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Abstract. Predictions of future mass loss from ice sheets are afflicted with uncertainty, caused, among others, by insufficient
understanding of spatio-temporally variable processes at the inaccessible base of ice sheets for which few direct observa-
tions exist and of which basal friction is a prime example. Here, we use an inverse modeling approach and the associated
time-dependent adjoint equations, derived in the framework of a Full Stokes model and a Shallow Shelf/Shelfy Stream Ap-
proximation model, respectively, to determine the sensitivity of ice sheet surface velocities and elevation to perturbations in
basal friction and basal topography. Analytical and numerical examples are presented showing the importance of including the
time dependent kinematic free surface equation for the elevation and its adjoint, in particular for observations of the elevation.
A closed form of the analytical solutions to the adjoint equations is given for a two dimensional vertical ice in steady state
under the Shallow Shelf Approximation. There is a delay in time between a perturbation at the ice base and the observation
of the change in elevation. A perturbation at the base in the topography has a direct effect in space at the surface above the
perturbation and a perturbation in the friction is propagated directly to the surface in time. Perturbations with long wavelength

and low frequency will propagate to the surface while those of short wavelength and high frequency are damped.

1 Introduction

Over the last decades, ice sheets and glaciers have experienced mass loss due to global warming, both in the polar regions,
but also outside of Greenland and Antarctica (Farinotti et al., 2015; Mouginot et al., 2019; Portner et al., 2019; Rignot et al.,
2019). The most common benchmark date for which future ice sheet and glacier mass loss and associated global mean sea
level rise is predicted is the year 2100 AD, but recently, even the year 2300 AD and beyond are considered (Portner et al.,
2019; Steffen et al., 2018). Global mean sea level rise is predicted to continue well beyond 2100 AD in the warming scenarios
typically referred to as RCPs’ (Representative Concentration Pathways, see van Vuuren et al. (2011)), but rates and ranges
are afflicted with uncertainty, caused by, among others, insufficient understanding of spatio-temporally variable processes at
the inaccessible base of ice sheets and glaciers (Portner et al., 2019; Ritz et al., 2015). These include the geothermal heat

regime, subglacial and base-proximal englacial hydrology, and particularly, the sliding of ice sheet and glaciers across their
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base, for which only few direct observations exist (Fisher et al., 2015; Key and Siegfried, 2017; Maier et al., 2019; Pattyn and
Morlighem, 2020).

In computational models of ice dynamics, the description of sliding processes, including their parametrization, plays a central
role, and can be treated in two fundamentally different ways, viz. using a so-called forward approach on the one hand, or an
inverse approach on the other hand. In a forward approach, an equation referred to as a sliding law is derived from a conceptual
friction model, and provides a boundary condition to the equations describing the dynamics of ice flow (in glaciology often
referred to as the Full Stokes (FS) model) and which, once solved, render e.g. ice velocities as part of the solution. Studies
of frictional models and resulting sliding laws for glacier and ice sheet flow emerged in the 1950s, see e.g. Fowler (2011);
Iken (1981); Lliboutry (1968); Nye (1969); Schoof (2005); Weertman (1957), and have subsequently been implemented into
numerical models of ice sheet and glacier behavior e.g. in Brondex et al. (2017, 2019); Gladstone et al. (2017); Tsai et al. (2015);
Wilkens et al. (2015); Yu et al. (2018), and continue to be discussed (Zoet and Iverson, 2020), occasionally controversially
(Minchew et al., 2019; Stearn and van der Veen, 2018).

Because little or no observational data is available to constrain the parameters in such sliding laws (Minchew et al., 2016;
Sergienko and Hindmarsh, 2013), actual values of the former, and their variation over time (Jay-Allemand et al., 2011; Schoof,
2010; Sole et al., 2011; Vallot et al., 2017), often remain elusive. Yet, they can be obtained computationally by solving an
inverse problem provided that observations of e.g. ice velocities at the ice surface, and elevation of the ice surface, are available
(Gillet-Chaulet et al., 2016; Isaac et al., 2015). Note that the same approach, here described for the case of the sliding law, can
be used to determine other "inaccessibles", such as optimal initial conditions for ice sheet modeling (Perego et al., 2014), the
sensitivity of melt rates beneath ice shelves in response to ocean circulation (Heimbach and Losch, 2012), the geothermal heat
flux at the ice base (Zhu et al., 2016), or to estimate basal topography beneath an ice sheet (Monnier and des Boscs, 2017; van
Pelt et al., 2013). The latter is not only difficult to separate from the determination of the sliding properties (Kyrke-Smith et al.,
2018; Thorsteinsson et al., 2003), but also has limitations related to the spatial resolution of surface data and/or measurement
errors, see Gudmundsson (2003, 2008); Gudmundsson and Raymond (2008).

