

Physical properties of shallow ice cores from Antarctic and sub-Antarctic island's

Elizabeth R. Thomas¹, Guisella Gacitúa², Joel B. Pedro^{3,4}, Amy C.F. King¹, Bradley Markle⁵,
5 Mariusz Potocki^{6,7}, Dorothea E. Moser^{1,8}

¹British Antarctic Survey, Cambridge, CB3 0ET, UK

²Centro de Investigación Gaia Antártica, Universidad de Magallanes, Punta Arenas, Chile

³Australian Antarctic Division, Kingston, 7050, Australia

10⁴Australian Antarctic Programme Partnership, Hobart, Tasmania 7001 Australia

⁵California Institute of Technology, Pasadena, CA, USA, 91125

⁶Climate Change Institute, University of Maine, Orono, ME 04469, USA

⁷School of Earth and Climate Sciences, University of Maine, Orono, ME 04469, USA

⁸Institut für Geologie und Paläontologie, University of Münster, 48149 Münster, Germany

15

Abstract.

The sub-Antarctic is one of the most data sparse regions on earth. A number of glaciated Antarctic and sub-Antarctic island's have the potential to provide unique ice core records of past climate, atmospheric circulation 20and sea ice. However, very little is known about the glaciology of these remote island's or their vulnerability to warming atmospheric temperature's. Here we present penetrating radar (GPR), groundmelt histories and density profiles from shallow ice cores (14 to 24 m) drilled on three sub-Antarctic island's and two Antarctic coastal domes. Additionally, complementary ground-penetrating radar (GPR) data was collected in each site to further characterise each site them and to and assess the spatial distribution of the 25observed melt layers. This study includes the first ever ice cores from Bouvet Island (54°26'0 S, 3°25'0 E) in the South Atlantic, from Peter 1st Island (68°50'0 S, 90°35'0 W) in the Bellingshausen Sea and from Young Island (66°17'S, 162°25'E) in the Ross Sea sector's Balleny island's chain. Despite their sub-Antarctic location, surface melt is low at most sites (melt layers account for ~10% of total core), with undisturbed ice layers in the upper ~40 m, suggesting minimal impact of melt water percolation. The exception is Young Island, 30where melt layers account for 47% of the ice core. Surface snow densities range from 0.47 to 0.52 kg m⁻³, with close-off depths ranging from 21 to 51 m. Based on the measured density, we estimate that the bottom ages of a 100 m ice core drilled on Peter 1st Island would reach ~1836-1856 AD and ~1743-1874 AD at Young Island.

1 Introduction

35The sub-Antarctic region sits at the interface of polar and mid-latitude climate regimes, making it highly sensitive to shifting climate over time. However, the sub-Antarctic and the Southern Ocean is one of the most data sparse regions on earth. A recent compilation of climate data spanning the 20th century revealed that of the

692 records that exist globally (Emile-Geay et al., 2017), none are available for the Southern Ocean. The vast
expanse of open water makes climate and paleoclimate observations difficult, but a number of glaciated sub-
40Antarctic island's (SAIs- defined here as island's south of the Southern Ocean polar front) island's
~~island's from this region~~ may be suitable for extracting paleoclimate information from ice cores (Figure 1). Given their location,
~~these sub-Antarctic islands~~
~~island's (SAIs- defined here as island's south of the Southern Ocean polar front) could provide valuable archives of southern hemisphere westerly winds and sea ice variability, key~~
~~components of the global climate system.~~

45

~~(Medley and Thomas, 2019) Westerly winds drive ocean upwelling and basal melt of Antarctic ice shelves (Favier et al., 2014; Joughin et al., 2014) and the 20th century increase in Antarctic snowfall has been attributed to changes in their circulation. Sea ice modulates the earth's albedo and governs the area available for exchange of heat and CO₂ between the ocean and the atmosphere. However, records of both westerly winds and sea ice 50 are short, with major uncertainty in the trends prior to the satellite era (i.e. pre 1970's).~~

Many of these SAIs sit within the westerly wind belt and the transitional sea-ice zone (Figure 1). Westerly winds drive ocean upwelling and basal melt of Antarctic ice shelves (Favier et al., 2014; Joughin et al., 2014) and the 20th century increase in Antarctic snowfall has been attributed to changes in their circulation (Medley and Thomas, 2019). Sea ice modulates the earth's albedo and governs the area available for exchange of heat and CO₂ between the ocean and the atmosphere. However, records of both westerly winds and sea ice are short, with major uncertainty in the trends prior to the satellite era (i.e. pre 1970's). Those SAIs on the very margin of maximum winter sea-ice extent could potentially identify local-scale changes in sea ice, rather than relying on ice core records from the Antarctic continent, which record mostly ocean-sector scale trends (Thomas and Abram, 2016; Thomas et al., 2019). An ice core from Bouvet Island, presented in this study, has already proven successful in reconstructing past sea ice variability in the adjacent ocean (King et al., 2019).

Paleoclimate records do exist on some SAIs from lake sediments, peat cores and ice cores. Peat records are currently the most prolific of the three, with a number of records retrieved on the New Zealand SAIs up to 6512,000 years old (McGlone, 2002) and on Crozet and South Georgia up to 6,000 and 11,000 years old respectively (Van der Putten et al., 2012). One limitation, is that annual layers are not preserved in such records and carbon dating carries with it uncertainties in the decadal to centennial range, which complicates the identification of annual to decadal-scale climate variations and the precise timing of climate shifts (Van der Putten et al., 2012). Peat deposits are also lacking on the more southerly SAIs.

70

Lake sediments are similarly useful for studying vegetation composition on the SAIs. These are related to a wide range of environmental parameters within and around the lake used to reconstruct past natural variability (Saunders et al., 2008). A novel proxy, based on sea-salt aerosols in lake sediments on Macquarie Island, reconstructed past westerly wind strength over the past 12,300 years (Saunders et al., 2018). However, damage 75from introduced rabbits at this site has compromised the data during the last ~100 years.

Ice core records offer complementary archives to peat and lake archives on glaciated or ice capped ~~islands~~island's and are in some cases unique records where peat and lake deposits are not available. Shallow ice cores have been drilled from low elevation plateaus and glacial terminus on South Georgia, the largest glaciated 80SAI, revealing ice ages of between 8,000-12,000 years old (Mayewski et al., 2016). However, surface temperatures on South Georgia have risen by \sim 1°C during the 20th century (Whitehead et al., 2008) and ninety-seven percent of the 103 coastal glaciers have retreated since the 1950's (Cook et al., 2010). Thus, the valuable paleoclimate archive contained in South Georgia, and potentially the other SAIs glaciers, may be at risk from surface melt.

85

The sub-Antarctic Ice Core drilling Expedition (subICE) was part of the international Antarctic Circumnavigation Expedition (ACE) 2017-2018 (Walton, 2018), which offered an exceptional opportunity to access multiple SAIs. In this study we present the density profiles, melt histories and ~~ground-ground~~-penetrating radar (GPR) data collected during subICE. These include the first ever ice core records from three of the 90glaciated Antarctic and SAIs in the Pacific and South Atlantic sector of the Southern Ocean, together with two continental ice cores collected from coastal domes in East and West Antarctica. The aim of this study is to 1) evaluate the ice conditions and internal layering in the ~~upper ~40 m~~upper ice column, 2) determine the extent of surface melt and the potential impact on proxy preservation 3) estimate potential bottom ages ~~of for~~ future deep drilling expeditions.

95

2 Methods and Data

2.1 Meteorological data

(Copernicus Climate Change Service, 2017) Meteorological data come from the European Centre for Medium-Range Weather Forecasts ERA-5 analysis (1979–2017) (Tetzner et al., 2019), resolution (\sim 31 km).

100 We note that the resolution of ERA-5 is currently unable to capture local climate conditions on the SAIs however, a recent study from the Antarctic Peninsula confirmed its high accuracy in representing the magnitude and variability of near surface air temperature and wind regimes ~~degree~~, the fifth generation of ECMWF reanalysis. ERA-5 reanalysis currently extends back to 1979, providing hourly data at 0.25

105 The altitude corrected value is presented in the text and compared with the 2-m temperature and uncorrected AWS temperature in Table 1. sub Antarctic islands/100 m to calculate the temperature at the drilling sites. This value is observed on the western Antarctic Peninsula (Martin and Peel., 1978), where the climate and maritime conditions are expected to closely resemble those of the \sim deg/100 m at 20°C. As a best guess we use a lapse rate of 0.68 deg/100 m to a saturated rate of 0.44 deg from ERA-5 (Figure 1) and the AWS sites (typically at low 110 elevations) are expected to be warmer than the ice core drilling locations, as a result of the adiabatic rate of temperature change for vertically moving air. This lapse rate varies with both temperature and mixing ratio from a dry rate of 0.98s

The 2-m temperature Meteorological observations from Bouvet are available from the Norwegian Polar Institute. 115 <https://doi.org/10.21334/npolar.2014.ba8d71fc>. WMO Station 689920, 42 m above sea level (April 1997–December 2005). (September 2006 to January 2007), Mt Mount Siple (January 1992 to January 2015) and Young

Island (January 1991 to December 1997)., Automatic weather station (AWS) data is available from Peter 1st Island <http://amre-new.ssec.wisc.edu/aboutus/>. Limited in-situ meteorological observations are available from the University of Wisconsin-Madison Antarctic Meteorology Program.

2.12 Ice cores

Seven ice cores were drilled as part of subICE, between January and March 2017 (Table 1). The teams were deployed to the ice core sites via helicopter from the ship (Akademik Tryoshnikov), allowing between three and eight hours of drilling time, dependent on weather conditions and logistical capability. The ice cores were drilled using a Mark III Kovacs hand-auger with sidewinder winch and power-head, retrieving ice sections of approximately 70 cm in length. The ice was measured, placed inside pre-cut layflat tubing and packed in insulated ice core storage boxes for transportation. During the voyage, the ice was stored in a -25°C freezer and later transported to the ice core laboratories at the British Antarctic Survey (BAS).

