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Abstract. Studying the response of the Antarctic ice sheets to past climate conditions similar to the present day can provide

important insights for understanding its current changes and help identify natural drivers of ice sheet retreat. The Marine

Isotope Substage 11c (MIS11c) interglacial is one of the best candidates for an in-depth analysis given that at its later portion

orbital parameters were close to our current interglacial. However, Antarctic ice core data indicate that although MIS11c CO2

levels were close to Pre Industrial, warmer-than-present temperatures (of about 2◦C) lasted for much longer than during other5

interglacials. Since the global mean sea level is thought to have been 6–13 m higher than today, there should have been some

contribution from Antarctica. While substantial work has been conducted regarding the response of the Greenland Ice Sheet

to the MIS11c climate, which is believed to have contributed with 3.9–7.0 m to global sea level, both configurations of the

Antarctic ice sheets and their contribution to sea level rise remain poorly constrained. We use a numerical ice-sheet model to

shed light on the response of the Antarctic ice sheets to MIS11c climate conditions obtained from a combination of a suite of10

Antarctic ice cores and the LR04 global stack of deep-sea sediment records and climate model outputs, while assessing the

model sensitivity to the uncertainties in sea level reconstructions, ice sheet initial configuration, and multi-centennial climate

variability. We found that the regional climate signal of the MIS11c peak warming in Antarctica captured by the ice core

records is necessary for the recorded sea level highstand to be reproduced, and that warming length was more important

than magnitude. However, there is a threshold for a West Antarctic Ice Sheet collapse that lies within an envelope of 1.6 and15

2.1◦C warmer-than-pre-industrial regional climate conditions. Sea level forcing and multi-centennial variability were found to

have played virtually no role in driving ice sheet contraction, but the choice of initial configuration of the East Antarctic Ice

Sheet provided a large source of uncertainty in the quantification of MIS11c Antarctic peak sea level contribution, which falls

between 6.4 and 8.8 m.

1 Introduction20

Marine Isotope Stage 11 stands out in the Quaternary history since one of its substages, substage 11c (hereafter MIS11c), was

an interglacial period different from the preceding and subsequent interglacials of the Quaternary. First because it lasted for

ca. 30 thousand years (kyr), between 425 and 395 thousand years ago (ka; Lisiecki and Raymo, 2005; Tzedakis et al., 2012),
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thus making it the longest interglacial of the Quaternary. It also marked the transition from weaker to more pronounced glacial-

interglacial cycles (EPICA Community Members, 2004). Its long duration is attributed to a modulation of the precession cycle,25

resulting in CO2 levels that were high enough to suppress the cooling of the climate system due to the low eccentricity and thus

reduced solar radiation (Hodell et al., 2000). Moreover, ocean sediment cores (e.g., Hodell et al., 2000) and climate models

(e.g., Rachmayani et al., 2017) show that the MIS11c global overturning circulation was at an enhanced state, resulting in

asynchronous warming of the southern and northern high latitudes (Steig and Alley, 2002). However, Dutton et al. (2015)

surmise that, despite the fact that orbital parameters in MIS11c were almost identical to Present Day (PD) at its late stage30

(EPICA Community Members, 2004; Raynaud et al., 2005) and ice core reconstructions show the mean annual atmospheric

temperatures over Antarctica to have been ca. 2◦C warmer than Pre Industrial (PI) values, climate modelling experiments with

realistic orbital and greenhouse gas forcings fail to fully capture this MIS11c warming, as they tend to underestimate climate

variations during the interglacial (Milker et al., 2013; Kleinen et al., 2014).

A better understanding of the climate dynamics during the Quaternary interglacials, especially those that were warmer than35

today, is critical because they can help assess Earth’s natural response to future environmental conditions (Capron et al., 2019).

Among these periods, MIS 5e (also referred to as the Eemian, Last Interglacial, or LIG; Shackleton et al., 2003) was originally

proposed to be a possible analogue for the future of our current interglacial (Kukla, 1997). More recently, MIS11c has been

considered an even better candidate, since its orbital conditions were closest to PD (Berger and Loutre, 2003; Loutre and Berger,

2003; Raynaud et al., 2005). Furthermore, ice core evidence indicates that Termination V (i.e., the deglaciation that preceded40

MIS11) was quite similar to the last deglaciation in terms of rates of change in temperature and greenhouse gas concentrations

(EPICA Community Members, 2004). The length of this unusual interglacial and the transition to stronger glacial-interglacial

cycles seen in the recent geological record may have been triggered by a reduced stability of the West Antarctic Ice Sheet

(WAIS, Fig. 1; Holden et al., 2011), and its long duration was shown to be key to the massive retreat of the Greenland Ice

Sheet (GIS; Robinson et al., 2017). Elucidating the response of the Antarctic ice sheets (AIS) to past interglacials can also help45

identify various triggers that are able to drive ice sheet retreat. This is because each interglacial has its unique characteristics:

for example, while MIS11c was longer than the LIG, the latter was significantly warmer (Lisiecki and Raymo, 2005; Dutton

et al., 2015).

Compared to more recent interglacials such as the LIG, information for MIS11c is scanty (Dutton et al., 2015; Capron

et al., 2019) and pertains primarily to the GIS. The MIS11c behaviour of the GIS, constrained through numerical modelling50

and empirical evidence, includes a strong retreat of its ice margin followed by vegetation expansion across southern Greenland

(Willerslev et al., 2007; Reyes et al., 2014; Robinson et al., 2017; Rachmayani et al., 2017). Reyes et al. (2014) report a probable

GIS contribution of 4.5 to 6 m of sea level rise based on simplified model simulations driven by MIS5e climate forcings that

best fit their geological constraints for MIS11c, while Robinson et al. (2017) provide an estimated range of 3.9–7.0 m (and

6.1 m as their most likely value) of sea level rise based on targeted numerical simulations for MIS11c.55

The MIS11c history of Antarctica is less constrained than that of Greenland. Whereas Raymo and Mitrovica (2012) consider

that the WAIS had collapsed and that the East Antarctic Ice Sheet (EAIS, Fig. 1) provided a minor contribution based on

their estimate of MIS11c global sea levels of 6 to 13 m above PD (Dutton et al., 2015), studies regarding the response of the
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AIS have been elusive. For example, sedimentary evidence has been inconclusive regarding the possibility of a collapse of

the WAIS during certain Quaternary interglacials (Hillenbrand et al., 2002, 2009; Scherer, 2003), and only recently evidence60

for the instability of marine sectors of the EAIS has been provided (Wilson et al., 2018). Counter-intuitively, perhaps, the

onshore dating of moraines in the Dry Valleys back to MIS11c is used to indirectly support regional ice sheet contraction,

which would result in nearby open-water conditions and thus a source of moisture and enhanced precipitation, fueling local

glacier advances (Swanger et al., 2017). Previous numerical modelling experiments that encompass MIS11 also do not show

a consensus regarding AIS volume changes. For example, Sutter et al. (2019) report an increased ice volume variability from65

MIS11 onwards, caused by the stronger atmospheric and oceanic temperature variations, while Tigchelaar et al. (2018) only

obtained significant volume changes during the last 800 kyr when increasing their ocean temperatures to unrealistically high

values (i.e., applying a ca. 4◦ C surface warming anomaly to their experiments). Conversely, de Boer et al. (2013) report higher

sea level contributions during MIS 15.5, 9, and 13, and weaker contributions during MIS 11 and 5.5.