Adopting an inverse approach, the strategy is to minimize an objective function describing the deviation of observed target
quantities (such as the ice velocity) from their counterparts as predicted following a forward approach when a selected param-
eter in the forward model (such as the friction parameter in the sliding law) is varied. The gradient of the objective function
is computed by solving the so-called adjoint equations to the forward equations, where the latter often are slightly simplified,
such as e.g. by assuming a constant ice thickness or a constant viscosity (MacAyeal, 1993; Petra et al., 2012). However, when
inferring friction parameter(s) in a sliding law using an inverse approach, recent work (Goldberg et al., 2015; Jay-Allemand
et al., 2011) has shown that it is not sufficient to consider the time-independent (steady state) adjoint to the momentum balance
in the FS model. Rather, it is necessary to include the time-dependent advection equation for the ice surface elevation in the
inversion. Likewise, but perhaps more intuitively understandable, the choice of the underlying glaciological model (FS model,
vs. e.g. Shallow shelf/stream approximation (SSA) model, see Sect. 2), has an impact on the values of the friction parameters

obtained from the solution of the corresponding inverse problem (Gudmundsson, 2008; Schannwell et al., 2019).
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Here, we present an analysis of the sensitivity of the velocity field and the elevation of the surface of a dynamic ice sheet
(modelled by both FS and SSA, respectively, briefly described in Sect. 2) to perturbations in the sliding parameters contained
in Weertman’s law (Weertman, 1957) and the topography at the ice base. The perturbations in a velocity component or the ice
surface elevation at a certain location and time are determined by the solutions to the forward equations and the associated
adjoint equations. A certain type of perturbation at the base may cause a very small perturbation at the top of the ice. Such
a basal perturbation will be difficult to infer from surface observations in an inverse problem. High frequency perturbations
in space and time are examples when little is propagated to the surface. This is also the conclusion in Gudmundsson and
Raymond (2008), derived from an analysis differing from the one presented here. The adjoint problem that is solved here
to determine this sensitivity (Sect. 3) goes beyond similar earlier works by MacAyeal (1993); Petra et al. (2012) because
it includes the time-dependent advection equation for the kinematic free surface. The key concepts and steps introduced in
Sect. 3 are supplemented by detailed derivations, collected in Appendix A. The same adjoint equations are applicable in the
inverse problem to compute the gradient of the objective function and to quantify the uncertainty in the surface velocity and
elevation due to uncertainties at the ice base. Examples of uncertainties are measurement errors in the basal topography and
unknown variations in the parameters in the friction model. Analytical solutions in two dimensions of the stationary adjoint
equations subjected to simplifying assumptions are presented, from which the dependence of the parameters, on e.g. friction
coefficients and bedrock topography, becomes obvious. The time dependent adjoint equations are solved numerically, and the
sensitivity to perturbations varying in time is investigated and illustrated.

The sensitivity of the surface velocity and elevation to perturbations in the friction and topography is quantified in extensive
numerical computations in a companion paper (Cheng and Lotstedt, 2020). The adjoint equations derived and studied analyt-
ically in this paper are solved numerically for the FS and SSA models in Cheng and Lotstedt (2020) and compared to direct
calculations of the surface perturbations with the forward equations. Discrete transfer functions are computed and analyzed as
in Gudmundsson (2008) for the relation between surface perturbations and basal perturbations. While Gudmundsson’s analysis

is based on Fourier analysis, the analysis in Cheng and Lotstedt (2020) relies on analytical solutions of the SSA equations.

2 Ice models

In this section, the equations emerging from adopting a forward approach of describing ice dynamics are presented, together
with relevant boundary conditions, for the FS (4) and SSA model (8), respectively. These, and the notation and terminology
introduced here, provide the framework in which the adjoint equations are discussed in Sect. 3.

The flow of large bodies of ice is described with the help of the conservation laws of mass, momentum and energy (Greve
and Blatter, 2009), which together pose a system of non-linear partial differential equations (PDEs) commonly referred to as
the FS equations in glaciological applications. In the FS equations, nonlinearity is introduced through the viscosity in Glen’s
flow law, a constitutive relation between strain rates and stresses (Glen, 1955). Continental sized ice masses (ice sheets, and,
if applicable, their floating extensions known as ice shelves), are shallow in the sense that their vertical extension V' is orders

of magnitudes smaller than their horizontal extension L, such that the aspect ratio V/L is in the order 102 to 10~3. The
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aspect ratio is used to introduce simplifications to the FS equations, resulting e.g. in the Shallow Ice (SIA) (Hutter, 1983),
Shallow Shelf (Morland, 1987), and Shelfy Stream (MacAyeal, 1989) Approximations, parts of which can be coupled to FS
using the ISCAL framework (Ahlkrona et al., 2016). They are all characterized by substantially reduced computational costs
for numerical simulation, compared to using the FS model. A common simplification, also adopted in our analysis in the
following, is the assumption of isothermal conditions, which implies that the balance of energy need not be considered.

The upper surface of the ice mass, and also the ice-ocean interface, constitute a moving boundary and satisfy an advection
equation describing the evolution of its elevation and location (in response to mass gain, mass loss, or/and mass advection). For
ice masses resting on bedrock or sediments, sliding needs to be parameterized at the interface. The interface between floating

ice shelves and sea water in the ice shelf cavities is usually regarded as frictionless.

2.1 Full Stokes model

h(z,y,t)

ocean

Figure 1. A schematic view of an ice sheet in the (a) x — z plane and (b) = — y plane.

