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Abstract. Predictions of future mass loss from ice sheets are afflicted with uncertainty, caused, among others, by insufficient

understanding of spatio-temporally variable processes at the inaccessible base of ice sheets for which few direct observa-

tions exist and of which basal friction is a prime example. Here, we use an inverse modeling approach and the associated

time-dependent adjoint equations, derived in the framework of a Full Stokes model and a Shallow Shelf/Shelfy Stream Ap-

proximation model, respectively, to determine the sensitivity of ice sheet surface velocities and elevation to perturbations in5

basal friction and basal topography. Analytical and numerical examples are presented showing the importance of including the

time dependent kinematic free surface equation for the elevation and its adjoint, in particular for observations of the elevation.

A closed form of the analytical solutions to the adjoint equations is given for a two dimensional vertical ice in steady state

under the Shallow Shelf Approximation. There is a delay in time between a perturbation at the ice base and the observation

of the change in elevation. A perturbation at the base in the topography has a direct effect in space at the surface above the10

perturbation and a perturbation in the friction is propagated directly to the surface in time. Perturbations with long wavelength

and low frequency will propagate to the surface while those of short wavelength and high frequency are damped.

1 Introduction

Over the last decades, ice sheets and glaciers have experienced mass loss due to global warming, both in the polar regions,

but also outside of Greenland and Antarctica (Farinotti et al., 2015; Mouginot et al., 2019; Pörtner et al., 2019; Rignot et al.,15

2019). The most common benchmark date for which future ice sheet and glacier mass loss and associated global mean sea

level rise is predicted is the year 2100 AD, but recently, even the year 2300 AD and beyond are considered (Pörtner et al.,

2019; Steffen et al., 2018). Global mean sea level rise is predicted to continue well beyond 2100 AD in the warming scenarios

typically referred to as RCPs’ (Representative Concentration Pathways, see van Vuuren et al. (2011)), but rates and ranges

are afflicted with uncertainty, caused by, among others, insufficient understanding of spatio-temporally variable processes at20

the inaccessible base of ice sheets and glaciers (Pörtner et al., 2019; Ritz et al., 2015). These include the geothermal heat

regime, subglacial and base-proximal englacial hydrology, and particularly, the sliding of ice sheet and glaciers across their
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base, for which only few direct observations exist (Fisher et al., 2015; Key and Siegfried, 2017; Maier et al., 2019; Pattyn and

Morlighem, 2020).

In computational models of ice dynamics, the description of sliding processes, including their parametrization, plays a central

role, and can be treated in two fundamentally different ways, viz. using a so-called forward approach on the one hand, or an

inverse approach on the other hand. In a forward approach, an equation referred to as a sliding law is derived from a conceptual5

friction model, and provides a boundary condition to the equations describing the dynamics of ice flow (in glaciology often

referred to as the Full Stokes (FS) model) and which, once solved, render e.g. ice velocities as part of the solution. Studies

of frictional models and resulting sliding laws for glacier and ice sheet flow emerged in the 1950s, see e.g. Fowler (2011);

Iken (1981); Lliboutry (1968); Nye (1969); Schoof (2005); Weertman (1957), and have subsequently been implemented into

numerical models of ice sheet and glacier behavior e.g. in Brondex et al. (2017, 2019); Gladstone et al. (2017); Tsai et al. (2015);10

Wilkens et al. (2015); Yu et al. (2018), and continue to be discussed (Zoet and Iverson, 2020), occasionally controversially

(Minchew et al., 2019; Stearn and van der Veen, 2018).

Because little or no observational data is available to constrain the parameters in such sliding laws (Minchew et al., 2016;

Sergienko and Hindmarsh, 2013), actual values of the former, and their variation over time (Jay-Allemand et al., 2011; Schoof,

2010; Sole et al., 2011; Vallot et al., 2017), often remain elusive. Yet, they can be obtained computationally by solving an15

inverse problem provided that observations of e.g. ice velocities at the ice surface, and elevation of the ice surface, are available

(Gillet-Chaulet et al., 2016; Isaac et al., 2015). Note that the same approach, here described for the case of the sliding law, can

be used to determine other "inaccessibles", such as optimal initial conditions for ice sheet modeling (Perego et al., 2014), the

sensitivity of melt rates beneath ice shelves in response to ocean circulation (Heimbach and Losch, 2012), the geothermal heat

flux at the ice base (Zhu et al., 2016), or to estimate basal topography beneath an ice sheet (Monnier and des Boscs, 2017; van20

Pelt et al., 2013). The latter is not only difficult to separate from the determination of the sliding properties (Kyrke-Smith et al.,

2018; Thorsteinsson et al., 2003), but also has limitations related to the spatial resolution of surface data and/or measurement

errors, see Gudmundsson (2003, 2008); Gudmundsson and Raymond (2008).

Adopting an inverse approach, the strategy is to minimize an objective function describing the deviation of observed target

quantities (such as the ice velocity) from their counterparts as predicted following a forward approach when a selected param-25

eter in the forward model (such as the friction parameter in the sliding law) is varied. The gradient of the objective function

is computed by solving the so-called adjoint equations to the forward equations, where the latter often are slightly simplified,

such as e.g. by assuming a constant ice thickness or a constant viscosity (MacAyeal, 1993; Petra et al., 2012). However, when

inferring friction parameter(s) in a sliding law using an inverse approach, recent work (Goldberg et al., 2015; Jay-Allemand

et al., 2011) has shown that it is not sufficient to consider the time-independent (steady state) adjoint to the momentum balance30

in the FS model. Rather, it is necessary to include the time-dependent advection equation for the ice surface elevation in the

inversion. Likewise, but perhaps more intuitively understandable, the choice of the underlying glaciological model (FS model,

vs. e.g. Shallow shelf/stream approximation (SSA) model, see Sect. 2), has an impact on the values of the friction parameters

obtained from the solution of the corresponding inverse problem (Gudmundsson, 2008; Schannwell et al., 2019).
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Here, we present an analysis of the sensitivity of the velocity field and the elevation of the surface of a dynamic ice sheet

(modelled by both FS and SSA, respectively, briefly described in Sect. 2) to perturbations in the sliding parameters contained

in Weertman’s law (Weertman, 1957) and the topography at the ice base. The perturbations in a velocity component or the ice

surface elevation at a certain location and time are determined by the solutions to the forward equations and the associated

adjoint equations. A certain type of perturbation at the base may cause a very small perturbation at the top of the ice. Such5

a basal perturbation will be difficult to infer from surface observations in an inverse problem. High frequency perturbations

in space and time are examples when little is propagated to the surface. This is also the conclusion in Gudmundsson and

Raymond (2008), derived from an analysis differing from the one presented here. The adjoint problem that is solved here

to determine this sensitivity (Sect. 3) goes beyond similar earlier works by MacAyeal (1993); Petra et al. (2012) because

it includes the time-dependent advection equation for the kinematic free surface. The key concepts and steps introduced in10

Sect. 3 are supplemented by detailed derivations, collected in Appendix A. The same adjoint equations are applicable in the

inverse problem to compute the gradient of the objective function and to quantify the uncertainty in the surface velocity and

elevation due to uncertainties at the ice base. Examples of uncertainties are measurement errors in the basal topography and

unknown variations in the parameters in the friction model. Analytical solutions in two dimensions of the stationary adjoint

equations subjected to simplifying assumptions are presented, from which the dependence of the parameters, on e.g. friction15

coefficients and bedrock topography, becomes obvious. The time dependent adjoint equations are solved numerically, and the

sensitivity to perturbations varying in time is investigated and illustrated.

The sensitivity of the surface velocity and elevation to perturbations in the friction and topography is quantified in extensive

numerical computations in a companion paper (Cheng and Lötstedt, 2020). The adjoint equations derived and studied analyt-

ically in this paper are solved numerically for the FS and SSA models in Cheng and Lötstedt (2020) and compared to direct20

calculations of the surface perturbations with the forward equations. Discrete transfer functions are computed and analyzed as

in Gudmundsson (2008) for the relation between surface perturbations and basal perturbations. While Gudmundsson’s analysis

is based on Fourier analysis, the analysis in Cheng and Lötstedt (2020) relies on analytical solutions of the SSA equations.

2 Ice models

In this section, the equations emerging from adopting a forward approach of describing ice dynamics are presented, together25

with relevant boundary conditions, for the FS (4) and SSA model (8), respectively. These, and the notation and terminology

introduced here, provide the framework in which the adjoint equations are discussed in Sect. 3.

The flow of large bodies of ice is described with the help of the conservation laws of mass, momentum and energy (Greve

and Blatter, 2009), which together pose a system of non-linear partial differential equations (PDEs) commonly referred to as

the FS equations in glaciological applications. In the FS equations, nonlinearity is introduced through the viscosity in Glen’s30

flow law, a constitutive relation between strain rates and stresses (Glen, 1955). Continental sized ice masses (ice sheets, and,

if applicable, their floating extensions known as ice shelves), are shallow in the sense that their vertical extension V is orders

of magnitudes smaller than their horizontal extension L, such that the aspect ratio V/L is in the order 10−2 to 10−3. The

3



aspect ratio is used to introduce simplifications to the FS equations, resulting e.g. in the Shallow Ice (SIA) (Hutter, 1983),

Shallow Shelf (Morland, 1987), and Shelfy Stream (MacAyeal, 1989) Approximations, parts of which can be coupled to FS

using the ISCAL framework (Ahlkrona et al., 2016). They are all characterized by substantially reduced computational costs

for numerical simulation, compared to using the FS model. A common simplification, also adopted in our analysis in the

following, is the assumption of isothermal conditions, which implies that the balance of energy need not be considered.5

The upper surface of the ice mass, and also the ice-ocean interface, constitute a moving boundary and satisfy an advection

equation describing the evolution of its elevation and location (in response to mass gain, mass loss, or/and mass advection). For

ice masses resting on bedrock or sediments, sliding needs to be parameterized at the interface. The interface between floating

ice shelves and sea water in the ice shelf cavities is usually regarded as frictionless.

2.1 Full Stokes model10
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Figure 1. A schematic view of an ice sheet in the (a) x− z plane and (b) x− y plane.

We adopt standard notation and denote vectors and matrices in three-dimensional space by bold characters, and derivatives

with respect to the spatial coordinates and time by subscripts x,y,z and t. The horizontal plane is spanned by the x and

y coordinates, and z is the coordinate in the vertical direction, see Fig. 1(a). Specifically, we denote by u1,u2, and u3 the

velocity components of u= (u1,u2,u3)T in the x,y and z direction, where x= (x,y,z)T is the position vector and T denotes

the transpose. Further, the elevation of the upper ice surface is denoted by h(x,y, t), the elevation of the bedrock and the15

location of the base of the ice are b(x,y) and zb(x,y, t), and the ice thickness is H = h− zb. Upstream of the grounding line,

γGL, zb = b and downstream of γGL we have zb > b, see Fig. 1. In two dimensions, γGL consists of one point with x-coordinate

xGL.

The boundary Γ enclosing the domain Ω occupied by the ice has different parts, see Fig. 1(b). The lower boundaries of Ω are

denoted by Γb (where the ice is grounded at bedrock), and Γw (where the ice has lifted from the bedrock and is floating on the20

ocean). These two regions are separated by the grounding line γGL, defined by (xGL(y),y) based on the assumption that ice
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flow is mainly along the x-axis. The upper boundary is denoted by Γs (ice surface) at h(x,y, t) in Fig. 1(a). The footprint (or

projection) of Ω in the horizontal plane is denoted by ω and its boundary is γ.

