig. 1d, blue line) (e.g., Dadic et al., 2013), and thus can be used to mimie-elean;-bubble-freedeeindicate clean, bare

ice, which is similar to the findings of Bohren (1983).
Next, the MODIS bare ice albedo range is converted to an impurity concentration. Using the fitted SSA, ice density and a

ically found in areas with a very smooth surface and high sublimation

reference SZA of 60°, which is the largest angle for which the observations of MODIS for the GrlIS are still somewhat reliable
(Wang and Zender, 2010), together with RACMO2 narrowband irriadiance profiles for such conditions, a broadband albedo
can be calculated for a range of impurities such that the MODIS albedo range is covered. The resulting impurities—vary-soot
concentration varies between 69 ng g~! for an albedo of 0.55, to 2445 ng g~! for an albedo of 0.3 (Fig. 1c), and are saved in
a lookup table. This lookup table is used to convert the MODIS albedo field, after resampling to the 11-km grid of RACMO?2,
to an impurity field feasible for TARTES to use in RACMO?2 (Fig. 1b). Adding soot alters, as expected (Doherty et al., 2010;
Gardner and Sharp, 2010; He and Flanner, 2020), only the spectral curve in the near-UV and visible part of the spectrum (Fig.
1d). Note that the broadband albedo can still reach values beyond the range indicated in Fig. 1c, depending on atmospheric

conditions and SZA.

2.1.4 Superimposed ice

Contraryto-Rp2In Rp3, superimposed ice is now distinct from glacial ice. Superimposed ice forms in snow layers by refreezing
of melt water, while glacial ice forms by compaction of snow. As superimposed ice has a granular structure, it has to be treated
differently than bare ice. In Rp3, superimposed ice in-the-new-snow-scheme-is-now-distinetfrom-forms in snow or firn layers,
where the grain radius is allowed to grow due to refreezing of melt. Due to the granular structure of superimposed ice, it is
desirable to use the snow albedo scheme of Sect. 2.1.2 over the bare ice albedo scheme of Sect. 2.1.3, as a fixed rather large

rain radius is used for bare ice. However, without additional corrections the typical grain size used in superimposed ice layers

is 0.7 to 1.0 mm, leading to unrealistically high albedos of approximately 0.7 (Granskog et al., 2006). In order to improve this

a minimum grain radius for superimposed ice is imposed which increases linearly from 0.720 mm for a density of 750 k

m >, to 4.152 mm for a density of 917 ke m—2. This correction leads to realistic albedos for superimposed ice and exposed ice
lenses.




195

200

205

210

215

220

225

In Rp3, superimposed ice is treated differently than glacial ice. Superimposed ice forms in snow layers by refreezing of melt
water, while glacial ice forms by compaction of snow. As superimposed ice has a granular structure (Granskog et al., 2000), it
has to be treated differently than bare ice. Due to the granular structure, it is desirable to use the snow albedo scheme of Sect.
2.1.2 over the bare ice albedo scheme of Sect. 2.1.3, as a fixed rather large grain radius is used for bare ice. However, without
additional corrections, the typical grain size of these-iee-ayers-model layers with superimposed ice in Rp3 is 0.7 to 1.0 mm,
leading to unrealistically high albedos of approximately 0.7. The typical albedo of superimposed ice is 0.65, as is measured by
Knap and Oerlemans (1996) at S9 of the K-transect. In order to improve this, a minimum grain radius for superimposed ice is

imposed, which increases linearly from 0.720 mm for a density of 750 kg m~3, to the bare ice value of 4.152 mm for a density

of 917 kg m—3. This superimposed ice layer uses the same impurity concentration as a snow layer. This correction leads to

realistic albedos for superimposed ice and exposed ice lenses.
2.2 RACMO?2 simulations

For all simulations in this manuscript, RACMO?2 is run on an 11-km grid of Greenland and its immediate surroundings, for the
period 2006 - 2015, using September 2000 to 2005 as spin-up. At the lateral boundaries, RACMO?2 is forced with ERA-Interim
data (Dee et al., 2011). The only impurity type considered is soot, with a prescribed concentration of 5 ng g~! ia-snew-for all

snow layers. Although the concentration of soot in Greenland varies considerably over time and space, RACMO?2 only allows

for a fixed soot concentration —ta-the-interiorin snow. If a layer is identified as bare ice, it is prescribed by the spatially variable
soot concentration of Fig. 1b. For snow in the interior and when no melt occurs, the soot concentration is approximately 3 ng
g_1 {Chyleketal;1992: Dang-et-al- 204 5: Deherty-et-al52040)(McConnell et al., 2007; Doherty et al., 2010; Dang et al., 2015)

. The impact of impurities, however, is known to be underestimated by TARTES, so a higher prescribed concentration is re-
quired to model it properly (Tuzet et al., 2017, 2019). The impact of soot is assessed in various sensitivity experiments, which
are done between 2011 and 2015, with September 2008 to 2011 as spin-up.

For initialization, the firn-column state, i.e., the layer thickness, snow and ice density, water concentration, temperature and
grain size, were taken for all active layers from the Rp2 run on the initialization day, i.e., 1 September 26662000, but the fresh

snow sub-layer data is omitted. In order to match the specifications of Rp3, glacial ice is identified in each firn column if the

continuous set of layers has a density of 899 kg m~3 or higher, counted from the bottom of the firn column. Furthermore, the

Rp3 is.

initialized with a soot concentration that can be used to calculate the bare ice albedo (Sect. 2.1.3).

2.3 MODIS snow albedo product

The RACMO?2 albedo product is evaluated with the Moderate Resolution Imaging Spectroradiometer (MODIS), using the
MCD43A3 Version 6006 Albedo Model daily dataset using 16-day Terra and Aqua MODIS data for white-sky, i.e., diffuseclear-sky
diffuse (CSD), and black-sky, i.e., direct,—conditions{Wanget-al; 2642 Schaatand- Wang, 2645 WSA-—and-BSA-clear-sky
direct (CSDir), conditions (Schaaf and Wang, 2015). CSD albedo and CSDir albedo are calculated for local solar noon. W-SA

CSD albedo is preferred for evaluation, as no uncertainties arise concerning SZA, although the difference between the BSA



and-W-SA-CSD and CSDir albedo product is only marginal (Williamson et al., 2016). But-While RACMO?2 calculates the direct
Therefore, we have to note that the MCD43A3 ‘W-SA-CSD albedo product remains a slightly different albedo product than

230 the clear-sky RACMO?2 albedo it evaluates;-which-inelades-both-direet-and-diffuse-radiation. MCD43A3 provides an albedo
product in seven shortwave bands, ranging between 620 and 2155 nm (Fig. 1d, red bars), with a spatial resolution of 500 m
(250 m for band 1 and 2). In addition, visible, near-IR and broadband albedo products are provided. In this study, the broadband
albedo and seven shortwave band albedos are used for model evaluation.

For comparison with RACMO2, MODIS data are resampled to the 11-km grid of RACMO2. Due to the lack of a proper

235 ice mask for this MODIS field, contamination with non-glaciated grid points cannot be excluded for some grid points at the
margin. Therefore, these grid points are omitted if the albedo becomes too low (smaller than 0.25) during summer.

Lhermitte et al. (2014) and Williamson et al. (2016) reported that MODIS captures the albedo evolution well for most of
the GrIS, but that it has problems for inhomogeneous regions, like mountain ranges. MODIS albedo also shows a drop in
accuracy for SZAs larger than 55°, and becomes physically unrealistic for SZAs larger than 65° (Wang and Zender, 2010;

240 Liu et al., 2009). Therefore, the evaluation with RACMO?2 is limited to a SZA of 55° or less. In addition, latitudes north
of 75°N should be excluded, as the noise-to-signal ratio of MODIS becomes too high (Wang and Zender, 2010; Manninen
et al., 2019). Consequently, northern Greenland is omitted from the evaluation. As MODIS only measures during clear-sky

conditions, some regions have limited coverage.

productwith-Extensive evaluation of the MCD43A3 Version 006 Albedo product shows that it compares well with observations
Wright et al., 2014; Burkhart et al., 2017; Moustafa et al., 2017; Wang et al., 2018). For Summit located in central Greenland

Wright et al. (2014) report a RMSE and mean albedo difference with respect to in-situ observations aceerdingto-Stroeve-et-al(2043)-
are-0:067-and-0-0220f 0.026 and 0.015, respectively, indicating that MCD43 slightly overestimates the albedo.