Apart from the LIG, when studies acknowledge the possibility of a WAIS collapse (e.g., Hearty et al., 2007; Pollard and70

DeConto, 2009), the closest comparable period to MIS11c is the Pliocene, when the WAIS is also thought to have collapsed

(Naish et al., 2009; Pollard and DeConto, 2009). However, Pliocene model results were shown to be highly dependent on the

choice of climate and ice-sheet models (Dolan et al., 2018). Similarly, reconstructions from different ice cores do not fully

agree on how temperature evolved during MIS11c. For example, the Vostok ice core surface air temperature reconstruction

(Petit et al., 1999; Bazin et al., 2013) reveals a much shorter and weaker period of peak warming (about 2◦C higher than PD75

around 410 ka) than that inferred from the EPICA Dome C (EDC; Jouzel et al., 2007) and Dome Fuji (DF; Uemura et al.,

2018) ice cores, which have a lower uncertainty, and show a longer duration (ca. 15 kyr) of warmer-than-present temperatures

(peaking at almost 4◦C above PI around 407 ka for EDC, and 2.7 ◦C above PI at about 410 ka for DF, Fig. 1).

Given the absence of MIS11c-specific AIS model simulations, a dearth of information, and conflicting constraints on how

Antarctica responded to this exceptionally long interglacial (Milker et al., 2013; Dutton et al., 2015), we here present the80

first AIS model reconstructions zooming in on the peak warming between 420 and 394 ka. We aim to reduce the current

uncertainties in the AIS behaviour during MIS11c, specifically addressing the following questions:

1. How did the AIS respond to the warming of MIS11c? What are the uncertainties in the AIS minimum configuration,

timing and potential sea level contribution?

2. What was the main driver of the changes in the AIS volume? Was it warming duration, peak temperature, or changes in85

precipitation? Are these drivers relevant to future ice sheet changes in the southern high latitudes?

For this purpose, we perform five ensembles of numerical simulations of the AIS to evaluate the importance for ice volume

and extent of the differences in the signal intensity and structure of ice-core records, comparing to a reconstruction based on

the LR04 stack of deep-sea sediment cores, uncertainties in sea level reconstructions, and uncertainties in the geometry of the

AIS at the start of MIS11c.90
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Figure 1. Surface topography of the AIS at the start of our experiments (420 ka, see Fig. 3d). The locations mentioned in the text, including

the drilling sites of the ice (circles) and sediment (red diamonds) cores on and around Antarctica, are showcased. Also shown are the GI

reconstructions for the adopted records (cf. Sect. 2.2, Table 2).

2 Methods

2.1 Ice-sheet model

For our experiments we employ the 3D thermomechanical polythermal ice-sheet model SICOPOLIS (Greve, 1997; Sato and

Greve, 2012; Bernales et al., 2017a) with a 20 km horizontal grid resolution and 81 terrain-following layers in the vertical.

It uses a one-layer enthalpy scheme that is able to correctly track the position of the cold-temperate transition in the thermal95

structure of a polythermal ice body (Greve and Blatter, 2016). For the basal melting of ice shelves, it adopts a calibration

developed by Bernales et al. (2017b) to optimise a parameterisation based on Beckmann and Goosse (2003) and Martin et al.

(2011), but with a quadratic dependence on temperature (as in Holland et al., 2008; Pollard and DeConto, 2012), which is

able to respond to the variations in the Glacial Index (GI, Sect. 2.2; a description of our parameterisation is given in the sup-

plementary material). The quadratic dependence on thermal forcing is inspired by Favier et al. (2019), who obtained results in100

good agreement with coupled ocean-ice shelf simulations. For glacial isostatic adjustment, we use a simple elastic lithosphere,

relaxing asthenosphere (ELRA) model. We also use constant salinity since initial sensitivity tests using spatially variable salin-

ity showed a negligibly small effect on the parameterised basal melting rates. The relevant parameters used in the modelling

experiments are listed in Table 1.

All ensembles cover a period from 420 to 394 ka. To initialise the AIS, we first perform a thermal spin-up over a period of105

195 kyr from 620 to 425 ka (i.e., apply a transient surface temperature signal from the EDC ice core (Jouzel et al., 2007) while
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Table 1. Main Parameters used in the experiments.

Parameter Name Value Units

E Enhancement Factor 1

n Glen’s Flow Law Exponent 3

p Weertman’s Law p exponent 3

q Weertman’s Law q exponent 2

τ ELRA model time lag 1 kyr

D ELRA model flexural rigidity 2.0× 1025 Nm

γlr Lapse Rate Correction 8.0 ◦Ckm−1

S0 Sea water salinity 35

ρsw Sea water density 1028 kgm−3

ρice Ice density 910 kgm−3

cp0 Ocean mixed layer specific heat capacity 3974 Jkg−1 K−1

γT Thermal change velocity 10−4 ms−1

Li Ice heat capacity 3.35× 105 Jkg−1 K−1

keeping the ice sheet geometry constant at PD). We then let the AIS freely adjust for 5 kyr, between 425 and 420 ka, applying

transient EDC forcing as a relaxation period. This is to avoid a shock in suddenly letting the topography freely evolve at the

start of our simulations.

2.2 Climate forcing110

In our effort to assess similarities and differences in existing paleoclimate reconstructions, and regional differences in the ice-

core records, we perform an ensemble of simulations where each member is forced by a GI (see Eq. 1) derived from δD from

ice cores, and δ18O from the LR04 stack of deep-sea sediment cores (Fig. 2a; Petit et al., 2001; EPICA Community Members,

2004; Lisiecki and Raymo, 2005; Uemura et al., 2018). Since a fully coupled climate-ice sheet model run over 26 kyr is at

present computationally challenging, an evaluation of possible scenarios for the peak-temperature response during MIS11c115

based on the paleoclimate signals from different ice sheet sectors can be a simpler, yet effective approach. The GI method is

a way of weighting the contributions from interglacial (PI) and full glacial (Last Glacial Maximum; LGM) average states. It

does so by rescaling a variable curve (usually temperature or isotope reconstructions from an ice or sediment record) based on

reference PI and LGM values, which consider PI climate as GI = 0 and LGM climate as GI = 1 (Eq. 1):

GI(t) =
δX(t)− δXPI

δXLGM − δXPI
(1)120
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Table 2. Ice and sediment cores reference values used in Eq. (1).