We adopt standard notation and denote vectors and matrices in three-dimensional space by bold characters, and derivatives
with respect to the spatial coordinates and time by subscripts x,y,z and t. The horizontal plane is spanned by the x and
y coordinates, and z is the coordinate in the vertical direction, see Fig. 1(a). Specifically, we denote by w1, us, and ug the
velocity components of u = (uy,u2,u3)” in the z,y and z direction, where & = (z,v,2)7 is the position vector and 7" denotes
the transpose. Further, the elevation of the upper ice surface is denoted by h(x,y,t), the elevation of the bedrock and the
location of the base of the ice are b(x,y) and z,(x,y,t), and the ice thickness is H = h — z;,. Upstream of the grounding line,
YL, z» = band downstream of 5, we have z, > b, see Fig. 1. In two dimensions, ¢, consists of one point with z-coordinate
rarL-

The boundary I enclosing the domain {2 occupied by the ice has different parts, see Fig. 1(b). The lower boundaries of {2 are
denoted by I';, (where the ice is grounded at bedrock), and I',, (where the ice has lifted from the bedrock and is floating on the

ocean). These two regions are separated by the grounding line v, defined by (z¢r(y),y) based on the assumption that ice
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flow is mainly along the z-axis. The upper boundary is denoted by I'; (ice surface) at h(x,y,t) in Fig. 1(a). The footprint (or
projection) of €2 in the horizontal plane is denoted by w and its boundary is -.

The vertical lateral boundary (in the x — z plane, Fig. 1(b)) has an upstream part denoted by I';, in black and a downstream
part denoted by I'; in blue, where I' =T",, UT';. Obviously, if « € I',,, then (z,y) € 7, or if & € 'y, then (x,y) € v4 where
v = 7, Uyq. Letting n be the outward pointing normal on I' (or «y in two dimensions (z,y)), the nature of ice flow renders the
conditions n-u < 0 atT',, and n-u > 0 at 4. In a two dimensional vertical ice (Fig. 1(a)), this corresponds to « = (z, z)T, w=

[0,L], 74 = 0, and 74 = L where L is the horizontal length of the domain. In summary, the domains are defined as:

Q  ={z|(z,y) €w, zp(z,y,t) <z < h(z,y,t)},

Iy ={z|(z,y) ew, z=h(z,y,1)},

Iy ={z|(z,y) Ew, z=2z(z,y,t) =b(z,y), x <zcr(y)}, )
Iy ={z|(z,y) €w, z=2z(z,y,t),x>zcr(y)},

Ly ={zl(z,y) € Y, 2(x,y,) < 2 < h(z,y,1)},

Lo ={zl(2,9) € va, 20(2,9,t) < 2 < h(z,y,)}.

Before the forward FS equations for the evolution of the ice surface I' and the ice velocity in €2 can be given, further notation
needs to be introduced: ice density is denoted by p, accumulation and/or ablation rate on I'; by a, and gravitational acceleration
by g. The values of these physical parameters are given in Table 1. On I'y, h = (hy, hy, —1)7 describes the spatial gradient of
the ice surface (in two vertical dimensions h = (h,,—1)7). The strain rate D and the viscosity 7 are given by

D(u) = 4(Vu+ VuT), n(u) = $ A~ (rD?(u))”, v = 152 )

2n 7

where trD? is the trace of D?. The rate factor A in (2) depends on the temperature and Glen’s flow law determines n > 0, here

taken to be n = 3. The stress tensor is

where p is the isotropic pressure and I is the identity matrix.

Turning to the ice base, the basal stress on I' is related to the basal velocity using an empirical friction law. The friction
coefficient has a general form S(u,x,t) = C(x,t) f(u) where C(z,t) is independent of the velocity w and f(u) represents
some linear or nonlinear function of w. For instance, f(u) = ||u/™ ! with the norm |Ju| = (v -u)? introduces a Weertman
type friction law (Weertman, 1957) on w with a Weertman friction coefficient C'(x,t) > 0 and an exponent parameter m > 0.
Common choices of m are % and 1. Finally, a projection (Petra et al., 2012) on the tangential plane of I'; is denoted by

T =1 —n ®n where the Kronecker outer product between two vectors a and ¢ or two matrices A and C is defined by

(a®c)ij =aicj, (AR C)ijn = Ai;jChi.
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With these prerequisites at hand, the forward FS equations and the advection equation for the ice sheet’s elevation and velocity

for incompressible ice flow are

hi+h-u=a, onl'y, t>0,

hz,0) =ho(x), T €w, h(x,t)="hy(2,t), T €y,
—V-o(u,p)==V-(2n(u)D(u)) +Vp=pg, V- -u=0,inQ(),
on=0,only,

Ton=—-Cf(Tu)Tu, n-u=0,onTlYy,

“4)

on = —p,n, only,,

where p,, is the water pressure at I",,,, ho(x) > b(x) is the initial surface elevation and h (x,t) is a given height on the inflow

boundary. The boundary conditions for the velocity on I';, and I'; are of Dirichlet type such that
ulp, =uu, ulp, = ua, Q)

where u,, and u4 are known. These are general settings of the inflow and outflow boundaries which keep the formulation of the
adjoint equations as simple as in Petra et al. (2014). Should I",, be at the ice divide, the horizontal velocity is set to u|r, = 0.

The ice velocity at the calving front is defined as u4 to simplify the analysis. The vertical component of on vanishes on I',.
2.2 Shallow shelf approximation

The three dimensional FS problem (4) in €2 can be simplified to a two dimensional, horizontal problem with = (z,y) € w,
by adopting the SSA, in which only w = (u;,u2)T is considered. This is because the basal shear stress is negligibly small at
the base of the floating part of the ice mass, viz. the ice shelf, rendering the horizontal velocity components almost constant in
the z direction (Greve and Blatter, 2009; MacAyeal, 1989; Schoof, 2007). The SSA is often also used in regions of fast-flow
over lubricated bedrock (MacAyeal, 1989; Pattyn et al., 2012).