The vertical lateral boundary (in the x− z plane, Fig. 1(b)) has an upstream part denoted by Γu in black and a downstream

part denoted by Γd in blue, where Γ = Γu ∪Γd. Obviously, if x ∈ Γu, then (x,y) ∈ γu or if x ∈ Γd, then (x,y) ∈ γd where

γ = γu ∪ γd. Letting n be the outward pointing normal on Γ (or γ in two dimensions (x,y)), the nature of ice flow renders the5

conditionsn·u≤ 0 at Γu andn·u> 0 at Γd. In a two dimensional vertical ice (Fig. 1(a)), this corresponds to x= (x,z)T , ω =

[0,L], γu = 0, and γd = L where L is the horizontal length of the domain. In summary, the domains are defined as:

Ω = {x|(x,y) ∈ ω, zb(x,y, t)≤ z ≤ h(x,y, t)},
Γs = {x|(x,y) ∈ ω, z = h(x,y, t)},
Γb = {x|(x,y) ∈ ω, z = zb(x,y, t) = b(x,y), x < xGL(y)},
Γw = {x|(x,y) ∈ ω, z = zb(x,y, t), x > xGL(y)},
Γu = {x|(x,y) ∈ γu, zb(x,y, t)≤ z ≤ h(x,y, t)},
Γd = {x|(x,y) ∈ γd, zb(x,y, t)≤ z ≤ h(x,y, t)}.

(1)

Before the forward FS equations for the evolution of the ice surface Γs and the ice velocity in Ω can be given, further notation

needs to be introduced: ice density is denoted by ρ, accumulation and/or ablation rate on Γs by a, and gravitational acceleration10

by g. The values of these physical parameters are given in Table 1. On Γs, h= (hx,hy,−1)T describes the spatial gradient of

the ice surface (in two vertical dimensions h= (hx,−1)T ). The strain rate D and the viscosity η are given by

D(u) = 1
2 (∇u+∇uT ), η(u) = 1

2A
− 1

n (trD2(u))ν , ν = 1−n
2n , (2)

where trD2 is the trace of D2. The rate factor A in (2) depends on the temperature and Glen’s flow law determines n > 0, here

taken to be n= 3. The stress tensor is15

σ(u,p) = 2ηD(u)− Ip, (3)

where p is the isotropic pressure and I is the identity matrix.

Turning to the ice base, the basal stress on Γb is related to the basal velocity using an empirical friction law. The friction

coefficient has a general form β(u,x, t) = C(x, t)f(u) where C(x, t) is independent of the velocity u and f(u) represents

some linear or nonlinear function of u. For instance, f(u) = ‖u‖m−1 with the norm ‖u‖= (u ·u)
1
2 introduces a Weertman20

type friction law (Weertman, 1957) on ω with a Weertman friction coefficient C(x, t)≥ 0 and an exponent parameter m> 0.

Common choices of m are 1
3 and 1. Finally, a projection (Petra et al., 2012) on the tangential plane of Γb is denoted by

T = I−n⊗n where the Kronecker outer product between two vectors a and c or two matrices A and C is defined by

(a⊗ c)ij = aicj , (A⊗C)ijkl =AijCkl.
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With these prerequisites at hand, the forward FS equations and the advection equation for the ice sheet’s elevation and velocity

for incompressible ice flow are

ht +h ·u= a, on Γs, t≥ 0,

h(x,0) = h0(x), x ∈ ω, h(x, t) = hγ(x, t), x ∈ γu,
−∇ ·σ(u,p) =−∇ · (2η(u)D(u)) +∇p= ρg, ∇ ·u= 0, in Ω(t),

σn= 0, on Γs,

Tσn=−Cf(Tu)Tu, n ·u= 0, on Γb,

σn=−pwn, on Γw,

(4)

where pw is the water pressure at Γw, h0(x)> b(x) is the initial surface elevation and hγ(x, t) is a given height on the inflow

boundary. The boundary conditions for the velocity on Γu and Γd are of Dirichlet type such that5

u|Γu = uu, u|Γd
= ud, (5)

where uu and ud are known. These are general settings of the inflow and outflow boundaries which keep the formulation of the

adjoint equations as simple as in Petra et al. (2014). Should Γu be at the ice divide, the horizontal velocity is set to u|Γu = 0.

The ice velocity at the calving front is defined as ud to simplify the analysis. The vertical component of σn vanishes on Γu.

2.2 Shallow shelf approximation10

The three dimensional FS problem (4) in Ω can be simplified to a two dimensional, horizontal problem with x= (x,y) ∈ ω,

by adopting the SSA, in which only u= (u1,u2)T is considered. This is because the basal shear stress is negligibly small at

the base of the floating part of the ice mass, viz. the ice shelf, rendering the horizontal velocity components almost constant in

the z direction (Greve and Blatter, 2009; MacAyeal, 1989; Schoof, 2007). The SSA is often also used in regions of fast-flow

over lubricated bedrock (MacAyeal, 1989; Pattyn et al., 2012).15

The simplifications associated with adopting the SSA imply that the viscosity (see (2) for the FS model) is now given by

η(u) =
1

2
A−

1
n

(
u2

1x +u2
2y +

1

4
(u1y +u2x)2 +u1xu2y

)ν
=

1

2
A−

1
n

(
1

2
B : D

)ν
, (6)

where B(u) = D(u)+∇·uI with∇·u= trD(u). This η differs from (2) because B 6= D due to the cryostatic approximation

of p in the SSA. In (6), the Frobenius inner product between two matrices A and C is used, defined by A : C =
∑
ijAijCij .

The vertically integrated stress tensor ς(u) (cf. (3) for the FS model) is given by20

ς(u) = 2HηB(u) , (7)

where H is the ice thickness, see Fig. 1. The friction law in the SSA model is defined as in the FS case. Note that basal velocity

is replaced by the horizontal velocity. This is possible because vertical variations in the horizontal velocity are neglected in

SSA. Then, Weertman’s law is β(u,x, t) = C(x, t)f(u) = C(x, t)‖u‖m−1 with a friction coefficient C(x, t)≥ 0, just as in
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the FS model. In summary, the forward equations describing the evolution of the ice surface and ice velocities based on an

SSA model (in which u is not divergence-free) read

ht +∇ · (uH) = a, t≥ 0, x ∈ ω,
h(x,0) = h0(x), x ∈ ω, h(x, t) = hγ(x, t), x ∈ γu,
∇ · ς −Cf(u)u= ρgH∇h, x ∈ ω,
n ·u(x, t) = uu(x, t),x ∈ γu, n ·u(x, t) = ud(x, t),x ∈ γd,
t · ςn=−Cγfγ(t ·u)t ·u, x ∈ γg, t · ςn= 0, x ∈ γw.

(8)

Above, t is the tangential vector on γ = γu ∪ γd such that n · t= 0. The inflow and outflow normal velocities uu ≤ 0 and

ud > 0 are specified on γu and γd. The lateral side of the ice γ is split into γg and γw with γ = γg ∪γw. There is friction in the5

tangential direction on γg which depends on the tangential velocity t ·u with the friction coefficient Cγ and friction function

fγ . There is no friction on the wet boundary γw.

For ice sheets that develop an ice shelf, the latter is assumed to be at hydrostatic equilibrium. In such a case, a calving front

boundary condition (Schoof, 2007; van der Veen, 1996) is applied at γd, in the form of the depth integrated stress balance (ρw

is the density of seawater)10

ς(u) ·n=
1

2
ρgH2

(
1− ρ

ρw

)
n, x ∈ γd. (9)

2.2.1 SSA in two dimensions

In this section, the SSA equations are presented for the case of an idealized, two-dimensional vertical sheet in the x-z plane,

see Fig. 1. The forward SSA equations are derived from (8) by letting H and u1 be independent of y, and setting u2 = 0. Since

there is no lateral force, Cγ = 0. The position of the grounding line is denoted by xGL, and Γb = [0,xGL], Γw = (xGL,L].15

Basal friction C is positive and constant where the ice sheet is grounded on bedrock, while C = 0 at the floating ice shelf’s

lower boundary. To simplify notation, we let u= u1. The forward equations thus become

ht + (uH)x = a, 0≤ t≤ T, 0≤ x≤ L,
h(x,0) = h0(x), h(0, t) = hL(t),

(Hηux)x−Cf(u)u− ρgHhx = 0,

u(0, t) = uu(t), u(L,t) = ud(t),

(10)

where uu is the speed of the ice flux at x= 0 and ud is the speed at the calving front at x= L. If x= 0 is at the ice divide, then

uu = 0. By the stress balance (9), the calving front satisfies20

ux(L,t) =A

[
ρgH(L,t)

4
(1− ρ

ρw
)

]n
.

Assuming that u > 0 and ux > 0, the viscosity becomes η = 2A−
1
nu

1−n
n

x , and the friction term with a Weertman law turns into

Cf(u)u= Cum.
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2.2.2 The two-dimensional forward steady state solution

We turn now to a discussion of steady-state solutions to the system (10). Except from letting all time derivatives vanish, even the

longitudinal stress can be ignored in the steady state solution, see Schoof (2007). With a sliding law in the form f(u) = um−1

and the thickness given at xGL, (10) thus reduces to

(uH)x = a, 0≤ x≤ xGL,
H(xGL) =HGL,

−Cum− ρgHhx = 0,

u(0) = 0.

(11)5

The solution to the forward equation (11) is derived for the case when a and C are constant, (for details, see (D3) and (D4) in

Appendix D):

H(x) =

(
Hm+2
GL +

m+ 2

m+ 1

Cam

ρg
(xm+1
GL −xm+1)

) 1
m+2

, 0≤ x≤ xGL,

H(x) =HGL, xGL < x < L,

u(x) =
ax

H
, 0≤ x≤ xGL, u(x) =

ax

HGL
, xGL < x < L.

(12)

The solution is calibrated with the ice thickness HGL =H(xGL) at the grounding line. Similar equations to those in (11) are

derived in Nye (1959) using the properties of large ice sheets. A formula for H(x) resembling (12) and involving H(0) is10

the solution of the equations. By including the longitudinal stress in the ice, an approximate, more complicated expression for

H(x) is obtained in Weertman (1961).

Figure 2 displays solutions from (12) obtained with data from the MISMIP (Pattyn et al., 2012) test case EXP 1 chosen in Cheng

and Lötstedt (2020). The modeling parameters in (12) are given in Table 1. The ice sheet flows from x= 0 to L= 1.6×106 m

on a single slope bed defined by b(x) = 720− 778.5x
7.5×105 and lifts from it at the grounding line position xGL = 1.035×106m. As15

x approaches xGL, H decreases to approach to HGL in Fig. 2(b).

Parameter Quantity

a= 0.3 m year−1 Surface mass balance

A= 1.38× 10−24 s−1 Pa−3 Rate factor of Glen’s flow law

C = 7.624× 106 Pa m−1/3 s1/3 Basal friction coefficient

g = 9.8 m s−2 Acceleration of gravity

m= 1/3 Friction law exponent

n= 3 Flow-law exponent

ρ= 900 kg m−3 Ice density
Table 1. The model parameters.
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The larger the friction coefficient C and accumulation rate a are, the steeper the decrease in H is in (12). The numerator in

u increases and the denominator decreases when x→ xGL resulting in a rapid increase in u. The MISMIP example is such

that the SSA solution is close to the FS solution. Numerical experiments in Cheng and Lötstedt (2020) show that an accurate

solution compared to the FS and SSA solutions is obtained with u and H in (12) solving (11).

Finally, it is noted that an alternative solution to (10) valid for the floating ice shelf, x > xGL, but under the restraining5

assumption of H(x) being linear in x, is found in Greve and Blatter (2009).
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Figure 2. The analytical solutions u(x) and H(x) in (12) for a grounded ice in [0,xGL].

3 Adjoint equations

In this section, the adjoint equations are discussed, as emerging in a FS framework (Sect. 3.1) and in a SSA framework

(Sect. 3.2), respectively. The adjoint equations follow from the Lagrangian based on the forward equations after partial inte-

gration. Lengthy derivations have been moved to Appendix A. A numerical example, based on the Marine Ice Sheet Model10

Intercomparison Project (MISMIP) (Pattyn et al., 2012) used also in Cheng and Lötstedt (2020) illustrates the findings pre-

sented.