2.2.1 Bouvet Island (Bouvetøya)

A 14 m ice core was drilled from the volcanic island of Bouvet in the central South Atlantic (54°26'0 S, 3°25'0 E, 50 km²), also known as Bouvetøya (Figure 1a). This was the most northerly site but the island's location within the polar front (Figure 1) classifies it as sub-Antarctic.

Bouvet is almost entirely ice covered (~50 km²) except for a few rocky outcrops around the coast. Ice flows down the flanks of the volcano, with no visible crevassing, giving way to shear ice-cliffs and near-vertical icefalls into the sea. The island is the southernmost extension of the mid-Atlantic ridge, located at the triple junction between the African, South American and Antarctic plates. These pronounced sea floor features drive the cold Antarctic Circumpolar Current close to the island, keeping surface temperature cold and allowing sea ice to extend north of the island.

The last known volcanic eruption on Bouvet was 50 BC; however, visible ash and dust layers suggest eruptions may be more frequent. At several locations, the ice edge has broken vertically away (Figure S1) revealing horizontal bands of clean and dirty layers in the vertical stratigraphy. The island's remote location, and absence of significant local dust sources, suggests a local volcanic source from either Bouvet or the South Sandwich Islands. The 3.5 km wide Wilhelmsplataet caldera appears entirely ice filled. This potentially offers the deepest coring location; however, it is unclear if this is instead an ice bridge formed since the last eruption.

2.1.2 Peter 1st Island

A 12 m ice core was drilled from Peter 1st Island (68°50'0 S, 90°35'0 W), in the Bellingshausen Sea (Figure 1b). The former shield volcano (154 km²) is almost completely covered by a heavily crevassed ice cap and sits within the seasonal sea ice zone. The core was drilled on a ridge (Midtryggen) at 730 m above sea level, in a small saddle on the eastern side of the island overlooking the main glacier Storfallet.

2.1.3 Mount Siple

A 24 m ice core was drilled from Mount Siple (73°43'S, 126°66'W) on the Amundsen Sea coast, West Antarctica (Figure 1c). Mount Siple is an active shield-volcano rising to 3,110 m at its peak from Siple Island on the coast of Marie Byrd Land, surrounded by the Getz ice shelf. The core was drilled at 685 m above sea level.

160 2.1.4 Young Island

A 17 m ice core was drilled on Young Island (66°17'S, 162°25'E), the northernmost island in the Balleny Island chain (245 km²), off the coast of Adélie Land (Figure 1d). The Balleny Island's comprise three major dormant volcanic island's, Young, Buckle and Sturge (Hatherton et al., 1965), which sit in the Antarctic seasonal sea ice zone at the boundary of the polar westerlies and Antarctic coastal easterlies. Young Island is characterized by a 165 thick ice cover, marine-terminating piedmont-glacier tongues, steep coastal cliffs, and is therefore described as "among the most inaccessible places in the world" (Hatherton et al., 1965). The core was drilled 238 m above sea level.

122.2.1.5 Adelie Land Coast (Mertz)

170 Two ice cores were drilled on the coast of Adélie Land in East Antarctica (Figure 2a1e); a 20 m core (Mertz 1) from Cape Hurley, a low elevation ice dome on the eastern side of the Mertz Glacier (67° 33' S, 145° 18' E); and a 9 m ice core (Mertz fast ice) drilled on a triangular wedge of fast ice in Fisher Bay (67° 26' S, 145° 34' E), bounded on the east by the Mertz Glacier and on the west by the AAE (Australian Antarctic Expedition) glacier. The annual average temperature at this location (ERA-5 elevation-corrected) is -17.4°C, making it our coldest 175 site.

The Mertz Glacier extends into the ocean from coastal King George V land, with a floating ice tongue. The tongue traps pack ice upstream forming the Mertz Glacier Polynya along its western flank during winter, the third most productive polynya in Antarctica, (Lacarra et al., 2014). In 2010, the impact from the B9B iceberg 180 caused this tongue to calve off producing a ~80 km long iceberg. This event had a profound impact on local sea ice conditions and the formation of dense shelf water (Campagne et al., 2015).

2.2 Young Island22.

(Hatherton et al., 1965), Young, Buckle and Sturge islands comprise three major dormant volcanic Islands A 17 185 m ice core was drilled on Young Island (66°17'S, 162°25'E), the northernmost island in the Balleny Island chain (245 km²), off the coast of Adélie Land (Figure 2b). The Balleny (Hatherton et al., 1965). The core was drilled 238 m above sea level., which sit in the Antarctic seasonal sea ice zone at the boundary of the polar westerlies and Antarctic coastal easterlies. Young Island is characterized by a thick ice cover, marine-terminating piedmont-glacier tongues, steep coastal cliffs, and is therefore described as "among the most inaceessible places 190 in the world".

fluctuate between -1.7°C in summer (November–February) and -13.9°C during winter (May–August). The annual average temperature from this site is -9.2°C, from ERA-5 (1979–2017), with a maximum temperature of 2.8°C recorded from an AWS deployed at 30 m above sea level (1991–1997). On a seasonal scale, the AWS reveals average air temperature

195

3 Mount Siple22.

4 Peter 1st Island 2

2. close to zero (-0.6°C). However, an AWS deployed near this site (230 m a.s.l, 1992-2015) suggests a
200 maximum temperature of 2.4°C (elevation-corrected), s is -9.6°C (ERA-5, 1979-2017), with average
summer temperaturesA 24 m ice core was drilled from Mount Siple (73°43'S, 126°66'W) on the
Amundsen Sea coast, West Antarctica (Figure 3a). Mount Siple is an active shield volcano rising to
3,110 m at its peak from Siple Island on the coast of Marie Byrd Land, surrounded by the Getz ice shelf.
The core was drilled at 685 m above sea level. The annual average temperature

205 A 12 m ice core was drilled from Peter 1st Island (68°50'0 S, 90°35'0 W), in the Bellingshausen Sea (Figure 3b).
The former shield volcano (154 km²) is almost completely covered by a heavily crevassed ice cap and sits
within the seasonal sea ice zone. The core was drilled on a ridge (Midtryggen) at 730 m above sea level, in a
small saddle on the eastern side of the island overlooking the main glacier Storfallet. The annual average
temperature at this site is -9.5°C (ERA-5, 1979-2017), with summer maximum below zero (-2.7°C).

210

2.2.5 South Georgia

of -1.6°C recorded from a near-continuous AWS record from Grytviken, located in Cumberland bay (1905-
present). The average summer temperature exceeds 5°C, with a maximum temperature of 8.4°C recorded in
February 1907. sTwo ice cores were drilled on South Georgia (54°17'0 S, 36°30'0 W), the largest SAI (3755
215 km²). A 2.2 m ice core from the Nordenskjold Glacier, Cumberland Bay, and a 1.8 m core from Heany Glacier
in St Andrews Bay (Figure 4a), both on the eastern coast of the island. South Georgia was the warmest island
visited, with annual average temperature

, but they will provide estimated bottom ages and an evaluation of proxy preservation required for future drilling
220 campaigns at higher altitude sites (future study), with evidence of water in the borehole. These cores are
therefore not included in this study

The South Georgia ice cores are from glacial terminus sites and do not provide contemporary climate
information. Drilling at this site was difficult due to the high temperature

Bouvet Island (Bouvetøya)6 ..22

225 location within the polar front (Figure 1) classifies it as sub-Antarctic. Despite its northerly location the average
yearly temperature from ERA-5 (elevation-corrected) is -2.9 °C, with a maximum monthly temperature of -
0.9°C. The maximum value recorded by the AWS at 42 m above sea level was 6.7 °C (1997-2005, elevation
corrected). islandsA 14 m ice core was drilled from the volcanic island of Bouvet in the central South Atlantic
(54°26'0 S, 3°25'0 E, 50 km²), also known as Bouvetøya (Figure 4b). This was the most northerly site but the
230 north of the island. t

Bouvet is almost entirely ice covered (~50 km²) with the exception of a few rocky outcrops around the coast. Ice
flows down the flanks of the volcano, with no visible crevassing, giving way to shear ice cliffs and near-vertical
icefalls into the sea. The island is the southernmost extension of the mid-Atlantic ridge, located at the triple
junction between the African, South American and Antarctic plates. These pronounced sea floor features drive

235 ~~the cold Antarctic Circumpolar Current close to the island, keeping surface temperature cold and allowing sea ice to extend~~

~~. The 3.5 km wide Wilhelmlaet caldera appears entirely ice filled. This potentially offers the deepest coring location, however it is unclear if this is instead an ice bridge formed since the last eruption. Islands remote location, and absence of significant local dust sources, suggests a local volcanic source from either Bouvet or 240 the South Sandwich islands~~

~~The last known volcanic eruption on Bouvet was 50 BC; however, visible ash and dust layers suggest eruptions may be more frequent. At a number of locations, the ice edge has broken vertically away (Figure 4c) revealing horizontal bands of clean and dirty layers in the vertical stratigraphy. The~~

2.2 Ice core analysis

245 ~~Ice-core processing was carried out in the -20°C cold laboratories at BAS. The section length, diameter and weight were measured to provide a density record and the visible melt layers logged and measured (only layers > 1 mm).~~

2.3 Ground-Penetrating Radar

250 ~~Penetrating Radar (GroundGPR) measurements were performed around each ice core site. We used a SIR3000 unit equipped with a 400 MHz central frequency antennae (GSSI Inc.). The system was pulled on a sledge while walking in parallel and transversal lines of 100 m to 500 m depending on the site surface conditions and available time at each site. The penetration depth of the propagated wave is strongly controlled by the electrical properties of the subsurface combined with the central frequency of the system. The equipment used provides a 255 good compensation between these parameters in polar snow. Vertical resolution is approximately 0.35 m, reaching up to 100 m depth in very dry snow (ideal conditions), such as in the Antarctic plateau (Spikes et al., 2004). However, the resolution and maximum reachable depth are expected to decrease dramatically at lower latitudes. This GPR was intended to obtain data from the near surface (up to 40 m) to complement the ice-core observations and to better characterise the stratigraphy of each site spatially.~~