The simplifications associated with adopting the SSA imply that the viscosity (see (2) for the FS model) is now given by

1 1 | 1 v
n(u) = iA_% (u%w +u§y + i(uly + Uy )? +u1wu2y> = §A_% (2B : D) , (6)

where B(u) = D(u)+V-uIwith V-u = trD(w). This 7 differs from (2) because B # D due to the cryostatic approximation
of p in the SSA. In (6), the Frobenius inner product between two matrices A and C is used, defined by A: C =3, y A;;Cy;.
The vertically integrated stress tensor ¢(u) (cf. (3) for the FS model) is given by

s(u) =2HnB(u), )

where H is the ice thickness, see Fig. 1. The friction law in the SSA model is defined as in the FS case. Note that basal velocity
is replaced by the horizontal velocity. This is possible because vertical variations in the horizontal velocity are neglected in

SSA. Then, Weertman’s law is 3(u,x,t) = C(z,t) f(u) = C(z,t)||u|™ ! with a friction coefficient C(x,t) > 0, just as in
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the FS model. In summary, the forward equations describing the evolution of the ice surface and ice velocities based on an

SSA model (in which u is not divergence-free) read

hi+V-(uH)=a, t>0, x €w,

hz,0) =ho(x), c€w, h(x,t)=hy(2,1), T € V0,

V-s—Cf(u)u=pgHVh,  €w, 3
n-u(x,t) =uy(x,t),x € vy, n-u(z,t)=uq(x,t),z €4,

t-sn=—-C,f,(t-u)t-u,xecy,, t-sn=0,xcy,.

Above, t is the tangential vector on v =+, U~y such that n -t = 0. The inflow and outflow normal velocities u, < 0 and
uq > 0 are specified on v, and 4. The lateral side of the ice -y is split into 7, and y,, with v = «y, U~y,,. There is friction in the
tangential direction on 7y, which depends on the tangential velocity ¢ - u with the friction coefficient C', and friction function
f+- There is no friction on the wet boundary ,,.

For ice sheets that develop an ice shelf, the latter is assumed to be at hydrostatic equilibrium. In such a case, a calving front
boundary condition (Schoof, 2007; van der Veen, 1996) is applied at 74, in the form of the depth integrated stress balance (p.,
is the density of seawater)

1
<@04%=2mﬂﬂ<1—;7>n,w67w )

2.2.1 SSA in two dimensions

In this section, the SSA equations are presented for the case of an idealized, two-dimensional vertical sheet in the x-z plane,
see Fig. 1. The forward SSA equations are derived from (8) by letting H and u; be independent of y, and setting us = 0. Since
there is no lateral force, C., = 0. The position of the grounding line is denoted by zr, and I'y, = [0,z¢1], T'w = (zar, L].
Basal friction C' is positive and constant where the ice sheet is grounded on bedrock, while C' = 0 at the floating ice shelf’s

lower boundary. To simplify notation, we let © = u;. The forward equations thus become

hi+ wH)y=a, 0<t<T,0<zx<L,
h(z,0) = ho(x), h(0,t) = h(t),
(Hnua)e —Cf(uw)u—pgHhe =0,
u(0,t) = uy(t), u(L,t) = ua(t),

(10)

where u,, is the speed of the ice flux at x = 0 and u is the speed at the calving front at x = L. If x = 0 is at the ice divide, then

u,, = 0. By the stress balance (9), the calving front satisfies

mﬂﬂLihl_li)".

JL)=A
Uy (L, t) 1 .

1-n
Assuming that « > 0 and u, > 0, the viscosity becomes n = 2A~ wuy" ,and the friction term with a Weertman law turns into
Cf(uw)u=Cu™.
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2.2.2 The two-dimensional forward steady state solution

We turn now to a discussion of steady-state solutions to the system (10). Except from letting all time derivatives vanish, even the
longitudinal stress can be ignored in the steady state solution, see Schoof (2007). With a sliding law in the form f(u) = u™ !

and the thickness given at x g1, (10) thus reduces to

(uH)y =a,0<z <zqgr,

H(zgr) = Hgr, (11
—Cu™ —pgHh, =0,
u(0) =0.

The solution to the forward equation (11) is derived for the case when a and C' are constant, (for details, see (D3) and (D4) in

Appendix D):

1
m+2Ca™ mz
H@) = (Hg e PO gt e )) ™ 0 < v,

H(z) =Hgr, zgrL <z <L,

u(z) :%,ngngL, u(z)

(12)
ax

=—— 2z <z <L.
HGL’ GL

The solution is calibrated with the ice thickness Hg, = H(z¢ ) at the grounding line. Similar equations to those in (11) are
derived in Nye (1959) using the properties of large ice sheets. A formula for H () resembling (12) and involving H(0) is
the solution of the equations. By including the longitudinal stress in the ice, an approximate, more complicated expression for
H(z) is obtained in Weertman (1961).

Figure 2 displays solutions from (12) obtained with data from the MISMIP (Pattyn et al., 2012) test case EXP 1 chosen in Cheng
and Lotstedt (2020). The modeling parameters in (12) are given in Table 1. The ice sheet flows from z = 0to L = 1.6 x 10° m

on a single slope bed defined by b(x) = 720 — ;gi‘fgs and lifts from it at the grounding line position zgz = 1.035 x 10°m. As

x approaches zr, H decreases to approach to Hgy, in Fig. 2(b).