245

2.4 In-situ measurements

In-situ observations provide insight in the performance of RACMO?2 for total-sky and cloudy conditions, unavailable from
250 remote sensing observations. Therefore, we evaluate the albedo product with the Automatic Weather Station (AWS) data along
the Kangerlussuag-transect (K-transect, Smeets et al., 2018) and with a selection of AWS data of the Programme for Monitoring
of the Greenland Ice Sheet (PROMICE) (Van As et al., 2011).
The K-transect data used are from AWS sites S5, S6, S9 and S10, and are available for 2006 up to 2015, with an exception
for S10, which is only available between 2010 up to 2015. The K-transect is located in southwest Greenland (Fig. 2¢) around
255 67° N. More specifically, S5 and S6 are located in the ablation zone, S9 approximately on the equilibrium line, and S10 in the
accumulation zone. Daily hourly-averaged observations are considered at noon local time in Greenland (15:00 UTC), and a
running average of 16 days is taken to fit the temporal sampling of MODIS.
PROMICE AWS are mostly located in the ablation zone. Only AWS sites that cover at least partially the model period and
for which an appropriate grid point can be selected in RACMO?2, are selected. Figure 2c shows the location of the PROMICE
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Figure 2. (a) Average 16-days running mean clear-sky RACMO2.3p3 albedo for 15:00 UTC (12:00 LT for most of Greenland) between
2006 and 2015, (b) MODIS MCD43A3 white-sky-clear-sky diffuse (CSD) albedo, (¢) albedo difference between RACMO2.3p3 clear-sky
albedo and MODIS MCD43A3 white-sky-CSD albedo and (d), like (c¢), but now after applying a uniform -6-:622-0.015 bias correction to
the MODIS MCD43A3 data. AWS locations of the K-transect are indicated in (¢) by the black dots, from west to east: S5, S6, S9 and S10.
PROMICE AWS NUK-U (north) and QAS-U (south) are indicated by the light-green dots. KAN-U and KAN-M are located close to S10 and
between S6 and S9, respectively, but are not shown separately. Extended evaluation is done for the enclosed purple region that is indicated

by A, for areas B, C and D, and the regions enclosed in the colored boxes.

stations used in this study. KAN-U and KAN-M are located along the K-transect, NUK-U and QAS-U are located in the

southwest and south, respectively.

3 Evaluation using MODIS albedo

In this section, we evaluate and discuss the Rp3 clear-sky albedo output with MODIS W-SA-CSD albedo for both broadband

and narrowband albedo and discuss processes involved.
3.1 Comparison with MODIS broadband albedo

Figure 2 shows the 2006-2015 average 16-days running mean clear-sky albedo of Rp3 (Fig. 2a) and MODIS WSA-CSD albedo
(Fig. 2b) at 15:00 UTC (local noon for most of Greenland). On average, the spatial patterns are similar, while some local
differences can be observed (Fig. 2¢c). The domain-averaged bias considering all glaciated grid points is -0.012, indicating a

slight underestimation of the modeled albedo with respect to MODIS ‘W-SACSD albedo. For the interior, indicated by A and

10
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enclosed within the purple line in Fig. 2¢, which excludes all grid points within five grid points of the margin, we observe
an average bias of -0.022, which is exactly-the-value-reperted-by-Stroeve-et-al+(2043)close to the mean difference of -0.015
for Summit reported by Wright et al. (2014). Correcting for this MCD43 albedo-bias-mean albedo difference (Fig. 2d), the
bias for area A reduces to 6:000-0.007, supporting excellent agreement in the accumulation zone. Furthermore, only a small
overestimation is observed in the large bare ice region around the K-transect (black dots in Fig. 2c), showing that the new bare
ice albedo parameterization produces adequate results for this region.

Around Jakobshavn (circle indicated by B in Fig. 2c), Rp3 considerably overestimates the albedo, especially during the
accumulation season. This region is characterized by rough and heavily crevassed terrain, causing an inhomogeneous snow
cover. Rp3, however, evenly distributes snow within a grid cell, that is, patches of snow are not modeled. Consequently,
the albedo of Rp3 is too high, as snow-free areas like hummocks and crevasse openings are not properly captured. Snow
subsequently remains for too long at the surface in Rp3 before melting in the ablation season.

The region indicated by C

shows an underes-

timation of Rp3 albedo compared to MODIS.

region-B;-butinereases-during-the-ablation-seasenRp3 typically only models a few decimeters of snow during winter that melt

uickly during summer, thinning and eventually removing these layers. Throughout the summer, Rp3 likely underestimates the
snow thickness, leading to underestimated albedo.

Most pronounced biases can be observed for grid points close to the margin in the southeast (region D), but extending
beyond this region. The albedo difference is typically around 0.03, but can be as high as 0.15. The ablation zone in D is too
narrow (up to 10 km) to be adequately resolved at the used resolution of 11 km (Noél et al., 2015). Furthermore, the southeast
is characterized by heavy snowfall (Ohmura and Reeh, 1991; Mernild et al., 2015), and in combination with the low model
resolution, snow persists at the surface throughout the ablation season in Rp3. Still, the grain radius increases and the albedo
drops somewhat during the ablation season, but not as fast as the albedo decline in MODIS. Note that the uncertainty of MODIS
is also considerable, as this is mountainous terrain (see Sect. 2.3).

Figure 3 correlates the uncorrected MODIS W-SA-CSD albedo with Rp3 clear-sky albedo at noon on a grid-point level for
the whole time span and domain (Fig. 3a) and in various regions (Fig. 3b-d). In general, Rp3 correlates well with MODIS
with a low RMSE and bias, but typically underestimates the albedo, as is also observed in Fig. 2. With declining albedos,
both Rp3 and MODIS W-SA-CSD albedo generally follow the same pattern, also in the bare ice regime. There are, however,
two distinct outliers visible in Fig. 3a, around Rp3 albedos of 0.81 and 0.70, where Rp3 models fresh and melting snow,
respectively, instead of bare ice that MODIS observes. These data points originate from the southeast (area D of Fig. 2c, see
the previous discussion). The bias for the Summit region (Fig. 3b) is similar to both the bias of area A (Fig. 2¢) and the bias of
the MODIS W-SA-product{Stroeve-et-al-2043)CSD albedo product (Wright et al., 2014). Furthermore, the albedo variability
is low for this region, as melt does normally not occur here (except for July 2012 (Nghiem et al., 2012; Bennartz et al., 2013))
and metamorphosis-metamorphism is slow in this cold climate. Figure 3c represents an area in southern Greenland without
bare ice, which is characterized by albedo decrease due to rapid snow metamorphism (Lyapustin et al., 2009). Rp3 performs

well for this region. The region shown in Fig. 3d corresponds roughly with the ablation zone of the K-transect. The bias is very
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Figure 3. Comparison between 16-days running mean RACMO2.3p3 clear-sky albedo and MODIS MCD43A3 WSACSD albedo. Every
data point represents an observation at a grid point at 15:00 UTC for a day between 2006 and 2015. In black the 1-to-1 line. The red line
is the linear regression of the data, with b0 the slope and b1 the intercept. In addition, number of records (N), correlation coefficient (R?)
and root-mean-square error (RMSE) are displayed. Colours indicate number of data points and the bin size is 0.01. (a) Displays data for the

whole domain, (b), (c) and (d) the brown, green and pink boxes in Fig. 2c, respectively.

low considering the large variability in the ablation zone and the correlation coefficient is high. Both the bare ice and snow
albedo schemes perform well and merge smoothly together. Note that the outliers of Fig. 3a are absent around the K-transect,

indicating that it is not the bare ice albedo scheme that causes the discrepancies.
3.2 Comparison with MODIS narrowband albedo

MODIS broadband albedo is derived from its seven narrowband sensors (red bands in Fig. 1d). Note that the quality of band 6 is
reduced for the AQUA satellite due to instrument failure (Stroeve et al., 2006; Box et al., 2012). To allow for direct comparison
with MODIS’ narrowband observations, TARTES within Rp3 is also run for wavelengths representative for the seven MODIS
bands with diffuse radation—Note-that-these-results-radiation. For these bands, CSD albedo output of Rp3 is available. Note
that the albedo determined for the seven MODIS bands are not used to compute a broadband albedo within Rp3. Figure 4
shows the mean spectral albedo difference for these seven bands. Bands that are associated with a strong albedo gradient as
a function of wavelength (Fig. 1d) show larger spatial variations (band 2 and 5, Fig. 4b and e) than bands that either have a
high (band 1, 3 and 4, Fig. 4a, c and d) or low albedo (band 6 and 7, Fig. 4f and g). Overall, differences in the interior are
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Figure 4. Average albedo difference for 15:00 UTC between RACMO2.3p3 16-days running mean efear-sky-diffuse-CSD albedo and MODIS
MCD43A3 swhite-sky-atbedo-CSD product, between 2006 and 2015 for (a) band 1 to (g) 7 (red bands in Fig. 1d). The spectral width of each

band is also shown.

small. Large differences are again observed in area D. Bands 1, 3 and 4 show a large positive model bias for the bare ice zone,
while the bias for this region is limited for bands 2, 5, 6 and 7. This positive bias for bands 1, 3 and 4 is only present when
bare ice is at the surface, illustrating the importance of correctly modeling soot in ice, as soot alters the albedo in particular
for these bands (Gardner and Sharp, 2010). Although large quantities of soot have been added for bare ice, as discussed in
Sect. 2.1.3, apparently it is not enough to lower the albedo for bare ice to MODIS values. It is, however, expected that Rp3
needs large amounts of soot to lower the bare ice albedo. as no dust, cryoconite and algae are modeled, all of which lower the
albedo (Bgggild et al., 2010). Elsewhere, Rp3 generally shows small differences with the seven MODIS bands, indicating that

the albedo for various wavelengths is captured well.

