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Abstract 

We present a new method for differentiating snow and rock in colour imagery for application (including by remote sensing 

non-specialists) to multidisciplinary geospatial analyses in the Polar Regions (e.g. glaciology, geology, and biology). Existing 

methods for differentiating rock from snow and ice for land cover analysis in the Polar Regions rely on infrared or near-infrared 

imagery (e.g. the Normalised Difference Snow Index, NDSI). However, colour images are more abundant and higher 10 

resolution. To enable application of this resource, we present and review supervised and unsupervised methods for 

differentiating rock and snow from colour images. Whilst the unsupervised methods (fuzzy membership and a normalised 

difference index) are unable to accurately differentiate snow and rock from colour images, supervised classification (Maximum 

Likelihood Classification (MLC) and a new approach, Polynomial Thresholding (PT)) do achieve high classification 

accuracies (95 ±2% for PT and 94 ±3% for MLC, compared with manual delineation). The greater user control of PT achieves 15 

better accuracies than MLC in shaded areas (a challenge in high latitudes) and less extensive outcrops. We present the 

workflow for the new PT method, and provide a calibration tool for its implementation. This approach improves the possible 

resolution of Polar land cover analysis, and the increases the volume of data that can be utilised. 

1. Introduction 

Delineation of ice and rock extent in glaciated regions is important for navigation, scientific research (e.g. geological and 20 

glaciological mapping), and monitoring the environmental response to climate change. However, existing methods rely on 

infrared (Albert, 2002; Burton-Johnson et al., 2016; Dozier, 1989; Gjermundsen et al., 2011; Hall et al., 1995; Racoviteanu et 

al., 2010; Raup et al., 2015; Sidjak, 1999; Sirguey et al., 2009), near-infrared, or SAR imagery (synthetic-aperture radar; 

Atwood et al., 2010), and/or a DEM (digital elevation model; Paul et al., 2002, 2004; Racoviteanu et al., 2010). Colour images 

are more abundant and higher resolution, but no method has been evaluated for the differentiation of rock and ice from this 25 

data. Suitable existing datasets include aerial and UAV photographs, field photos, and RGB satellite images (e.g. Digital 

Globe’s WorldView, Quickbird, and IKONOS imagery). 

The limitations of existing techniques and datasets are illustrated in Antarctica. Prior to Burton-Johnson et al. (2016), the only 

continental map of rock outcrop was the manually-derived dataset from the Scientific Committee on Antarctic Research 

(SCAR) Antarctic Digital Database (ADD) website, www.add.scar.org. This map (Thomson and Cooper, 1993) was derived 30 

through manual identification and digitisation of published topographic maps, and suffered from poor georeferencing, frequent 

misclassification of shaded snow as rock, as well as overestimating and generalising areas of exposed rock. Burton-Johnson 

et al. (2016) resolved these issues by developing an automated method for rock outcrop classification from multispectral 

imagery, and published a new continental rock outcrop map for the ADD. Unfortunately, the Landsat imagery used did not 

extend south of 82°40’ S, and was limited to 30m pixel resolution. A method differentiating rock and snow from colour 35 

imagery (particularly airborne and satellite-derived) would enable this resolution and coverage to be improved. Higher 

resolution would be particularly advantageous for mapping subtle changes in ice extent in response to environmental change, 

and provide higher resolution basemaps for navigation, geological mapping, and vegetation distribution studies. 
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We wish to state from the outset that this paper does not intend to address multispectral infrared or near infrared imagery, for 

which a plethora of methods already exist (e.g. the Normalised Difference Snow Index, NDSI, Dozier 1989). For discussions 40 

of these methods, the reader is recommended to refer to Raup et al. (2015), Racoviteanu et al. (2010), and Albert (2002). Nor 

do we address vegetated outcrops (our target being high latitudes), or debris-covered glaciers. We accept that it is not feasible 

to differentiate rock outcrop from debris cover in RGB imagery, but console ourselves that in the Polar Regions (where 

temperatures are permanently low, and a day-night cycle is absent for much of the year), debris cover is less extensive than at 

lower latitudes (Fig. 1). Our target is specifically to address the feasibility of rock and snow differentiation in RGB imagery; 45 

a subject that has not been addressed, but offers more abundant, higher resolution data than utilised by multispectral techniques. 