Record δXPI [‰] δXLGM [‰] Age (ka) Age scale Reference

EDC -397.4 -449.3 24.0 EDC3 EPICA Community Members (2004)

DF -425.3 -469.5 22.8 AICC2012 Uemura et al. (2018)

Vostok -440.9 -488.3 24.4 GT4 Petit et al. (2001)

LR04 3.23 4.99 20.0 LR04 Lisiecki and Raymo (2005)

Where t is time, and X is Deuterium for the ice cores or 18O for sediment cores. The value for δXPI was obtained as the

average of the last 1000 years before 1850 CE, while δXLGM was taken as the minimum and maximum value for δD and

δ 18O, respectively, between 19 and 26.5 ka (cf. Clark et al., 2009; Clason et al., 2014). For our two reference climate states

(i.e., PI and LGM), we use the Community Climate System Model version 3 (CCSM3) PI time slice in Rachmayani et al.

(2016), and the LGM time slice in Handiani et al. (2013), which used identical model versions and were run on the same125

platform. A brief assessment of the model biases against PD data is provided in the supplementary material. For further

details the reader is referred to the respective original papers. The atmospheric and ocean temperature (T) fields at time t are

reconstructed using:

T (t) = TPI +GI(t) · (TLGM −TPI) (2)

while precipitation is reconstructed by an exponential function, to prevent negative values and also ensure a smooth transition130

between the PI and LGM states, using:

P (t) = PPI
1−GI(t) ·PLGM

GI(t) (3)

The PI and LGM reference values (including the reference ages for the latter) for the three ice cores and the LR04 stack

are summarised in Table 2, together with the respective age scales. The ensemble of simulations forced by different GI curves

constitutes our core experiments and is termed CFEN (Climate Forcing Ensemble).135

2.3 Sensitivity experiments

2.3.1 Uncertainties due to the GI scaling

Given the fact that different approaches have been used to transform the isotope curves into a GI, we assess the impact of such

scaling by comparing the effect of changing the reference values for δXPI and δXLGM. For the former, we tested using as

reference the average of the last 10 kyr (rather than the 1000 years before 1850 CE), due to the fact that the temperature increase140

throughout the Holocene is inconsistent between ice and sediment cores (Fig. 2a). For the latter, we also treat δXLGM as the
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Figure 2. Reconstructions used in this study: (a) LR04 δ18O (black) and ice-core δD [‰], and (b) global mean sea level anomaly relative to

PI [meter sea level equivalent, m s.l.e.].

average (between 19 ka and 26.5 ka) instead of the peak value. We apply the different combinations of these references and

their values to the EDC ice core δD and the LR04 stack δ18O curves. For LR04 we only present the results for the sensitivity

to the rescaling of δ 18OPI since there was virtually no difference when changing the treatment for δ 18OLGM (Supplementary

Fig. S3). We call this ensemble the Scaling Sensitivity Ensemble (SSEN)145

2.3.2 Impacts of multi-centennial variability

Given the different temporal resolutions of climate records, lower-resolution reconstructions such as LR04 and Vostok might

not capture the impact of multi-centennial variability or shorter events, as do EDC and DF (Fig. 2a). Thus, we assess the

potential effects of record data resolution and centennial time scale variability by applying 1, 3, and 5 kyr low-pass filters to

the EDC ice core GI and forcing our model with the resulting smoothed GI curves. We then compare these three simulations150

to the unaltered EDC-derived ice sheet history, and call this ensemble the Resolution Sensitivity Ensemble (RSEN).

2.3.3 Uncertainties in sea level

Sea level plays an important role in determining the flotation of ice and the stresses at its marine margins. Uncertainties in global

mean sea Level reconstructions are therefore a significant concern, and several studies have indeed focused on improving its

estimates for the past millions of years (e.g., Imbrie et al., 1989; Bintanja and van de Wal, 2008; Spratt and Lisiecki, 2016,155
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Fig. 2b). We evaluate the effect of using a particular sea level reconstruction on the evolution of the AIS by running an ensemble

of simulations with EDC-based GI, where each member uses a different sea level reconstruction. Sea level curves included in

this ensemble are three of the reconstructions presented by Spratt and Lisiecki (2016), termed "long" (i.e., uses records that

extend as far back as 798 ka), "short" (uses records that extend at least until 430 ka), and the "upper uncertainty boundary" from

their records, because we consider their lower uncertainty boundary to be satisfactorily covered by SPECMAP (Imbrie et al.,160

1989), which we include, and finally the reconstruction from Bintanja and van de Wal (2008). All these records are presented

in Fig. 2b, and we call this ensemble, where we test for different sea level reconstructions, the Sea Level Sensitivity Ensemble

(SLSEN).

2.3.4 Uncertainties in the initial ice sheet geometry

Similar studies that aim to assess AIS changes over (one or more) glacial and interglacial cycles often assume the PD geometry165

as a starting condition (e.g., Sutter et al., 2019; Tigchelaar et al., 2019; Albrecht et al., 2020), as has been done in our CFEN

experiments. Although this has been loosely inferred from sedimentary (Capron et al., 2019) and ice-core (EPICA Community

Members, 2004) proxy records, to our knowledge there is no direct evidence to support this (e.g., Swanger et al., 2017).

Hence, we also perform an ensemble of simulations starting from distinct ice sheet geometries that are larger than PD, given

the fact that at 420 ka the climate was transitioning to the interglacial. This allows for an evaluation of the influence of an170

initial configuration at 420 ka on the modelled retreat and advance of the AIS (including possible thresholds), and provides an

uncertainty envelope in its potential sea level contribution based on this criterion. We call this the Starting Geometry Sensitivity

Ensemble (SGSEN), and all its unique geometries are forced with the reconstructed climate forcings tested in CFEN.

In order to create a representative range of initial geometries, we vary the forcing conditions relative to the control run

(i.e., temperature, precipitation, calving, and sub-ice-shelf melting) during the 425–420 ka relaxation. We use constant LGM175

temperature and LGM or PI precipitation fields during this period, as opposed to the transient GI approach of the control run.

Table 3 summarises the different combinations used in creating each initial ice sheet geometry at 420 ka (labelled gmt1 to

gmt3; Fig. 3). These different combinations allow the ice sheet to advance towards its intermediate-to-full glacial extent during

a relatively short time, and their numbering (1 to 3) reflects an increasing areal extent relative to the ’control’ run (Fig. 3d).