On the ice surface Γs and over the time interval [0,T ], we consider the functional F

F =

T∫
0

∫
Γs

F (u,h)dxdt . (13)

We wish to determine its sensitivity to perturbations in both the friction coefficient C(x, t) at the base of the ice, and the15

topography of the base itself b(x), which is a smooth function in x. We distinguish two cases: either u and h satisfy the FS

equations (4), or the SSA equations (8). Given F , the forward solution (u,p,h) to (4) or (u,h) to (8), and the adjoint solution

(v, q,ψ) or (v,ψ) to the adjoint FS and adjoint SSA equations (both derived in the following and in Appendix A), we introduce
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a Lagrangian L(u,p,h;v, q,ψ;b,C). The Lagrangian for the FS equations is

L(u,p,h;v, q,ψ;C) =

T∫
0

∫
Γs

F (u,h) +ψ(ht +h ·u− a)dxdt

+

T∫
0

∫
ω

h∫
b

−v · (∇ ·σ(u,p))− ρg ·v− q∇ ·u dxdt

(14)

with the Lagrange multipliers v, q, and ψ corresponding to the forward equations for u,p, and h. The effect of perturbations

δC and δb in C and b on F is given by the perturbation δL, viz.

δF = δL= L(u+ δu,p+ δp,h+ δh;v+ δv, q+ δq,ψ+ δψ;b+ δb,C + δC)−L(u,p,h;v, q,ψ;b,C). (15)5

Examples of F (u,h) in (13) are F = ‖u−uobs‖2, and F = |h−hobs|2 in an inverse problem, in which the task is to find b and

C such that they match observations uobs and hobs at the surface Γs, see also Gillet-Chaulet et al. (2016); Isaac et al. (2015);

Morlighem et al. (2013); Petra et al. (2012). Another example is F (u,h) = 1
T u1(x, t)δ(x−x∗) with the Dirac delta δ at x∗

to measure the time averaged horizontal velocity u1 at x∗ on the ice surface Γs with

F =

T∫
0

∫
Γs

F (u,h)dxdt=
1

T

T∫
0

u1(x∗, t)dt, (16)10

where T is the duration of the observation at Γs. If the horizontal velocity is observed at (x∗, t∗) then F (u,h) = u1(x, t)δ(x−
x∗)δ(t− t∗) and

F =

T∫
0

∫
Γs

F (u,h)dxdt= u1(x∗, t∗). (17)

The sensitivity in F and u1 in (16) or (17) to perturbations in C and b is then given by (15) with the forward and adjoint

solutions.15

The same forward and adjoint equations are solved both for the inverse problem and the sensitivity problem but with different

forcing function F in (13). If we are interested in how u1 changes at the surface when b and C are changed at the base by

given δb and δC, then F is as in (17). The forward and adjoint equations are then solved once. In the inverse problem with

velocity observations, F is the objective function in a minimization procedure and F = ‖u−uobs‖2. The change δF in F is

of interest when C and b are changed during the solution procedure. In order to minimize F , δC and δb are chosen such that20

δF < 0 and F decreases with C + δC and b+ δb and u is closer to uobs. Precisely how δC and δb are chosen depends on the

optimization algorithm. This procedure is repeated iteratively and b and C are updated by b+δb and C+δC until δF → 0 and

F has reached a minimum. The forward and adjoint equations have to be solved in each iteration in the inverse problem.
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3.1 Adjoint equations based on the FS model

In this section, we introduce the adjoint equations and the perturbation of the Lagrangian function. The detailed derivations

of (18) and (21) below are given in Appendix A, starting from the weak form of the FS equations (4) on Ω, and by using

integration by parts, and applying boundary conditions as in Martin and Monnier (2014); Petra et al. (2012).

The definition of the Lagrangian L for the FS equations is given in (14) and (A15) in Appendix A. To determine (v, q,ψ), the5

following adjoint problem is solved:

ψt +∇ · (uψ)−h ·uzψ = Fh +Fu ·uz, on Γs, 0≤ t≤ T,
ψ(x,T ) = 0, ψ(x, t) = 0, on Γd,

−∇ · σ̃(v, q) =−∇ · (2η̃(u) ?D(v)) +∇q = 0, ∇ ·v = 0, in Ω(t),

σ̃(v, q)n=−(Fu +ψh), on Γs,

Tσ̃(v, q)n=−Cf(Tu)(I+Fb(Tu))Tv, on Γb,

n ·v = 0, on Γb,

(18)

where the derivatives of F with respect to u and h are

Fu =

(
∂F

∂u1
,
∂F

∂u2
,
∂F

∂u3

)T
, Fh =

∂F

∂h
.

Note that (18) consists of equations for the adjoint elevation ψ, the adjoint velocity v, and the adjoint pressure q. The equations10

are the same as when the derivatives are computed in the inverse problem except for the terms depending on F , which is the

misfit between the numerical solution and the observation in the inverse problem. Compared to the steady state adjoint equation

for the FS equations discussed in Petra et al. (2012), an advection equation is added in (18) for the Lagrange multiplier ψ(x, t)

on Γs with a right hand side depending on the observation function F and one term depending on ψ in the boundary condition

on Γs. The adjoint elevation equation for ψ can be solved independently of the adjoint stress equation since it is independent of15

v. If h is observed and Fh 6= 0 and Fu = 0, then the adjoint elevation equation must be solved together with the adjoint stress

equation. Otherwise, the term ψh is ignored in the right hand side of the boundary condition of the adjoint stress equation and

the solution is v = 0 with δF = 0 in (21), see below.

The adjoint viscosity and adjoint stress are

η̃(u) = η(u)
(
I + 1−n

nD(u):D(u)D(u)⊗D(u)
)
,

σ̃(v, q) = 2η̃(u) ?D(v)− qI,
(19)20

cf. also Petra et al. (2012). For the rank four-tensor I, Iijkl = 1 only when i= j = k = l, otherwise Iijkl = 0. The ? operation

in (19) between a rank four-tensor A and a rank two-tensor (viz., a matrix) C is defined by (A ?C)ij =
∑
klAijklCkl. In

general, Fb(Tu) in (18) is a linearization of the friction law f(Tu) in (4) with respect to the variable Tu. For instance, with

a Weertman type friction law, f(Tu) = ‖Tu‖m−1,

Fb(Tu) =
m− 1

Tu ·Tu (Tu)⊗ (Tu). (20)25

11



The perturbation of the Lagrangian function with respect to a perturbation δC in the slip coefficient C(x, t) involves the

tangential components of the forward and adjoint velocities, Tu and Tv at the ice base Γb, and is given by:

δF = δL=

T∫
0

∫
Γb

f(Tu)Tu ·Tv δC dxdt. (21)

For this formula to be accurate, δC has to be small. Otherwise, nonlinear effects may be of importance.

3.1.1 Time-dependent perturbations5

Let us now investigate the effect of time-dependent perturbations in the friction parameter on modelled ice velocities and ice

surface elevation. Suppose that the velocity component u1∗ = u1(x∗, t∗) is observed at (x∗, t∗) at the ice surface as in (17) and

that t∗ < T , then

u1∗ = F =

T∫
0

∫
Γs

F (u)dxdt, (22)

with F (u) = u1δ(x−x∗)δ(t− t∗), Fu1
= δ(x−x∗)δ(t− t∗), Fu2

= Fu3
= 0, Fh = 0. Above, we have introduced the sim-10

plifying notation that a variable with subscript ∗ is a short-hand for it being evaluated at (x∗, t∗), or, if it is time independent, at

x∗. Here we have chosen to consider the perturbation at a certain point in space and time (x∗, t∗), which is sufficient because

other types of sensitivity over a certain period of time and space as in (16) are the linear combination of point-wise sensitivities.

The procedure to determine the sensitivity is as follows. First, the forward equation (4) is solved for u(x, t) from t= 0 to

t= T . Then, the adjoint equation (18) is solved backward in time (from t= T to t= 0) with ψ(x,T ) = 0 as the corresponding15

final condition. Obviously, the solution for t∗ < t≤ T is ψ(x, t) = 0 and v(x, t) = 0. Letting ei denote the unit vector with 1

in the i:th component, the boundary condition in (18) becomes σ̃(v, q)n=−e1δ(x−x∗)δ(t− t∗)−ψh at t= t∗. For t < t∗,

σ̃(v, q)n=−ψh. Since ψ is small for t < t∗ (see Sect. 3.1.4), the dominant part of the solution is v(x, t) = v0(x)δ(t− t∗)
for some v0.

We start by investigating the response of ice velocities to perturbations in friction at the base: When the slip coefficient at the20

ice base is changed by δC, then the change in u1∗ at Γs is, according to (21), given by

δu1∗ = δL=

T∫
0

∫
Γb

f(Tu)Tu ·Tv δC dxdt≈
∫
Γb

f(Tu)Tu ·Tv0 δC(x, t∗)dx. (23)

This implies that the perturbation δu1∗ mainly depends on δC at time t∗ and that contributions from previous δC(x, t), t < t∗,

are small. If we observe the horizontal velocity, then it responds instantaneously in time to the change in basal friction.

Further, to investigate the response of the ice surface elevation, h∗ at Γs, to perturbations in basal friction, one considers25

F (h) = h(x,t)δ(x−x∗)δ(t− t∗), Fh = δ(x−x∗)δ(t− t∗), Fu = 0.

The solution of the adjoint equation (18) with σ̃(v, q)n=−ψh at Γs for v(x, t) is non-zero since ψ(x, t) 6= 0 for t < t∗.

12



In applied scenarios, friction at the base of an ice sheet is expected to exhibit seasonal variations. These can be expressed by

δC(x, t) = δC0(x)cos(2πt/τ), viz. a time dependent perturbation added to a stationary time average C(x), with 0< δC0 ≤
C. If, for illustrational purposes, τ = 1 (so, one year, from January to December), then Northern hemisphere cold and warm

seasons can in a simplified manner be associated with nτ, n= 0,1,2, . . . (winter) and (n+ 1/2)τ , n= 0,1,2, .... (summer).

Assume further that f(Tu)Tu ·Tv is approximately constant in time. This is the case if u varies slowly in time. Then5

ψ ≈ const and v ≈ const for t < t∗. The change in ice surface elevation, δh, due to time-dependent variations in basal friction

varies as

δh∗ = δL=

T∫
0

∫
Γb

f(Tu)Tu ·Tv δC(x, t)dxdt≈ J
t∗∫

0

cos(2πt/τ)dt= J τ

2π
sin(2πt∗/τ), (24)

where

J =

∫
Γb

f(Tu)Tu ·Tv δC0 dx. (25)10

Obviously, from the properties of the cosine function, the friction perturbation δC is large at t∗ = 0, τ/2, τ . . . , and vanishes

at t∗ = τ/4,3τ/4, . . .. Yet, (24) shows that δh∗ = 0 at t∗ = 0, τ . . . (so, during maximal friction in the winter) and at t∗ =

τ/2,3τ/2 . . . (so, during minimal friction in the summer), while δh∗ 6= 0 when δC = 0 at t∗ = τ/4,3τ/4, . . . in the spring and

the fall. The response in h by changing C is delayed in phase by π/2 or in time by τ/4 = 0.25 yr. This is in contrast to the

observation of u1 in (23) where a perturbation in C is directly visible.15

Particularly in an inverse problem where the phase shift between δC and δh in (24) is not accounted for, if h∗ is measured in

the summer with δh(x, t∗) = 0, then the wrong conclusion would be drawn that there is no change in C.

In another example, suppose that there is an interval with a step change of C with δC(x, t) = δC0(x)s(t) where s(t) = 1 in

the time interval [t0, t1] and 0 otherwise. Then with J in (25), δh∗ in (24) is

δh∗ ≈ J
t∗∫

0

s(t)dt=


0, t∗ ≤ t0,
J (t∗− t0), t0 < t∗ < t1,

J (t1− t0), t∗ > t1.

20

The effect of the basal perturbation successively increases in the elevation when t∗ > t0 and stays at a higher level for t∗ > t1.