Parameter Quantity

b Surface mass balance

a=0.3myear”
A=138x10"* g pa~3 Rate factor of Glen’s flow law

C =17.624x10° Pam~'/3s'/3  Basal friction coefficient

g=98ms"? Acceleration of gravity
m=1/3 Friction law exponent
n=23 Flow-law exponent

p =900 kg m~3 Ice density

Table 1. The model parameters.
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The larger the friction coefficient C' and accumulation rate a are, the steeper the decrease in H is in (12). The numerator in
u increases and the denominator decreases when z — ¢y, resulting in a rapid increase in u. The MISMIP example is such
that the SSA solution is close to the FS solution. Numerical experiments in Cheng and Létstedt (2020) show that an accurate
solution compared to the FS and SSA solutions is obtained with u and H in (12) solving (11).

Finally, it is noted that an alternative solution to (10) valid for the floating ice shelf, x > zs, but under the restraining

assumption of H () being linear in z, is found in Greve and Blatter (2009).

x 103 x 103
1.0F b
T —
> E
E 0or =
3
0.0 L L L 1 L]
0.0 0.2 0.4 0.6 0.8 1.0
z (m) x10° x (m) x 106
(a) (b

Figure 2. The analytical solutions u(z) and H(z) in (12) for a grounded ice in [0,zG L ].

3 Adjoint equations

In this section, the adjoint equations are discussed, as emerging in a FS framework (Sect. 3.1) and in a SSA framework
(Sect. 3.2), respectively. The adjoint equations follow from the Lagrangian based on the forward equations after partial inte-
gration. Lengthy derivations have been moved to Appendix A. A numerical example, based on the Marine Ice Sheet Model
Intercomparison Project (MISMIP) (Pattyn et al., 2012) used also in Cheng and Létstedt (2020) illustrates the findings pre-
sented.

On the ice surface I'; and over the time interval [0,7'], we consider the functional F

T
]—'://F(u,h)dmdt. (13)
or

We wish to determine its sensitivity to perturbations in both the friction coefficient C'(x,t) at the base of the ice, and the
topography of the base itself b(x), which is a smooth function in . We distinguish two cases: either u and h satisfy the FS
equations (4), or the SSA equations (8). Given F, the forward solution (u,p,h) to (4) or (u,h) to (8), and the adjoint solution
(v,q,%) or (v,%) to the adjoint FS and adjoint SSA equations (both derived in the following and in Appendix A), we introduce
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a Lagrangian £(u,p, h;v,q,1;b,C). The Lagrangian for the FS equations is

T
L(u,p,h;v,q,9;C) = / F(u,h)+¢(hi +h-u—a)dzdt
oL (14)

T h
///—v-(V-a’(u,p))—pg-v—qv-udwdt
0 w b

with the Lagrange multipliers v, g, and ¢ corresponding to the forward equations for w, p, and h. The effect of perturbations

_|_

0C and 6bin C and b on F is given by the perturbation 0 L, viz.
O0F =0L = L(u+du,p+dp,h+dh;v+dv,q+ 5q,¢ + ;b + 6b,C 4+ 6C) — L(u,p, h;v,q,9;b,C). (15)

Examples of F'(u,h) in (13) are F' = ||u—Uobs||?, and F' = |h — hops|? in an inverse problem, in which the task is to find b and
C such that they match observations u.s and hqps at the surface Iy, see also Gillet-Chaulet et al. (2016); Isaac et al. (2015);
Morlighem et al. (2013); Petra et al. (2012). Another example is F'(u,h) = Luy(x,t)d(x — x.) with the Dirac delta § at x,

to measure the time averaged horizontal velocity u; at x, on the ice surface I's with

T
]:://F(u,h)da:dt:
0T,

where T is the duration of the observation at I';. If the horizontal velocity is observed at (z.,t,) then F/(u,h) = u; (2,t)d(x —
x,)o(t —t,) and

Nl

T
/M@MML (16)
0

T
F://Hmmmmzm@mQ (17)
or

The sensitivity in F and u; in (16) or (17) to perturbations in C' and b is then given by (15) with the forward and adjoint
solutions.

The same forward and adjoint equations are solved both for the inverse problem and the sensitivity problem but with different
forcing function F' in (13). If we are interested in how u; changes at the surface when b and C' are changed at the base by
given 6b and §C, then F is as in (17). The forward and adjoint equations are then solved once. In the inverse problem with
velocity observations, JF is the objective function in a minimization procedure and F' = ||u — uops||?. The change 6.F in F is
of interest when C' and b are changed during the solution procedure. In order to minimize F, C and b are chosen such that
0F < 0 and F decreases with C' 4 6C and b+ b and w is closer to ueps. Precisely how dC and 0b are chosen depends on the
optimization algorithm. This procedure is repeated iteratively and b and C are updated by b+ db and C' + §C until 6 F — 0 and

F has reached a minimum. The forward and adjoint equations have to be solved in each iteration in the inverse problem.

10
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3.1 Adjoint equations based on the FS model

In this section, we introduce the adjoint equations and the perturbation of the Lagrangian function. The detailed derivations
of (18) and (21) below are given in Appendix A, starting from the weak form of the FS equations (4) on {2, and by using
integration by parts, and applying boundary conditions as in Martin and Monnier (2014); Petra et al. (2012).