260

~~The data collected is observed in situ as a ('radargram') that represents the number of traces received (x-axis) and the two-way travel time of the wave in nano seconds (ns) (y-axis), which is the time the signal takes from the transmitter to the receiver when reflected from the internal ice discontinuities (melt layers). During data collection the maximum time window was set to a value between 400 – 600 ns, according to the expected 265 maximum depth of signal propagation at the SAI sites. GPR data was monitored in-situ for calibration and stored. Data processing was done using a commercial software (ReflexW) and generally included: removal of repetitive traces (same position), correction of the surface position and distance covered, frequency filters, gain function adjustments, stacking and other visual enhancements to improve the interpretation of the reflecting layers. Each collected file was analysed independently, and layers were picked manually in full resolution. Thus, 270 if layers were not sufficiently clear and continuous, they were not picked.~~

~~In order to obtain the corresponding depth (m) for the y-axis, we used the density profile (see section 3.3) of the ice core to obtain the average velocity of the wave (m/ns) in the dielectric values through depth ice- based on~~

the Looyenga model (Looyenga, 1965) [and estimated the wave velocity variations and corresponding depth of the layers for each site.](#)

2.4 Meteorological data

[Meteorological data come from the European Centre for Medium-Range Weather Forecasts \(ECMWF\) ERA-5 analysis \(1979–2017\) \(Copernicus Climate Change Service, 2017\), the fifth generation of ECMWF reanalysis. ERA-5 reanalysis currently extends back to 1979, providing hourly data at 0.25°resolution \(~ 31 km\). Annual average precipitation minus evaporation \(P-E\) and maximum monthly temperatures \(1979-2017\) are presented in Table 1. We note that the resolution of ERA-5 is currently unable to capture local climate conditions on the SAIs, however, a recent study from the Antarctic Peninsula confirmed its high accuracy in representing the magnitude and variability of near-surface air temperature and wind regimes \(Tetzner et al., 2019\).](#)

285

[Limited in-situ meteorological observations are available from the University of Wisconsin-Madison Antarctic Meteorology Program and the Norwegian Polar Institute Automatic weather station \(AWS\) data is available from Bouvet Island \(April 1997-December 2005\), Peter 1st Island \(September 2006 to January 2007, not complete\), Mount Siple \(January 1992 to January 2015\) and Young Island \(January 1991 to December 1997\).](#)

290

[The 2 m temperature from ERA-5 \(Figure 1\) and the AWS sites \(typically at low elevations\) are expected to be warmer than the ice core drilling locations, as a result of the adiabatic rate of temperature change for vertically moving air. This lapse rate varies with both temperature and mixing ratio from a dry rate of 0.98%/100 m to a saturated rate of 0.44%/100 m at 20°C. As a best guess we use a lapse rate of 0.68%/100 m to calculate the temperature at the drilling sites. This value is observed on the western Antarctic Peninsula \(Martin and Peel., 1978\), where the climate and maritime conditions are expected to closely resemble those of the SAIs.](#)

2.4 Ice core analysis

[\(Nye, 1963\) Melt layer thickness was corrected for ice thinning based on the Nye model. Ice core processing was carried out in the -20°C cold laboratories at BAS. The section length, diameter and weight were measured to provide a density record and the visible melt layers logged and measured \(only layers > 1mm\), that assumes a vertical strain rate and thinning that is proportional to burial.](#)

3 Results and discussion

3.1 GPR

[305 Grids of parallel and transversal lines traced for all sites are summarized in Table 2. Given the scope of this paper, one example of a representative profile taken in the area nearby the ice core borehole is shown in the following section. Figures 2-5 show a\) a reference map of the track of measurements, b\) a section of the radargram and radargram and c\) the estimated depth \(up to 20 m\) of the picked layers considering the variations of the propagation velocity given the density profile.](#)

310

3.1.1 Bouvet Island

GPR data obtained at Bouvet island generally show layers of accumulated snow and a consistent reflector interpreted as bedrock at about 40 m (average depth). The reference map (Figure 2a) shows the selected profile (grey line) descending from 357 m a.s.l. to 339 m a.s.l towards the south east. Figure 2b shows the interpreted 315 layers depth observed near the ice core extraction. a radargram obtained at Bouvet descending from 357 m a.s.l. to 339 m a.s.l towards the south east. The estimated depth of visible the layers show that there is about a maximum of 2 m of horizontal continuous layering of snow. Below this layer, there is stratified firn that has been eroded by the effect of wind and the surface slope, reaching a layer of solid ice between 12 and 18 at 15 m from the surface. Another layer is detected between 35-41 at 36 m depth, which is interpreted as the bedrock. 320 This depth is consistent with the estimated ice thickness observed from the ice cliffs to the south of the ice core drilling site (Figure S1). Ice thickness from the photograph is estimated relative to the expected size of the observed fur seals on the beach.

3.1.2 Peter 1st Island

325 The surface of the Peter 1st island site-Snow surface at Peter 1st site was smooth (maximum 5° slope). Internal layers were only (and partially) traceable for the upper ~25 m of the snow/firn pack. The maximum time window was set to reach an estimated depth of ~43 m (Table 2) and bedrock was not detected. Figure 3a shows the track of measurements performed at Peter 1st island site and the profile shown (Figure 3b)-is a section of the 330 line (grey line) taken at increasing elevation from 718 m a.s.l. up to 726 m a.s.l. in a north-westerly direction. Figure 3c shows the estimated depth for the stratified layers of snow in the upper 14 m were these were mostly continuous. Layers are only (and partially) traceable for the upper ~25 m of the snow/firn pack. The maximum time window was set to reach an estimated depth of ~43 m (Table 2) and bedrock was not detected. Figure 3 shows a section of a profile crossing the ice core position.

335

3.1.3 Mount Siple

The surface of the studied area at Mount Siple site was relatively smooth (max. 4° slope). Figure 4a shows the 340 length and position of a full profile taken in a south-westerly direction taken in an east-westerly direction rising from 678 m a.s.l. to 685 m a.s.l. and ending at the ice core extraction position. Figure 4b shows the selected section where clear layering can be observed for the upper 20 m with smooth depth variation -through the profile length. shows a full profile taken in an east-westerly direction rising from 678 m a.s.l. to 685 m a.s.l. Multiple layers are clearly interpreted with minor discontinuities, for the full depth of the profile (~36 m). Bedrock was not detected.

345 3.1.4 Young Island

The Young Island site surface was flat with a compact snow surface. The maximum estimated depth of detected layers was ~36 m (Table 2) and bedrock was not detected. Figure 5b shows Ma section of a selected profile taken in a north-westerly direction starting at the ice core extraction position, here multiple layers can be identified but they are discontinuous and the small distance between layers resulted in merging, thus they are not 350 traceable through the full profile length. The small distance between layers resulted in merging. As an example,

on Figure 5, one strong layer (~4 m depth) has been traced along the profile. The maximum estimated depth of detected layers was ~36 m (Table 2) and bedrock was not detected.

3.1.1-5 Adelie Land Coast (Mertz)

355 The Mertz 1 site (Cape Hurley) had a flat surface, consistent with observed internal layering. Layers could not be distinguished in the upper ~7 m of snow and only reflected weakly beneath this depth; 11 distinct, but discontinuous, layers were identified down to a depth of 62 m (bedrock was not detected). Layers are not distinguished in the upper ~7 m of snow; below this depth reflectors were not strong, however eleven distinct layers were identified, some of which were discontinuous. Layers were visible down to a depth of 62 m, which
360 we estimated this to be the approximate limit of signal propagation of the GPR system at this site. Figure 5-6 a-c shows a section of a profile taken in north westerly direction and the interpretation of layers depth in the upper 20 m near the ice core extraction. Bedrock was not detected.

Data quality for the Mertz fast ice site was very poor (Figure 6 d-e). A single continuous layer at 6.8 m depth
365 was the only one identified.

Data quality for the Mertz fast ice site was very poor (Figure 6). A single continuous layer at 6.8 m depth was the only one identified. This site is fundamentally different in character from the others presented in this study. While we believe the surface snow to be meteoric, it does not sit atop grounded ice, but rather a large wedge of multiyear sea ice, held fast between the AAE and Mertz Glacier tongues (Figure 4a). The top most layers of
370 snow and firn appeared typical. However, at a drill depth of 6.23 meters the recovered ice was saturated with liquid seawater (a strong attenuator of the radar signal). Ice recovered below this depth was different in character from the surface, being solid ice containing bubbles and interstitially saturated with saltwater. There was a standing water table in the borehole at this same depth. These observations, together with the clear radar reflector at just over 6.8 m (Figure 6), the absence of reflectors below this, and the sites elevation of ~6 m above
375 sea level, lead to the conclusion that the fast ice is saturated with seawater below sea level.

If the fast ice is floating (i.e. supported buoyantly), our measurement of the dry freeboard thickness allows us to estimate the total thickness of the fast ice wedge. The average density of the top 6 m is $0.55 \pm 0.05 \text{ kg m}^{-3}$, increasing to $0.85 \pm 0.05 \text{ kg m}^{-3}$ below this. Assuming a seawater density of $1.0275 \pm 0.004 \text{ kg m}^{-3}$, freeboard
380 thickness of 6.2 m and a mean density of the ice below the water table of $0.85 \pm 0.05 \text{ kg m}^{-3}$, the total ice-equivalent thickness of the ice at this site is ~30 m. However, there are large uncertainties in this calculation. The radargram indicates that the fast ice increases in thickness away from the drill site, by several meters. While this site is not likely to provide typical geochemical proxy records, it may be of interest to future studies of multiyear sea ice.

385 3.1.2 Young Island

The Young Island site was flat with a compact snow surface. Multiple layers can be identified but they are not traceable through the full profile length. The small distance between layers resulted in merging. As an example,

on Figure 7, one strong layer (~4 m depth) has been traced along the profile. The maximum estimated depth of detected layers was ~36 m (Table 2) and bedrock was not detected.

390

3.1.3 Mount Siple

The surface of the studied area at Mount Siple site was relatively smooth (max. 4° slope). Figure 8 shows a full profile taken in an east-westerly direction rising from 678 m a.s.l. to 685 m a.s.l. Multiple layers are clearly interpreted with minor discontinuities, for the full depth of the profile (~36 m). Bedrock was not detected.