4 In-situ broadband albedo measurements

Along the K-transect, albedo data are available at S5, S6, S9 and S10 (Fig. 2¢) for 15:00 UTC and are shown in Fig. 5 for
2012 and compared with Rp3 clear-sky and total-sky conditions, Rp2 total-sky, and MODIS W-SACSD. S5 is too close to the
ice margin for MODIS to produce a reliable albedo at this resolution, and is not included. As the area around this station is
characterized by very rough terrain, RACMO?2 at this low resolution has trouble reproducing the in-situ albedo.

For S6, Rp3 albedo corresponds well with the measurements, especially when snow returns after the melt season. At the
onset of the accumulation season, Rp2 performs-performes considerably worse, as a lack of radiation penetration causes a

too rapid albedo increase. As the accumulation season progresses and the snow layers become thicker, the albedo difference
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Figure 5. Time series of the average 16-days running mean broadband albedo for 15:00 UTC for RACMO2.3p3 clear-sky (CS) and total-sky
(TS) conditions, RACMO2.3p2 TS, MODIS swhite-sky-atbedo-clear-sky diffuse (W-SACSD) albedo and in-situ albedo for 2012 for (a) S5,
(b) S6, (¢) S9 and (d) S10.

between Rp3 and Rp2 diminishes. MODIS W-SA-CSD albedo fits well with Rp3 clear-sky albedo for bare ice conditions. The
resolution of RACMO?2 is not sufficient to capture all spatial variations, i.e., the AWS data might not be representative for the
full grid point of RACMO?2 in which S6 is located.

For S9 (Fig. 5¢), both Rp3 and Rp2 total-sky albedo show relatively large deviations with the in-situ measurements during
the accumulation season, but the difference of Rp3 clear-sky albedo with MODIS W-SA-CSD albedo is much smaller. Site S9
is characterized by spatial inhomogeneity, although to a lesser degree than S5 and S6. During the start of the ablation season,
superimposed ice persists at the surface, delaying the albedo drop to bare ice values by a few days. Just like at S6, the Rp3
albedo fits better than Rp2 with both in-situ and MODIS observations at the onset of snowfall after summer.

S10 observations (Fig. 5d), which are representative for the lower accumulation zone of Greenland, correspond well with
both Rp3 and Rp2. In addition, Rp3 fits with MODIS WSA-CSD albedo before the melt season, and performs reasonably
well during and after the melt season. 2012 is characterized by a long and intense melt season, explaining the albedo decrease
observed in MODPIS-WSAthe MODIS CSD albedo product. The melt season albedo decrease in Rp3, however, is slightly
delayed.
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5 Comparison with RACMO2.3p2

In this section, we compare the Rp3 albedo product with Rp2 and highlight the differences. Moreover, we investigate the impact

that clouds have on the albedo and investigate the seasonal differences.
5.1 Broadband albedo differences

Figure 6 shows the 16-days running mean total-sky albedo for 15:00 UTC between 2006 and 2015 for Rp2 and the albedo
difference between Rp3 and Rp2. For most of the ice sheet, a small negative difference is observed, i.e., the albedo of Rp3 is

slightly lower than Rp2.
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Figure 6. (a) Average 16-days running mean total-sky RACMO2.3p2 albedo and (b) the average albedo difference between RACMO2.3p3
and RACMO2.3p2, for 15:00 UTC between 2006 and 2015, with positive differences indicating that the albedo of RACMO2.3p3 is larger
than RACMO2.3p2. Extended evaluation is done for the enclosed region of E and F and the grid point located at the star.

In areas E in the north-west and F in the north-east (Fig. 6b), the albedo of Rp3 is lower than Rp2. Both regions are
characterized by limited snowfall, resulting in a shallow snowpack on top of bare ice during the accumulation season for

several months (Fig. 7).

for-solar-radiation—to-reach-the-bare-teeJayersunderneath;-At the end of the ablation season when new snow layers start to
form, melt can still occur, forming melt water within those layers. This is more common in Rp3, as internal heating increases
the subsurface temperature and therefore more melt occurs, changing the snow structure and lowering the albedo in Rp3 -

with respect to Rp2. Furthermore, if melt is strong enough, it can remove or thin the fresh snow top layer, exposing bare ice
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360 underneath. As the accumulation season progresses and the sun rises again above the horizon, the snowpack is already thick
enough to prevent solar radiation to reach subsurface bare ice layers in any significant amount, reducing the albedo difference.

We also observe a small albedo difference (smaller than 0.01) in the high accumulation region in southeast Greenland (area

D of figure 2¢). For some grid points around the margins, the albedo of Rp3 is considerably higher than Rp2. This difference is

more pronounced in areas with exposed bare ice during the ablation season, and is limited to a single grid point bordering non-

365 glaciated tiles. These differences can be traced back to uncertainties in the bare ice albedo field of Rp2, where grid points close

to the margin are-were contaminated with tundra albedo, and an albedo difference with the new model is therefore expected.
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Figure 7. RACMO2.3p3 grain radius of the upper 20 snow layers as a function of depth for 2012, for a grid point within area E (Fig. 6b).
Bare ice is indicated by a grain radius of 1000 pum.

Figure 8 compares albedo of Rp3 and Rp2 for the entire ice sheet and smaller regions indicated by the colored boxes in Fig.
2c. In general, Rp3 albedo correlates well with the albedo product of Rp2 (Fig. 8a), as the bulk of occurrences are close to the
1-to-1 line (black line). Most of the GrIS is covered in snow, for which the albedo is high (larger than 0.75) and the albedo

370 difference is small (number 1 in Fig. 8a). Snow metamorphism is slightly stronger in Rp3, leading to lower albedos (about
0.75) compared to Rp2 (about 0.8, 2). Both 1 and 2 typically occur in the interior (Fig. 8b).

Larger albedo differences occur when firn or ice are close to the surface as radiation penetration lowers Rp3 albedo (3). A
snow profile similar to Fig. 7 in early June would result in such an albedo difference. For the 0.6 albedo bin of Rp2 (4), the
albedo of Rp3 is generally 0.05 higher, illustrating that Rp3 seems to have a slower firn-ice transition. In south Greenland (Fig.

375 8c), processes 1, 2, 3 and 4 are all relevant.

The snow and ice albedo merge well, but the Rp3 albedo is often higher than Rp2 for the ablation zone, i.e., for albedos
smaller than 0.6. Still, highest occurrence density is found near the 1-to-1 line (5). As the new bare ice albedo parameterization
allows variations due to atmospheric conditions, as is described in Sect. 2.1.3, some deviations are expected. That is to say,
higher albedos with respect to Rp2 are expected for bare ice, as atmospheric variations usually increase the albedo, e.g., clouds.

380 Additionally, edge errors in Rp2 eause-caused a considerable albedo difference, typically when Rp2 albedo is-were smaller
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Figure 8. Comparison of 16-days running mean total-sky albedo of RACMO2.3p3 with RACMO2.3p2 for 15:00 UTC, between 2006 and
2015. Similar to Fig. 3, (a) shows all ice sheet points, (b), (c) and (d) only grid cells in the brown, green and pink boxes in Fig. 2c, respectively.

Numbers and dashed lines in (a) are discussed in the text.

than 0.35 (6). Processes 1 to 6 are all applicable to the region around the K-transect (Fig. 8d), causing a spread for this region
that is considerably larger than for the regions in Fig. 8b and Fig. 8c.

The large differences 7 and 8, that is, all occurrences beyond the dashed lines in Fig. 8a, are not present in the regions
considered in Fig. 8b to Fig. 8d. Process 7 occurs almost exclusively next to the ice margin; some in the west, but most in
the east and north. In addition to the previously described errors occurring for those points (i.e., mixing with tundra points),

snowfall or superimposed ice that is not present in Rp2 can also contribute to the difference. For 8, most occurrences are

associated with area F of Fig. 6b and to a lesser extent area E
layers—arelocated-on—top-of-bareiee-and some grid points close to the ice-sheet margin in northern and eastern Greenland.

These occurrences represent cases that Rp2 modeled a fresh snow top layer without melt while Rp3 models either bare ice or

amelting snow or firn layer.
To conclude, the albedo product of Rp3 is often similar to Rp2, but some distinct differences are still notable (Fig. 6 and Fig.

8). All these differences can be well understood in terms of physical processes.
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5.2 Clouds

In Rp3, SNOWBAL allows spectral variations in the incoming solar radiation to impact the surface albedo (see Sect. 2.1.2).
As clouds absorb mainly in the (infra)red part of the spectrum, a blue shift occurs, which consequently increases the surface
albedo (Dang et al., 2015). The cloud dependence of the surface albedo parameterization in Rp2 is-was limited to the cloud
optical thickness, neglecting water vapour while no distinction is made between liquid or ice water clouds. Figure 9 shows for
a grid point in south-central Greenland (star in Fig. 6b) the total-sky surface albedo, transmissivity for shortwave radiation in
the atmosphere, i.e., the ratio between the top-of-atmosphere (TOA) and surface downwelling radiation, and the fraction of
TOA shortwave radiation absorbed in snow as a function of vertically integrated cloud content (VICC), i.e., total liquid water
and ice in the atmosphere above a point, for Rp3 and Rp2.