Geometry 1 is generally more extensive and thinner than the control. Its grounding line advanced at the southern margin of the180

Filcher-Ronne Ice Shelf and at Siple Coast, but the ice sheet interior is on average 200 m thinner than the control and indeed

up to 400 m thinner across particular regions such as the dome areas of the WAIS and Wilkes Land (Dome C). It is, however,

about 200 m thicker at its fringes, which results in a gentler surface gradient towards the ice sheet margins. Geometries 2 and 3

show a more pronounced height difference and larger extent than the control run. They yield a slightly thinner ice sheet interior

along its ice divides (less than 100 m), but thicker at the main drainage outlets (between 200 m in the interior and 400 m close to185

the former grounding lines). The gmt2 ice sheet is almost completely grounded across the Filchner-Ronne and Amery basins,

with a reduced Ross Ice Shelf compared to gmt1. Finally, gmt3 has no prominent ice shelves, because the ice sheet becomes

grounded across most of the domain.
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Table 3. Experiments performed to create alternative initial geometries during the relaxation period between 425 ka and 420 ka. The experi-

ments were designed to create increasingly larger ice sheet geometries, i.e., gmt1 larger than control but smaller and much smaller than gmt2

and gmt3, respectively (cf. Fig. 3).

Experiment Temperature (atm/ocn) Precipitation Calving Sub ice-shelf melting

control transient transient On On

gmt1 LGM LGM On Off

gmt2 LGM PI On Off

gmt3 LGM PI Off On

Figure 3. Different starting ice sheet geometries at 420 ka. (a-c) the different starting geometries corresponding to gmt1-gmt3 after 5kyr of

relaxation following climate parameters given in Table 3; (d) original "control" conditions used for CFEN and SLSEN sensitivity analyses

(Table 3). (e-g) difference maps between control (panel d) and the three alternative ice sheet geometries (respectively panels a-c). Differences

are only shown where the ice is grounded in both geometries, and grey lines show the grounding lines in gmt1-3.
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3 Results

3.1 Climate forcing reconstructions190

Considering the four adopted isotope curves (Fig. 1), although similar at first sight, the GI reconstructions are different from

one another, and therefore offer a range of modelled ice-sheet responses. The LR04 GI reconstruction shows conditions close

to PI for the warmest period of MIS11c (and colder-than-PI before and after), thus not showing a peak warming, or at least one

that is warmer than PI (Fig. 6). Although the ice cores have similar ranges in GI values and similar overall aspects of the curves

(and good covariance between EDC and DF; Uemura et al., 2018), they differ in key aspects (Fig. 1). The Vostok reconstruction195

starts at a warmer state than the others at 420 ka, has a modest peak warming at 410 ka, and then consistently declines towards

a colder state (crossing the GI = 0 line at about 404 ka). The EDC reconstruction shows a mildly warmer-than-PI state at

420 ka, which persists until about 412 ka. Subsequently, the peak warming starts and persists (in a slightly warmer state than

reconstructed with Vostok) until ca. 397 ka. Its rate of decline after about 404 ka is very similar to the Vostok and LR04 curves,

although it is in a warmer state than the previous two. Finally, the DF reconstruction is somewhere in-between the other two ice200

cores (Fig. 1). It shows more stable conditions at the start (i.e., no pronounced warming), rising to a rather prolonged warming

period similar in structure to the EDC reconstruction, but peaks at 410 ka, similar to the Vostok curve. Finally, its rate of decline

is similar to the other cores and so it crosses PI values (GI = 0) later than the Vostok but earlier than the EDC curves, between

404 ka and 403 ka.

The ice sheet history for MIS11c using the LR04 forcing is clearly different from the others, because the ice sheet only205

becomes smaller than its initial state for a brief period of 1–2 kyr before 400 ka (Fig. 4). It is worth reminding that, in contrast

to other members of CFEN, the LR04 curve starts with colder-than-PI conditions and does not become significantly warmer

afterwards. It only shows a brief period of warmer conditions between 410 and 400 ka (Fig. 4a), resulting in the observed

overall larger AIS (Fig. 4b). The ice core CFEN members yield lower ice volumes throughout all MIS11c (Fig. 4b), but with

important variations. The Vostok-forced experiment, for example, introduces a faster ice loss at the beginning of the simulation210

period, when it shows a sudden warming (Fig. 4a). However, it recovers more quickly than the EDC and DF experiments as

soon as the peak warming is over and the climate starts to shift back to PI conditions, without a WAIS collapse (Supplementary

Fig. S4).

The members that result in a collapse of the WAIS (forced with the DF and EDC reconstructions) reveal slightly different

responses. For example, the experiment forced by the EDC reconstruction shows an AIS volume reduction after a sudden215

warming at ca. 417 ka (Fig. 4), but the WAIS collapse is delayed until 410 ka, after a second short period with an increased

warming rate, that leads up to the peak-warming of MIS11c. The DF experiment on the other hand is rather stable until ca. 412

ka, when the climate starts warming towards its peak. Most of the retreat seems to be triggered at times when the warming rate

is strongest, as opposed to when the peak warming occurs.

For all ice core ensemble members, contraction of the AIS is already ongoing by 416 ka, and by 405 ka they are at, or close220

to, their minimum extents. In all CFEN simulations, ice sheet contraction is associated with strong basal melting close to ice

shelf grounding lines, especially at Siple Coast at the Ross Ice Shelf and underneath the Evans Ice Stream at the Filchner-
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Figure 4. Sensitivity of AIS response to CFEN GI reconstructions during the peak warming between 420 ka and 394 ka. (a) GI reconstructions

(cf. Fig. 2a). (b) Total ice volume [103km3].

Ronne Ice Shelf (Fig. 5). These are caused by the combination of an increased warming of the ocean upper layer in these

regions (Supplementary Fig. S5) and higher melt rates at the ice stream flux gates (Supplementary Fig. S2d). The same does

not happen for the marine-based margin of western Dronning Maud Land, which shows more limited retreat during MIS11c225

than their western counterparts in the Weddell Sea region. Around most of the EAIS (except for the Amery Ice Shelf), either

upper layer ocean temperatures or ice-shelf melt rates are not high enough to force grounding line retreat as strongly as in the

aforementioned regions, and the relatively lower ice loss is dominated by surface ablation (Fig. 5).

3.2 Sensitivity to rescaling of the climate forcings

The different δ isotope reference values used for the SSEN experiments are shown in Table 4 (cf. Table 2). Using an LGM-230

averaged value results in a smaller ice sheet for the LR04 GI, while for the EDC GI it results in a slightly larger AIS than

their correspondent CFEN experiments throughout the entire MIS11c (Fig. 6). This LR04-rescaled run, however, still does not

produce significant AIS contraction compared to the other experiments, with an ice volume at 405 ka of ca. 106 km3 less than

its initial state (Fig. 6b). The warmer conditions resulting from the GI rescaling are still not enough to compensate for the initial

growth caused by significantly colder conditions at 420 ka.235
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Figure 5. Total Mass Balance (i.e., ice shelf basal melting and surface mass balance combined, in ma−1) at 416 ka for the CFEN simulations.

Hatched areas show where basal melting dominates over surface mass balance.

Table 4. Different isotope values adopted for the GI rescaling procedure. Hol is the reference value produced by the average over the last 10

kyr (which replaces PI in Eq. 1 for the respective experiments), while LGMavg is the reference value obtained from the average between 26

and 19.5 ka (see Sect. 2.3.1).