The definition of the Lagrangian L for the FS equations is given in (14) and (A15) in Appendix A. To determine (v, q,), the

following adjoint problem is solved:

U+ Ve (up) —h-up=Fp+Fy-u., only, 0<t<T,
Y(x,T) =0, ¥(x,t) =0, on Ty,
—V-6(v,q)=-V-20(u)*D(v))+V¢g=0, V-v=0,inQ(t),
o(v,q)n=—(Fy+vh), onTy,

To(v,q)n=—Cf(Tu) I+ Fp(Tu)) Tv, on Ty,

(18)

n-v=0,only,

where the derivatives of F' with respect to w and h are
. (W(’)F@F) 5 OF.
Ouy’ Oug’ Ous Oh

Note that (18) consists of equations for the adjoint elevation 1, the adjoint velocity v, and the adjoint pressure ¢g. The equations
are the same as when the derivatives are computed in the inverse problem except for the terms depending on F', which is the
misfit between the numerical solution and the observation in the inverse problem. Compared to the steady state adjoint equation
for the FS equations discussed in Petra et al. (2012), an advection equation is added in (18) for the Lagrange multiplier ¢ (x, t)
on I'y with a right hand side depending on the observation function F' and one term depending on ) in the boundary condition
on I',. The adjoint elevation equation for 1) can be solved independently of the adjoint stress equation since it is independent of
v. If h is observed and F}, # 0 and F,, = 0, then the adjoint elevation equation must be solved together with the adjoint stress
equation. Otherwise, the term th is ignored in the right hand side of the boundary condition of the adjoint stress equation and
the solution is v = 0 with 6 F = 0 in (21), see below.

The adjoint viscosity and adjoint stress are

(W) =n(w) (T+ 5t D(w) @ D(w)),
&(v,q) = 2i(u)*D(w) - dI,

19)

cf. also Petra et al. (2012). For the rank four-tensor Z, Z;;z,; = 1 only when ¢ = j = k = [, otherwise Z;;3; = 0. The % operation
in (19) between a rank four-tensor .4 and a rank two-tensor (viz., a matrix) C is defined by (AxC);; = Ekl Al Cri. In
general, F(Tu) in (18) is a linearization of the friction law f(Twu) in (4) with respect to the variable Tu. For instance, with
a Weertman type friction law, f(Tu) = | Tu|™ 1,

m—1

Bo(Tw) = 5 T

(Tu) @ (Tu). (20)
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The perturbation of the Lagrangian function with respect to a perturbation §C in the slip coefficient C(x,t) involves the

tangential components of the forward and adjoint velocities, Tu and Twv at the ice base I'y, and is given by:

T
0F =0L = //f(Tu)Tu -Tv 6C dxdt. 21

0 Iy

For this formula to be accurate, §C' has to be small. Otherwise, nonlinear effects may be of importance.
3.1.1 Time-dependent perturbations

Let us now investigate the effect of time-dependent perturbations in the friction parameter on modelled ice velocities and ice
surface elevation. Suppose that the velocity component w1, = u (€, ¢ ) is observed at (x.,t,) at the ice surface as in (17) and

that t,. < T, then
T

Ul = F = //F(u)d;cdt, (22)
0r

with F(u) = u16(x — x4)0(t — ts), Fu, = 0(x —x,)6(t —ts), Fu, = Fuy =0, Fy, = 0. Above, we have introduced the sim-
plifying notation that a variable with subscript * is a short-hand for it being evaluated at (., t, ), or, if it is time independent, at
x,. Here we have chosen to consider the perturbation at a certain point in space and time (., ¢, ), which is sufficient because
other types of sensitivity over a certain period of time and space as in (16) are the linear combination of point-wise sensitivities.
The procedure to determine the sensitivity is as follows. First, the forward equation (4) is solved for u(x,t) from ¢t =0 to
t = T. Then, the adjoint equation (18) is solved backward in time (from ¢ = T to t = 0) with ¢)(x,T) = 0 as the corresponding
final condition. Obviously, the solution for ¢, < ¢t < T is ¢(x,t) = 0 and v(x,t) = 0. Letting e’ denote the unit vector with 1
in the i:th component, the boundary condition in (18) becomes & (v,q)n = —e'd(x — x.)5(t —t.) —Yh att =t,. For t < t,,
&(v,q)n = —h. Since v is small for ¢ < ¢, (see Sect. 3.1.4), the dominant part of the solution is v(x,t) = vo(x)d(t — t.)
for some vg.

We start by investigating the response of ice velocities to perturbations in friction at the base: When the slip coefficient at the

ice base is changed by dC, then the change in u1, at I'; is, according to (21), given by

T
5u1*:6[:://f(Tu)Tu-T'véCda:dt%/f(Tu)Tu~Tv050(:c,t*)d:c. (23)
Iy

0Ty

This implies that the perturbation du1, mainly depends on §C at time ¢, and that contributions from previous §C(x,t), t < .,
are small. If we observe the horizontal velocity, then it responds instantaneously in time to the change in basal friction.

Further, to investigate the response of the ice surface elevation, h, at I', to perturbations in basal friction, one considers
F(h)=h(x,t)d0(x —x.)0(t —t.), Fp =0(x —x.)0(t —ts), Fou = 0.

The solution of the adjoint equation (18) with & (v,q)n = —yh at T'; for v(a,t) is non-zero since ¢ (x,t) # 0 for ¢ < t,.
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In applied scenarios, friction at the base of an ice sheet is expected to exhibit seasonal variations. These can be expressed by
0C (x,t) = §Cy(x) cos(2nt/T), viz. a time dependent perturbation added to a stationary time average C(x), with 0 < §Cy <
C. If, for illustrational purposes, 7 =1 (so, one year, from January to December), then Northern hemisphere cold and warm
seasons can in a simplified manner be associated with n7, n =0,1,2,... (winter) and (n+1/2)7,n =0,1,2,.... (summer).