For clear-sky conditions (VICC smaller than 0.05 kg m~2), the surface albedo in Rp3 is slightly lower than Rp2 (Fig. 9),
which is in agreement with previous results. The surface albedo in Rp3, however, increases more rapidly with VICC than
in Rp2, leading to higher albedos for large VICC. Furthermore, the transmissivity decreases slower with VICC than in Rp2
and less radiation is absorbed in snow. For example, for a VICC of 0.3 kg m~2, the surface broadband albedo, transmissivity
and fraction of absorbed energy changes by 0.02, 0.04 and -0.01, respectively. The latter implies that the net SW absorption
decreases by approximately 25%. These differences show that as a cloud thickens and the surface albedo increases in Rp3, more
reflected radiation will interact with clouds, eventually raising the transmissivity. Consequently, as these shorter wavelengths

now scatter more often and are less likely to be absorbed in the snow, a white-out effect occurs, which is not captured in Rp2.
5.3 Albedo seasonality

Seasonal changes of albedo differences in Rp3 with respect to Rp2 are generally small (Fig. 10). During winter (December,
January and February (DJF), Fig. 10a), a homogeneous pattern is present with a small negative difference, that is, the albedo of
Rp3 is lower than Rp2. This albedo difference can be mostly attributed to spectral albedo effects, and not as much to radiation
penetration, as fresh snow layers are thick enough ice-sheet wide for radiation penetration to be negligible. The winter months
are characterized by a high-large SZA, for which a spectral shift towards larger-longer wavelengths occurs. The-speetral-For
the spectral albedo of IR radiation is low -henee-the-broadband-albedo-drops(Fig. 1d)—This-effectis-weakerinRp2-thanin-,

however, is only properly captured in Rp3(VanDalum-et-al52019)Jeadingto-aloweralbedo—, mitigating the albedo increase
with SZA somewhat (Fig. 11 in Van Dalum et al. (2019)). Consequently, the modeled broadband albedo is lower for Rp3 with

respect to Rp2 in the winter months. The red shift in irradiance becomes more dominant towards the northern regions as the
SZA increases, explaining the northward albedo difference gradient. Albedo differences diminish as spring progresses (March,
April and May (MAM), Fig. 10b) and the sun rises higher in the sky.

During summer (June, July and August (JJA), Fig. 10c), larger spatial variations are observed, but the albedo differences in
the interior remain small. Along the margins, the albedos can be much higher in Rp3 due to tundra contaminated bare ice albedo

in Rp2. Around the equilibrium line in the southwest, a line with higher Rp3 albedos is present, which is due to superimposed
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ice as is described in Sect. 2.1.4. Small positive albedo differences are observed in wet snow regions, e.g., area D in Figure 2c,

where snow layers with large grains are located close to the surface. Autumn (September, October and November (SON), Fig.

10d) presents very-small deviations for most of the ice sheet, as the-SZA-is-too-small-to-make-a-significant-difference;-and-fresh

snow layers accumulate and the SZA increases, slowly transitioning to winter conditions and the processes described for DJF

become increasingly important.

6 Sensitivity experiments: soot concentration

e
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Figure 11. Bias-corrected average 16-days running mean albedo difference for 15:00 UTC between RACMO2.3p3 clear-sky albedo and
MODIS MCD43A3 W-SA-CSD albedo product, between 2011 and 2015, for (a) an impurity concentration of 0; (b) 5 ng g ' (e)10ngg™!
and (d) 50 ng g~ .

The snow albedo of Rp3 can be tuned with impurity concentration, which in the control run has a fixed value of 5 ng
g~ !. Snow albedo difference for various impurity concentrations with respect to MOBIS-W-SA-the bias-corrected MODIS
CSD albedo is shown in Fig. 11 (2011 - 2015). Excluding all grid points within five grid points of the margin, the mean bias
becomes 6:061:—-6-002:~0:004-and—0-6045-—-0.006, —0.009, —0.011 and —0.022 for impurity concentrations of 0, 5, 10 and 50
ngg™!
g

, respectively. The sensitivity to impurity concentration is generally low except for very high concentrations, e.g., 50 ng

Results for a selection of K-transect and PROMICE observational sites (Fig. 2c) that are sufficiently far away from the
ice margin are shown in Fig. 12. Figure 12a is a normalized Taylor diagram (Taylor, 2001) and Fig. 12b shows the bias,
misrepresented variability, which is defined as \/Im , and RMSE, all scaled with the standard deviation in the
observations.

In a Taylor diagram, the azimuthal position illustrates the correlation coefficient, the radial distance to the origin the standard
deviation and quarter circles with its origin at the 1.0 standard deviation the misrepresented variability. A data set matches the
observations perfectly if it is located at the star in Fig. 12a, i.e., with a correlation coefficient and standard deviation of 1 and
a misrepresented variability of 0. Data sets located away from the star but on the dashed line have the same variance as the
observations, but do not correlate perfectly, leading to a higher misrepresented variability. Data sets close to the origin and close

to the y axis, for example, are characterized by an underestimation of the standard deviation and a low correlation coefficient,
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while data sets beyond the dashed line and close to the x axis overestimate the standard deviation, but have a high correlation
coefficient. Similarly, the misrepresented variability is illustrated on the y axis, bias on the x axis and the RMSE on semi circles
in Fig. 12b, with data sets performing better close to the origin.

Model performance varies for each observational site, but the sensitivity to small impurity concentrations is generally low.

!, on the other hand, alter the albedo considerably, reducing the quality of

High concentrations of impurities such as 50 ng g~
Rp3 for almost all stations. For NUK-U and QAS-U, which are both located in south Greenland and within 50 km of the ice
margin, RACMO?2 correlates relatively well, but severely underestimates variability and shows a large bias. As the ice margins
are characterized by a high soot concentration (Doherty et al., 2010), a higher modeled soot concentrations consequently
performs somewhat better for these locations. Snow cover in RACMO?2 is also too homogeneous and similar processes that we
discussed for area B and D of Fig. 2c occur. Additionally, RACMO?2 is known to overestimate snowfall for QAS-U, inhibiting
bare ice to surface (Noél et al., 2018). For S10 and KAN-M, which are most representative for the interior of the ice sheet, the

1

differences between Rp3 with impurity concentration of 5 and 10 ng g~! and to a lesser degree also with 0 ng g~! and Rp2,

are small and in good agreement with observations. To summarize, as the sensitivity of Rp3 to small impurity quantities is low
and the snow albedo is generally in good agreement with observations, an ice-sheet wide impurity concentration of 5 ng g+

is a safe choice and for the interior is in good agreement with observations (Fig. 11b).

7 Summary and conclusions

We evaluated the new spectrally-dependent snow and ice albedo parameterization in RACMO?2, based on TARTES and coupled
by SNOWBAL, for the Greenland ice sheet. The albedo correlates well with the MODIS MCD43A3 white-sky-clear-sky diffuse
albedo product for both broadband and its seven spectral bands, and performs especially well in the interior. Some discrepancies
around the margins are observed, which can be partly ascribed to resolution problems and excessive modeled snowfall, but also
to uncertainty in the MODIS product. Around the K-transect, for which many observations are available, the snow and ice
albedo in RACMO?2 show acceptable small deviations with in-situ and MODIS observations.

With respect to the previous albedo parameterization of RACMO2, slightly lower broadband albedos are modeled. Although
large broadband albedo differences at the margins are due to an error in the old version, most changes can be ascribed to
improved physics. Radiation penetration, subsurface heating, the inclusion of narrowband albedo and spectral shifts due to
solar zenith angle, water vapour and both ice and water clouds are now all incorporated.

There is, however, still room for improvement. The soot concentration for snow is fixed in RAMCO?2, while it can change
considerably over space and time (Chylek et al., 1992; Doherty et al., 2010; Van Angelen et al., 2012; Dang et al., 2015).
Although RACMO?2 shows a low sensitivity to small impurity concentrations, a prognostic soot model for snow prescribing a
dynamic one-dimensional soot concentration profile is still preferable. Furthermore, no other impurity types are included.

We have also improved the bare ice albedo field by coupling it with TARTES and defining a fictitious grain size, which allows
the broadband bare ice albedo to vary with atmospheric conditions. Nevertheless, a proper bare ice albedo module would still

be preferable, as for example, a process like darkening due to biological activity is not incorporated, which may become
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Figure 12. (a) Normalized Taylor diagram (Taylor, 2001) for 16-days running mean total-sky albedo of RACMO2.3p3 with various impurity
concentrations and RACMO2.3p2 with respect to a selection of K-transect and PROMICE in-situ observations for 15:00 UTC between 2011
and 2015. The standard deviation is illustrated by the radial distance to the origin, the correlation coefficient by the azimuthal position and
the misrepresented variability, defined as \/m , by quarter circles with its origin at the 1.0 standard deviation. (b) Extension to
the Taylor diagram, which shows the misrepresented variability on the y axis, bias on the x axis and RMSE on semi circles from the origin.