Record δXPI [‰] δXHol [‰] δXLGM [‰] δXLGMavg [‰]

EDC -397.4 -394.6 -449.3 -442.3

LR04 3.23 3.33 4.99 4.85

Although differences in ice-sheet volumes exist between the different scaling strategies in the EDC-forced experiments,

the resulting ice sheet histories are quite similar (Fig. 6b). Despite the ice-sheet volume at 405 ka being smaller in the run

where both LGM and PI isotope values were applied differently to scale the EDC record (i.e., multi-millennial averages, see

Sect. 2.3.1) than in the CFEN EDC-forced experiment, this difference amounts to ca. 0.6 m s.l.e., with only 0.1 m s.l.e. coming

from the WAIS and the remainder coming from the EAIS (AIS sea level contribution, as well as separate contributions from240

EAIS and WAIS will be further discussed in Sect. 3.5 and thereafter). It is also important to keep in mind that using the last

10 kyr as reference for GI = 0 is problematic due to the fact that the resulting GI for PI itself, which our reference fields

are representative of, is much smaller than zero, which was the value it should have following the established routine for the

derivation of paleoclimate conditions using a combination of GI and climate model time slices (e.g., Forsström et al., 2003;
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Figure 6. Sensitivity of AIS response to SSEN GI reconstructions during peak warming between 420 ka and 394 ka. "Hol" denotes the

experiments where the last 10 kyr were used as opposed to the last 1 kyr, and "LGMavg" denotes the experiments where the average over the

LGM was taken as opposed to the peak value. (a) Differently scaled GI curves. (b) Total ice volume [103km3].

Forsström and Greve, 2004; Greve, 2005; Clason et al., 2014). Consequently, the PI field has a stronger influence, producing245

an unrealistic forcing at time t that is warmer than expected.

3.3 Sensitivity to multi-centennial variability

Although the minimum volumes achieved by the filtered-GI experiments in RSEN are similar to the original ice sheet history

obtained from the CFEN EDC-forced experiment, their individual trajectories are slightly different (Fig. 7). Ice sheet contrac-

tion and the timing at which each low-pass filter experiment reaches its minimum volume and starts its subsequent recovery250

are delayed compared to the original EDC forcing. The lag between the ice sheet histories increases with an increased filtering

window. Whereas the 1 kyr low-pass experiment shows relatively small differences in the timing of the events compared to

the CFEN EDC-forced run, the 3 and 5 kyr low-pass experiments show a significant delay in the ice sheet contraction (this is

especially clear after 412 ka; Fig 7b). This effect seems to be non-physical, and a result of the delay introduced by the low-pass

filter. While such delay prevents these results from being discussed in terms of absolute time, it still has implications for the im-255

pact of high-frequency variations. The 1 kyr low-pass GI is the only one that still preserves some higher-frequency variability,
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Figure 7. Sensitivity of AIS response to RSEN GI reconstructions during peak warming between 420 ka and 394 ka. (a) GI reconstructions.

(b) Total ice volume [103km3]. LP in the figure stands for "low-pass".

although its peaks are shifted or even in anti-phase with the original EDC GI series. This, however, appears to have little to no

effect on the resulting ice sheet evolution, indicating that higher-frequency oscillations play a minor role in ice-sheet volume

changes.

3.4 Sensitivity to sea level reconstructions260

Although the range of global mean sea level reconstructions is wide (nearly reaching 60 m between 405 ka and 400 ka; Fig. 8a),

the AIS response in terms of volume is remarkably similar for different sea level curves (Fig. 8b). The differences in sea level

have largest impacts on the volumes of floating ice (Fig. 8c), directly reflecting their effect on the flotation of ice close to the

grounding line. The SLSEN member with the highest sea level rise (i.e., the upper uncertainty boundary of Spratt and Lisiecki,

2016) deviates the most from the other members, especially in the portion of grounded ice being brought to flotation (Fig. 8c).265

However, the differences are not significant enough to yield substantially distinct ice volume changes (Fig. 8b).
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Figure 8. Sensitivity of AIS response to SLSEN reconstructions during peak warming between 420 ka and 394 ka. (a) records of global

mean sea level relative to today [meter sea level equivalent, m s.l.e.] (cf. Fig. 2b). (b) Total ice volume [103km3]; (c) Floating ice volume

[103km3].

3.5 Sensitivity to initial ice sheet geometry

In order to evaluate the uncertainty arising from the assumption of a PD-like initial ice sheet configuration, we perform a

sensitivity experiment by running simulations starting from three alternative ice sheet geometries (Table 3) for those GI recon-

structions indicating a WAIS collapse in CFEN, i.e., those forced by DF and EDC. We also include SSEN member forced by270

EDCHol,LGMavg (cf. Table 4) in this analysis, since it attained a lower ice volume at 405 ka than any other member of CFEN,

and thus provides an interesting end member for this ensemble. Finally, we also apply the same set of experiments to the Vostok

GI reconstruction, in order to test whether a choice of alternative ice sheet geometries at 420 ka might trigger a WAIS collapse

or enhance the response of the EAIS.

Looking at how the four initial geometries evolve under the four different climate forcings from the GI reconstructions275

(Fig. 9), it becomes clear that all members under the same climate forcing have a tendency to converge despite differing initial

ice sheet configurations. Thus, the uncertainties in the minimum ice-sheet volumes (and consequently WAIS collapse) due

to assumptions of starting geometry are rather small, with a spread between 1 and 1.1 m s.l.e. at 405 ka among the four
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Figure 9. Sensitivity of the AIS response to CFEN GI reconstructions (Vostok, DF, EDC) and SSEN EDCHol,LGMavg between 420 and 394

ka with uncertainty bands from four distinct initial ice sheet starting geometries (Table 3). Contribution to (a) global mean sea level [m s.l.e.],

and (b) total ice volume [103km3]. Solid lines show the mean of each common-forcing ensemble member, while the color filling shows the

spread given by the different starting geometries (cf. Fig. 3).

different members in SGSEN. The different ice sheet configurations also show similar rates of retreat, indicating that the

ice sheet size does not affect its rate of contraction due to climate warming. In our SGSEN simulations, it appears that the280

main source of variability between ice sheets with different geometries comes from the interior of the EAIS and the drainage

basins of Ninnis and Totten glaciers (Fig. 10). The latter remains thicker in the alternative geometry experiments than in the

correspondent CFEN/SSEN correspondent experiment (Figs. 10e-g), whereas the former is thinner in gmt3 (Fig. 10g). Some

variability can also be observed in the WAIS domain. Parts of Pine Island Glacier appear to resist ice sheet collapse in the

thicker-ice-geometry experiments (i.e., gmt2 and gmt3) when compared to the CFEN/SSEN correspondent run (Figs. 10f,g).285

Given the observed spread, the three ensemble members constrain the range of potential sea level contributions from Antarctica

during the MIS11c highstand at 405 ka to 2.3–8.8 m (minimum from Vostok, maximum from EDCHol,LGMavg).
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Figure 10. EDC-forced SGSEN members at 405 ka. (a-c) the different geometries corresponding to gmt1-3; (d) their reference run. i.e.,

CFEN member forced by the EDC-derived GI. (e-g) difference maps between their reference (panel d) and the three resulting ice sheet

geometries (respectively panels a-c).