Assume further that f(Tw)Tw- Tv is approximately constant in time. This is the case if u varies slowly in time. Then

1) & const and v = const for ¢ < t,. The change in ice surface elevation, dh, due to time-dependent variations in basal friction

varies as
T t.
Oh :5£://f(Tu)Tu~T'v50(:c,t)d:cdtzj/cos(27rt/r)dt:jQLsin(%’t*/T), 24
T
0Ty 0
where
j:/f(Tu)Tu-TvéC’odm. (25)
Iy

Obviously, from the properties of the cosine function, the friction perturbation 6C' is large at t, = 0,7/2,7 ..., and vanishes
at t, =7/4,37/4,.... Yet, (24) shows that 6h, =0 at t, =0,7... (so, during maximal friction in the winter) and at ¢, =
7/2,37/2... (s0, during minimal friction in the summer), while 6/, # 0 when 6C' =0 at t, = 7/4,37/4,... in the spring and
the fall. The response in h by changing C' is delayed in phase by /2 or in time by 7/4 = 0.25 yr. This is in contrast to the
observation of u; in (23) where a perturbation in C'is directly visible.

Particularly in an inverse problem where the phase shift between §C' and éh in (24) is not accounted for, if h, is measured in
the summer with dh(x,t.) = 0, then the wrong conclusion would be drawn that there is no change in C.

In another example, suppose that there is an interval with a step change of C' with 6C(x,t) = 6Co(x)s(t) where s(t) =1 in
the time interval [t,¢;] and O otherwise. Then with 7 in (25), §h, in (24) is

T 0, t* Sth
5h*zj/s(t)dt: T (te —t0), to<t.<ty,
0 j(tl—to), te >1t1.

The effect of the basal perturbation successively increases in the elevation when ¢, > ¢( and stays at a higher level for ¢, > ¢;.
3.1.2 [Example with seasonal variation

To illustrate the phase delay in an oscillatory perturbation, a two-dimensional numerical example is shown in Fig. 3, where the
time scale and friction coefficient are chosen as follows: 7 = 1yr, §C(z,t) = 0.01C cos(27t) in z € [0.9,1.0] x 105m. We reuse
the MISMIP (Pattyn et al., 2012) test case EXP 1 as in Sect. 2.2.2. The parameters of the setup are the same as in Fig. 2 and
are given in Table 1. The variables u; and h are observed at x € [0.85,1.02] x 10°m. The steady state solution of the forward

equation with the GL located at z¢7, = 1.035 x 10%m is perturbed by du; and 5k when C is perturbed by §C' as expressed in

13
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formulas du; = u1 (C +0C) —uy(C) and §h = h(C + 6C') — h(C). After perturbation, the GL position will oscillate in time.
The ice sheet is simulated by FS with Elmer/Ice (Gagliardini et al., 2013) for 10 years.

Fig. 3 shows that the perturbations du; and éh in the grounded part of the ice sheet, specifically at z, = 0.85,0.9,0.95,1.0,
and 1.02 x 10° m for which individual panels are shown, oscillate regularly with a period of 1 year. The perturbations are small
outside the interval [0.9,1.0] x 10°. The initial condition at ¢ = 0 is the steady state solution of the MISMIP problem and the
FS solution with a variable C' is essentially that steady state solution plus a small oscillatory perturbation, as in Fig. 3.

The weight f(Twu)Tu - Tvg in (23) is negative and an increase in the friction, §C > 0, leads to a decrease in the velocity and
0C < 0 increases the velocity in all panels of Fig. 3. The velocities du; and the surface elevations dh are separated by a phase
shift in time, A¢ = 7/2, as predicted by (23) and (24).

The weight in (24) for §Cj in the integral over = changes sign when the observation point is passing from z, = 0.9 x 10° to

1.0 x 106 explaining why the shift changes sign in the red dashed lines shown in the two lower panels of Fig. 3.

6Co
S :
< ,500 1 1 1 1

1to(yr)

Figure 3. Observations at ., = 0.85,0.9,0.95,1.0,1.02 x 10 m with FS in time ¢t € [0,10] of du1 (solid blue) and §h (dashed red) with
perturbation 6C () = 0.01C cos(2t) for z € [0.9,1.0] x 10° m. Notice the different scales on the y-axes.
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3.1.3 The sensitivity problem and the inverse problem

From a theoretical point of view, it is interesting to note that there is a relation between the sensitivity problem where the effect
of perturbed parameters in the forward model is estimated and the inverse problem used to infer ‘unobservable’ parameters
such as basal friction from observable data, e.g. ice velocity at the ice sheet surface. The same adjoint equations (18) are solved
in both problems but with different driving functions defined by F'(w,h) in (13).

Let (vi,q%,9?),i=1,...,d, be the steady state solution to (18) when wu; is observed at & and F,, = e'5(x — &). These are
solutions to the sensitivity problem. We will show that the adjoint solution and the variation . F of the inverse problem can be
expressed in (v?,¢,1%). The perturbations §b and 5C' are chosen such that §F < 0 in each step in the iterative solution of the
inverse problem. Then the objective function F decreases stepwise toward the minimum..