3.1.2 Example with seasonal variation

To illustrate the phase delay in an oscillatory perturbation, a two-dimensional numerical example is shown in Fig. 3, where the

time scale and friction coefficient are chosen as follows: τ = 1yr, δC(x,t) = 0.01C cos(2πt) in x ∈ [0.9,1.0]×106m. We reuse

the MISMIP (Pattyn et al., 2012) test case EXP 1 as in Sect. 2.2.2. The parameters of the setup are the same as in Fig. 2 and25

are given in Table 1. The variables u1 and h are observed at x ∈ [0.85,1.02]× 106m. The steady state solution of the forward

equation with the GL located at xGL = 1.035× 106m is perturbed by δu1 and δh when C is perturbed by δC as expressed in

13



formulas δu1 = u1(C + δC)−u1(C) and δh= h(C + δC)−h(C). After perturbation, the GL position will oscillate in time.

The ice sheet is simulated by FS with Elmer/Ice (Gagliardini et al., 2013) for 10 years.

Fig. 3 shows that the perturbations δu1 and δh in the grounded part of the ice sheet, specifically at x∗ = 0.85,0.9,0.95,1.0,

and 1.02×106 m for which individual panels are shown, oscillate regularly with a period of 1 year. The perturbations are small

outside the interval [0.9,1.0]× 106. The initial condition at t= 0 is the steady state solution of the MISMIP problem and the5

FS solution with a variable C is essentially that steady state solution plus a small oscillatory perturbation, as in Fig. 3.

The weight f(Tu)Tu ·Tv0 in (23) is negative and an increase in the friction, δC > 0, leads to a decrease in the velocity and

δC < 0 increases the velocity in all panels of Fig. 3. The velocities δu1 and the surface elevations δh are separated by a phase

shift in time, ∆φ= π/2, as predicted by (23) and (24).

The weight in (24) for δC0 in the integral over x changes sign when the observation point is passing from x∗ = 0.9× 106 to10

1.0× 106 explaining why the shift changes sign in the red dashed lines shown in the two lower panels of Fig. 3.
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Figure 3. Observations at x∗ = 0.85,0.9,0.95,1.0,1.02× 106 m with FS in time t ∈ [0,10] of δu1 (solid blue) and δh (dashed red) with

perturbation δC(t) = 0.01C cos(2πt) for x ∈ [0.9,1.0]× 106 m. Notice the different scales on the y-axes.
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3.1.3 The sensitivity problem and the inverse problem

From a theoretical point of view, it is interesting to note that there is a relation between the sensitivity problem where the effect

of perturbed parameters in the forward model is estimated and the inverse problem used to infer ‘unobservable’ parameters

such as basal friction from observable data, e.g. ice velocity at the ice sheet surface. The same adjoint equations (18) are solved

in both problems but with different driving functions defined by F (u,h) in (13).5

Let (vi, qi,ψi), i= 1, . . . ,d, be the steady state solution to (18) when ui is observed at x̄ and Fu = eiδ(x− x̄). These are

solutions to the sensitivity problem. We will show that the adjoint solution and the variation δF of the inverse problem can be

expressed in (vi, qi,ψi). The perturbations δb and δC are chosen such that δF < 0 in each step in the iterative solution of the

inverse problem. Then the objective function F decreases stepwise toward the minimum..

It is shown in Appendix B that10 ∫
ω

d∑
i=1

wi(x̄)vi dx̄,
∫
ω

d∑
i=1

wi(x̄)qi dx̄,
∫
ω

d∑
i=1

wi(x̄)ψi dx̄


is a solution of (18) with arbitrary weights wi(x̄), i= 1, . . . ,d, when

Fu =

∫
ω

d∑
i=1

wi(x̄)eiδ(x− x̄)dx̄=

d∑
i=1

wi(x̄)ei. (26)

When C is perturbed, the first variation of the functional in (21) is

δF =

∫
Γb

f(Tu)Tu ·T

∫
ω

d∑
i=1

wi(x̄)vi dx̄

 δC dx. (27)15

In the inverse problem in Petra et al. (2012),

F =
1

2

∫
ω

‖u(x)−uobs(x)‖2 dx, Fu = u(x)−uobs(x). (28)

The weights in (26) for the inverse problem are wi(x) = ui(x)−uobs,i(x). Let ṽ denote a weighted sum of the solutions of

the sensitivity problem vi over the whole domain ω

ṽ(x) =

∫
ω

d∑
i=1

(ui(x̄)−uobs,i(x̄))vi dx̄. (29)20

Then the effect of δC on F in the inverse problem is by (27)

δF =

∫
Γb

f(Tu)Tu ·Tṽ(x)δC dx. (30)

The same construction of the solution is possible when hobs is given. Then d= 1, F (h) = 1
2 (h−hobs)

2, and Fh = w =

h−hobs.
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We have investigated the relation between the sensitivity problem and the inverse problem. By solving d sensitivity problems

with Fu = eiδ(x− x̄), i= 1, . . . ,d, to obtain their adjoint solutions (vi, qi,ψi) and combine them with the weights wi from

Fu in (28) for the inverse problem, the adjoint solution to the inverse problem is (29). This solution can then be inserted into

(27) to evaluate the effect in F of a change in C as in (30). In practice, if we are interested in solving the inverse problem and

determine δF in (27) in order to iteratively compute the optimal solution with a gradient method, then we solve (18) directly5

with Fu = u−uobs or Fh = h−hobs to obtain ṽ without computing d vectors vi. Taking δC =−f(Tu)Tu ·Tṽ in (30)

guarantees that δF < 0.

3.1.4 Steady state solution to the adjoint elevation equation in two dimensions

A further theoretical consideration shows that the solution ψ to the adjoint elevation equation need not be computed to estimate

perturbations in the velocity for a two-dimensional vertical ice sheet at steady state. We show with the analytical solution in10

the FS model that the influence of ψ is negligible. It is sufficient to solve the adjoint stress equation for v to estimate the

perturbation in the velocity.

The adjoint steady state equation in a two dimensional vertical ice in (18) is

(u1ψ)x = Fh + (hψ+Fu) ·uz, z = h, 0≤ x≤ L. (31)

The velocity from the forward equation is u(x,z) = (u1,u3)T and the adjoint elevation ψ satisfies the right boundary condition15

ψ(L) = 0.

The analytical solution ψ to (31) is derived in Appendix C. Let g(x) = u1z(x) if u1 is observed and let g(x) = 1 if h is

observed. Then the adjoint solution is

ψ(x) =


− g(x∗)
u1(x)

exp

− x∗∫
x

h ·uz(y)

u1(y)
dy

 , 0≤ x≤ x∗,

0, x∗ < x≤ L.

(32)

So, this solution has a jump −g(x∗)/u1(x∗) at x∗.20

With a small h ·uz(y)≈ 0 in (32), an approximate solution is ψ(x)≈−g(x∗)/u1(x). If u1 is observed and g(x) = u1z ≈ 0,

then ψ(x)≈ 0 in (32) and ψh≈ 0 in (18). This is the case in the SSA of the FS model where u1z(x) = 0 and in the SIA of

the FS equations where u1z(x,h) = 0 (Greve and Blatter, 2009; Hutter, 1983). When these approximations are accurate then

u1z will be small. Consequently, when u1 is observed, the effect on v in the adjoint stress equation of the solution ψ of the

adjoint advection equation in (18) is small. Solving only the adjoint stress equation for v as in Gillet-Chaulet et al. (2016); Isaac25

et al. (2015); Petra et al. (2012) yields an adequate answer. Numerical solution in Cheng and Lötstedt (2020) of the adjoint FS

equation (18) in two dimensions confirms that when u1 is observed then ψ(x) is negligible. The situation is different when h

is observed and ψ ≈ 1/u1(x∗) in (32).
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3.2 Adjoint equations based on SSA

Starting from (8), a LagrangianL of the SSA equations is defined, using the technique described and applied to the FS equations

in Petra et al. (2012). The SSA Lagrangian in (A4) in Appendix A is similar to the FS Lagrangian in (14). By partial integration

in L and evaluation at the forward solution (u,h), the adjoint SSA equations are obtained. Then, the effect of perturbed data

at the ice base manifests itself at the ice surface as a perturbation δL; for details, see Appendix A. The adjoint SSA equations5

read:

ψt +u · ∇ψ+ 2ηB(u) : D(v)− ρgH∇ ·v+ ρgv · ∇b= Fh, in ω, 0≤ t≤ T,
ψ(x,T ) = 0, in ω, ψ(x, t) = 0, on γw,

∇ · ς̃(v)−Cf(u)(I+Fω(u))v−H∇ψ =−Fu, in ω,

t · ς̃(v)n=−Cγfγ(t ·u)(1 +Fγ(t ·u))t ·v, on γg, t · ς̃(v)n= 0, on γw,

n ·v = 0, on γ,

(33)

where the adjoint viscosity η̃ and adjoint stress ς̃ are (cf. (19) for the case of FS)

η̃(u) = η(u)
(
I + 1−n

nB(u):D(u)B(u)⊗D(u)
)
,

ς̃(v) = 2Hη̃(u) ?B(v).
(34)

From (33) it is seen that the adjoint SSA equations have the same structure as the adjoint FS equations (18). There is one stress10

equation for the adjoint velocity v, and one equation for the Lagrange multiplier ψ corresponding to the surface elevation

equation in (8). However, the advection equation for ψ in (33) depends on v, implying a fully coupled system for v and ψ.

Equations (33) are solved backward in time with a final condition on ψ at t= T . As in (8), there is no time derivative in the

stress equation. With a Weertman friction law, viz. f(u) = ‖u‖m−1 and fγ(t ·u) = |t ·u|m−1 (cf. also Appendix A1),

Fω(u) =
m− 1

u ·u u⊗u, Fγ =m− 1.15

If the friction coefficient C at the ice base (both where it is grounded on bedrock (C > 0) and floating (C = 0)) is changed by

δC, if the bottom topography is changed by δb, and if the lateral friction coefficient Cγ is changed by δCγ , then it follows from

Appendix A2 that the Lagrangian L is changed by (note that the weight in front of δC in (35) is actually the same as in (21))

δL=

T∫
0

∫
ω

(2ηB(u) : D(v) + ρgv · ∇h+∇ψ ·u)δb− f(u)u ·v δC dxdt−
T∫

0

∫
γg

fγ(t ·u)t ·ut ·v δCγ dsdt. (35)

The same perturbations in δC,δb, and δCγ could be allowed for the FS equations in (21) but because the FS equations are20

more complicated than the SSA equations, the complexity of the derivation in the appendix and the expression for δL would

increase considerably, which is why we refrain from considering them here.

Suppose that only h is observed with Fh 6= 0 and Fu = 0 in (33). Then the adjoint elevation equation must be solved for ψ 6= 0

to have a v 6= 0 in the adjoint stress equation and a perturbation in the Lagrangian in (35). The same result follows from

the adjoint FS equations. If Fh 6= 0 and Fu = 0 in (18), then ψ 6= 0. Consequently, v 6= 0 and a perturbation δC will cause a25
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perturbation δL in (21). The conclusion that the adjoint elevation equation must be solved if the surface elevation is observed

is independent of the two ice models.

In a broader context, it is worth emphasizing that the adjoint equation derived in MacAyeal (1993) is identical to the stress

equation in (33), if H is constant, Fω = 0 (e.g. m= 1), and η̃(u) = η(u).

3.2.1 The two-dimensional adjoint solution5

The 2D adjoint SSA equations are derived from (33) in the same manner as (10), by letting ψ and v1 be independent of y, and

setting v2 = 0 and Cγ = 0. To simplify the notation, we also let v = v1. The adjoint equations for v and ψ follow either from

simplifying (33), or from the Lagrangian and (10) and read as follows:

ψt +uψx + (ηux− ρgH)vx + ρgbxv = Fh, 0≤ t≤ T, 0≤ x≤ L,
ψ(x,T ) = 0, ψ(L,t) = 0,

( 1
nηHvx)x−Cmf(u)v−Hψx =−Fu,
v(0, t) = 0, v(L,t) = 0.