This study includes presentation of a new technique for semi-automated rock outcrop delineation using cloud-free colour 

(RGB) imagery of glaciated regions: Polynomial Thresholding. 

2. Methodology 

Land cover mapping from remote sensing imagery broadly falls into two classes: 1. Supervised classification - semi-automated 50 

methods where the classes are defined and the image analysis algorithm calibrated using manually selected training pixels; 

and 2. Unsupervised classification - a fully-automated methods where training pixels are not selected prior to image analysis. 

In the absence of an established method for differentiating rock and snow in RGB imagery, this study evaluates two semi-

automated, supervised classification techniques (Maximum Likelihood Classification (MLC), and Polynomial Thresholding 

(PT)), and two unsupervised classification techniques (Fuzzy Membership (FM), and a normalised difference index (RB-55 

NDSI)). 

All of the classification techniques rely on the different relative reflectivities of snow and rock within the visible wavelengths 

of the electromagnetic spectrum (Fig. 2). For common rock types, red wavelengths are more reflective than blue, whilst snow 

is more reflective of blue than red wavelengths. However, this difference is significantly smaller than that between the visible 

wavelengths and the infrared or near-infrared wavelengths (Fig. 2) employed by the NDSI and other multispectral methods for 60 

differentiating rock and snow. 

To enable broad application, we have selected methods here which can be easily implemented by the reader using the Esri 

ArcGIS® and ArcMap™ Spatial Analyst toolbox (“Maximum Likelihood Classification” for MLC, “Fuzzy Membership” for 

FM, and “Raster Calculator” for PT and the RB-NDSI), or similar tools in other GIS software (e.g. QGIS). 

2.1. Supervised Classification 65 

Both MLC and PT require the user to classify a subset of pixel values in the image as either rock or snow, and then use either 

image analysis methodology to extrapolate this subset to the whole image. Whilst the requirement for identifying an input 

“training set” of pixels makes supervised classification slower than unsupervised techniques, it remains a great time saving 

compared to manual classification (Albert, 2002). 

2.1.1. Maximum Likelihood Classification (MLC) 70 

MLC is the image classification tool incorporated into Esri ArcGIS® and ArcMap™ 

(https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/maximum-likelihood-classification.htm). MLC is a 

popular supervised classification technique, and achieves high classification accuracies (~90%) in differentiating rock and 

snow from multispectral imagery (Albert, 2002). By assuming that the values of rock and snow pixels are each normally 

distributed, MLC assigns a mean vector and covariance matrix to each of the two classes. The statistical probability is then 75 
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calculated for each pixel, and the most probable class assigned to that pixel. Using the same training pixels, MLC was evaluated 

using either two or four land cover types (rock and snow, or shaded and sunlit rock and snow). 

2.1.2. Polynomial Thresholding (PT) 

The new PT approach presented here employs the concept that for a given observed intensity of reflectance, rocks will have a 

greater red/blue ratio than snow (Fig. 2). With increasing intensity (we use red reflectance here), the red/blue ratio 80 

differentiating rock and snow pixels increases along a second order polynomial curve (Fig. 3b). 

To exploit this polynomial relationship, a training set of pixel values are manually derived for snow and rock (Fig. 3a), and 

the second-order polynomial curve separating the two classes derived (Fig. 3b, using the spreadsheet in the Supplementary 

Material and hosted at https://github.com/Alex-Burton-Johnson/RGB_Rock-Snow_Differentiation). A threshold raster of red 

reflectance (a proxy for illumination intensity) is then derived from the red/blue ratio of each pixel using the equation of the 85 

polynomial curve. Each pixel is classified as rock or snow (Fig. 3c) according to whether its red reflectance value exceeds this 

threshold (i.e. classify as snow) or falls below the threshold (i.e. classify as rock). 