All data is normalized with respect to in-situ observations.

important for future projections (Tedesco et al., 2016; Tedstone et al., 2019). TARTES is based on Rayleigh-seatteringsimple
geometric-optics theory, while an ice albedo module with Mie-scattering theory is required (Gardner and Sharp, 2010).

Evaluation of the narrowband albedo of RACMO2 remains limited, as most of the spectral bands of MODIS are located
at the edge of rather large bands of RACMO?2 and hence cannot be compared directly. To solve this, we have run TARTES
specifically for diffuse radiation for the seven bands of MODIS. For these bands, differences between modeled albedo and
observations are low. In the bare ice zone, band 1, 3 and 4, which are within the visible light part of the spectrum, show a larger
narrowband albedo bias than the other bands. Larger spatial variations are observed for bands 2 and 5, which are characterized
by a strong sub-band spectral albedo gradient.

To conclude, the new snow and ice albedo scheme of RACMO?2 performs very well compared to remote sensing and in-

situ observations for the Greenland ice sheet. Differences with the previous RACMO2 version are generally small, but where
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differences are observed, the new processes lead to improved broadband albedo estimates. The improvement of the albedo
scheme of RACMO2 will enhance its ability to make future climate projections. In a forthcoming publication, we assess the
impact of the new snow and ice albedo scheme on the surface mass balance, surface energy balance and subsurface energy

absorption of the Greenland ice sheet.
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Referee comment response on the manuscript:

Evaluation of a new snow albedo scheme for the Greenland ice sheet in the regional climate model
RACMO2

by C.T. van Dalum et al.

We would like to thank the reviewers for their constructive comments that have improved the
accuracy of the evaluation and the clarity of the paper. In black the comment, in the response,
in blue the changes that we would implement in the manuscript.

Review #1 by Stephen Warren

(1) Lines 28-29. “With coarser grains, the likelihood for light to reflect off a grain’s surface out of the
snowpack reduces, lowering the albedo.” This is not true; reflection off a grain’s surface is
independent of grain size and is anyway a minor contributor to the albedo; successive refraction
instead dominates (Bohren and Barkstrom, 1974). The correct explanation for dependence of albedo
on grain size is given by Warren (2019, cited in the paper): “In coarse-grained snow, a photon travels
a longer distance through ice between opportunities for scattering than in fine-grained snow, so it is
more likely to be absorbed, and therefore a snowpack of coarse grains has lower albedo.”

Page 2:

With coarser grains, light has to travel longer through ice before it has the opportunity to reflect off a
grain's surface out of the snowpack than for fine-grained snow, hence lowering the albedo (Wiscombe
and Warren, 1980; Gardner and Sharp, 2010; Picard et al., 2012, Warren, 2019). Fresh snow with a
small grain radius...

(2) Lines 140-142. “We assume that clean bubble-free ice has an albedo of approximately

0.6 (Reijmer et al., 2001) and that the bare ice albedo is subsequently lowered by . . . bubbles . ...”
This statement is wrong in three ways. First, Reijmer et al. did not say that bubble-free ice has albedo
0.6. Second, a thick layer of ice, if it is really bubble-free, will have very low albedo, about 0.07. Bubble-
free ice does sometimes occur on frozen lakes, where it is appropriately called “black ice”. Third, the
albedo of ice is raised by bubbles, not lowered. The bubble surfaces are what are responsible for the
model’s assumed specific surface area of 0.788 m?/kg. Without bubbles (or cracks), the SSA of thick
ice would be zero, and the albedo would be only the Fresnel reflection at the top surface (which is
0.07 for diffuse incidence). Figure 17b of Dadic et al. (2013, cited in the paper) shows the broadband
albedo versus SSA for ice, firn, and snow, all on the same plot.
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Firstly, we assume that clean blue ice has an albedo of approximately 0.6 (Reijmer et al, 2001; Dadic
etal, 2013). Blue ice is typically found in areas with a very smooth surface and high sublimation rates,
but no melt, and has a high bubble content, leading to a relatively high albedo. The bare ice albedo is
subsequently lowered by standing water, surface roughness and impurities. Furthermore, we assume
that MODIS...

(3) Superimposed ice is mentioned in several places (e.g. lines 285-286), but is not discussed
adequately. The reader wants to know the definition of superimposed ice, and why its albedo is higher
than that of bare glacier ice. Glacier ice is formed by compression of snow under pressure, whereas
superimposed ice is formed by refreezing of meltwater. The paper describes superimposed ice as
having a granular structure with grain radius 0.7-1.0 mm, which could result in a higher SSA than in
glacier ice. But there are reports of such a surface granular layer developing also in glacier ice
exposed to sunlight, as in Figure 1 of Mueller and Keeler (1969).



from bare ice that is formed by compaction. More importantly for us, however, is the different way
that superimposed ice is treated compared to bare ice in the model. Superimposed ice does not use
the bare ice albedo scheme, as is described in Sect. 2.1.3, but uses the snow albedo scheme and the
changes described in Sect. 2.1.4. We think that changing the following in Sect. 2.1.4 is sufficient for
the reader to know what we mean with superimposed ice for the rest of the paper.
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In Rp3, superimposed ice is treated differently than glacial ice. Superimposed ice forms in snow layers
by refreezing of melt water, while glacial ice forms by compaction of snow. As superimposed ice has
a granular structure (Granskog et al., 2006), it has to be treated differently than bare ice. Due to the
granular structure, it is desirable to use the snow albedo scheme of Sect. 2.1.2 over the bare ice albedo
scheme of Sect. 2.1.3, as a fixed rather large grain radius is used for bare ice. However, without
additional corrections, the typical grain size of model layers with superimposedice in Rp3is0.7 to 1.0
mm, leading to unrealistically high albedos of approximately 0.7. The typical albedo of superimposed
ice is 0.65, as is measured by Knap and Oerlemans (1996) at S9 of the K-transect. In order to improve
this, a minimum grain radius for superimposed ice is imposed, which increases linearly from 0.720 mm
for a density of 750 kg m3, to the bare ice value of 4.152 mm for a density of 917 kg m3. This
superimposed ice layer uses the same impurity concentration as a snow layer. This correction leads to
realistic albedos for superimposed ice and exposed ice lenses.

(4) The effect of a thin snow layer on top of ice is belittled in the Rp3 model. On Line 329, Location 8,
with an Rp3 albedo of only 0.45, is said to be thin snow on bare ice. But in a comparable situation,
Figure 2 of Brandt et al. (2005) showed that when thick bare sea ice of albedo 0.49 was covered with
5-10 mm of snow, its albedo rose to 0.81. So why was the Rp3 albedo so low? You might check to see
whether the snow was melting.

After analysis of these cases, we agree that our conclusion was not correct. Location 8 represents grid
points where Rp3 models either bare ice or melting snow or firn, while Rp2 models a fresh snow top
layer. So it does not show a strong direct radiation penetration effect on albedo. We have changed
the following:
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At the end of the ablation season when new snow layers start to form, melt can still occur, forming
melt water within those layers. This is more common in Rp3, as internal heating increases the
subsurface temperature and therefore more melt occurs, changing the snow structure and lowering
the albedo in Rp3 with respect to Rp2. Furthermore, if melt is strong enough, it can remove or thin
the fresh snow top layer, exposing bare ice underneath. As the accumulation season...
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... and to a lesser extent area E and some grid points close to the ice-sheet margin in northern and
eastern Greenland. These occurrences represent cases that Rp2 models a fresh snow top layer without
melt while Rp3 models either bare ice or a melting snow or firn layer.

Minor comments

Line 32. In spite of the importance of snow grain shape for albedo, a model of spherical grains still
accurately reproduces the measured spectral albedo, by adjusting the grain radius. The reason this
procedure works was explained by Dang et al. (2016).

The reviewer is right and we have added the following in the manuscript.
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...out of the snowpack (Libois et al., 2013; He et al., 2018a), but Dang et al. 2016 show that a model
with spherical grains can still accurately reproduce the measured spectral albedo by adjusting the
grain radius. To summarize, it is thus essential...

Line 38. “Rayleigh scattering [by the atmosphere] is more effective for larger wavelengths...”. Change
“larger” to “shorter”. Rayleigh scattering is inversely proportional



to the fourth power of the wavelength, so blue is scattered more than red.

Changed as requested
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...as Rayleigh scattering by the atmosphere is more effective for shorter wavelengths...

Line 42. Change “incoming radiation” to “incoming direct-beam radiation”.

Done
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...of the incoming direct-beam radiation...

Line 54. “version 2.3p3”. | am guessing that the “p” means “polar”. Is that correct?
Yes, “p” means polar. To clarify this, we have added the following:
Page 2:

The polar (p) version of RACMO?2 is a model developed..