395

3.1.4 Peter 1st Island

The surface of the Peter 1st island site was smooth (maximum 5° slope) increasing from 718 m a.s.l. up to 726 m a.s.l. in a north-westerly direction. Layers are only (and partially) traceable for the upper ~25 m of the snow/firn pack. The maximum time window was set to reach an estimated depth of ~43 m (Table 2) and bedrock was not 400 detected. Figure 9 shows a section of a profile crossing the ice core position.

3.1.5 Bouvet Island

shows a radargram obtained at Bouvet descending from 357 m a.s.l. to 339 m a.s.l. towards the south east. The visible layers show that there is a maximum of 2 m of horizontal continuous layering of snow. Below this layer, 405 there is stratified firn that has been eroded by the effect of wind and the surface slope, reaching a layer of solid ice between 12 and 18 m from the surface. Another layer is detected between 35–41 m depth, which is interpreted as the bedrock. This depth is consistent with the estimated ice thickness observed from the ice cliffs to the south of the ice core drilling site (Figure 4c). Ice thickness from the photograph is estimated relative to the expected size of the observed fur seals on the beach.¹⁰ Figure

410-

3.2 Melt records

(van Wessem et al., 2016), however the coastal margins and areas of the Antarctic Peninsula are subject to surface melting. Surface melting occurs in response to a positive energy balance at the snow surface and is strongly correlated with surface air temperature. The Antarctic ice sheet experiences little melt, due to 415 consistently low temperature (Abram et al., 2013). However, the presence of too much surface melt can damage the climate proxies they contain. has been exploited to reconstruct past climate in Antarctic ice cores. The relationship between surface melt and surface temperature

(Koerner, 1997)

The influence of melt water on ice core proxy preservation has been explored for arctic ice cores. Seasonal 420 melting can cause run off of near surface snow and melt and refreezing at the base of the annual snow pack. This can redistribute the stable water isotope profile, resulting in a warm or cold biased record. The influence on both stable water isotopes and chemistry can have a major impact on the ability to date ice cores using annual layer counting. Here, melt water percolation can allow insoluble micro particles to migrate to the melting surface, causing a spike in concentrations, and influence the stable water isotope record, a commonly used proxy for past 425 surface temperature

Given their location, we expect all ~~our~~ sites to experience some degree of surface melt. The altitude corrected temperature for each SAI is compared with the 2 m temperature and uncorrected AWS temperature in Table 1. Surprisingly, the site least affected by melt is Bouvet, the warmest and most northerly location. Despite its northerly location the average yearly temperature from ERA-5 (elevation corrected) is -2.9 °C, with a maximum monthly temperature of -0.9°C. The maximum value recorded by the AWS at 42 m above sea level was 6.7 °C (1997-2005, elevation corrected). The average melt layer thickness in the Bouvet core is 0.3 cm, observed at a frequency of five layers per meter; with the largest measured melt layer just 3.98-95 cm (Table 2).

435 The coldest site is Mertz Glacier, with an annual average temperature (ERA-5 elevation corrected) of -17.4°C. The percentage of melt at this site is just 6%, with a maximum layer thickness of 8.1 cm. The melt layer thickness at the Mertz fast ice site appears to be lower, however, this only reflects visible melt layers in the top 2.2 m.

440 Average melt layer thickness at Peter 1st Island is comparable to that of Mount Siple, with percentage melt of 11% and 10% respectively. Reflecting the similar summer temperatures, -5.1°C at Peter 1st and -5.2°C at Mount Siple.

445 (Abram et al., 2013) The average melt layer thickness at all sites (except Young Island) is considerably lower than the mean melt layer width of 3.2 cm observed at the James Ross Island ice core, from the northern Antarctic Peninsula (King et al., 2019b). The percentage of melt per year is dependent on the measured snow accumulation. The estimated snow accumulation at Bouvet is 0.59 m water equivalent, based on annual layer counting of chemical and isotopic species will be equal to or more than the snow accumulation at James Ross Island (0.62 +/- 0.14 m water equivalent). Thus, the potential for proxy preservation is promising. island scores has not yet been completed, however based on our estimates (section 3.4), it is a reasonable assumption that the snow accumulation at these maritime SUBICE. The annual layer counting of the other

450 The site most affected by melt is Young Island, which has frequent melt layers averaging 6.57 cm and the largest single layer of 61-58 cm (58 cm before thinning applied). The annual average temperature from this site is -9.2°C, (ERA-5 1979-2017), with a maximum AWS temperature of 2.8°C (February 1997). Melt layers occur throughout the profile but with greatest density between 5-5.5 m and below 11 m depth. Most melt layers consist of bubbly ice with a minority of thinner layers that are bubble-free or exhibit large crystals. We note that 455 the visual method of determining melt layers is not sufficient to determine if the large layers result from individual melt events or are formed from a sequence of smaller events. ; however, given the islands location south of the Polar Front and the seasonal sea ice zone it seems unlikely that surface temperature alone can explain the observed melt layers. s was 4.2°C (1991-1997), equivalent to 2.8°C at the ice core site. It is very likely that the resolution of ERA-5 is not sufficient to capture local surface temperatureelevation30 m recorded 460 temperature from an Automatic Weather Station (AWS) deployed at colder than Bouvet. The average summer temperature (December-February) at Young Island is -2.18°C. The maximum -degrees 6.4s Young Island sits within the Polar Front and the sea ice minimum (Figure 1), with average temperature

3.3 Relationship between GPR horizons and ice core melt layers

In order to explore the spatial extent of melt surrounding the ice core sites, we compare the ice core melt records 465 with the GPR horizons. However, the melt observations from the ice core has a resolution of 1mm, while the GPR has an expected range of visibility of ~35 cm (theoretical resolution). Thus, we first reduce the resolution of the ice core derived melt profiles by summing the total melt in a running 35 cm window. Only sections that would produce a strong enough reflection to be detected by the GPR are included in the comparison. The continuity of the GPR data has been assessed in profile sections of 20 m length near the ice core extraction (plot 470c in Figures 2-6) and their mean depth have been used. Subsequently, we compared the potentially visible patterns from the ice core to the depth of the handpicked layers in the radargrams (Figure 8).

3.3 Density

475 The change in firn density with depth is dependent on the snow accumulation rate and temperature at the site. Higher temperatures and lower accumulation rates result in the greatest change of density with depth. At our sites the depth-density profile exhibits more variability at the island sites (Bouvet, Peter 1st, Young) than the continental sites (Mertz and Mt Mount Siple), reflecting the warmer island locations and the influence of surface melt (Figure 447).

480

A fitted density curve is applied based on the assumption that firn densification is linearly related to the weight of overlying snow (Herron and Langway, 1980). The density with depth (ph) is calculated following Eq. (1):

$$ph = p_i \cdot \exp(\ln a + b) \quad (1)$$

485

where p is the density, p_i is the density of ice (0.917 kg m^{-3}) and h is the snow depth. The constants a and b are derived from the linear relationship between $\ln [p/(p_i - p)]$ and depth, where $\ln(a)$ is the intercept, and b is the gradient.

490 The first stage of densification relates to grain settling and packing and occurs below the “critical density” of about 0.55 kg m^{-3} (Herron and Langway, 1980). A linear relationship exists between the 2-m temperature from ERA-5 and the critical depth ($r^2 = 0.57$, $p > 0.05$), which is reached first at Bouvet, the most northerly location and the warmest site (Table 1; Table 2).

495 The second stage of densification ($0.55\text{--}0.83 \text{ kg m}^{-3}$), occurs when the firn air passages become closed off to form individual bubbles. The density at the bottom depth of all cores remains below this value, with the exception of Young Island, which exceeds this limit at 16.6 m. This suggests that pore close-off has been achieved below this depth, when air can no longer be excluded and further densification takes place by compression of the bubbles. However, the presence of a large melt layer at this depth suggests this may be the

cause of the density increase. Based on the fitted density profile the actual close-off depth occurs at 21 m. The 500 second fastest close-off depth occurs at Bouvet (28.65 m), considerably shallower than the two coastal Antarctic sites (Mt Mount Siple and Mertz 1).

Surface densities, critical depths and close-off depths at the continental sites (Mt Mount Siple and Mertz 1) are consistent with modelled values (van den Broeke, 2008). A compilation of observed (and modelled) Antarctic 505 snow densities suggest a range of 6–26 m (modelled 4–29.5 m) for the critical depth and 34–115 m (modelled 45–115 m) for pore close-off. The values for Bouvet, Peter 1st and Young Island are close to the modelled values for coastal Antarctica, however, the pore close-off depth at both Bouvet and Young Island is achieved faster than the lowest reported depth for an Antarctic site (34 m at Upstream B, West Antarctica) (van den Broeke, 2008). ~~Although the presence of melt layers may be affecting our estimate of the close-off depth, with a~~ 510 ~~greater density than the surrounding firn, may bias our close-off estimates to shallower depths.~~ In addition to the influence of temperature, the rapid densification on the ~~islands~~ SAI_s may be caused by layer stretching and compression related to ice flow that is not well understood at these locations.

3.4 Estimating the ice core bottom ages

~~Based on the fitted density curve and assuming a constant rate of snow accumulation, we can estimate the 515 expected bottom ages of the ice cores drilled at each of our sites. We~~ The fitted density curve can provide a first approximation of the age-scale (Table 2), based on the (water-equivalent) annual average P-E from ERA-5. We note that the resolution of ERA-5 may not be adequate to capture P-E at these sites and that snow accumulation may vary through time. It would have been preferable to use a densification model that accounts for the influence of melt (e.g. Lightenberg et al., 2011), however the current in-situ observations at these sites do not 520 allow for this. Thus, our approach is very simplified with the aim of establishing a preliminary bottom age for each site.