4 Discussion

Offshore and far-field studies show results similar to our model-based inferences regarding the loss of the WAIS during MIS11c

and minor losses of ice from the EAIS (thinning and margin retreat). Sediment cores in the WAIS sector of the Southern Ocean290

revealed evidence for a strong ice retreat during MIS11 (e.g., Scherer et al., 1998), whereas evidence for the EAIS retreat over

past Quaternary interglacials has only recently been provided (Wilson et al., 2018, core U1361 in Fig. 1). Hillenbrand et al.

(2009) compared sediment cores PS2547 and PS58/254 from the WAIS sector, and PS1506 offshore of Dronning Maud Land

(Fig. 1) and found them to be inconclusive regarding the evidence for a WAIS collapse during MIS11, suggesting MIS13 or

MIS15 as more likely candidates. They postulated, however, that the duration is more important than the magnitude of warming295

for a WAIS drawdown. Scherer et al. (1998) argue, based on samples from sediment cores drilled below Ice Stream B, that

open ocean conditions existed for the Ross Ice Shelf Basin during MIS11. This is consistent with the open-ocean conditions

required to explain a closer source of moisture fuelling an advance of Dry Valley glaciers during the same period (Swanger

et al., 2017). Finally, Raymo and Mitrovica (2012) estimated a MIS11 sea level rise of 6 to 13 m above PD, which they postulate
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that, considering the upper bound, could only be obtained if, in addition to Greenland’s contribution, the WAIS had collapsed300

and the EAIS also provided its share.

Numerical modelling studies in which the WAIS did not collapse during MIS11 were acknowledged to be less sensitive to

the ability of ocean temperatures to drive basal melting (e.g., Pollard and DeConto, 2009; Tigchelaar et al., 2019). Despite

differences in the sensitivity to ocean temperature, our results support those of Tigchelaar et al. (2019) and Albrecht et al.

(2020) regarding the minor role that variations in sea level alone play in driving ice sheet retreat. Instead, changes in sea level305

most likely act to boost the effect of air and ocean temperatures to drive the ice loss, as stipulated by Tigchelaar et al. (2019).

In their study, Pollard and DeConto (2009) use the LR04 stack as forcing, which lacks significant warming above PI during

MIS11c, and for which we did not obtain a WAIS collapse either, despite the very different approaches in reconstructing the

transient signal between the two studies.

We found that the relatively low temporal resolution of LR04 is not the reason why it cannot produce a WAIS collapse as310

do the ice core records (i.e., it would have missed a short period where a pronounced peak would be present). Our RSEN low-

pass-filter-forcing experiments with the EDC GI reconstruction show a WAIS collapse and significant ice sheet contraction,

regardless of how much high-frequency variability is removed. It is worth reminding that the LR04 stack contains no regional

signal from the Southern Ocean at all, with its southernmost oxygen isotope records being taken from cores drilled in the

Agulhas region (south of Africa in the Atlantic Ocean), at about 45◦S (see Fig. 1 in Lisiecki and Raymo, 2005). This could315

explain why LR04 does not capture the Antarctic warming event during MIS11, and consequently fails to provoke ice sheet

contraction. The different criteria attempted for its scaling also had little effect (Fig. 6), further strengthening our argument that

LR04 shows the global signature of MIS11c, which is not representative of the peak warming in Antarctica. A possible way

of circumventing this problem could be by using a similar approach to Sutter et al. (2019), who combined the LR04 stack and

EDC ice-core temperature records, that led to a WAIS collapse during MIS11.320

From our experiments with different initial ice sheet geometries it seems that ice-shelf calving plays a role just as big as,

if not larger, than basal ice-shelf melting in terms of regulating the grounding line advance, since in gmt3 the grounding lines

advanced more than in gmt2. The simplified treatment of the grounding lines could also have had an influence on the seeming

insensitivity of our experiments to sea level uncertainties, although models which apply more refined treatments yield similar

results for a similar spatial resolution (e.g., Tigchelaar et al., 2019). Thus, while these caveats must be taken into consideration,325

they do not appear to have influenced our results dramatically, since they can be directly compared to what other studies have

obtained using similar forcings.

To construct our climate forcings, we used four different proxy records which show significant differences in their structure

during the peak warming. They either consist of a short single peak (Vostok), or a prolonged period of (relatively) warmer

conditions, including a peak (LR04, DF, and EDC). Although the extensive warming signal is seen in most records, they too330

show differences from one another. For example, EDC and DF, which are the most similar among the four records, start shifting

to their warmest conditions at about the same time (ca 414 ka), but peak at different times. DF peaks at 410 ka, which is 3

kyr earlier than EDC. However, the WAIS collapse occurs at 407 ka for the DF and at 406 ka for the EDC core experiments,

which is closer than the timing of their peak warming. Both records also produce similar ice volumes (Fig. 9) and extents
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Figure 11. Sensitivity of the AIS ice volume (103km3) to "post 410 ka constant conditions". Solid line shows ice-sheet volume for the

Vostok-forced CFEN member (c.f. Fig. 4), dotted and dashed lines show ice-sheet volume history when conditions are kept constant using a

GI correspondent to 1.6◦C and 2.1◦C above PI, respectively.

(Supplementary Fig. S4). In contrast, the Vostok-forced ensemble member, which has a short warming peak, shows no collapse335

of the WAIS despite having a short warming peak of a similar GI magnitude at 410 ka.

It is important to remember that the discrepancies in the time of the peak warming and ice sheet collapse are within the

uncertainty in the age models of the ice cores (Parrenin et al., 2007; Bazin et al., 2013), preventing us from establishing an

exact point in time for these events. It should also be mentioned that the combination of GI and climate-model forcing to

reconstruct the surface temperature results in a warmer temperature signal than the one obtained directly from the δD of the340

EDC and DF ice cores. This happens both to the average over the entire domain and at their drilling sites (Fig. 11), highlighting

the fact that a linear interpolation between two fields does not fully capture the spatial pattern of the temperature anomalies.

The EDC and DF δD-derived temperatures peak at 3.1 and 2.7◦C respectively, while the temperature obtained by the GI

reconstruction (Eq. 2) ranges from 3.3 to 3.7◦C. The same does not hold for Vostok: the δD-derived temperature peaks at

2.1◦C, compared to the GI reconstruction that peaks at 1.6◦C at the Vostok drilling site, and 2.5◦C averaged over the entire345

domain. This mismatch between isotope-derived and GI-derived temperatures does not make our results less relevant: a set

of simulations where the GI was kept constant at its 410 ka peak value (at 2.1◦C above PI, i.e., the peak warming of Vostok)

from 410 ka onward resulted in a WAIS collapse for all starting geometries after ca. 4 kyr (with a total sea-level contribution

of 6.5–8.0 m at 405 ka; Fig. 11), coinciding with what is observed for the EDC and DF-forced experiments. Thus, a more

prolonged warming as seen in DF (which has a GI peak of similar magnitude as Vostok) and EDC seems to be crucial for the350

collapse of the WAIS, as opposed to the intensity of such peak, similar to what was suggested by Robinson et al. (2017) for the

GIS.