Line 64. “the new snow albedo parameterization is used to update the ice albedo scheme”. Does this
mean that snow and ice both use the same parameterization, just with different coefficients?

Snow and ice now both use the TARTES/SNOWBAL albedo parameterization, but the grain radius/SSA
and impurity content for bare ice is different.
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Additionally, the new snow albedo parameterization is used to develop a new ice albedo scheme.

Lines 77-78. “The polar version of RACMO?2 . . . is adapted for glaciated regions by using a multilayer
snowpack . . .” Is this scheme used also for seasonal snow in midlatitudes, or only for polar latitudes?
If the latter, what is the latitude domain to which the model is applied?

Multilayer snowpack is not used for seasonal snow in midlatitudes, it is only used for glaciated tiles,
which is for our domain the Greenland ice sheet and its surrounding glaciers, if those glaciers are large
enough to fill up a grid point.
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... adapted for glaciated tiles by using ...

Lines 97-98. “For ice layers . . . only a density reduction takes place and no thinning occurs.” This is
backwards. When ice melts, it thins, but the density of the remaining ice is unchanged.

Although you are right that the density of the remaining ice will remain, the density of the model layer
will go down as pore space is created. Moreover, if melting ice reaches the surface, it will thin the
layer. To clarify this, we changed the following:
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Thirdly, internal energy absorption heats subsurface snow layers and can induce melt. In Rp3, melt
will only thin a subsurface snow layer, i.e., a layer with a density below 700 kg m™ and not change its
density. For ice layers, i.e., with a layer density larger than 830 kg m?, melt creates pore space,
reducing the layer density and no thinning occurs.

Line 104 (and elsewhere). “Rp2 uses . . .” To distinguish Rp2 and Rp3, | suggest using past-tense for
Rp2 and present-tense for Rp3.
As requested, we changed the tense to the past on relevant places when Rp2 is used.

Line 114. “grain shape . . . are all explicitly resolved”. How is grain shape described in the model?

In the model, all grains are assumed to be spherical.
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...are all explicitly resolved. In this study, all grains are spherically shaped. TARTES is able to calculate...



Lines 145-149. Bohren (1983) was the first one to show that bubbly ice could be modeled as very-
coarse-grained snow, as done here.

Thank you for this suggestion. We have added a reference to the work of Bohren (1983) in the
manuscript.
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...and thus can be used to indicate clean, bare ice, which is similar to the findings of Bohren (1983).

Line 161. “unrealistically high albedos of 0.7”. A reference is needed here for measured albedos of
superimposed ice, to show that an albedo of 0.7 is too high.

As is described in comment (3) of this review, we have added the following:
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The typical albedo of superimposed ice is 0.65, as is measured by Knap and Oerlemans (1996) at S9 of
the K-transect. In order to improve this...

Line 170, reference to Chylek et al. A better reference is McConnell et al. (2007).
Changed as requested

Line 171. It is true that Doherty et al. (2010) found an average of only 3 ng/g soot, but as the snow
melts the soot accumulates at the surface, attaining concentrations in the top centimeter of 20-100
ng/g at Dye-2 (Figure 8a of Doherty et al. 2013).

We have specified where this 3 ng/g is a representative number. We chose to have the impurity
content right for non-melting conditions, in order to get the melt-onset timing right.
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In the interior and when no melt occurs, the soot concentration is approximately 3 ng g™...

Lines 178-179. “the bare ice albedo value is replaced with the bare ice soot concentration .. .” Rewrite
this sentence. It does not make sense to replace an albedo value with a soot concentration; they have
different units.

We have adjusted the formulation as the initial formulation resembled the numerical implementation
of boundary files, while for the paper this is indeed only confusing.

Page 7:

...initialization day, i.e., 1 September 2000, but the fresh snow sub-layer data is omitted.
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Furthermore, Rp3 is initialized with a soot concentration that can be used to calculate the bare ice
albedo (Sect. 2.1.3).

Lines 233-234. “The region indicated by C. . . albedo difference during winter . ..” Region Cis at latitude
72.5 degrees, so on the March equinox at noon the SZA is 72.5 degrees, and throughout the winter
the SZA is greater than this. Since you are limiting your comparisons to SZA<55 degrees, in winter the
Sun is too low for any comparisons.

You are right, we made a mistake with the analysis for region C, as the MODIS product cannot be used
in winter for this location. The albedo for a grid point as a function of time is shown in the added figure
(left) for a grid point within area C for 2012. Clearly, Rp3 underestimates the clear-sky albedo here.
This difference is likely caused by the small amount of snow present in Rp3, which quickly thins and
vanishes during summer, reducing the albedo (right figure).
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the same grid point as the left figure in 2012.
Page 9:
The region indicated by (C) shows an underestimation of Rp3 albedo compared to MODIS. Rp3
typically only models a few decimeters of snow during winter that melt quickly during summer,
thinning and eventually removing these layers. Throughout the summer, Rp3 likely underestimates
the snow thickness, leading to underestimated albedo.

Lines 252-253. “metamorphosis . . . metamorphism”. Use consistent terminology. LaChapelle favored
“metamorphism”.
Changed as requested

Lines 269-270. “large quantities of soot . . . not enough to lower the albedo for bare ice to MODIS
values”. Bare ice on Greenland contains not just soot but also dust, cryoconite, and algae, all of which
reduce the albedo. Bgggild et al. (2010, Table 1) reported ice albedos as low as 0.2.

We have adjusted the text to include this notion.

Page 12:

Itis, however, expected that Rp3 needs large amounts of soot to lower the bare ice albedo, as no dust,
cryoconite and algae are modeled, all of which lower the albedo (Bgggild et al., 2010).

Line 335 Section 5.2. In this section, clarify that by “albedo” you mean surface albedo,
not TOA albedo.
As requested, we changed the term ‘albedo’ to ‘surface albedo’ in this section.

Line 356. Change “larger” to “longer”.
Changed as requested.

Line 366. “[In autumn] the SZA is too small to make a significant difference”. The Sun is nearly as low
in SON as in DJF; they are the two “low-sun” seasons. So what you said about the effect of SZA in DJF
should also apply to SON.

You are right, and we change it accordingly.

Page 18:

Autumn (September, October and November (SON), Fig 10d) presents small deviations for most of the
ice sheet, as fresh snow layers accumulate and the SZA increases, slowly transitioning to winter
conditions and the processes described for DJF become increasingly important.

Line 417 states that the TARTES snow model is based on Rayleigh scattering. Rayleigh scattering
applies to gases, and to particles much smaller than the wavelength. Maybe TARTES uses Rayleigh
theory for submicron soot particles, but surely not for snow grains.



TARTES uses a geometric-optics method, so not Rayleigh scattering, so you are right. We have changed
the following:

Page 4:

...asymptotic analytical radiative transfer theory (Kokhanovsky, 2004; He and Flanner, 2020) using the
geometric-optics method...

Page 5:

Despite not using Mie-scattering theory, the spectral curve in TARTES for this SSA value resembles the
expected curve for bareice...

Page 19:

TARTES is based on simple geometric-optics theory, while an ice albedo module with Mie-scattering
theory is...

Figure 1. Much of the coastal region, but not all, is blank. What are the blank areas; are these ice-free
and snow-free?
That is correct, the blank areas are not glaciated. For the changes made in the text: see next comment

Figure 1 caption. Line 1. “16-day”. What months are included? Lines 1-2. “The albedo is limited
between 0.30 and 0.55”. | don’t understand this; you know that the accumulation area has albedo
>0.55. Line 3. “impurities”. What kind of impurity is assumed, and what is its mass-absorption cross-
section?

As requested, we added some missing information and changed the caption of Figure 1 to:

Page 6:

Figure 1 (a) Lowest five percent of the MODIS MCD43A3v5 1 km 16-day clear-sky diffuse albedo field
for glaciated areas for the period 2000-2015. As this albedo field is used to determine a bare ice albedo
field, it is limited between 0.30 for dark ice in the ablation zone, and 0.55 in the accumulation zone
under perennial snow for consistency with RACMO2 (Noél et al., 2018). (b) Bare ice impurity field that
is implemented in RACMO2.3p3 for glaciated grid points. Here, all impurities are soot. (c) In blue,
fitting the specific surface area (SSA) to clean blue ice albedo, which is assumed to be 0.6. The fitted
SSA equals 0.788 m? kg™. In red, the soot concentration as a function of albedo required to successfully
convert the MODIS albedo field into an impurity field. For both lines, clear-sky conditions are assumed
for a SZA of 60° and RACMO?2 irradiance profiles are used to convert narrowband to broadband
albedo. (d) Spectral albedo for clean fresh snow (in black), and for an ice profile with the fitted SSA of
0.788 m? kg™ for various impurity concentrations. The first twelve spectral bands of RACMO2 are
indicated by vertical dotted lines and black numbers. Red bars and numbers indicate the seven MODIS
spectral bands. The albedo for the cases with soot concentrations of 0.2 and 1.5 mu g g* are indicated
with corresponding colored dots in (c).