2.2. Unsupervised Classification 

Unlike supervised classification techniques, unsupervised classification does not require the user to generate a training set 

prior to classification, and is thus less time intensive (Albert, 2002). 90 

2.2.1. Fuzzy Membership (FM) 

FM transforms the input data on a scale of 0 to 1, based on the probability of each pixel belonging to a determined land cover 

type (https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-fuzzy-membership-works.htm). There are 

multiple fuzzy membership transformation algorithms dependent on the assumed distribution of the input data and features of 

the land cover types (e.g. whether the land cover type of interests at the upper, lower, or middle of the pixel value ranges). To 95 

differentiate snow and rock, we assume that the two land cover types form end members of range, and apply the linear unmixing 

algorithm to transform (i.e. “unmix”) the spectral data into a linear function from 0 to 1. This method assumes that the spectral 

reflectance of each pixel is a linear combination of the spectra of the two possible end member materials (snow and rock), and 

each pixel is thus classified along the scale according to its similarities to these end members. Within this 0 to 1 range, the user 

then defines a threshold value differentiating snow and rock. The linear unmixing algorithm is the most accurate fuzzy 100 

classification for differentiating snow and rock in multispectral data  (Albert, 2002). 

2.2.2. Normalised Difference Index (RB-NDSI) 

The most commonly used method for differentiating snow and rock in multispectral infrared imagery is the Normalised 

Difference Snow Index (Dozier, 1989; Hall et al., 1995). This approach follows the normalised difference vegetation index 

used to map vegetation cover (NDVI; Tucker, 1979, 1986) by normalising the difference between two wavelengths with very 105 

different reflectivities from snow and rock (the green and SWIR (Short Wave Infrared) wavelengths; Fig. 2 and Equation 1), 

and defining an optimal threshold to differentiate the two land cover types. 

𝑁𝐷𝑆𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅
           (1) 

 

Whilst high accuracies can be achieved at low latitudes (Albert, 2002), the NDSI is unable to differentiate snow and rock in 110 

the prevalent and unavoidable shadows of high latitudes, and also misclassifies cloud cover as rock outcrop (Burton-Johnson 
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et al., 2016). The optimal threshold value may also change between different images, or even across the same image, in 

response to changes in illumination or fresh snow cover (Burns and Nolin, 2014). Consequently, broad automated application 

of the NDSI across the Polar Regions (as in the generation of the Landsat 8 Antarctic rock outcrop map; Burton-Johnson et 

al., 2016) requires combining the NDSI with other thresholds. 115 

Whilst the NDSI uses infrared imagery, we evaluate whether the differential reflectivities of the red and blue wavelengths 

(Fig. 2) are sufficient for a normalised difference approach using the following equation for a red and blue version of the 

Normalised Difference Snow Index (RB-NDSI): 

RB-NDSI =
𝐵𝑙𝑢𝑒−𝑅𝑒𝑑

𝐵𝑙𝑢𝑒+𝑅𝑒𝑑
           (2) 

3. Accuracy Assessment 120 

To evaluate the accuracy and limitations of the classification methods, rock outcrops were manually digitised in ten 100 x 100 

m aerial photographs of 0.14-0.25 m resolution from along the Antarctic Peninsula (Fig. 4, available in the Supplementary 

Material), selected to represent a range of geology, geomorphology, latitude, and illumination. For the supervised 

classifications, training pixels were then selected in each image, and each image individually classified as snow or rock using 

the different classification techniques. Classification accuracy was evaluated using 100,000 randomly distributed points to 125 

compare the manually-derived land cover map with the classification outputs. The number of QC sampling points used for 

each land cover type is proportional to each type’s relative area. Classification accuracy was calculated as total classification 

accuracy (CATotal; Equation 3) and classification accuracy of rock outcrop (CARock; Equation 4): 