~~In the Herron and Langway densification model the dominant densification process in the upper part ($\rho \leq 550 \text{ kg m}^{-3}$) are grain settling and packing of snow grains (Herron and Langway, 1980). Undoubtedly, refreezing of 525 melt water and/or liquid precipitation also cause firn to densify. This is observed in figure 7, as jumps in the measured density corresponding to large melt events. However, if we assume that heat is released upon refreezing, the local firn temperature will also increase, further accelerating the densification. At the same time, ice layers lead to a higher average density, thereby reducing the potential densification rate. Although not ideal, the measured density value used in the equation will reflect the presence of melt. As such, the values of surface 530 snow (or zero-intersection depth) are considerably higher than those modelled or observed for coastal Antarctica.~~

~~We note that the resolution of ERA-5 may not be adequate to capture P-E at these sites and that snow accumulation may vary considerably at these island locations. However, the annual average P-E value for 535 Bouvet, the only site that has been annual layer counted, is identical to the calculated snow accumulation in meters water equivalent the (water equivalent) accumulation rate at the annual average precipitation minus evaporation (P-E) value from ERA-5 estimate~~

We apply an error estimate to the bottom ages to account for the potential influence of melt, changing snow
540 accumulation with time and uncertainties in the ERA-5 P-E value. This is based on the difference between the age determined using the mean annual P-E value and the age determined when using an upper (annual P-E plus one standard deviation) or lower (annual P-E minus one standard deviation) P-E value. The error variability reflects the variability in precipitation at each site and increases with depth and age.

545 ice core records will be suitable for obtaining sub-annual resolution climate records with the potential to capture climate variability over multi-decadal timescales (SUBICE years). However, considerably deeper (and therefore older) ice may be present at higher elevations. These results suggest that the 5 AD (+/- 1962 AD respectively. At the Bouvet site, where we interpret the layer at 41 m as bedrock, the maximum potential age is 1919 and 1948, 1967 we estimate the potential ice ages at the signal penetration depth of the GPR at Young, Peter 1st and 550 Mertz as 5 m (Table 3), although the ice could feasibly be much deeper than this. In Table 62 years) is estimated based on a GPR-bottom depth of 5 AD (+/- 1919 at Mertz 1 a bottom age of example Mertz 1 (Table 3). It is difficult to estimate a potential age limit for a core drilled to bedrock at the Young, Peter 1st and Mertz 4 sites since the ice thickness was beyond the penetration depth of the GPR. For the years) at 3 (+/- 1992 years), at both the Peter 1st and Bouvet ice cores, to 2 (+/- 2001 The estimated ice core bottom ages range from 555 years) 10 (+/- 1836 (Peter 1st years) and the youngest ice at 10 (+/- 1742

For the sites where bedrock was not detected, we estimate the bottom age of an ice core drilled to 100 m depth (Table 3). This suggests that the oldest ice would be reached at Mertz 1 (+/- 1836 years) but further analysis will help establish the source Islands, with visible ash clouds identified in the satellite records and even visible from the ship during the ACE (March 2017). We note that the visible ash layers at 560 Bouvet may have been deposited from the South Sandwich Islands. The regularity of the layers in the ice cliffs, visible all around the island, indicate frequent volcanic activity has occurred during the 20th century. This is consistent with the persistent volcanic activity observed on the near-by South Sandwich 2012. The estimated ice core bottom age at Bouvet Island, together with the observed visible ash layers (Figure 4e), offer a glimpse at the volcanic history of this remote island. The last known eruption was 50 BCE; however, 565 visible layers in the upper ~20 m suggest the island has been volcanically active as recently as ~

4 Discussion
Based on the results we aim to establish which of the sites would be suitable for future deep drilling expeditions, based on 1) the ice conditions and internal layering in the upper ice column, 2) the extent of 570 surface melt and the potential impact on proxy preservation, and 3) potential bottom ages.

4.1 Ice conditions and internal layering in the upper ~40 m Relationship between GPR horizons and ice core melt layers

4.1 Ice conditions and internal layering in the upper ice column

The aim of the GPR data was to give a preliminary characterisation of each site, particularly the distribution, 575 continuity and clearness of the horizons observed in this data. Bouvet was the only site where bedrock was detected, suggesting that the maximum depth of an ice core from this site is ~40 m. Evidence of wind scouring in the reflections may impact the proxy preservation at this site. The profiles at Peter 1st, Mount Siple and Mertz indicate more uniform internal structure, with traceable layers in the top 20 m. The largest number of layers was

Formatted: Superscript

identified at Young Island, but many were discontinuous or difficult to trace. The deepest layer detected was at 580 Mertz, the coldest site, where layers were traceable to a depth of 62 m.

Although the resolution of the equipment used allows only a rough comparison with the distribution of melt layers in the ice core, this dataset provides a fair understanding of the spatial distribution of the snow accumulation of each site. Furthermore, we analysed the difference between the layers detected in the 585 radargrams and the melt stratigraphy in the ice core. In order to make the comparison we used a theoretical approach assuming a range of visibility of 35 cm (theoretical resolution) for the GPR. We counted the amount and thickness of the melt layers in the ice core for a moving window in depth. We analysed how strong the reflector would be given the amount of ice and selected the depth points that would be strong enough to be detected by the GPR. The layers continuity of the GPR data have been assessed in profile sections of 20 m 590 length near the ice core extraction (plot c in Figures 2-6) and their mean depth have been used. Subsequently, we compared the potentially visible patterns from the ice core to the depth of the hand picked layers in the radargrams (Figure X).

(Caption) Figure X. Comparison of detected melt layers (horizons) GPR-data (red dots, standard deviation in 595 small red dots) and the potentially visible patterns of melt from ice cores for each site.

The presented comparison method is subject to several sources of uncertainty, two of which are particularly decisive: the manual picking of the layer interpretation of the GPR data and the distance between the ice core extraction point and the actual section of the radar data used, which varied from 5-20 m for the different sites. 600 Plus the fact that the average depth in sections of 20 m distance covered was used that added extra uncertainty for the sites which surface and internal stratigraphy were less flat (i.e. Bouvet and Mount Siple).

The relationship is particularly poor for Young Island site which ice core shows a high amount of thin melt layers seen in the radar data as very dense non-continuous layering. Another factor that hinders the matching in 605 the detection is that some melt layers in the ice cores may be local and do not represent a spatially distributed layer.

4.1.1 Case study Mertz fast ice

This Mertz fast ice site is fundamentally different in character from the others presented in this study. While we believe the surface snow to be meteoric, it does not sit atop grounded ice, but rather a large wedge of multiyear 610 sea ice, held fast between the AAE and Mertz Glacier tongues (Figure 1d). The top-most layers of snow and firn appeared typical of surface snow. However, at a drill depth of 6.23 meters the recovered ice was saturated with liquid seawater (a strong attenuator of the radar signal). Ice recovered below this depth was different in character from the surface, being solid ice containing bubbles and interstitially saturated with saltwater. There was a standing water table in the borehole at this same depth. These observations, together with the clear radar 615 reflector at just over 6.8 m (Figure 6), the absence of reflectors below this, and the site's elevation of ~6 m above sea level, lead to the conclusion that the fast ice is saturated with seawater below sea level.

If the fast ice is floating (i.e. supported buoyantly), our measurement of the dry freeboard thickness allows us to estimate the total thickness of the fast ice wedge. The average density of the top 6 m is $0.55 \pm 0.05 \text{ kg m}^{-3}$, increasing to $0.85 \pm 0.05 \text{ kg m}^{-3}$ below this. Assuming a seawater density of $1.0275 \pm 0.004 \text{ kg m}^{-3}$, freeboard thickness of 6.2 m and a mean density of the ice below the water-table of $0.85 \pm 0.05 \text{ kg m}^{-3}$, the total ice-equivalent thickness of the ice at this site is $\sim 30 \text{ m}$. However, there are large uncertainties in this calculation. The radargram indicates that the fast ice increases in thickness away from the drill site, by several meters. While this site is not likely to provide typical geochemical proxy records, it may be of interest to future studies of multiyear sea ice.

4.2 Extent of surface melt and the potential impact on proxy preservation

4.2.1 Melt recorded in the ice core

Surface melting occurs in response to a positive energy balance at the snow surface and is strongly correlated with surface air temperature. The Antarctic ice sheet experiences little melt, due to consistently low temperature, however the coastal margins and areas of the Antarctic Peninsula are subject to surface melting (van Wessem et al., 2016). The relationship between surface melt and surface temperature has been exploited to reconstruct past climate in Antarctic ice cores (Abram et al., 2013). However, the presence of too much surface melt can damage the climate proxies they contain.

The influence of melt-water on ice core proxy preservation has been explored for arctic ice cores (Koerner, 1997). Here, melt-water percolation can allow insoluble micro particles to migrate to the melting surface, causing a spike in concentrations, and influence the stable water isotope record, a commonly used proxy for past surface temperature. Seasonal melting can cause run-off of near-surface snow and melt and refreezing at the base of the annual snowpack. This can redistribute the stable water isotope profile, resulting in a warm or cold-biased record. The influence on both stable water isotopes and chemistry can have a major impact on the ability to date ice cores using annual layer counting.

The site most affected by melt is Young Island, with 47% of the ice core characterised as melt. Given the islands location south of the Polar Front and the seasonal sea ice zone (Figure 1) the evidence of extensive surface melting is unexpected. Especially when considering that the average temperature at Young Island is 6.4°C colder than Bouvet, the site least affected by melt. It is likely that the resolution of ERA-5 is not sufficient to capture local surface temperature, however, the 3-hourly data from the AWS (1993-1997) reveals considerable variability.

The maximum temperature recorded by the Young AWS (elevation corrected) is 2.8°C (February 1997), with temperatures in 20 of the 67 months of AWS data exceeding 0°C . The annual average temperature at Young Island is comparable with Peter 1st, with a lower maximum AWS temperature. However, the largest melt layer at Young is almost twice that of Peter 1st and the percentage melt over four times higher. Solar radiation is the dominant driver of surface melting although atmospheric thermodynamics and cloud radiative properties also play a role. Thus, our study demonstrates that for the SAI's surface temperature alone is not a reliable indicator of potential melt damage.