Page 5:

Hence, albedos ranging from 0.30 to 0.55 observed for the GrIS are obtained by increasing the soot
content, with the absorption cross section for soot that is determined by Kokhanovsky (2004)

Figure 2. Put labels on the latitude & longitude lines (also on Figure 1).
As requested, we added latitude and longitude labels on all Figures with maps.

Figure 3 caption, line 4. “bin size is 0.01”. What units?
The bin size has no unit, as the figure shows the RACMO2.3p3 clear-sky albedo compared to MODIS
clear-sky diffuse albedo.

Figure 9 caption, line 1. “Total-sky albedo”. Clarify that you mean surface albedo, not top-of-
atmosphere albedo.
Changed accordingly.



Review #2 by Mark Flanner

(1) The MODIS albedo product used for model evaluation is Version 6 of MCD43A3. The version
evaluated by Stroeve et al (2013), however, was version 5. Hence the RMSE and biases reported for
MCD43A3, and used to tune the model albedo, may not be applicable. | am unsure of changes in the
retrieval algorithm between versions 5 and 6, but they may be non-negligible (see, e.g., Polashenski
et al., 2015, doi:10.1002/2015GL065912). Some exploration and assessment of this issue should be
included.

You are right, some of the references regarding MODIS evaluation used version 5 instead of version
6. We investigated the topic a bit more, and various studies are performed evaluating version 6 for
the Greenland ice sheet, some even comparing it to version 5 (e.g., Wright et al., 2014; Burkhart et
al.,, 2107; Moustafa et al., 2017; Wang et al., 2018, which are all included now in the manuscript).
Wright et al. (2014) state that for Summit, the mean albedo difference of MODIS Version 6 with in-
situ observations is 0.015 and the RMSE is 0.026, that is, on average a slightly overestimation of the
MODIS broadband albedo with respect to observations. We have changed Figure 2d and Figure 11
accordingly, and changed the following:

Page 1:

...leading to a negligible domain-averaged broadband albedo bias for the interior.

Page 7: ...using the MCD43A3 Version 006 Albedo Model daily dataset using 16-day Terra and Aqua
MODIS data for white-sky, i.e., clear-sky diffuse (CSD), and black-sky, i.e., clear-sky direct (CSDir),
conditions (Schaaf and Wang, 2015).

Page 8:

...but now after applying a uniform -0.015 bias correction to the MODIS MCD43A3 data.

Page 8:

...some regions have limited coverage. Extensive evaluation of the MCD43A3 Version 006 Albedo
product shows that it compares well with observations (Wright et al., 2014; Burkhart et al., 2107,
Moustafa et al., 2017; Wang et al., 2018). For Summit located in central Greenland, Wright et al. (2014)
report a RMSE and mean albedo difference with respect to in-situ observations of 0.026 and 0.015,
respectively, indicating that MCDA43 slightly overestimates the albedo.

Page 9:

...we observe an average bias of -0.022, which is close to the mean difference of -0.015 for Summit
reported by Wright et al. (2014). Correcting for this MCD43 mean albedo difference (Fig. 2d), the bias
for area A reduces to -0.007, supporting excellent...

Page 10:

...of the MODIS CSD albedo product (Wright et al., 2014). Furthermore, ...

Page 18:

Snow albedo difference for various impurity concentrations with respect to the bias-corrected MODIS
CSD albedo is shown in Fig. 11 (2011 - 2015). Excluding all grid points within five grid points of the
margin, the mean bias becomes -0.006, -0.009, -0.011 and -0.022 for impurity concentrations...

(2) Section 2.1.1 - Are the multilayer firn updates new features that need to be introduced

here, or are/can they be described in another study? | ask because this sub-section

seems somewhat tangential to the study, which otherwise focuses on snow albedo.

Although | can understand that it feels out of place here, the updated RACMO version includes these
changes, so they have to be mentioned. Moreover, as running RACMO is computationally quite
expensive, we decided that we run RACMO with the final version that includes these changes. As
these changes impact the structure of the snow pack, especially in the vertical resolution, they
therefore also impact the albedo and have to be mentioned. Unfortunately, these are on itself not
enough to publish about. To clarify this a bit more, we added the following:

Page 3:

In Rp3, the multilayer firn module has been rewritten to improve code efficiency and reduce numerical
diffusion. As the surface albedo depends on the structure of the snowpack, any changes made to the



multilayer firn module are therefore also important to discuss. The update of this module consists of
four modifications.

Minor comments

Lines 47-52: Some models do conduct coarsely-resolved spectral calculations. For example, The
CESM and E3SM models include SNICAR, which currently calculates snow albedo in 5 spectral bands
when embedded in these GCMs. Insolation from the atmosphere is partitioned into only 2 bands
(visible and near-IR), however. SNICAR also represents sub-surface absorption of solar energy.
Details can be found in the CLM technical note:
http://www.cesm.ucar.edu/models/cesm2/land/CLM50 Tech Note.pdf

The reviewer is right and we added the following to clarify this:

Page 2:

RCMs and GCMs commonly perform their radiative calculations for the atmosphere on a limited
number of spectral bands. The albedo of such a spectral band is defined as the narrowband albedo.
Some of these models do conduct coarsely-resolved spectral calculations on a few bands, like E3SM
and CESM (Caldwell et al., 2019; Danabasoglu et al., 2020), but more often they do not use
narrowband albedos and determine a broadband albedo instead, bypassing its spectral bands and
neglecting any spectral albedo variations.

line 101-102: Why was the initialized ice density changed from 910 to 917 kg/m3, given the next
sentence which states that bare ice density is usually lower than 917 kg/m3? Also, does the ice density
change with time in the model? Finally, "mimicking" might be better replaced with "indicating", in this
context.

The ice density is initialized with 917 kg/m?3 to better match pure ice density, which is better to convert
the effective grain radius into a SSA. A layer that consists of ice usually has a considerably lower
density, however, as pore space and air bubbles are created over time. So even though the ice itself
has a density of 917 kg/m?, the layer where it is located usually does not. We change the following to
clarify this.

We also changed the ‘mimic’ term on various places.

Page 4:

Finally, the initialized ice density is increased from 910 kg m™ to 917 kg m™, which is more in
agreement with observations (Bader, 1964), and is used to convert the effective grain radius into a
SSA. Furthermore, as ice layers melt, pore space is created, which lowers the layer density. The lower
density for bare ice layers then indicates that air bubbles are present within the ice.

Page 5:

...impurity concentration field to be used for bare ice albedo calculations to resemble the broadband
MODIS albedo.

line 118-129: Description of SNOWBAL: It would be helpful to mention or briefly describe how much
of an impact on broadband albedo/absorption this clever selection of sub-band wavelength causes
relative to use of the sub-band center wavelength, which is the technique likely employed by most
others.

As requested, we added the following to illustrate the impact that the use of ‘representative
wavelenghts’ has on the albedo product.

Page 4:

...narrowband albedos by TARTES. Using simply the wavelength of the center of the spectral bands
increases the root-mean-square error (RMSE) of the broadband albedo by approximately 0.05 and
0.04 for clear-sky direct and clear-sky diffuse radiation, respectively, and increases even more for
cloudy conditions (Van Dalum et al., 2019). The representative wavelength...



line 125-129, and Figure 1: Is the MCD43 "clear-sky diffuse" albedo field equivalent to their "white-
sky" albedo? If so, | suggest applying consistent terminology throughout the paper. Also, is the only
difference between your clear-sky and cloudy diffuse albedo fields associated with cloud-induced
spectral shifts? | assume the clear-sky diffuse albedo only minimally impacts the clear-sky albedo,
except at very short wavelengths where Rayleigh scattering is appreciable.

From what | understand, the clear-sky diffuse albedo of MCD43 is equivalent to their ‘white-sky’
albedo. The reason we chose to stick with the term ‘white-sky’ albedo when speaking about MODIS is
albedo is to be consistent with their terminology. But as requested, we changed the terminology of
‘white-sky’ and ‘black-sky’ albedo to clear-sky diffuse (CSD) and clear-sky direct (CSDir) albedo on
various places in the manuscript. The most important changes are highlighted here, and Fig 3 and 5
have been changed accordingly.

Page 5:

In this manuscript, ‘albedo' without further specification refers to the broadband albedo. Clear-sky
direct (CSdir) and clear-sky diffuse (CSD) albedo refers to surfaces illuminated only by direct radiation
or diffuse radiation, respectively. Combined, they are referred to clear-sky albedo. The clear-sky and
cloudy-sky albedo can in turn be combined to a total-sky albedo.

Page 9:

..the Rp3 clear-sky albedo output with MODIS CSD albedo for both broadband and narrowband
albedo...

Page 11:

...MODIS bands with diffuse radiation. For these bands, CSD albedo output of Rp3 is available. Note
that the albedo determined for the seven MODIS bands are not used to compute a broadband albedo
within Rp3.