Considering that EDC, Vostok, and DF reach similar GI values at 411 ka (Fig. 4a), the value at this point seems to be the

threshold for which a WAIS collapse is possible if such conditions are sustained for at least 4–5 kyr. This happens before

the peak warming in these records, and corresponds to a 1.6–2.1◦C mean-annual atmospheric warming across the Antarctic355
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continent (i.e., the range of resulting temperature values between the three GI reconstructions cited above; Fig. S6), which,

considering our ocean forcing, translates to a 1.5–1.9◦C warming of the ocean surface averaged around Antarctica (i.e., south

of 65◦S). This threshold is much lower than the 4◦ C stipulated by Tigchelaar et al. (2018), but is in line with model results

from Turney et al. (2020) for the LIG. Our surface ocean temperature threshold should be considered with caution, because

it is derived using an interpolation of ocean temperatures to compute our anomalies instead of a coupled ice-ocean setup (a360

full description is available in the supplementary material). A simulation analogous to the one where the GI was kept fixed

at conditions equivalent to the peak warming of Vostok, but using the GI value that corresponds to a 1.6◦C warming across

Antarctica for the Vostok ice core, was performed (Fig. 11). This time, a WAIS collapse has not been observed, corroborating

the lower end of the inferred temperature interval. It should be noted that the duration of the warming as the key factor for

the WAIS collapse is specific to MIS11c. In other words, a more intense albeit shorter peak warming could also trigger WAIS365

collapse, since a strong rate of warming can drive ice retreat at a much faster pace, which was most likely the case for the LIG

(Dutton et al., 2015; Turney et al., 2020).

The EDC and DF GI reconstructions yield results that mirror expectations from the paleorecord, including the estimations

of the sea level contribution from Antarctica. While Robinson et al. (2017) found that Greenland contributed between 3.9 and

7.0 m to sea level rise (having 6.1 m s.l.e. as the most likely value), the time at which their sea level contribution curve peaks,370

the uncertainties in the age models of the different analysed ice cores (Petit et al., 1999; Parrenin et al., 2007; Bazin et al.,

2013), and the suggested asynchronicity between the GIS and AIS minimum extents (Steig and Alley, 2002), do not allow

us to simply constrain Antarctica’s contribution by subtracting Greenland’s contribution from the global sea level highstand.

Based on EDC and DF (i.e., the scenarios where the WAIS collapsed), our interval for the potential sea level contribution of

the AIS is 6.4–8.8 m, with the largest source of uncertainty being the contribution of the EAIS (Fig. 12). Contrary to the WAIS375

(4.3–4.6 m s.l.e.), the EAIS reacted sensitively to the choice of starting ice geometry - especially over Wilkes Land, which

remains stable given a more extensive ice sheet. Conversely, a more extensive yet thinner ice sheet than the reference control

run (i.e., gmt1; Fig. 3, Table 3) proved to be more prone to ice loss over the rest of the AIS than the relatively "bulkier" ice

sheet of the control run (Fig. 12). This yields a range of 2.4 to 4.2 m s.l.e. contribution of the EAIS at 405 ka.

5 Conclusions380

Several studies have been carried out trying to reconstruct past ice changes over the Antarctic continent, but to our knowledge no

special focus has been given to Antarctica’s response to the peak warming during MIS11c and the driving mechanisms behind

it. To fill this gap we evaluated the deglaciation of Antarctica using a numerical ice-sheet model forced by a combination

of climate model time-slice-forcing and various transient signals. These signals were obtained from ice cores taken at the

EAIS interior and a stacked record of deep-sea sediment cores taken from far-field regions. We evaluated possible sources of385

uncertainty due to (i) the scaling of the GI, (ii) multi-centennial variability and temporal record resolution, (iii) different sea

level reconstructions, and (iv) initial ice-sheet conditions. While sea level, higher-frequency variability, and the GI scaling of

the records seemed to play a small role, different responses were seen for both East and West Antarctic Ice Sheets regarding the
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Figure 12. Sea level contribution (in m s.l.e.) of each SGSEN member during the global sea level highstand at 405 ka. LR04 member from

CFEN is included for reference.

different applied transient signals, and for the initial ice sheet configurations. Among the applied ice-core reconstructions, the

warming captured by the Vostok ice core during MIS11c was not strong enough to cause a collapse of the WAIS, which was390

attributed to the short duration of its peak. Our results indicate that WAIS collapse was caused by the duration rather than the

intensity of warming, and that it was insensitive to the choice of the starting geometry. The latter proved to be a larger source

of uncertainty for the EAIS. Regarding the initial questions posed in the beginning of this study, we now provide objective,

short answers to them:

1. How did the AIS respond to the peak warming of MIS11c? What are the uncertainties in the AIS minimum395

configuration, its timing and potential sea level contribution?

We found the WAIS to collapse about 5 kyr after the mean-annual atmospheric temperature exceeded 1.6–2.1◦C above

Pre Industrial across Antarctica. Some ice loss was also observed in marine-based regions of the EAIS. While the

contribution to sea level rise by the WAIS was consistent among the experiments for which we observe strong WAIS

retreat (4.3–4.6 m), varying mostly due to the choice of climate forcing, the EAIS contribution was less constrained400

(2.4–4.2 m) because of its sensitivity to the initial geometry of the ice sheet.

2. What was the main driver for AIS changes in size? Was it warming length, peak temperature, or changes in

precipitation? Are any of these processes relevant to future changes in the southern high latitudes?

Ice retreat was found to be mostly sensitive to the length of warming rather than its intensity. We found a threshold of

1.6–2.1◦C above PI mean-annual average atmospheric temperatures at which strong WAIS ice retreat is triggered given405
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a 4–5 kyr duration of the warming. This indicates that an onset of massive WAIS retreat in the near future is possible,

although aiming at a reduction in global/Antarctic average temperatures could still prevent its collapse.
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temperature trends during Marine Isotope Stage 11, Climate of the Past, 9, 2231–2252, https://doi.org/10.5194/cp-9-2231-2013, 2013.

Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., Niessen, F., Pompilio, M., Wilson, T., et al.: Obliquity-paced

Pliocene West Antarctic ice sheet oscillations, Nature, 458, 322–328, 2009.500

Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., et al.: The

EDC3 chronology for the EPICA Dome C ice core, Climate of the Past, 3, 485–497, 2007.

Petit, J., Jouzel, J., Raynaud, D., Barkov, N., Barnola, J., Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G., et al.: Vostok

ice core data for 420,000 years, IGBP pages/world data center for paleoclimatology data contribution series #2001–076, NOAA/NGDC

Paleoclimatology Program, Boulder CO, USA, 2001.505

Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., et al.:

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.