(36)

Note that the viscosity above is multiplied by a factor 1/n, n > 0 which represents an extension of the adjoint SSA in MacAyeal10

(1993) where n= 1 implicitly. The effect on the Lagrangian of perturbations δb and δC is obtained from (35)

δL=

T∫
0

L∫
0

(ψxu+ vxηux + vρghx)δb− vf(u)uδC dxdt. (37)

The weights or sensitivity functions wb and wC multiplying δb and δC in the integral are defined by

wb(x,t) = ψxu+ vxηux + vρghx, wC(x,t) =−vf(u)u. (38)

The steady-state solutions to the system (36) can be analyzed as in the forward equations in Sect. 2.2.2 after simplifications. The15

viscosity terms in (36) are often small and can hence be neglected, and we assume that the basal topography is characterized by

a small spatial gradient bx. The advantage resulting from these simplifications is that both the forward and adjoint equations can

be solved analytically on a reduced computational domain where x ∈ [0,xGL]. The analytical approximations are less accurate

close to the ice divide where some of the above assumptions are not valid. The adjoint equations (36) reduce to

uψx− ρgHvx = Fh, 0≤ x≤ xGL,
ψx(0) = 0, ψ(xGL) = 0,

−Cmum−1v−Hψx =−Fu,
v(0) = 0.

(39)20

3.2.2 The two-dimensional adjoint steady state solution with velocity observation

In this section, the analytical solution to the adjoint equation (39) is discussed. The derivation of the solution is detailed in

Appendix E to Appendix F. It is here sufficient to recall that the below given solution is derived under the assumptions that

bx�Hx, and that a and C are constants.
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For observations of u at x∗,

F =

L∫
0

u(x)δ(x−x∗)dx= u∗, Fu = δ(x−x∗), Fh = 0,

the adjoint solutions are

ψ(x) =
Camx∗
ρgHm+3

∗
(xmGL−xm), x∗ < x≤ xGL,

ψ(x) =− 1

H∗
+

Camx∗
ρgHm+3

∗
(xmGL−xm∗ ), 0≤ x < x∗,

v(x) =
ax∗

ρgHm+3
∗

Hm, x∗ < x≤ xGL,

v(x) = 0, 0≤ x < x∗,

(40)

where ψ(x) and v(x) have discontinuities at the observation point x∗. The perturbation of the Lagrangian (37) is with the5

Heaviside step functionH(x) and the Dirac delta δ(x) (cf. Appendix F)

δu∗ = δL=

xGL∫
0

wb δb+wC δC dx=

xGL∫
0

(ψxu+ vxηux + vρghx)δb− vum δC dx

=

xGL∫
x−
∗

ax∗Hm

Hm+3
∗

[(m+ 1)HxH(x−x∗) +Hδ(x−x∗)] δb−
ax∗(ax)m

ρgHm+3
∗

δC dx

=
u∗δb∗
H∗

− u∗
ρgHm+2

∗

xGL∫
x∗

C(ax)m
(

(m+ 1)
δb

H
+
δC

C

)
dx,

(41)

or, after scaling with u∗:

δu∗
u∗

=
δb∗
H∗
− 1

ρgHm+2
∗

xGL∫
x∗

C(ax)m
(

(m+ 1)
δb

H
+
δC

C

)
dx. (42)

The relation in (42) between the relative perturbations δb/H,δC/C and δu/u can also be interpreted as a way to quantify the10

uncertainty in u. The uncertainty may be due to measurement errors in the topography b. For example, it is known that the true

surface is in an interval [b− δb,b+ δb] around b where e.g., δb= 1 m or δb has a normal distribution with zero mean and some

variance. Such an uncertainty δb in b or similarly an uncertainty δC in C is propagated to an uncertainty δu∗ in u at x∗ by (42),

see Smith (2014).

The perturbations δu1i at discrete points x∗,i due to perturbations δCj at discrete points xj are connected by a transfer matrix15

WC in Cheng and Lötstedt (2020). The relation between δu1i and δCj is for all i and j that

δu1i =
∑
j

WCijδCj .

The elements WCij of the transfer matrix correspond to quadrature coefficients in the discretization of the first integral in

(41) with δb= 0. The properties of WC are examined numerically in Cheng and Lötstedt (2020). We conclude that certain
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perturbations of C (not only highly oscillatory) are difficult to observe in u1 at the surface. The same analysis is performed for

the other combinations of δb,δC and δu1, δh.

Finally, let us comment on other approaches to investigate the sensitivity of surface data to changes in b and C, e.g. using

three linear models as in Gudmundsson (2008) and along a flow line at steady state in Gudmundsson and Raymond (2008)

with a linearized FS model with n= 1 and m= 1. In these papers, transfer functions for the perturbations from base to5

surface corresponding to our formulas (41) and (42) are derived by Fourier and Laplace analysis. The perturbations with

long wavelength λ and small wave number k are propagated to the surface but short wavelengths are effectively damped in

Gudmundsson (2008). The transfer functions are utilized in Gudmundsson and Raymond (2008) to estimate how well basal

data can be retrieved from surface data. Retrieval of basal slipperiness C is possible for perturbations δC of long wavelength

and if the errors in the basal topography δb is small. Short wavelength perturbations δb can be determined from surface data.10

The same conclusions as in Gudmundsson (2008) and Gudmundsson and Raymond (2008) can be drawn from our explicit

expressions for the dependence of δu∗ and δh∗ on δC and δb. For example, it follows from (44) that only δC with a long

wavelength is visible at the surface and that δb also with a short wavelength affects δu∗ in (42). If δb is small or zero in (42),

then it is easier to determine the δC that causes a certain δu∗.

The analytical adjoint solutions ψ(x) and v(x) in (40) of the MISMIP case in Fig. 2 with parameters in Table 1 at different x∗15

positions are shown in Fig. 4(a) and Fig. 5(a).
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Figure 4. The analytical solutions ofψ in (39) of the observations of (a) u and (b) h at different locations x∗ = 0.25×106,0.5×106,0.7×106

and 0.9× 106 m.

The weights wb and wC in (41) multiplying δb and δC, defined in the same manner as in (37) and (38), are shown in Fig. 6(a)

and Fig. 7(a) with the solutions ψ and v in Fig. 4(a) and Fig. 5(a). The Dirac term is plotted as a vertical line at x∗ in Fig. 7(a).

All perturbations in C between x∗ and xGL will result in a perturbation of the opposite sign in u∗ at the surface because

wC < 0 in (x∗,xGL) in Fig. 6(a) and (41). The same conclusion holds true for perturbations in b because wb < 0 in (x∗,xGL)20
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Figure 5. The analytical solutions of v in (39) of the observations of (a) u and (b) h at different locations x∗ = 0.25×106,0.5×106,0.7×106

and 0.9× 106 m.

in Fig. 7(a) but an additional contribution is added from δb at x∗ by the Dirac delta in wb. A perturbation is less visible in u the

farther away from xGL the observation point is since the amplitude of both wC and wb decays when x∗ decreases.
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Figure 6. The analytical solution of the weightswC =−vum on δC in (37) for (a) u and (b) h observed at x∗ = 0.25×106,0.5×106,0.7×
106 and 0.9× 106 m.

The following conclusions can be drawn from (41) and (42) and Figs. 6 and 7:

(i). The closer perturbations in basal friction are located to the grounding line, the larger perturbations of velocity will be

observed at the surface. This is because the weight in front of δC increases when x∗→ xGL, see Fig. 6, which in turn is5

an effect of the increasing velocity u∗ and the decreasing thickness H∗, as the grounding line is approached, see Fig. 2.
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Figure 7. The analytical solution of weightswb = ψxu+vxηux+vρghx on δb in (37) for (a) u and (b) h observed at x∗ = 0.25×106,0.5×
106,0.7× 106 and 0.9× 106 m.

Or, compactly expressed, δC with support in [x∗,xGL] will cause larger perturbations at the surface the closer x∗ is to

xGL, and the closer δC(x) is to xGL. The same conclusion is drawn in Cheng and Lötstedt (2020) with numerically

computed SSA adjoint solutions.

(ii). Variations in the observed velocity δu∗ at the surface at observation point x∗ will include contributions from changes in

the frictional parameter, δC, between x∗ and the grounding line xGL, and from changes in basal topography, δb, but it is5

impossible to disentangle their individual contributions to δu∗.

(iii). When the variation in ice thickness is small compared to the overall ice thickness,Hx�H , a small perturbation in basal

topography δb is directly visible in the surface velocity. This is because in such a case, δu∗ ≈ u∗δb∗/H∗ and the main

effect on u∗ from the perturbation δb is localized at each x∗, see (41).

(iv). For an unperturbed basal topography, two different perturbations of the friction coefficient will result in the same pertur-10

bation of the velocity. In other words: the perturbation δC cannot be uniquely determined by one observation of δu. This

follows if we let the perturbation of the friction coefficient be a constant δC0 6= 0 in [x0,x1] ∈ [x∗,xGL], and evaluate

the integral in (41) to obtain

δu∗ =− u∗
ρgHm+2

∗

x1∫
x0

(ax)mδC0 dx=− amu∗
(m+ 1)ρgHm+2

∗
(xm+1

1 −xm+1
0 )δC0. (43)

The same δu∗ is observed with a constant perturbation in [x2,x3] ∈ [x∗,xGL] with the amplitude δC0(xm+1
1 −xm+1

0 )/(xm+1
3 −15

xm+1
2 ).

(v). A rapidly varying friction coefficient at the base of the ice sheet will be difficult to identify by observing the velocity at

the ice surface. In contrast, a smoothly varying friction coefficient at the base will be easily observable at the ice sheet
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surface. This is seen as follows: PerturbC by δC = εcos(kx/xGL) in (41) for some wave number k which determines the

smoothness of the friction at the bedrock and amplitude ε and let δb= 0 and m= 1. The wavelength of the perturbation

is λ= 2πxGL/k. When k is small then the wavelength is long and the variation of C + δC is smooth. When k is large

then the friction coefficient varies rapidly in x with a short λ. The perturbation in the velocity is

δu∗ =−
xGL∫
x∗

ε
a2x∗
ρgH4∗

xcos

(
kx

xGL

)
dx

=−ε a
2x∗

ρgH4∗

x2
GL

k

(
sin(k)− x∗

xGL
sin

(
kx∗
xGL

)
+

1

k

(
cos(k)− cos

(
kx∗
xGL

)))
.

(44)5

For a thin ice with a small H∗, a perturbation in C is easier to observe at the surface than for a thick ice. When k grows

at the ice base, the amplitude of the perturbation at the ice surface decays as 1/k. Thus, the effect of high wave number

perturbations of C will be difficult to observe at the top of the ice but smooth perturbations at the base will propagate

to the surface. If k is large and the surface velocity is of interest in a numerical simulation, then there is no reason to

use a fine mesh at the base to resolve the fast variation in C because it will not be visible at the top of the ice. How the10

damping depends on λ in the FS equations is computed in Cheng and Lötstedt (2020).

(vi). A perturbation in the topography with long wavelength is easier to detect at the surface than a perturbation with short

wavelength. If δC = 0 and b is perturbed by δb= εcos(kx/xGL), then any perturbation at x∗ is propagated to the surface

by u∗δb∗
H∗

, which is the first term on the right hand side of (41). The effect is larger if the ice is thin and moving fast.

The integral term will behave in the same way as in (44) with mainly perturbations with small wave numbers and long15

wavelengths visible at the surface.

3.2.3 The two-dimensional adjoint steady state solution with elevation observation

In the case when h is observed at x∗ and Fu = 0 and Fh = δ(x−x∗), the expressions for ψ and v satisfying (39) are

ψ(x) =− Cam−1

ρgHm+1
∗

(xmGL−xm), x∗ < x≤ xGL,

ψ(x) =− Cam−1

ρgHm+1
∗

(xmGL−xm∗ ), 0≤ x < x∗,

v(x) =− Hm

ρgHm+1
∗

, x∗ < x≤ xGL,

v(x) = 0, 0≤ x < x∗.