Exactly, the only major difference between clear-sky and cloudy-sky diffuse is associated with spectral
shifts induced by clouds, which depends on the liquid water and ice water content of the cloud (See
Van Dalum et al, 2019). As is stated in Van Dalum et al. (2019), variations in the clear-sky diffuse albedo
in Rp3 are generally small, and only significantly change for high solar zenith angle, as the spectral
distribution of energy is changed accordingly. Moreover, usually a large fraction of radiation is direct,
reducing the impact of clear-sky diffuse radiation. We have added the following to the manuscript:
Page 4:

...path for cloudy conditions. The difference between cloudy-diffuse and clear-sky diffuse albedo are
thus only related to cloud and SZA induced spectral shifts in radiation. Furthermore, direct radiation
dominates the clear-sky albedo signal except for very high SZA. As full radiation...

line 140: "Firstly, we assume that clean bubble-free ice has an albedo of approximately 0.6" - Pure,
bubble-free ice technically has a much lower albedo than this, as described by the Fresnel equations.
| assume this higher (measured?) albedo is caused by surface scattering and roughness. If so, this
should be mentioned.

We were wrong with stating that it was bubble-free ice that was measured. On the contrary, the blue
ice has a high bubble concentration. We have changed the text accordingly (See comment (2) of the
review by Stephen Warren).

line 154: What type of impurity is indicated with these concentrations? (Presumably soot).
Page 5:
The resulting soot concentration varies between...

line 169: "RACMO?2 only allows for a fixed soot concentration." - But to be clear, the prescribed soot
concentration varies over bare ice, and is only fixed over snow, correct? This distinction could use
some clarification.

Correct, we change the following:



Page 7:

The only impurity type considered is soot, with a prescribed concentration of 5 ng g* for all snow
layers. Although the concentration of soot in Greenland varies considerably over time and space,
RACMO?2 only allows for a fixed soot concentration in snow. If a layer is identified as bare ice, it is
prescribed by the spatially variable soot concentration of Fig. 1b. For snow in the interior and when
no melt occurs...

line 184-185: "But note that the MCD43A3 WSA product remains a slightly different albedo product
than the clear-sky RACMO?2 albedo it evaluates, which includes both direct and diffuse radiation." - As
described earlier, however, both direct and diffuse clear-sky albedos are calculated by the model. Why
not use the diffuse clear-sky albedo for comparison with MCD43 white-sky albedo. Wouldn't this be
an apples-for-apples comparison?

You are right that it would be ideal to compare diffuse clear-sky albedo with MODIS white-sky albedo.
Unfortunately, even though it is calculated by the model, diffuse clear-sky albedo is not available as
output in RACMO2, only total-sky and clear-sky (as in, direct and diffuse radiation combined) albedo
is available. Therefore, we are limited to the comparison of clear-sky RACMO2 albedo with MODIS
white sky albedo. We clarify this a bit more:

Page 7:

While RACMO?2 calculates the direct and diffuse albedo, it only produces total-sky and clear-sky albedo
output, which includes both direct and diffuse radiation. Therefore, we have to note that the
MCD43A3 CSD albedo product remains a slightly different albedo product than the clear-sky RACMO2
albedo it evaluates.

line 199: Again, | believe Stroeve et al (2013) use version of 5 of this product.
See the changes under (1) of this review.

line 357:"... high SZA... The spectral albedo of IR radiation is low, hence the broadband albedo drops"
- But the SZA grazing effect outweighs the spectral shift, producing *higher* albedo at higher SZA,
doesn’tit? Your language on p.2 suggests so: "... this increase of spectral albedo at large SZA is largely
mitigated by the red shift..." (i.e., largely, but not entirely, mitigated).

You are right that the albedo increases for high SZA, which compensates for the spectral shift. You are
also right that we did not state correctly what we meant to say. We wanted to say that the albedo
difference for Rp3 with Rp2 becomes increasingly bigger for high SZA, as the spectral shift effect is not
properly captured in Rp2. The albedo increase with SZA does happen for both models (See added
figure, which shows the broadband albedo as a function of SZA, with the red line the albedo scheme
of Rp2, the solid black line of Rp3), but the albedo increase goes not as fastin Rp3 as in Rp2 due to the
aforementioned spectral shifts.
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Figure 11 from Van Dalum et al., 2019. It shows the broadband albedo as a function of SZA for TARTES
weighted with DISORT (which is similar to what is implemented in Rp3) and the albedo scheme of
Gardner and Sharp, which is used in Rp2.

Page 2:

However, this increase of spectral albedo at large SZA is partly mitigated by the red shift of the
incoming direct-beam radiation due to enhanced Rayleigh scattering in the atmosphere.

Page 16:

The winter months are characterized by a large SZA, for which a spectral shift towards longer
wavelengths occurs. For a large SZA, the broadband albedo increases for both Rp3 and Rp2. The
spectral shift towards longer wavelengths, for which the spectral albedo of IR radiation is low (Fig. 1d),
however, is only properly captured in Rp3, mitigating the albedo increase with SZA somewhat (Fig. 11
in Van Dalum et al, 2019). Consequently, the modeled broadband albedo is lower for Rp3 with respect
to Rp2 in the winter months.

Bibliography
These references have been added to the manuscript:

Granskog, M. A., Vihma, T., Pirazzini, R., and Cheng, B.: Superimposed ice formation and surface energy fluxes on sea ice
during the spring melt—freeze period in the Baltic Sea, Journal of Glaciology, 52, 119-127,
https://doi.org/10.3189/172756506781828971, 2006.

Knap, W. H. and Oerlemans, J.: The surface albedo of the Greenland ice sheet: satellite-derived and in situ measurements in
the Sendre Stremfjord area during the 1991 melt season, Journal of Glaciology, 42, 364?374,
https://doi.org/10.3189/50022143000004214, 1996.

Dang, C., Fu, Q., and Warren, S. G.: Effect of Snow Grain Shape on Snow Albedo, Journal of the Atmospheric Sciences, 73,
3573-3583, https://doi.org/https://doi.org/10.1175/JAS-D-15-0276.1, 2016.

Bohren, C. F.: Colors of snow, frozen waterfalls, and icebergs, J. Opt. Soc. Am., 73, 1646—1652,
https://doi.org/10.1364/JOSA.73.001646, 1983.

McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., Banta, J. R., Pasteris, D. R.,
Carter, M. M., 595 and Kahl, J. D. W.: 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing,
Science, 317, 1381-1384, https://doi.org/10.1126/science.1144856, 2007.

Boggild, C. E., Brandt, R. E., Brown, K. J., and Warren, S. G.: The ablation zone in northeast Greenland: ice types, albedos
and impurities, Journal of Glaciology, 56, 101?113, https://doi.org/10.3189/002214310791190776, 2010.

Wang, Z., Schaaf, C. B., Sun, Q., Shuai, Y., and Roman, M. O.: Capturing rapid land surface dynamics with Collection
V006 MODIS BRDF/NBAR/Albedo (MCD43) products, Remote Sensing of Environment, 207, 50 — 64,
https://doi.org/10.1016/j.rse.2018.02.001, 2018.

Burkhart, J. F., Kylling, A., Schaaf, C. B., Wang, Z., Bogren, W., Storvold, R., Solbg, S., Pedersen, C. A., and Gerland, S.:
Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over
Greenland, The Cryosphere, 11, 1575-1589, https://doi.org/10.5194/tc-11-1575-2017, 2017.

Wright, P., Bergin, M., Dibb, J., Lefer, B., Domine, F., Carman, T., Carmagnola, C., Dumont, M., Courville, Z., Schaaf, C.,
and Wang, Z.: Comparing MODIS daily snow albedo to spectral albedo field measurements in Central Greenland, Remote
Sensing of Environment, 140, 118 — 129, https://doi.org/10.1016/j.rse.2013.08.044, 2014.

Moustafa, S. E., Rennermalm, A. K., Roman, M. O.,Wang, Z., Schaaf, C. B., Smith, L. C., Koenig, L. S., and Erb, A.:
Evaluation of satellite remote sensing albedo retrievals over the ablation area of the southwestern Greenland ice sheet,
Remote Sensing of Environment, 198, 115 — 125, https://doi.org/10.1016/j.rse.2017.05.030, 2017.

Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J.-C., Lin, W., Bader, D. C., Keen, N. D., Feng, Y.,
Jacob, R., Maltrud, M. E., Roberts, A. F., Taylor, M. A., Veneziani, M., Wang, H., Wolfe, J. D., Balaguru, K., Cameron-
Smith, P., Dong, L., Klein, S. A., Leung, L. R., Li, H.-Y., Li, Q., Liu, X., Neale, R. B., Pinheiro, M., Qian, Y., Ullrich, P. A.,
Xie, S., Yang, Y., Zhang, Y., Zhang, K., and Zhou, T.: The DOE E3SM Coupled Model Version 1: Description and Results



at High Resolution, Journal of Advances in Modeling Earth Systems, 11, 4095-4146,
https://doi.org/10.1029/2019MS001870, 2019.

Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J.,
Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M.,
Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes,
S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E.,
Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P.
J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2), Journal of Advances in Modeling Earth
Systems, 12, e2019MS001 916, https://doi.org/10.1029/2019MS001916, 2020.