𝐶𝐴𝑇𝑜𝑡𝑎𝑙 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑛𝑜𝑤 𝑝𝑖𝑥𝑒𝑙𝑠+𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑜𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠

𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑜𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠+ 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑜𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠
        (3) 

 130 

𝐶𝐴𝑅𝑜𝑐𝑘 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑜𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠

𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑜𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠+ 𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑜𝑐𝑘 𝑝𝑖𝑥𝑒𝑙𝑠
        (4) 

 

Where “Omission rock pixels” are rock pixels in the image that were not classified as rock by the algorithms, and “Commission 

rock pixels” are snow pixels that were incorrectly classified as rock. 

3.1. Supervised Classification 135 

Both PT and MLC used the same training pixels, although for MLC these were classified as either two (snow or rock) or four 

land cover types (shaded or sunlit rock, and shaded or sunlit snow). Pixels were chosen in each image to represent a range of 

illumination (Fig. 3a), and were particularly selected across the margins between rock and snow, where mixed pixels make 

differentiation challenging. Both PT and MLC performed well in differentiating snow and rock in all images. Mean total 

classification accuracy (CATotal; Fig. 5a and Equation 3) was 0.95 ±2% (1 Standard Deviation, SD) for PT and 0.94 ±3% for 140 

MLC (with two types of land cover). Mean classification accuracy of rock outcrop (CARock; Fig. 5b and Equation 4) was 0.89 

±4% for PT and 0.86 ±7% for MLC. Increasing the number of land cover types to four for MLC did not increase CATotal (0.94 

±3%; Fig. 5a), and only slightly increased CARock (0.87 ±7%; Fig 5b); although this also slightly increased its SD. 

Despite training pixels including areas of shade, PT achieved greater accuracies in deeply shaded pixels where MLC using 

two land cover types incorrectly classified snow as rock (Fig. 6b); increasing its commission error relative to PT (Fig. 5). MLC 145 

attributes lower confidence values to its classification of shaded pixels, but reclassifying at least the 50% least confident pixels 

as snow is required to reduce the commission error sufficiently (Fig. 6). Because rock omission error increases at a greater rate 

than the rock commission error decreases with this confidence-based pixel reclassification, this approach greatly reduces the 

overall accuracy of the MLC classification (Fig. 7). Using four land cover types increases the accuracy of MLC in shaded 
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regions compared with using two land cover types, but still incorrectly classifies more snow as rock than the PT technique 150 

(Fig. 6c), and only produces a marginal and variable improvement in overall classification accuracy (Fig. 5). 

Neither PT nor MLC show a correlation between the number of training pixels used and the resultant accuracy of the 

classification (Fig. 8a to 8c). What is important for an accurate classification is not so much the number of training pixels, but 

the range of pixels they sample. High accuracy classification requires sampling of both shaded and illuminated pixels of snow 

and rock. Because mixed pixels are the hardest to classify, it is particularly important that the training set includes pixels across 155 

the margins between snow and rock. 

A strong correlation exists between the accuracy of the MLC classification and the proportion of the image composed of rock 

pixels (Fig. 8e and 8f). This correlation is strongest for MLC with four land cover classes (Fig. 8f), and is much weaker for 

the PT approach (Fig. 8d). This relationship between rock extent and accuracy reflects the increased inaccuracy along the 

margin of rock outcrops compared with the centre of the outcrop. Smaller outcrops have a greater proportion of marginal 160 

pixels, so are classified at lower accuracies than more extensive outcrops. 

3.2. Unsupervised Classification 

Despite varying the threshold used to differentiate snow and rock from the RB-NDSI method, the approach was unable to 

provide a satisfactory classification. With too low a threshold, RB-NDSI fails to identify rock outcrop in shaded regions, and 

increasing the threshold falsely classifies sunlit snow as rock whilst still excluding shaded rock outcrop (Fig. 9). Consequently, 165 

we conclude that a normalised difference approach is not applicable to the differentiation of snow and rock from colour 

imagery. 