(45)

The corresponding formulas when u is observed are found in (40). There is a discontinuity at the observation point x∗ in v(x)20

illustrated in Fig. 5(b), but ψ(x) is continuous in the solution of (39) and in Fig. 4(b).

The second derivative term ( 1
nηHvx)x is neglected in the simplified equation (39) but is of importance at x∗. A correction ψ̂

of ψ at x∗ in (45) is therefore introduced to satisfy
(

1
nηHvx

)
x
−Hψ̂x = 0. With vx(x∗) =−δ(x−x∗)/(ρgH∗), the correction

is ψ̂(x) =−δ(x−x∗)η∗/(nρgH∗). The solution ψ is updated at each x∗ in Fig. 4(b) with ψ̂ as a vertical line representing the

negative Dirac delta.25
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The perturbation in h is as in (41) with ψ and v in (45) and the additional term ψ̂

δh∗
H∗

=

xGL∫
x−
∗

− uη∗
nρgH2∗

δx(x−x∗)δb dx+

xGL∫
x∗

C(ax)m

ρgHm+2
∗

(
(m+ 1)

δb

H
+
δC

C

)
dx

=
aη∗

nρgH2∗

(
x
δb

H

)
x

(x∗) +
1

ρgHm+2
∗

xGL∫
x∗

C(ax)m
(

(m+ 1)
δb

H
+
δC

C

)
dx,

(46)

where a(xδb/H)x(x∗) = (uδb)x(x∗) represents the x-derivative of uδb evaluated at x∗. When δb= 0 then δu∗ in (42) and

δh∗ = δH∗ in (46) satisfy δu∗H∗ =−δH∗u∗ as in the integrated form of the advection equation in (11) and in (D1).

As in (41), (46) is rewritten with the weights wb and wC in (38)5

δh∗ =

xGL∫
0

(ψxu+ vxηux + vρghx)δb− vum δC dx=

xGL∫
0

wb δb+wC δC dx. (47)

These weights are shown in Fig. 6(b) and Fig. 7(b). The negative derivative of the Dirac delta is depicted in Fig. 7(b) as a

vertical line in the negative direction immediately followed by one in the positive direction.

The contribution from the integrals in (42) and (46) is identical except for the sign (compare wC in Fig. 6(a) and Fig. 6(b) and

wb in Fig. 7(a) and Fig. 7(b)). The first term in (42) depends on δb/H and the first term in (46) depends on the derivative of10

axδb/H = uδb. The derivative of uδb at x∗ directly affects the perturbation of h at x∗. A perturbation of b at the base is directly

visible locally in u at the surface while the effect of δC is non-local in the integral in (46). Because of the similarities between

(42) and (46) and the left and right columns of Fig. 6 and Fig. 7, the conclusions (i), (ii), (iv), (v), and (vi) in Sect. 3.2.2 from

(41) and (42) for δu∗ are valid also for δh∗ in (46).

3.2.4 The two-dimensional time dependent adjoint solution15

Finally, the time dependent adjoint equation (36) is investigated. Equation (36) is solved numerically for the same MISMIP test

case as Fig. 2 in Sect. 2.2.2 with the parameters in Table 1. As in Sect. 3.1.2, the friction coefficient C has a seasonal variation

(period one year, 1 yr, where the beginning of the year is associated with winter) in the forward equation (10):

C(x,t) = C0(1 +κcos(2πt)), 0< κ < 1. (48)

Apparently, C has its highest value at t= n, n= 0,1,2, . . ., i.e. the winter, and its lowest value at t= n+1/2, i.e. the summer,20

as in Fig. 3. The amplitude of the variation in C is set to κ= 0.5 and the forward equation (10) is solved for 11 years. The GL

will move in time because of the variation in C. The topography b is kept constant in time. Observations of u and h are taken

at x∗ = 9× 105 m for 0.1 yr in the four seasons starting from the summer of the tenth year, e.g., in the summer (t∗ = 9.5), the

fall (t∗ = 9.75), the winter (t∗ = 10), and the spring (t∗ = 10.25). The forward equations (10) are solved numerically from

t= 0 with the steady state solution as initial data to the observation points t= t∗ and the adjoint equations (36) are solved25

from t= t∗ backward in time to t= 0. According to a convergence test, the time step is chosen to be 0.01 yr and the spatial

resolution is 103 m. A visual inspection of the computed solutions after halving the step sizes indicates that a sufficiently

converged solution has been reached.
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Fig. 8 shows the results for the adjoint weights wC(x,t) and wb(x,t) multiplying the perturbations δC and δb, as defined in

(37), for the observations of u and h at x∗ = 9× 105 m in all four seasons, where each column represents one season. The

friction coefficient C follows the seasonal variation in (48). Each row is one of the combinations of the weights wC and wb for

the observations of u and h . The time axis (or ordinate) in the figure follows the time direction in the forward problem (10).

Most of the weights in space and time are negligible implying that perturbations in those domains are not visible at (x∗, t∗).5

Only δC and δb in a narrow interval around x∗ for t in [0, t∗] have an influence on δu∗ and δh∗. Therefore, we take a snapshot

of the x axis (or abscissa) with the width of 105 m in space around x∗ in Fig. 8. The weights oscillate in time because of the

seasonal variation in the basal conditions in (48). A perturbation at the base is propagated to the x∗ position on the surface but

with a possible delay in time. The earlier a perturbation in C or b takes place in the interval [0, t∗), the smaller the effect of it

is at t∗. After five years a perturbation can hardly be detected at the surface.10

The temporal variations of the adjoint weights at x∗ in Fig. 8 are shown in Fig. 9 for the four seasons with four different colors.

As expected, the weights vanish when t > t∗. In Fig. 9(a) and (b), the perturbations δC∗ and δb∗ have a direct effect on δu∗ at

t∗, where both wC(x∗, t∗) and wb(x∗, t∗) are negative. The same direct effect of δC is found for δu1∗ solving the FS equations

(23) in Sect. 3.1.1. A change in δC∗ at the base is observed immediately as a change in u at the surface. The effect of δC

on δu∗ for t < t∗ is weak in Fig. 9(a), i.e. the memory of old perturbations is short. The largest effect of δC on δu∗ and δh∗15

appears with t∗ in the summer when C is small in (48) (the blue lines in Fig. 9(a) and (b)).

However, when h is observed, the effects of δC∗ and δb∗ are not visible directly because wC∗ ≈ 0 and wb∗ ≈ 0 in Fig. 9(c)

and Fig. 9(d). An intuitive explanation is that there is an immediate effect on the velocity but there is a delay in h since it

is integrated in time from the velocity field. Additionally, the effects of δC and δb are difficult to separate, since the weight

wb(x∗, t) has a shape similar to wC(x∗, t). The largest effect on δh∗ is from δC in the summer due to the peaks in wC in20

Fig. 9(c). For the same δC, the largest δh∗ is observed in the fall (orange), then the second largest δh∗ is in the winter (green)

followed by the spring observation (red). If δh∗ is observed in the fall and the time dependency is ignored, then the wrong

conclusion is drawn that δC in the fall has the strongest effect (but it is the summer perturbation). There is a delay in time

between the perturbation and the observation of the effect in the surface elevation. The same shift in time is what we found in

Sect. 3.1.1, (24), and Fig. 3 for the FS equations.25

A reference adjoint solution at x∗ observed during the fall season (t∗ = 9.75) with time independent C and b, κ= 0 in (48), in

the forward equations is shown in black dashed lines in all the four panels of Fig. 9. The weight wb at x∗ for a constant b is

well approximated by wb∗ exp(−(T − t)/τ) in time with τ = 1.4 yr for some wb∗ for the observation of both u and h. For the

weight wC , the same exponential function holds with weight wC∗, but the time constant τ = 1.8 yr for the observation of h∗

and τ = 2.2 yr for the u∗ case.30

Suppose that the temporal perturbation is oscillatory with frequency f and located in space at x∗ with

δC(x,t) = δC0 cos(2πft)δ(x−x∗).
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Figure 8. The adjoint weights for the observations at x∗ = 9× 105 m of the four seasons. (a) wC for the observation of u. (b) wb for the

observation of u. (c) wC for the observation of h. (d) wb for the observation of h.
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A low frequency f with f � 1 corresponds decennial or centennial variations and a high frequency with f � 1 corresponds

to diurnal or weekly variations. Then the perturbation in h at t= t∗ is

δh∗ =

t∗∫
0

wC∗ exp(−(t∗− t)/τ)δC0 cos(2πft)dt=

(
cos(2πft∗) + 2πτf sin(2πft∗)− e−t∗/τ

4π2τf2 + τ−1

)
wC∗δC0, (49)

cf. (44). With a high frequency, f � 1, then δh∗ ∝ 1/f and high frequency perturbations are damped efficiently. At certain

times of observation t∗ when sin(2πft∗) = 0, the damping is even stronger with δh∗ ∝ 1/f2. If the frequency is low, f � 1,5

then δh∗ ∝ τ and the change in h∗ is insensitive to the frequency. The same conclusions hold true for δb where decennial

perturbations seem more realistic.

0.0 2.5 5.0 7.5 10.0
t (yr)

−2

0

w
C

(x
∗)

×10−5

(a)

0.0 2.5 5.0 7.5 10.0
t (yr)

0

2

4

w
C

(x
∗)

×10−7

(c)

0.0 2.5 5.0 7.5 10.0
t (yr)

−5

0

5

w
b(
x
∗)

×10−6

(b)

0.0 2.5 5.0 7.5 10.0
t (yr)

0

1

2

w
b(
x
∗)

×10−5

(d)

summer fall winter spring no seasonal

Figure 9. The adjoint weights at x∗ in the four seasons of the tenth year with seasonally varying friction coefficient. The black dashed line is

a reference solution without seasonal variations which is observed at t∗ = 9.75. (a) wC for the observation of u. (b) wb for the observation

of u. (c) wC for the observation of h. (d) wb for the observation of h .

4 Conclusions

The adjoint equations are derived in the FS and the SSA frameworks including time and the surface elevation equation. Time-

dependent perturbations δC and δb in basal friction coefficient C and basal topography b are introduced and their effect on10

observations of the velocity u and the surface elevation h at the top surface of the ice is studied. With the solution of the adjoint

27



equations, we can determine the perturbation at a given point in space and time on the surface due to all basal perturbations.

By solving the forward equations twice with C and C + δC or b and b+ δb, we can compute the perturbation in all points in

space and time on the surface, e.g. δu1 = u1(C + δC)−u1(C) in the first velocity component, for a given δC or δb.

The perturbations in the observations are determined numerically in Cheng and Lötstedt (2020) either using the adjoint equa-

tions and their solutions in Sect. 3 or by solving the forward equations with unperturbed and perturbed parameters to obtain5

δu∗ and δh∗. The numerical solutions are compared to each other and to analytical solutions for SSA. The agreement is good

in the comparisons.

In Sect. 3.1.3, a relation is established between the inverse problem (aiming to infer parameters from data) and the sensitivity

problem (aiming to quantify the effect of variations in parameters): The same adjoint equations are solved. However, the forcing

functions differ and are specific to the inverse problem and the sensitivity problem, respectively. Common to both problems is10

that the adjoint equations tell how perturbations in the parameters at the ice base are propagated to perturbations in the velocity

and the elevation of the surface.

For steady state problems, and in an FS setting where u is observed, we find (cf. Sect. 3.1.4) that the contribution of the

solution of the adjoint elevation equation (31) is small, and that it therefore suffices to solve only the adjoint stress equations,

see e.g. Gillet-Chaulet et al. (2016); Isaac et al. (2015); Petra et al. (2012), in order to be able to draw conclusions regarding15

perturbations of u. For steady state problems in a two-dimensional SSA setting, (42), (46), and Figs. 6 and 7 show that

the sensitivity of the velocity and elevation increases (because the velocity increases and the ice thickness decreases) as the

observation point x∗ approaches the grounding line.