655 The average melt layer thickness at all sites (except Young Island) is considerably lower than the mean melt layer width of 3.2 cm observed at the James Ross Island ice core, from the northern Antarctic Peninsula (Abram et al., 2013). The percentage of melt per year is dependent on the measured snow accumulation. The estimated snow accumulation at Bouvet is 0.59 m water equivalent, based on annual layer counting of chemical and isotopic species (King et al., 2019b). The annual layer counting of the other subICE cores has not yet been completed, however based on our estimates (section 3.4), it is a reasonable assumption that the snow accumulation at these maritime island's will be equal to or more than the snow accumulation at James Ross Island (0.62 +/- 0.14 m water equivalent). Thus, the potential for proxy preservation and climate reconstructions is promising at these sites.

Given the degree of melt at Young Island, it seems likely that the proxy preservation may be compromised. 665 However, an evaluation of the ice microstructure may help determine the extent to which melt water has percolated through the layers.

4.2.2 Comparison of ice core melt with GPR layers

There appears to be little correlation between the melt observed in the ice core and the layers traced in the GPR. 670 The relationship is particularly poor for Young Island, where the ice core shows a high amount of thin melt layers seen in the radar data as very dense non-continuous layering. Although it is not possible to determine the spatial extent of melting based on the GPR profiles, the findings suggest that density variations alone cannot explain the internal layering.

675 The presented comparison method is subject to several sources of uncertainty. 1) The manual picking of the GPR layer, 2) the distance between the ice core extraction point and the section of the radar data, and 3) the use of average depth in sections of 20 m distance, especially for the sites that exhibit an incline (e.g. Bouvet and Mount Siple).

4.3 Potential bottom ages of deeper ice cores

One of the aims of this study was to establish the SAI's suitability for future deep ice core drilling projects. A useful indicator is the potential bottom age at each site. The estimated ice core bottom ages range from 2004 (+/- 3 years), at both the Peter 1st and Bouvet ice cores, to 1994 (+/- 8 years) at Mertz 1 (Table 2).

685 To date, only the Bouvet ice core has been independently dated. Annual layer counting, using a suite of chemical and isotopic species, yielded a bottom age of 2001 AD (King et al., 2019). Although older than the bottom age estimate using the density profile it is within error (2004 +/- 3 years) adding confidence to this approach but suggesting our ages may be too conservative. The offset may be explained by an over-estimate in the P-E derived from ERA-5 or suggest the influence of post-depositional processes such as wind scouring or 690 ablation.

It is difficult to estimate a potential age limit for a core drilled to bedrock at the Young, Peter 1st and Mertz 1 sites since the ice thickness was beyond the penetration depth of the GPR. For example, at Mertz 1 a bottom age of 1926 AD (+/- 34 years) is estimated based on a GPR bottom depth of 63 m (Table 3), although the ice could 695 feasibly be much deeper than this. At the Bouvet site, where we interpret the layer at 41 m as bedrock, the maximum potential age is 1971 AD (+/- 11 years). However, considerably deeper (and therefore older) ice may be present at higher elevations. These results suggest that the subICE ice-core records will be suitable for obtaining sub-annual resolution climate records with the potential to capture climate variability over multi-decadal timescales.

700

For the sites where bedrock was not detected, we estimate the bottom age of an ice core drilled to 100 m depth (Table 2). This suggests that the oldest ice would be reached at Mertz 1 (1849 +/- 64 years) and the youngest ice at Mount Siple (1912 +/- 35 years).

705 The estimated ice core bottom age at Bouvet Island, together with the observed visible ash layers (Figure S1), offer a glimpse at the volcanic history of this remote island. The last known eruption was 50 BCE; however, visible layers in the upper ~20 m suggest the island has been volcanically active as recently as ~ 1998. The regularity of the layers in the ice cliffs, visible all around the island, indicate frequent volcanic activity has occurred during the 20th century. This is consistent with the persistent volcanic activity observed on the near-by 710 South Sandwich Island's, with visible ash clouds identified in the satellite records and even visible from the ship during the ACE (March 2017). We note that the visible ash layers at Bouvet (Figure S1) may have been deposited from the South Sandwich Island's but further analysis will help establish the source.

54 Conclusions

Initial results from five shallow ice cores drilled in the sub-Antarctic ~~islands~~island's and coastal Antarctica 715 suggest that these locations may be suitable for short-term climate reconstructions and up to centennial-scale reconstructions at some sites if deeper cores could be retrieved. Evidence that these ice cores span the 20th century, a period of significant global climate change, is exciting. The GPR surveys suggest relatively uniform layering at most sites, at least to the depth of the ice cores, suitable for ice core proxy reconstructions. However, evidence of crevassing at some locations (Young and Peter 1st) demonstrates the importance of a thorough 720 geophysical survey before contemplating deeper drilling at these sites. Evidence from At Bouvet Island reveals, regular volcanic ash deposits during the 20th century, suggesting the island is still volcanically active.

The impact of melt is less severe than expected at some locations, especially Bouvet Island, but more severe at others. Young Island, part of the Balleny Island chain off the coast of Adélie Land, is the most susceptible to 725 melt. However, the observed melt layer thickness at the other sites is less than that observed from the James Ross Island ice core, which yielded paleoclimate reconstructions (Abram et al., 2013). Proxy preservation was not a concern in this ice core, suggesting that melt will also not adversely influence the climate record contained in the sub-Antarctic ice cores. The observed increase in melt intensity at James Ross Island since the mid-20th century was linked to warming surface temperatures. Thus the comparable melt intensity observed at some of

730the SAIs may be evidence that the 20th century warming at these locations was analogous to that on the
Antarctic Peninsula.

Based on the measured density profile and the P-E from ERA-5, the estimated bottom ages of the **SUBICE**
subICE cores range from **2001-2004** (Peter 1st and Bouvet) to **1992-1994** (Mertz 1), suggesting that these records
735should contain a multi-decadal record of climate variability in this data sparse region. We were unable to obtain
ice thickness estimate for all sites, with the exception of Bouvet, however visible layers were identified in the
GPR records to depths of 60 m. Even with a conservative estimate, it is possible that deeper ice cores drilled on
these SAIs would have the potential to capture climate variability during the 20th century, but most likely
considerably longer.

740

Data availability

All data will be stored at the UK Polar Data Centre (<https://www.bas.ac.uk/data/uk-pdc/>) or by directly
contacting Liz Thomas (lith@bas.ac.uk). DOI to be provided following paper acceptance.

745Author contributions

ERT lead the project; ERT, GG, JP, ACFK, BM, and MP collected the data in the field; ERT, JP, ACFK and
DEM processed the ice core data; GG and MP processed the GPR data; all authors contributed to writing and
editing the paper.

750Competing interests

All authors declare no competing interests.

Acknowledgements

SUBICE **subICE** received funding from École Polytechnique Fédérale de Lausanne, the Swiss Polar Institute,
755and Ferring Pharmaceuticals Inc. ERT received core funding from the Natural Environment Research Council to
the British Antarctic Survey's Ice Dynamics and Paleoclimate Program. AK was jointly supported by Selwyn
College, Cambridge, and the NERC Doctoral Training Programme (Grant NE/L002507/1). JBP acknowledges
support from the European Research Council under the European Community's Seventh Framework Programme
(FP7/2007e2013)/ERC Grant Agreement 610055 as part of the ice2ice project. We are grateful to the
760Norwegian Polar Institute for granting us permission to visit Bouvet (permit ref: 2016/115-25). The authors
appreciate the support of the University of Wisconsin-Madison Automatic Weather Station Program for the data
set, data display, and information, NSF grant number ANT-1543305 and ECMWF for providing ERA-5
reanalysis data. We thank Laura Gerish (BAS) for producing the maps. Data used in this study are available
through on the UK Polar Data Centre. The authors would like to acknowledge the coordinators and participants
765of the Antarctic Circumnavigation Expedition for facilitating collection of the subICE cores, especially David
Walton, Christian de Marliave, Julia Schmale, Robert Brett, Sergio Rodrigues, Francois Bernard, Roger Stilwell
and Frederick Paulsen.

References

770Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate . Copernicus Climate Change Service Climate Data Store (CDS), February 2020.
<https://cds.climate.copernicus.eu/cdsapp#!/home>

Abram, N.J., Mulvaney, R., Wolff, E.W., Triest, J., Kipfstuhl, S., Trusel, L.D., Vimeux, F., Fleet, L. and Arrowsmith, C., 2013. Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. *Nature Geoscience*, 6(5): 404-411.

Campagne, P., Crosta, X., Houssais, M.N., Swingedouw, D., Schmidt, S., Martin, A., Devred, E., Capo, S., Marieu, V., Closset, I. and Massé, G., 2015. Glacial ice and atmospheric forcing on the Mertz Glacier Polynya over the past 250 years. *Nature Communications*, 6(1): 6642.

Cook, A.J., Poncet, S., Cooper, A.P.R., Herbert, D.J. and Christie, D., 2010. Glacier retreat on South Georgia and implications for the spread of rats. *Antarctic Science*, 22(3): 255-263.

Cullather, R.I., Bromwich, D.H. and Van Woert, M.L., 1998. Spatial and Temporal Variability of Antarctic Precipitation from Atmospheric Methods. *Journal of Climate*, 11(3): 334-367.