The fuzzy membership (FM) approach was highly variable in its classification accuracy and optimal threshold value (Fig. 10). 

Whilst a maximum CATotal of 96% and CARock of 93% were achieved for image ‘a’, the maximum CATotal of images ‘d’ and ‘i’ 

were 74% and 73% respectively. The maximum mean CATotal was 82 ±14%, using a threshold value of 0.2, and whilst the 170 

overall accuracy increased with an increasing threshold, the mean commission error when using a threshold value of 0.2 is 15 

±15% (the commission error increasing with an increasing threshold value, Fig. 10). Such a low overall accuracy and high 

commission error are unsatisfactory when compared with supervised classification techniques, and thus this technique is not 

recommended. 

4. Discussion 175 

Neither unsupervised classification technique achieved sufficient accuracy in differentiating snow and rock for us to 

recommend their application. Whilst both the supervised classification techniques (PT and MLC) achieved high classification 

accuracies, MLC is more limited in its classification accuracy of shaded pixels, and its inaccuracy along rock outcrop margins 

results in a strong correlation between outcrop extent and accuracy (Fig. 8). This relationship is weaker and of a lower gradient 

with PT. The same training set is required for both approaches, and its creation is the most time consuming part of the 180 

classification process (allow 5-10 minutes to create the training set, and a further ~5 minutes to set up, calibrate, and implement 

the algorithms, although the actual processing takes seconds). Therefore, as both approaches take a similar time to complete, 

we advocate PT as the most accurate method for differentiating rock and snow in colour images. 

Whilst the user can only modify the MLC classification based on the training set used and the confidence threshold assigned, 

the alternative PT approach can be easily calibrated by the user by changing the threshold curve in the supporting calibration 185 

spreadsheet. Consequently, when differentiating mixed pixels of rock and snow, the user can choose to be more conservative 

or liberal in their classification. The methodology is much faster than manual differentiation, and of comparable accuracy (Paul 

et al., 2013). A range of image illuminations were evaluated in our accuracy assessment (Fig. 4), and high accuracies were 

achieved in all (CATotal = 0.95 ±2%). This is comparable to the popular NDSI technique using infrared imagery for well-
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illuminated images (93.9%, Albert, 2002), and better than the NDSI method in shaded regions, where rock outcrop is not 190 

detected by the NDSI, or clouded images where clouds are incorrectly classified as rock (Burton-Johnson et al., 2016). 

Differentiating snow and rock from colour images requires cloud free imagery (a common issue for remote sensing data), and 

data acquired during daylight exposure (an obvious but common limitation for earth observation at high latitudes). Particular 

care should be taken when applying the PT technique in areas with debris covered glaciers, where debris could be erroneously 

classified. Variable snow cover must also be considered when applying these techniques to change detection. 195 

Resolution is the greatest limitation in land cover classification. As such, whilst infrared imagery offers automated 

differentiation of snow and rock (Burton-Johnson et al., 2016; Dozier, 1989), the more abundant high resolution colour imagery 

offers higher resolution and accuracy in land cover classification in Polar Regions (e.g. aerial photography and high-resolution 

satellite imagery, including DigitalGlobe’s WorldView, QuickBird, and IKONOS products). 

5. Applications and Future Developments 200 

The techniques discussed here have a range of possible applications to geoscience and cartography. Being able to accurately 

locate rock outcrops is integral to production of navigational and geological maps. Both PT and MLC of colour images may 

also aid monitoring of ice extent changes. By only requiring colour images to analyse the relative extents of rock and ice, an 

extensive historical dataset can be analysed, allowing changes in these extents over time to be determined (e.g. using the USGS 

and BAS Antarctic aerial photography archive, Fig. 11; freely available from https://earthexplorer.usgs.gov). This provides 205 

another method for evaluating the effect of climate change in the Polar Regions, as well as other glaciated areas. The abundance 

and resolution of satellite and airborne colour imagery continues to increase, and these new datasets will allow further 

application of land cover analysis at higher resolutions and consequently higher accuracies, allowing evaluation of changing 

snow and ice extent in response to climate change. By employing higher resolution imagery, more detailed base maps can be 

developed for local studies including glaciological, geological, and vegetation mapping. The increasing availability of UAV 210 

photography can be used to develop 3D imagery to which this land cover classification can be applied, allowing high-resolution 

3D evaluation of stratigraphy and geomorphology. 