In this setting, there is moreover observed a non-local effect of a perturbation in C, in the sense that δC(x) affects both u(x∗)

and h(x∗) even if x 6= x∗, but a perturbation δb in b has a strong local effect concentrated at x∗. Nevertheless, the shapes of the20

two sensitivity functions (or weights) for δb and δC are very similar except for the neighborhood of x∗, which makes it difficult

to separate their respective contribution in an observation. Different combinations of the perturbations in the basal friction and

bedrock elevation can produce the same effect on the velocity and surface elevation changes at one observation point.

In the inverse problems based on time dependent simulations of FS and SSA, it is necessary to include the adjoint elevation

equation. If the perturbations in the basal conditions are time dependent and h is observed (see Fig. 3, Fig. 9(c), and Fig. 9(d)),25

then time cannot be ignored in the inversion. If time dependence is ignored, wrong conclusions concerning the conditions at

the ice base may be drawn from observations of h, in both the FS and the SSA model. In the time dependent solution of SSA, a

perturbation of the basal condition at x∗ has the strongest impact at x∗ on the surface, possibly with a time delay. Such a time

delay occurs when a perturbation at the ice base is visible at the surface in h, but in u it is observed immediately (Fig. 9). The

effect of a perturbation disappears more quickly, the older the perturbation is.30

Perturbations in the friction coefficient at the base observed in the surface velocity determined by SSA are damped inversely

proportional to the wave number and the frequency of the perturbations in (44) and (49), thus making very oscillatory pertur-

bations in space and time difficult to register at the ice sheet surface. In such a case, there is no need to have a fine mesh and a

small time-step in a numerical solution to resolve the rapid oscillations in C at the base.
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Appendix A: Derivation of the adjoint equations

A1 Adjoint viscosity and friction in SSA

The adjoint viscosity η̃(u) in SSA in (19) is derived as follows. The SSA viscosity for u and u+ δu is

η(u+ δu)≈ η(u)
(

1 + 1−n
2n

(2u1x+u2y)δu1x+ 1
2 (u1y+u2x)δu2x+(2u2y+u1x)δu2y+ 1

2 (u1y+u2x)δu1y

η̂

)
. (A1)

Determine B(u) such that5

%(u, δu)B(u) = B(u) ?B(δu).

First note that

B(u) : D(δu) = (D(u) +∇ ·uI) : D(δu) = D(u) : D(δu) + (∇ ·u)(∇ · δu)

= D(u) : (B(δu)−∇ · δuI) + (∇ ·u)(∇ · δu) = D(u) : B(δu).

Then use the ? operator to define B

1−n
2nη̂

∑
klBkl(u)Dkl(δu)Bij(u) = 1−n

2nη̂

∑
klDkl(u)Bkl(δu)Bij(u) =

∑
klBijkl(u)Dkl(δu) = (B ?D)ij .10

Thus, let

Bijkl =
1−n
2nη̂

Bij(u)Dkl(u), η̃ijkl(u) = η(u)(Iijkl +Bijkl(u)),

or in tensor form

B =
1−n

nB(u) : D(u)
B(u)⊗D(u), η̃(u) = η(u)(I +B) . (A2)

Replacing B in (A2) by D we obtain the adjoint FS viscosity in (19).15

The adjoint friction in SSA in ω and at γg in (33) with a Weertman law is derived as in the adjoint FS equations (18) and

(19). Then in ω with ξ = u,ζ = v, c= C,F = Fω , and at γg with ξ = t ·u,ζ = t ·v, c= Cγ ,f = fγ ,F = Fγ , we arrive at the

adjoint friction term cf(ξ)(I+F(ξ))ζ where

F(ξ) =
m− 1

ξ · ξ ξ⊗ ξ. (A3)

A2 Adjoint equations in SSA20

The Lagrangian for the SSA equations is with the adjoint variables ψ,v, q

L(u,h;v,ψ;b,Cγ ,C) =
∫ T

0

∫
ω
F (u,h) +ψ(ht +∇ · (uH)− a)dxdt

+
∫ T

0

∫
ω
v · ∇ · (2HηB(u))−Cf(u)v ·u− ρgHv · ∇h dxdt

=
∫ T

0

∫
ω
F (u,h) +ψ(ht +∇ · (uH)− a)dxdt+

∫ T
0

∫
ω
−2Hη(u)(D(v) : D(u) +∇ ·u∇ ·v)

−Cf(u)v ·u− ρgHv · ∇h dxdt−
∫ T

0

∫
γg
Cγfγ(t ·u)t ·ut ·vdsdt

(A4)
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after partial integration and using the boundary conditions. The perturbed SSA Lagrangian is split into the unperturbed La-

grangian and three integrals

L(u+ δu,h+ δh;v+ δv,ψ+ δψ;b+ δb,Cγ + δCγ ,C + δC)

=
∫ T

0

∫
ω
F (u+ δu,h+ δh) +

∫ T
0

∫
ω

(ψ+ δψ)(ht + δht +∇ · ((u+ δu)(H + δH))− a)dxdt

+
∫ T

0

∫
ω
−2(H + δH)η(u+ δu)D(v+ δv) : B(u+ δu)− (C + δC)f(u+ δu)(u+ δu) · (v+ δv)

−ρg(H + δH)∇(h+ δh) · (v+ δv) dxdt−
∫ T

0

∫
γg

(Cγ + δCγ)fγ(t · (u+ δu))t · (u+ δu)t · (v+ δv)dsdt

= L(u,h;v,ψ;b,Cγ ,C) + I1 + I2 + I3.

(A5)

The perturbation in L is

δL= I1 + I2 + I3. (A6)5

Terms of order two or more in δL are neglected. Then the first term in δL satisfies

I1 =
∫ T

0

∫
ω
F (u+ δu,h+ δh)−F (u,h)dxdt=

∫ T
0

∫
ω
Fuδu+Fhδhdxdt. (A7)

Using partial integration, Gauss’ formula, and the initial and boundary conditions on u and H and ψ(x,T ) = 0,x ∈ ω, and

ψ(x, t) = 0, x ∈ γw, in the second integral we have

I2 =
∫ T

0

∫
ω
δψ(ht +∇ · (uH)− a) +ψ(δht +∇ · (δuH) +∇ · (uδH))dxdt

=
∫ T

0

∫
ω
δψ(ht +∇ · (uH)− a)dxdt+

∫ T
0

∫
ω
−ψtδh−H∇ψ · δu−∇ψ ·uδH dxdt.

(A8)10

The first integral after the second equality vanishes since h is a weak solution and I2 is

I2 =
∫ T

0

∫
ω
−(ψt +u · ∇ψ)δh−H∇ψ · δu+u · ∇ψδbdxdt. (A9)

Using the weak solution of (8), the adjoint viscosity (34), (A2), the friction coefficient (A3), Gauss’ formula, the boundary

conditions, and neglecting the second order terms, the third and fourth integrals in (A5) are

I3 = I31 + I32,

I31 =
∫ T

0

∫
ω
−2(H + δH)η(u+ δu)D(v+ δv) : B(u+ δu)

−(C + δC)f(u+ δu)(u+ δu) · (v+ δv)− ρg(H + δH)∇(h+ δh) · (v+ δv)) dxdt

−
∫ T

0

∫
γ
(Cγ + δCγ)fγ(t · (u+ δu))t · (u+ δu)t · (v+ δv)dsdt

= I311 + I312− I313,

(A10)15
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where

I311 =
∫ T

0

∫
ω
−2HD(v) : (η(u+ δu)B(u+ δu)) + 2HD(v) : (η(u)B(u))dxdt

=
∫ T

0

∫
ω
−2HD(v) : (η̃(u) ?B(δu))dxdt

I312 =
∫ T

0

∫
ωg
−δCf(u)u ·vdxdt+

∫ T
0

∫
ωg
−C(f(u+ δu)v · (u+ δu)− f(u)v ·u)dxdt

=
∫ T

0

∫
ωg
−δCf(u)u ·v+Cf(u)(I+Fω(u))δu ·vdxdt

I313 =
∫ T

0

∫
γg

(Cγ + δCγ)(fγ(t · (u+ δu))t ·v t · (u+ δu)− fγ(t ·u)t ·v t ·u)dsdt

=
∫ T

0

∫
γg

(Cγ + δCγ)(fγ(t ·u)t ·ut ·v+Cγfγ(t ·u)(I+Fγ(t ·u))t · δut ·vdsdt

I32 =
∫ T

0

∫
ω
−ρgH∇h ·v− 2ηD(v) : B(u)δH − ρg∇h ·vδH − ρgHv · ∇δhdxdt

=
∫ T

0

∫
ω
−ρgH∇h ·v− (2ηD(v) : B(u) + ρg∇h ·v)δH + ρg∇ · (Hv)δhdxdt.

(A11)

Collecting all the terms in (A7), (A9), and (A10), the first variation of L is

δL = I1 + I2 + I3

=
∫ T

0

∫
ω
Fuδu− 2HD(v) : (η̃(u) ?B(δu))−H∇ψ · δudxdt−

∫ T
0

∫
ωg
Cf(u)(I+Fω(u))v · δudxdt

−
∫ T

0

∫
γg
Cγfγ(t ·u)(I+Fγ(t ·u))t ·v t · δudsdt−

∫ T
0

∫
γg
δCγfγ(t ·u)t ·ut ·vdsdt

+
∫ T

0

∫
ω

(Fh− (ψt +u · ∇ψ+ 2ηD(v) : B(u)− ρg∇b ·v+ ρgH∇ ·v))δhdxdt

+
∫ T

0

∫
ω
−δCf(u)v ·u+ (2ηD(v) : B(u) + ρg∇h ·v+u · ∇ψ)δbdxdt.

(A12)

The forward solution (u∗,p∗,h∗) and adjoint solution (v∗, q∗,ψ∗) satisfying (8) and (33) are inserted into (A4) resulting in5

L(u∗,p∗;v∗, q∗;h∗,ψ∗;b,Cγ ,C) =
∫ T

0

∫
ω
F (u∗,h∗)dxdt. (A13)

Then (A12) yields the variation in L in (A13) with respect to perturbations δb,δCγ , and δC in b,Cγ , and C

δL =
∫ T

0

∫
ω

(2ηD(v∗) : B(u∗) + ρg∇h∗ ·v∗+u∗ · ∇ψ∗)δbdxdt

−
∫ T

0

∫
γg
δCγfγ(t ·u∗)t ·u∗ t ·v∗ dsdt−

∫ T
0

∫
ω
δCf(u∗)v∗ ·u∗ dxdt.

(A14)

A3 Adjoint equations in FS

The FS Lagrangian is as in (14)10

L(u,p,h;v, q,ψ;C) =
∫ T

0

∫
Γs
F (u,h) +ψ(ht +h ·u− a)dxdt

+
∫ T

0

∫
ω

∫ h
b
−v · (∇ ·σ(u,p))− q∇ ·u− ρg ·v dxdt

=
∫ T

0

∫
Γs
F (u,h) +ψ(ht +h ·u− a)dxdt+

∫ T
0

∫
ω

∫ h
b

2η(u)D(v) : D(u)− p∇ ·v− q∇ ·u− ρg ·v dxdt

+
∫ T

0

∫
Γb
Cf(Tu)Tu ·Tvdxdt.