Emile-Geay, J., McKay, N.P., Kaufman, D.S., von Gunten, L., Wang, J., Anchukaitis, K.J., Abram, N.J., Addison, J.A., Curran, M.A.J., Evans, M.N., Henley, B.J., Hao, Z., Martrat, B., McGregor, H.V., Neukom, R., 785Pederson, G.T., Stenni, B., Thirumalai, K., Werner, J.P., Xu, C., Divine, D.V., Dixon, B.C., Gergis, J., Mundo, I.A., Nakatsuka, T., Phipps, S.J., Routson, C.C., Steig, E.J., Tierney, J.E., Tyler, J.J., Allen, K.J., Bertler, N.A.N., Björklund, J., Chase, B.M., Chen, M.-T., Cook, E., de Jong, R., DeLong, K.L., Dixon, D.A., Ekyakin, A.A., Ersek, V., Filipsson, H.L., Francus, P., Freund, M.B., Frezzotti, M., Gaire, N.P., Gajewski, K., Ge, Q., Goosse, H., Gornostaeva, A., Grosjean, M., Horiuchi, K., Hormes, A., Husum, K., Isaksson, E., Kandasamy, S., 790Kawamura, K., Kilbourne, K.H., Koç, N., Leduc, G., Linderholm, H.W., Lorrey, A.M., Mikhalenko, V., Mortyn, P.G., Motoyama, H., Moy, A.D., Mulvaney, R., Munz, P.M., Nash, D.J., Oerter, H., Opel, T., Orsi, A.J., Ovchinnikov, D.V., Porter, T.J., Roop, H.A., Saenger, C., Sano, M., Sauchyn, D., Saunders, K.M., Seidenkrantz, M.-S., Severi, M., Shao, X., Sicre, M.-A., Sigl, M., Sinclair, K., St. George, S., St. Jacques, J.-M., Thamban, M., Kuwar Thapa, U., Thomas, E.R., Turney, C., Uemura, R., Viau, A.E., Vladimirova, D.O., Wahl, 795E.R., White, J.W.C., Yu, Z., Zinke, J. and Consortium, P.A.k., 2017. A global multiproxy database for temperature reconstructions of the Common Era. *Scientific Data*, 4(1): 170088.

Favier, L., Durand, G., Cornford, S.L., Gudmundsson, G.H., Gagliardini, O., Gillet-Chaulet, F., Zwinger, T., Payne, A.J. and Le Brocq, A.M., 2014. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. *Nature Climate Change*, 4(2): 117-121.

800Hatherton, T., Dawson, E.W. and Kinsky, F.C., 1965. Balleny Islands Island's Reconnaissance Expedition, 1964. *New Zealand Journal of Geology and Geophysics*, 8(2): 164-179.

Herron, M.M. and Langway, C.C., 1980. Firn Densification: An Empirical Model. *Journal of Glaciology*, 25(93): 373-385.

Joughin, I., Smith, B.E. and Medley, B., 2014. Marine Ice Sheet Collapse Potentially Under Way for the 805Thwaites Glacier Basin, West Antarctica. *Science*, 344(6185): 735.

King, A.C.F., Thomas, E.R., Pedro, J.B., Markle, B., Potocki, M., Jackson, S.L., Wolff, E. and Kalberer, M., 2019. Organic Compounds in a Sub-Antarctic Ice Core: A Potential Suite of Sea Ice Markers. *Geophysical Research Letters*, 46(16): 9930-9939.

Koerner, R.M., 2017. Some comments on climatic reconstructions from ice cores drilled in areas of high melt. *Journal of Glaciology*, 43(143): 90-97.

Lacarra, M., Houssais, M.-N., Herbaut, C., Sultan, E. and Beauverger, M., 2014. Dense shelf water production in the Adélie Depression, East Antarctica, 2004–2012: Impact of the Mertz Glacier calving. *Journal of Geophysical Research: Oceans*, 119(8): 5203-5220.

Looyenga, H., 1965. Dielectric constants of heterogeneous mixtures. *Physica*, 31(3): 401-406.

815 Martin, P., & Peel, D. (1978). The Spatial Distribution of 10 m Temperatures in the Antarctic Peninsula. *Journal of Glaciology*, 20(83), 311-317. doi:10.3189/S0022143000013861

Mayewski, P.A., Kuli, A., Casassa, G., ArÉValo, M., Dixon, D.A., Grigholm, B., Handley, M.J., Hoffmann, H., Introne, D.S., Kuli, A.G., Potocki, M. and Sneed, S.B., 2016. Initial reconnaissance for a South Georgia ice core. *Journal of Glaciology*, 62(231): 54-61.

820 McGlone, M.S., 2002. The Late Quaternary peat, vegetation and climate history of the Southern Oceanic Islands of New Zealand. *Quaternary Science Reviews*, 21(4): 683-707.

Medley, B. and Thomas, E.R., 2019. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. *Nature Climate Change*, 9(1): 34-39.

Nye, J.F., 1963. Correction Factor for Accumulation Measured by the Thickness of the Annual Layers in an Ice Sheet. *Journal of Glaciology*, 4(36): 785-788.

Pendlebury, S., Barnes-Keoghan, IP 2007. Climate and climate change in the sub-Antarctic. *Papers and Proceedings of the Royal Society of Tasmania*, vol. 141, no. 1 pp. 67-81.

Saunders, K.M., Hodgson, D.A. and McMinn, A., 2008. Quantitative relationships between benthic diatom assemblages and water chemistry in Macquarie Island lakes and their potential for reconstructing past environmental changes. *Antarctic Science*, 21(1): 35-49.

830 Saunders, K.M., Roberts, S.J., Perren, B., Butz, C., Sime, L., Davies, S., Van Nieuwenhuyze, W., Grosjean, M. and Hodgson, D.A., 2018. Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO₂ outgassing. *Nature Geoscience*, 11(9): 650-655.

Spikes, V.B., Hamilton, G.S., Arcene, S.A., Kaspari, S. and Mayewski, P.A., 2004. Variability in accumulation rates from GPR profiling on the West Antarctic plateau. *Annals of Glaciology*, 39: 238-244.

Tetzner, D., Thomas, E. and Allen, C., 2019. A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies. *Geosciences*, 9(7): 289.

Thomas, E.R., Allen, C.S., Etourneau, J., King, A.C.F., Severi, M., Winton, V.H.L., Mueller, J., Crosta, X. and Peck, V.L., 2019. Antarctic Sea Ice Proxies from Marine and Ice Core Archives Suitable for Reconstructing Sea Ice over the Past 2000 Years. *Geosciences*, 9(12): 506.

840 van den Broeke, M., 2008. Depth and Density of the Antarctic Firn Layer. *Arctic, Antarctic, and Alpine Research*, 40(2): 432-438, 7.

Van der Putten, N., Mauquoy, D., Verbruggen, C. and Björck, S., 2012. Subantarctic peatlands and their potential as palaeoenvironmental and palaeoclimatic archives. *Quaternary International*, 268: 65-76.

845 van Wessem, J.M., Ligtenberg, S.R.M., Reijmer, C.H., van de Berg, W.J., van den Broeke, M.R., Barrand, N.E., Thomas, E.R., Turner, J., Wuite, J., Scambos, T.A. and van Meijgaard, E., 2016. The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution. *The Cryosphere*, 10(1): 271-285.

Formatted: Font: (Default) Times New Roman, 10 pt

Walton, D., Thomas. J., , 2018. Cruise Report - Antarctic Circumnavigation Expedition (ACE) 20th December 2016 - 19th March 2017 (Version 1.0). Zenodo. <http://doi.org/10.5281/zenodo.1443511>.
850 Whitehead, H., McGill, B. and Worm, B., 2008. Diversity of deep-water cetaceans in relation to temperature: implications for ocean warming. *Ecology Letters*, 11(11): 1198-1207.

855

Figure 1: Map of subICE ice core locations (stars), [with insert maps of each site](#). Overlain on mean summer surface temperatures (coloured contours) from ERA-5 (1979-2017). Location of the maximum (blue) and minimum (purple) sea ice extent, from NSIDC (1981-2017), and the Polar Front (black). [\(a\) Bouvet Island, image credit Google Earth](#), [\(b\) Peter 1st island and \(c\) Mount Siple, images from Sentinel-2 Copernicus data](#). [\(d\) Map of Mertz glacier, showing the location of the two ice cores from Cape Hurley and Fisher Bay and \(e\) Young Island, Landsat image courtesy of USGS](#). All contours derived from TanDEM-X 90m DEM.

865

Figure 2: Indian sector ice cores. [\(a\) Map of Mertz glacier, showing the location of the two ice cores from Cape Hurley and Fisher Bay](#). [\(b\) Map of Young island, showing ice core location \(red circles\)](#). Landsat image courtesy of USGS. Contours derived from TanDEM-X 90m DEM

870

Figure 3: Pacific sector ice cores. [Map of \(a\) Mount Siple and \(b\) Peter 1st island showing locations of ice cores \(red circles\)](#). Image from Sentinel-2 Copernicus data. Contours derived from TanDEM-X 90m DEM

875 **Figure 4: Atlantic sector ice cores.** [\(a\) Map of central South Georgia, showing the location of the two ice cores from the Nordenkjold Glacier and Heany Glacier](#). [\(b\) Map of Bouvet Island, showing ice core location \(red circles\) and \(c\) picture of Bouvet ice cliff from area marked by red box](#). Image a, landsat image courtesy of South Georgia GIS, hosted by the British Antarctic Survey, and image b, credit Google Earth. Contours derived from TanDEM-X 90m DEM

880

Figure 2: Bouvet GPR. [\(a\) Reference map depicts the full track of measurements \(blue\), the profile \(grey\) and the section shown in the radargram \(black\)](#). [\(b\) Radargram obtained in a south easterly direction \(downward\) from 346 to 329 m a.s.l shown without layer interpretation and \(c\) with detected layer in red](#). X-axis shows the distance covered within the transect. Y-axis represents the estimated depth.