Pollard, D. and DeConto, R.: Description of a hybrid ice sheet-shelf model, and application to Antarctica, Geoscientific Model Development,

5, 1273–1295, 2012.

Pollard, D. and DeConto, R. M.: Modelling West Antarctic Ice Sheet growth and collapse through the past five million years, Nature, 458,510

329–332, 2009.

Rachmayani, R., Prange, M., and Schulz, M.: Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13,

and 15, Climate of the Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, 2016.

Rachmayani, R., Prange, M., Lunt, D. J., Stone, E. J., and Schulz, M.: Sensitivity of the Greenland Ice Sheet to Interglacial Climate Forc-

ing: MIS 5e Versus MIS 11, Paleoceanography, 32, 1089–1101, https://doi.org/10.1002/2017PA003149, http://doi.wiley.com/10.1002/515

2017PA003149, 2017.

Raymo, M. E. and Mitrovica, J. X.: Collapse of polar ice sheets during the stage 11 interglacial, Nature, 483, 453–456,

https://doi.org/10.1038/nature10891, 2012.

Raynaud, D., Barnola, J.-M., Souchez, R., Lorrain, R., Petit, J.-R., Duval, P., and Lipenkov, V. Y.: The record for Marine Isotopic Stage 11,

Nature Communications, 436, 39–40, https://doi.org/10.1038/43639b, 2005.520

Reyes, A. V., Carlson, A. E., Beard, B. L., Hatfield, R. G., Stoner, J. S., Winsor, K., Welke, B., and Ullman, D. J.: South Greenland ice-sheet

collapse during Marine Isotope Stage 11, Nature, 510, 525–528, https://doi.org/10.1038/nature13456, 2014.

Robinson, A., Alvarez-Solas, J., Calov, R., Ganopolski, A., and Montoya, M.: MIS-11 duration key to disappearance of the Greenland Ice

Sheet, Nature Communications, 8, 16 008, https://doi.org/10.1038/ncomms16008, 2017.

Sato, T. and Greve, R.: Sensitivity experiments for the Antarctic Ice Sheet with varied sub-ice-shelf melting rates, Annals of Glaciology, 53,525

221–228, 2012.

Scherer, R. P.: Quaternary interglacials and the West Antarctic Ice Sheet, in: Geophysical Monograph Series, edited by Droxler, A. W., Poore,

R. Z., and Burckle, L. H., vol. 137, pp. 103–112, American Geophysical Union, Washington, D. C., https://doi.org/10.1029/137GM08,

2003.

Scherer, R. P., Aldahan, A., Tulaczyk, S., Possnert, G., Engelhardt, H., and Kamb, B.: Pleistocene collapse of the West Antarctic Ice Sheet,530

Science, 281, 82–85, 1998.

Shackleton, N. J., Sánchez-Goñi, M. F., Pailler, D., and Lancelot, Y.: Marine isotope substage 5e and the Eemian interglacial, Global and

Planetary change, 36, 151–155, 2003.

Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Climate of the Past, 12, 1079–1092, 2016.

25

https://doi.org/10.5194/tc-2020-112
Preprint. Discussion started: 25 May 2020
c© Author(s) 2020. CC BY 4.0 License.



Steig, E. J. and Alley, R. B.: Phase relationships between Antarctic and Greenland climate records, Annals of Glaciology, 35, 451–456, 2002.535

Sutter, J., Fischer, H., Grosfeld, K., Karlsson, N. B., Kleiner, T., van Liefferinge, B., and Eisen, O.: Modelling the Antarctic Ice Sheet across

the mid-Pleistocene transition–implications for Oldest Ice, The Cryosphere, 13, 2023–2041, 2019.

Swanger, K. M., Lamp, J. L., Winckler, G., Schaefer, J. M., and Marchant, D. R.: Glacier advance during Marine Isotope Stage 11 in the

McMurdo dry valleys of Antarctica, Scientific reports, 7, 41 433, 2017.

Tigchelaar, M., Timmermann, A., Pollard, D., Friedrich, T., and Heinemann, M.: Local insolation changes enhance Antarctic interglacials:540

Insights from an 800,000-year ice sheet simulation with transient climate forcing, Earth and Planetary Science Letters, 495, 69–78,

https://doi.org/10.1016/j.epsl.2018.05.004, 2018.

Tigchelaar, M., Timmermann, A., Friedrich, T., Heinemann, M., and Pollard, D.: Nonlinear response of the Antarctic Ice Sheet to late

Quaternary sea level and climate forcing, The Cryosphere, 13, 2615–2631, 2019.

Turney, C. S., Fogwill, C. J., Golledge, N. R., McKay, N. P., van Sebille, E., Jones, R. T., Etheridge, D., Rubino, M., Thornton, D. P., Davies,545

S. M., et al.: Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica, Proceedings of the National Academy

of Sciences, 117, 3996–4006, 2020.

Tzedakis, P. C., Wolff, E. W., Skinner, L. C., Brovkin, V., Hodell, D. A., McManus, J. F., and Raynaud, D.: Can we predict the duration of an

interglacial?, Climate of the Past, 8, 1473–1485, https://doi.org/10.5194/cp-8-1473-2012, https://www.clim-past.net/8/1473/2012/, 2012.

Uemura, R., Motoyama, H., Masson-Delmotte, V., Jouzel, J., Kawamura, K., Goto-Azuma, K., Fujita, S., Kuramoto, T., Hirabayashi, M.,550

Miyake, T., et al.: Asynchrony between Antarctic temperature and CO2 associated with obliquity over the past 720,000 years, Nature

communications, 9, 961, 2018.

Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B., Brand, T. B., Hofreiter, M., Bunce, M., Poinar, H. N., Dahl-

Jensen, D., Johnsen, S., Steffensen, J. P., Bennike, O., Schwenninger, J.-L., Nathan, R., Armitage, S., de Hoog, C.-J., Alfimov, V., Christl,

M., Beer, J., Muscheler, R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J., Taberlet, P., Gilbert, M. T. P., Casoli, A., Campani,555

E., and Collins, M. J.: Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland, Science, 317, 111–114,

https://doi.org/10.1126/science.1141758, http://www.sciencemag.org/cgi/doi/10.1126/science.1141758, 2007.

Wilson, D. J., Bertram, R. A., Needham, E. F., van de Flierdt, T., Welsh, K. J., McKay, R. M., Mazumder, A., Riesselman, C. R., Jimenez-

Espejo, F. J., and Escutia, C.: Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials, Nature, 561, 383–386,

https://doi.org/10.1038/s41586-018-0501-8, http://www.nature.com/articles/s41586-018-0501-8, 2018.560

26

https://doi.org/10.5194/tc-2020-112
Preprint. Discussion started: 25 May 2020
c© Author(s) 2020. CC BY 4.0 License.