6. Conclusions 

Whilst differentiating rock and snow in remote sensing data is normally achieved using infrared imagery, we have shown that 

colour images can also achieve high classification accuracies. The two unsupervised techniques (fuzzy membership and a 215 

normalised difference index) were unable to accurately differentiate snow and rock from RGB images. Nevertheless, the two 

supervised classification techniques evaluated (Maximum Likelihood Classification (MLC), and a new method: Polynomial 

Thresholding (PT)) do achieve high classification accuracies. When compared with manual delineation of rock and snow, PT 

achieves accuracies of 95 ±2%, and MLC achieves 94 ±3%. This is comparable to the commonly-used Normalised Difference 

Snow Index (NDSI), but unlike the NDSI these methods do not require infrared imagery, and are able to detect rock outcrops 220 

in shaded regions. However, MLC is less accurate than PT in shaded regions (resulting in false positives in rock identification) 

and in images with less extensive rock outcrops. Application of colour imagery to the differentiation of snow and rock greatly 

increases the availability and resolution of available data for mapping and monitoring of glacial extent. A calibration 

spreadsheet to aid in PT analysis is provided in the Supplementary Material, and hosted at https://github.com/Alex-Burton-

Johnson/RGB_Rock-Snow_Differentiation. 225 
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Figures 

 

Figure 1. Comparison of debris cover for glaciers at low latitudes (‘a’, Karakoram Range (35°N), and ‘b’, Jungfrau 

Range, Alps (46°N)) with those of Antarctica (‘c’, Antarctic Peninsula (66°S), and ‘d’, Transantarctic Mountains 

(72°S)). Note the absence of surface moraine and the presence of deep shadows in ‘c’ and ‘d’. This is typical of Antarctic 275 

glaciers where a lack of day-night cycle and year-round low temperatures restricts freeze thaw action, and the 

permanently low sun angles result in deep shadows (from Burton-Johnson et al., 2016). Map data: Google©, Maxar 

Technologies, NASA, and Landsat / Copernicus. 

 

Figure 2. Spectral reflectance data for snow and rock (granite, basalt and sandstone) from the ASTER Spectral Library 280 

v1.2 (Baldridge et al., 2009). Designations of spectral regions as defined by the Landsat 8 bands: Blue – Band 2, 0.45 – 

0.51 μm; Green – Band 3, 0.53 – 0.59 μm; Red – Band 4, 0.64 – 0.67 μm; NIR, Near Infrared – Band 5, 0.85 – 0.88 μm; 

SWIR 1, Short Wave Infrared – Band 6, 1.57 – 1.65 μm. 
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Figure 3. Illustration of the Polynomial Thresholding workflow, applied to a WorldView RGB image of the Wright 285 

Peninsula, Antarctic Peninsula. a) Point shapefile features are created covering pixels of snow and rock in sun and 

shade, and the raster RGB values extracted to these points. b) The extracted red and blue pixel values are loaded into 

the calibration spreadsheet (Supplementary Material) and the polynomial curve differentiating the snow and rock 

pixels calibrated by the user by modifying the “Calibration points” (yellow circles). c) The equation of the polynomial 

curve is used to calculate a threshold raster of red values from each pixel’s red/blue ratio. This threshold is used to 290 

identify pixels as snow where there red value exceeds the threshold, or rock when their red value is below the threshold. 