(A15)

In the same manner as in (A5), the perturbed FS Lagrangian is

L(u+ δu,p+ δp;v+ δv, q+ δq;h+ δh,ψ+ δψ;C + δC) = L(u,p,h;v, q,ψ;C) + I1 + I2 + I3. (A16)

Terms of order two or more in δu, δv, δh are neglected. The first integral I1 in (A16) is

I1 =
∫ T

0

∫
Γs
F (u(x,h+ δh,t) + δu,h+ δh)−F (u(x,h, t),h)dxdt=

∫ T
0

∫
Γs
Fu(δu+uzδh) +Fhδhdxdt. (A17)15
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Partial integration, the conditions ψ(x,T ) = 0 and ψ(x, t) = 0 at Γs, and the fact that h is a weak solution simplify the second

integral

I2 =
∫ T

0

∫
Γs
δψ(ht +h ·u− a) +ψ(δht +u · δh+uz ·hδh+h · δu)dxdt

=
∫ T

0

∫
Γs
δψ(ht +h ·u− a)dxdt+

∫ T
0

∫
Γs

(−ψt−∇ · (uψ) +h ·uzψ)δh+h · δuψdxdt.
(A18)

Define Ξ, ξ, and Υ to be

Θ(u,p;v, q;C) = 2η(u)D(v) : D(u)− p∇ ·v− q∇ ·u− ρg ·v,
θ(u;v;C) = Cf(Tu)Tu ·Tv,

Υ(u,p;v, q) = −v · (∇ ·σ(u,p))− q∇ ·u− ρg ·v.
(A19)5

Then a weak solution, (u,p), for any (v, q) satisfying the boundary conditions, fulfills

T∫
0

∫
ω

h∫
b

Θ(u,p;v, q;C)dxdt−
T∫

0

∫
Γb

θ(u;v;C)dxdt= 0. (A20)

The third integral in (A16) is

I3 = I31 + I32,

I31 =
∫ T

0

∫
ω

∫ h
b

Θ(u+ δu,p+ δp;v+ δv, q+ δq;C + δC)dxdt−
∫ T

0

∫
Γb
θ(u+ δu;v+ δv;C + δC)dxdt,

I32 =
∫ T

0

∫
ω

∫ h+δh

h
Υ(u,p;v, q)dxdt.

(A21)

The integral I31 is expanded as in (A10) and (A11) or Petra et al. (2012) using the weak solution, Gauss’ formula, and the10

definitions of the adjoint viscosity and adjoint friction coefficient in Appendix A1. When b < z < h we have Υ(u,p;v, q) = 0.

If Υ is extended smoothly in the positive z-direction from z = h, then with z ∈ [h,h+ δh] for some constant c > 0 we have

|Υ| ≤ cδh. Therefore,

|
h+δh(x,t)∫

h

Υ(u,p;v, q)dz| ≤
h+δh(x,t)∫

h

sup |Υ|dz ≤ c|δh(x,t)2|,

and the bound on I32 in (A21) is15

|I32| ≤ ct|ω|max |δh(x,t)|2, (A22)

where |ω| is the area of ω. This term is a second variation in δh which is neglected and I3 = I31.

The first variation of L is then

δL = I1 + I2 + I3

=
∫ T

0

∫
Γs

(Fu +ψh) · δudxdt+
∫ T

0

∫
Γs

(Fh +Fuuz − (ψt +∇ · (uψ)−h ·uψ))δhdxdt

+
∫ T

0

∫
ω

∫ h
b

2D(v) : (η̃(u) ?D(δu))− δp∇ ·v− q∇ · δudxdt

+
∫ T

0

∫
Γb
Cf(Tu)(I+Fb(u))Tv ·Tδudxdt+

∫ T
0

∫
Γb
δCf(Tu)Tu ·Tvdxdt.

(A23)
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With the forward solution (u∗,p∗,h∗) and the adjoint solution (v∗, q∗,ψ∗) satisfying (4) and (18), the first variation with

respect to perturbations δC in C is (cf. (A14))

δL=

T∫
0

∫
Γb

f(Tu∗)Tu∗ ·Tv∗ δC dxdt. (A24)

Appendix B: The adjoint solution in the inverse and sensitivity problems

Assume that (vi, qi,ψi), i= 1, . . . ,d, solves adjoint FS equations (18) in the steady state with observation of ui with d= 2 or5

3

F = ui(x) =

∫
ω

uiδ(x− x̄)dx̄, Fu = eiδ(x− x̄), i= 1, . . . ,d, (B1)

or observation of h with d= 1

F = h(x) =

∫
ω

hδ(x− x̄)dx̄, Fh = δ(x− x̄). (B2)

Introduce the weight functions wi(x), i= 1, . . . ,d. It follows from (18) that (wi(x̄)vi(x),wi(x̄)qi(x),wi(x̄)ψi(x)) is a solu-10

tion with Fu = wi(x̄)eiδ(x− x̄) or Fh = w(x̄)δ(x− x̄). Therefore, also∫
ω

wi(x̄)vi dx̄,
∫
ω

wi(x̄)qi dx̄,
∫
ω

wi(x̄)ψi dx̄

 (B3)

is a solution with Fu =
∫
ω
wi(x̄)eiδ(x− x̄)dx̄= wi(x)ei or Fh =

∫
ω
w(x̄)δ(x− x̄)dx̄= w(x). A sum over i, i= 1, . . . ,d,

of each integral in (B3) is also a solution.

Consider a target functional F for the steady state solution with a weight vectorw(x̄) with components wi(x̄) multiplying δui15

in the first variation of F . Using (21), δF is

δF =

∫
ω

w(x̄) · δudx̄=

∫
ω

d∑
i=1

wi(x̄)δui dx̄=

∫
ω

d∑
i=1

wi(x̄)

∫
Γb

f(Tu)Tu ·Tvi δC dxdx̄

=

∫
Γb

f(Tu)Tu ·T

∫
ω

d∑
i=1

wi(x̄)vi dx̄

 δC dx.

(B4)

Appendix C: Steady state solution of the adjoint height equation in the FS model

In a two dimensional vertical ice with u(x,z) = (u1,u3)T , the stationary equation for ψ in (18) is

(u1ψ)x = Fh + (hψ+Fu) ·uz, z = h, 0≤ x≤ L. (C1)20

When x > x∗, where Fh = 0 and Fu = 0, we have ψ(x) = 0 since the right boundary condition is ψ(L) = 0.

33



If u1 is observed at Γs then F (u,h) = u1(x)χ(x) and Fu = (χ(x),0)T and Fh = 0. The weight χ on u1 may be a Dirac delta,

a Gaussian, or a constant in a limited interval. On the other hand, if F (u,h) = h(x)χ(x) then Fh = χ(x) and Fu = 0.

Let g(x) = u1z(x) when Fu 6= 0 and let g(x) = 1 when Fh 6= 0. Then by (31)

(u1ψ)x−h ·uzψ = g(x)χ(x). (C2)

The solution to (C2) is5

ψ(x) =− 1

u1(x)

x∗∫
x

exp

− ξ∫
x

h ·uz(y)

u1(y)
dy

g(ξ)χ(ξ)dξ, 0≤ x < x∗,

ψ(x) = 0, x∗ < x≤ L.

(C3)

In particular, if χ(x) = δ(x−x∗) then F = u1(x∗) or F = h(x∗) and the multiplier is

ψ(x) =− g(x∗)
u1(x)

exp

− x∗∫
x

h ·uz(y)

u1(y)
dy

 , 0≤ x < x∗, (C4)

which has a jump −g(x∗)/u1(x∗) at x∗.

Appendix D: Simplified SSA equations10

The forward and adjoint SSA equations in (11) and (39) are solved analytically. The conclusion from the thickness equation in

(11) is that

u(x)H(x) = u(0)H(0) + ax= ax, (D1)

since u(0) = 0. Solve the second equation in (11) for u on the bedrock with x≤ xGL and insert into (D1) using the assumptions

for x > 0 that bx�Hx and hx ≈Hx to have15

ρg

C
Hm+1Hx =

ρg

C(m+ 2)
(Hm+2)x =−(ax)m. (D2)

The equation for Hm+2 for x≤ xGL is integrated from x to xGL such that

H(x) =

(
Hm+2
GL +

m+ 2

m+ 1

Cam

ρg
(xm+1
GL −xm+1)

) 1
m+2

,

u(x) =
ax

H
, Hx =−Ca

m

ρg

xm

Hm+1
.

(D3)

For the floating ice at x > xGL, ρgHhx = 0 implying that hx = 0 and Hx = 0. Hence, H(x) =HGL. The velocity increases

linearly beyond the grounding line20

u(x) = ax/H(x) = ax/HGL, x > xGL. (D4)

By including the viscosity term in (10) and assuming that H(x) is linear in x, a more accurate formula is obtained for u(x) on

the floating ice in (6.77) of Greve and Blatter (2009).
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Appendix E: Jumps in ψ and v in SSA

Multiply the first equation in (39) by H and the second equation by u to eliminate ψx. We get

−Cmumv− ρgH2vx =HFh−uFu. (E1)

Use the expression for u and Hx in (D3). Then

ρgH(mHxv−Hvx) =HFh−uFu, (E2)5

or equivalently( v

Hm

)
x

=− 1

ρgHm+2
(HFh−uFu). (E3)

The solutions ψ(x) and v(x) of the adjoint SSA equation (36) have jumps at the observation point x∗. For x close to x∗ in a

short interval [x−∗ ,x
+
∗ ] with x−∗ < x∗ < x+

∗ , integrate (E3) to receive

x+
∗∫

x−
∗

( v

Hm

)
x

dx=−
x+
∗∫

x−
∗

HFh−uFu
ρgHm+2

dx. (E4)10

Since H is continuous and u and v are bounded, when x−∗ → x+
∗ , then

v(x+
∗ )− v(x−∗ ) =− 1

ρgH2∗

H∗ x
+
∗∫

x−
∗

Fh dx−u∗
x+
∗∫

x−
∗

Fu dx

 . (E5)

A similar relation for ψ can be derived

ψ(x+
∗ )−ψ(x−∗ ) =

1

H∗

x+
∗∫

x−
∗

Fu dx. (E6)

With Fu = 0 and Fh = 0 for x < x∗ and v(0) = ψx(0) = 0, we find that15

v(x) = ψx(x) = 0, ψ(x) = ψ(x−∗ ), 0≤ x < x∗. (E7)

If F (u,h) = uδ(x−x∗), then by (E5) and (E6)

v(x+
∗ ) =

u∗
ρgH2∗

, ψ(x+
∗ )−ψ(x−∗ ) =

1

H∗
, (E8)

and if F (u,h) = hδ(x−x∗), then

v(x+
∗ ) =− 1

ρgH∗
, ψ(x+

∗ )−ψ(x−∗ ) = 0. (E9)20
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Appendix F: Analytical solutions in SSA

By Appendix E, v(x) = 0 for 0≤ x < x∗. Use equations in (39) with Hx in (D3) for x∗ < x≤ xGL to have

vx
v

=−axCmu
m−1

ρgH3
=−Cmu

m

ρgH2
=
mHx

H
.

LetH(x−x∗) =
∫ x−x∗
−∞ δ(s)ds be the Heaviside step function at x∗. Then

v(x) = CvH(x)mH(x−x∗), 0≤ x≤ xGL. (F1)5

To satisfy the jump condition in (E8) and (E9), the constant Cv is

Cv =


ax∗

ρgHm+3
∗

, F (u,h) = uδ(x−x∗),

− 1

ρgHm+1
∗

, F (u,h) = hδ(x−x∗).
(F2)

Combine (F1) with the relation ψx = (Fu−Cmum−1v)/H and integrate from x to xGL to obtain

ψ(x) = Cva
m−1C (xmGL−xm) , x∗ < x≤ xGL. (F3)

With the jump condition in (E8) and (E9), ψ(x) at 0≤ x < x∗ is10

ψ(x) =


− 1

H∗
+

Camx∗
ρgHm+3

∗
(xmGL−xm∗ ), F (u,h) = uδ(x−x∗),

− Cam−1

ρgHm+1
∗

(xmGL−xm∗ ), F (u,h) = hδ(x−x∗).
(F4)

The weight for δC in the functional δL in (37) is non-zero for x∗ < x≤ xGL

−vum =−Cv(ax)m. (F5)

Use (F1) and (39) in (37) to determine the weight for δb in δL,

ψxu+ vxηux + vρghx = ρg(Hv)x+Fh

= CvρgH
m [(m+ 1)HxH(x−x∗) +Hδ(x−x∗)] +Fh.

(F6)15
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