890 [Figure 3: Peter 1st GPR. \(a\) Reference map depicts the full track of measurements \(blue\), the profile \(grey\) and the section shown in the radargram \(black\). \(b\) Section of a radargram taken in an east-westerly direction without layer interpretation and \(c\) with detected layer in red. X-axis shows the distance covered within the transect. Y-axis represents the estimated depth.](#)

895

900 [Figure 4: Mount Siple GPR. \(a\) Reference map depicts the full track of measurements \(blue\), the profile \(grey\) and the section shown in the radargram \(black\). \(b\) Radargram ending at the position of the ice core extraction \(star\) shown without layer interpretation and \(c\) with detected layer in red. X-axis shows the distance covered within the transect. Y-axis represents the estimated depth.](#)

910 [Figure 5: Young Island GPR. \(a\) Reference map depicts the full track of measurements \(blue\), the profile \(grey\) and the section shown in the radargram \(black\). \(b\) Section of a radargram obtained walking in direction NW from the ice core shown without layer interpretation and \(c\) with detected layer in red. A crevasse was detected at 40 m from the starting point \(discontinuity in the red picked layer\). The radargram is shown and X-axis shows the distance covered within the transect. Y-axis represents the estimated depth.](#)

910

915 [Figure 56: Mertz GPR. Reference maps of \(a\) Mertz 1 and \(d\) Mertz fast ice sites depicting the full track of measurements \(blue\), the profile \(grey\) and the section shown in the radargram \(black\). \(b\) Radargram representing a section of a transect crossing the ice core extraction point at Mertz 1 without layer interpretation and. The radargram is shown \(c\) with detected layer in red -without layer interpretation \(center\)\) and left\(. \(e\) Radargram 920 collected at the ‘fast ice’ site, shown without layer interpretation and \(e\) with detected layer in red. X-axis shows the distance covered within the transect. Y-axis represents the estimated depth. The reference map \(right\) depicts the full track of measurements \(blue\), the profile \(grey\) and the section shown in the radargram \(black\).—Radargram collected at the ‘fast ice’ in Mertz. Profile obtained starting at the ice core position. The radargram is shown with detected layer in red \(left\) and without layer interpretation \(center\). X-axis shows the distance covered within the transect. Y-axis represents the estimated depth.—](#)

925 [Figure 6: The reference map \(right\) depicts the full track of measurements \(blue\), the profile \(grey\) and the section shown in the radargram \(black\).—X-axis shows the distance covered within the transect. Y-axis represents the estimated depth.](#)

930 [Figure 7: Section of a radargram obtained walking in direction NW from the ice core position at Young Island. A crevasse was detected at 40 m from the starting point \(discontinuity in the red picked layer\). The radargram is shown with detected layer in red \(left\) and without layer interpretation \(center\). X-axis shows the distance covered within the transect. Y-axis represents the estimated depth. The reference map \(right\) depicts the full track of measurements \(blue\), the profile \(grey\) and the section shown in the radargram \(black\).](#)

Figure 8: Radargram obtained at Mount Siple ending at the position of the ice core extraction. The radargram is shown with detected layer in red (left) and without layer interpretation (center). X-axis shows the distance covered within the transect. Y-axis represents the estimated depth. The reference map (right) depicts the full track of measurements (blue), the profile (grey) and the section shown in the radargram (black).—

Figure 9: Section of a radargram taken in a east-westerly direction at Peter 1st. The radargram is shown with detected layer in red (left) and without layer interpretation (center). X-axis shows the distance covered within the transect. Y-axis represents the estimated depth. The reference map (right) depicts the full track of measurements (blue), the profile (grey) and the section shown in the radargram (black).—

Figure 10: Radargram obtained at Bouvet going downward (direction SE) from 346 to 329 m a.s.l. The radargram is shown with detected layer in red (left) and without layer interpretation (center). X-axis shows the distance covered within the transect. Y-axis represents the estimated depth. The reference map (right) depicts the full track of measurements (blue), the profile (grey) and the section shown in the radargram (black).—

Figure 11: Melt layer thickness (blue/ cm), measured snow density (black) and fitted density curve (red) for each site (a) Bouvet, (b) Peter 1st island, (c) Mount Siple, (d) Young Island and (e) Mertz 1. Note the axis change for plot d (Young Island). The horizontal lines represent the critical density (0.55 Kg m⁻³), the pore close-off depth (0.83 Kg m⁻³) and ice density (0.917 kg m⁻³).—

Figure 8: Comparison of detected layers (horizons) from GPR data (red dots, error bars 1 standard deviation) and the potentially visible patterns of melt derived from the reduced resolution ice core melt record (blue diamonds) for each site.—

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 10 pt, Bold

<u>Site name</u>	<u>Latitude</u>	<u>Longitude</u>	<u>Elevation (m)</u>	<u>Depth (m)</u>	<u>ERA-5 average monthly (max) temperature (°C), 1979-2017.</u>	<u>AWS max recorded temperature (°C) during years of operation.</u>
------------------	-----------------	------------------	----------------------	------------------	---	---

					2-m	Elevation corrected	AWS	Elevation corrected
<u>Bouvet</u>	<u>54° 25'</u> <u>19" S</u>	<u>03° 23'</u> <u>27" E</u>	<u>350 (42)</u>	<u>14.07</u>	<u>-0.5</u> <u>-3.3</u>	<u>-2.9</u> <u>-0.9</u>	<u>8.8</u> <u>(1997-2005)</u>	<u>6.7</u>
<u>Peter 1st</u>	<u>68° 51'</u> <u>05" S</u>	<u>90° 30'</u> <u>35" W</u>	<u>730 (90)</u>	<u>12.29</u>	<u>-4.5</u> <u>-1.3</u>	<u>-9.5</u> <u>(-3.7)</u>	<u>7.1</u> <u>(2006)</u>	<u>3.0</u>
<u>Mount Siple</u>	<u>73° 19'</u> <u>14" S</u>	<u>126° 39'</u> <u>47" W</u>	<u>685 (230)</u>	<u>24.14</u>	<u>-9.6</u> <u>(-0.3)</u>	<u>-14.2</u> <u>(-5)</u>	<u>5.5</u> <u>(1992-2015)</u>	<u>2.4</u>
<u>Young</u>	<u>66° 31'</u> <u>44" S</u>	<u>162 33'</u> <u>21"E</u>	<u>238 (30)</u>	<u>16.92</u>	<u>-7.6</u> <u>-0.6</u>	<u>-9.2</u> <u>(-1.0)</u>	<u>4.2</u> <u>(1991-1997)</u>	<u>2.8</u>
<u>Mertz</u>	<u>67° 33'</u> <u>34" S</u>	<u>145° 18'</u> <u>45"E</u>	<u>320</u>	<u>20.48</u>	<u>-15.2</u> <u>-</u>	<u>-17.4</u> <u>(-6.3)</u>	<u>N/A</u>	<u>N/A</u>
<u>Mertz fast ice</u>	<u>67° 26'</u> <u>28" S</u>	<u>145° 34'</u> <u>28"E</u>	<u>6</u>	<u>9.31</u>	<u>(-4.1)</u> <u>-</u>	<u>-15.3</u> <u>(-6.3)</u>	<u>N/A</u>	<u>N/A</u>

970

Table 1: Site meta-data for the subICE cores. Measured GPS location, elevation of ice core (with elevation of AWS shown in brackets) and ice core borehole depth. Annual average temperature from ERA-5 (1979-2017) at 2-m elevation and corrected for ice core elevation (using a lapse rate of 0.68 deg / 100 m), with the maximum monthly temperature shown in brackets. Where available the maximum recorded AWS temperature is shown, at the AWS 975elevation and corrected for ice core elevations, with years of operation in brackets.

Site Name	Date	Wave velocity (m/ns)	Max. depth (m) of layer detected	Description	Melt frequency (layer m ⁻¹) and percentage	Average thickness (cm)	Maximum thickness (cm)
<u>Bouvet</u>	<u>12/03/2017</u>	<u>0.194</u>	<u>41</u>	<u>Highly variable snow layers. Consistent reflector at ~40m.</u>	<u>5.3 (1.6%)</u>	<u>0.3</u>	<u>3.95</u>
<u>Peter 1st</u>	<u>15/02/2017</u>	<u>0.202</u>	<u>43</u>	<u>Relatively continuous layering. 15 traceable layers. Smooth changes in the ice structure. Presence of crevasses</u>	<u>6.0 (11%)</u>	<u>1.8</u>	<u>30</u>
<u>Mount Siple</u>	<u>11/02/2017</u>	<u>0.204</u>	<u>36</u>	<u>Clear layering. > 10 traceable layers Smooth changes in the ice structure.</u>	<u>7.7 (10%)</u>	<u>1.3</u>	<u>12.4</u>

Young	04/02/2017	0.2	36	Highly compacted layering. Multiple crevasses. Layers are visible but they are close to each other and merge.	7.4 (47%)	6.4	58	
Mertz 1	29/01/2017	0.204	63	Relatively flat layering. 13–14 layers detected. There is one clearer at ~20m	5.3 (6%)	1.0	8.1	
Fast_Ice Mertz	30/01/2017	0.206	7.6	Only one layer detected at 7.6 m (average depth)	4.6 (0.3%)*	0.1	0.3	

980

Table 2: General description of the subsurface for each site based on the visualisation of the radargrams. Frequency, percentage (% of whole core) and thickness of observed melt layers, corrected for thinning. *Melt layers in the Mertz fast ice core were only measured in the top three bags (0–2.4 m).

985

990

995

Site name	Zero-depth intersection (m)	Close-off depth (m)	Estimated ice core bottom age (AD)	Annual average P-E (1979–2017)	Deepest GPR layer detected (m)	Estimated age at deepest observed GPR depth (AD)	Estimated age at 100 m depth (AD)
Bouvet	0.523	28.65	2004 (+/- 3)	0.72 (0.59)	41 (bedrock)	1971 (+/- 11)	N/A
Peter 1st	0.5	34.52	2004 (+/- 2)	0.56	25	1987 (+/- 5)	1856 (+/- 23)
Mount Siple	0.512	51.9	1998 (+/- 6)	0.82	30	1993 (+/- 8)	1912 (+/- 35)
Young	0.472	21.09 (16.62)	2002 (+/- 4)	0.81	34	1983 (+/- 9)	1874 (+/- 37)
Mertz 1	0.446	50.48	1994 (+/- 8)	0.54	63	1926 (+/- 34)	1849 (+/- 64)

<u>Mertz</u> fast ice	0.031	7.2	2008 (+/- 3)	0.66	6.2	2012 (+/- 2)	N/A
--------------------------	-------	-----	--------------	------	-----	--------------	-----

Table 3: Densification at each site. Values derived from the fitted density equation to estimate zero-depth intersection and close-off depth (measured values shown in brackets). Annual average P-E from ERA-5 (1979-2017) compared with annual layer counted estimate (meters water equivalent) for Bouvet shown in brackets (King et al., 2019).

Estimated ages at ice core bottom depths, depths of deepest GPR layer and depth at 100 m, based on the fitted density profiles.