The identified rock outcrops are outlined in yellow. Imagery courtesy of Digitalglobe Maxar. 
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Figure 4. Ten 100 x 100 m aerial colour photographs of the Antarctic Peninsula (locations shown on inset map) used 295 

for accuracy assessment of the PT and MLC methods (MLC using training pixels classified as two or four land cover 

types; i.e. rock and snow, or sunlit and shaded rock and snow). Rock outcrops identified by PT are outlined in blue, 

and those identified by MLC are outlined in red (classified using two land cover types) and green (classified using four 

land cover types). Aerial photography courtesy of the British Antarctic Survey. 
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 300 

Figure 5. 100% normalised accuracy assessment data for correctly classified pixels and pixels of omission and 

commission disagreements for the ten images in Fig. 4, as classified by supervised classification (PT and MLC using 

two or four land cover types). Values in columns are the classification accuracy values: a) Total classification accuracy 

(CATotal; Equation 3), and b) Classification accuracy of rock outcrop (CARock; Equation 4). 

 305 

Figure 6. Example of the commission error of MLC, identifying shaded snow as rock (subset of Fig. 4e). a) Original 

RGB image. b) Manually delineated rock outcrop compared with MLC using two types of land cover (rock and snow). 

Reclassifying the 50% least confidently classified pixels in the total image as snow (“MLC 50% Reclassified”) reduces 

the commisssion error, but increases the omission error and reduces the total classification accuracy (Fig. 7). c) 

Manually delineated rock outcrop compared with MLC using four types of land cover (sunlit or shaded snow and 310 

rock), and rock outcrop classified by PT. Aerial photography courtesy of the British Antarctic Survey. 
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Figure 7. Effect on MLC accuracy (classified using two types of land cover, snow and rock) of reclassifying a variable 

proportion of the least confidently classified pixels as snow (based on the confidence values assigned during MLC). a) 315 

CATotal (Equation 3). b) CARock (Equation 4). c) Commission error (false positives) of rock pixel classification, showing 

a decrease in error with increased reclassification. d) Omission error (false negatives) of rock pixel classification, 

showing an increase in error with increased reclassification. The greater increase in omission error (d) with 

reclassification compared to the decrease in commission error (c) results in the overall decrease in classification 

accuracy (a and b). The plots are the mean values for all ten images analysed (Fig. 4), with ±1SD error bars on the 320 

mean value. 

 

Figure 8. Comparison for the ten images analysed (Fig. 4) of rock classification accuracy (CARock; Equation 4) with 

variation in the number of training pixels, and the proportion of each image occupied by rock outcrop. Linear 

trendlines and their coefficient of determination (R2) are shown for comparison. 325 
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Figure 9. Application of a red-blue normalised difference snow index (RB-NDSI; Equation 2) to image ‘a’ from Fig. 4. 

a) Original image. b) Pixels classified as rock outcrop using an RB-NDSI threshold of 0.2. Note the lack of rock outrop 

identified in the shaded regions. c) Pixels classified as rock outcrop using an RB-NDSI threshold of 0.3. That increasing 

the treshold has misclassified the sunlit snow as rock, whilst still ommitting much of the shaded rock outcrop. Aerial 330 

photography courtesy of the British Antarctic Survey. 

 

 

Figure 10. 100% normalised total classification accuracy assessment data (CATotal; Equation 3) for correctly classified 

pixels and pixels of omission and commission disagreements for the ten images in Fig. 4, as classified by fuzzy 335 

membership (FM). Images were analysed using a linear FM algorithm and applied a range of threshold values from 

0.02 to 0.2 (x-axis) to differentiate snow and rock. 
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Figure 11. Application of Polynomial Thresholding to outcrop mapping in archive photography (areas of rock outcrop 340 

classifed by PT outlined in yellow). USGS archive image ARCA209531L0025 taken on 30/12/1967 above the Royal 

Society Range, Antarctica. Note that sky in this oblique image is not a problem for the image classification. 
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