It is shown in Appendix B that

/Zwl Ju 4z /Zwl Z)q ‘Az /sz de

is a solution of (18) with arbitrary weights w;(Z),i=1,...,d, when

d d
F, = /Zwi(fc)eié(w —z)dz = Zwi(:ﬁ)ei. (26)
w =1 i=1

When C' is perturbed, the first variation of the functional in (21) is

6F = /f (Tu)Tu-T /sz vidz | 6C da. 27

In the inverse problem in Petra et al. (2012),

/||u (@) 2T, Fa = () — tops(). (28)

The weights in (26) for the inverse problem are w;(x) = u; () — Uobs,i(x). Let ¥ denote a weighted sum of the solutions of

the sensitivity problem v* over the whole domain w

d
z) = / S (s(®) — o (2))0" d. (29)

w =

Then the effect of C' on F in the inverse problem is by (27)

5.7-":/f(Tu)Tu~Tf)(a:)5C’dm. (30)

The same construction of the solution is possible when hgps is given. Then d =1, F(h) = %(h — hobs)?, and Fy, = w =

h— hobs~
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We have investigated the relation between the sensitivity problem and the inverse problem. By solving d sensitivity problems
with F,, = e'd(x — &),i=1,...,d, to obtain their adjoint solutions (v?,¢*,1)*) and combine them with the weights w; from
F,, in (28) for the inverse problem, the adjoint solution to the inverse problem is (29). This solution can then be inserted into
(27) to evaluate the effect in F of a change in C as in (30). In practice, if we are interested in solving the inverse problem and
determine §.F in (27) in order to iteratively compute the optimal solution with a gradient method, then we solve (18) directly
with Fy, = % — Ugps Of Fy, = h — hgps to obtain & without computing d vectors v®. Taking 6C = — f(Tu)Tw - T in (30)
guarantees that . F < 0.

3.1.4 Steady state solution to the adjoint elevation equation in two dimensions

A further theoretical consideration shows that the solution v to the adjoint elevation equation need not be computed to estimate
perturbations in the velocity for a two-dimensional vertical ice sheet at steady state. We show with the analytical solution in
the FS model that the influence of ¢/ is negligible. It is sufficient to solve the adjoint stress equation for v to estimate the
perturbation in the velocity.

The adjoint steady state equation in a two dimensional vertical ice in (18) is
(1) =Fr+ (Ao + Fy) u,, z2=h, 0<x < L. (3D

The velocity from the forward equation is u(z, z) = (u1,u3)? and the adjoint elevation ¢ satisfies the right boundary condition
(L) =0,

The analytical solution ¢ to (31) is derived in Appendix C. Let g(x) = u1.(z) if uy is observed and let g(z) =1 if h is
observed. Then the adjoint solution is

T

Cg@) o [heua(y)
=9 m@ / v

07 x*<$§L

, 0<x <y,
u1(y) (32)

x

So, this solution has a jump —g(z.)/u1 () at x..

With a small h - u,(y) =~ 0 in (32), an approximate solution is ¢(x) ~ —g(z.)/ui(z). If u; is observed and g(x) = u;, ~ 0,
then ¢ (x) ~ 0 in (32) and vh ~ 0 in (18). This is the case in the SSA of the FS model where u;,(z) = 0 and in the SIA of
the FS equations where u1 . (2, h) = 0 (Greve and Blatter, 2009; Hutter, 1983). When these approximations are accurate then
u1, will be small. Consequently, when wu; is observed, the effect on v in the adjoint stress equation of the solution % of the
adjoint advection equation in (18) is small. Solving only the adjoint stress equation for v as in Gillet-Chaulet et al. (2016); Isaac
et al. (2015); Petra et al. (2012) yields an adequate answer. Numerical solution in Cheng and Lotstedt (2020) of the adjoint FS
equation (18) in two dimensions confirms that when w4 is observed then ¢ (z) is negligible. The situation is different when h
is observed and v ~ 1/uq () in (32).

16



10

15

20

25

3.2 Adjoint equations based on SSA

Starting from (8), a Lagrangian £ of the SSA equations is defined, using the technique described and applied to the FS equations
in Petra et al. (2012). The SSA Lagrangian in (A4) in Appendix A is similar to the FS Lagrangian in (14). By partial integration
in £ and evaluation at the forward solution (u, h), the adjoint SSA equations are obtained. Then, the effect of perturbed data
at the ice base manifests itself at the ice surface as a perturbation J £; for details, see Appendix A. The adjoint SSA equations

read:

Y+ u-Vio+2nB(u) : D(v) — pgHV - v+ pgv-Vb=Fp, inw, 0<t<T,
Y(x,T)=0, inw, P(x,t)=0, on "y,

V-Sw)-Cf(u)I+F,(uw)v—HVY=-F,, inw, (33)
t-&(v)n = —C, fy (£ u)(1+ F, (t-u)t-v, onyg, t-3(v)n =0, on 7,
n-v=0, onv,

where the adjoint viscosity 7) and adjoint stress ¢ are (cf. (19) for the case of FS)

) =n(w) (T+ stsim B @D@),
S(v) =2Hn(u)*xB(v).

(34)

From (33) it is seen that the adjoint SSA equations have the same structure as the adjoint FS equations (18). There is one stress
equation for the adjoint velocity v, and one equation for the Lagrange multiplier ¢ corresponding to the surface elevation
equation in (8). However, the advection equation for v in (33) depends on v, implying a fully coupled system for v and .
Equations (33) are solved backward in time with a final condition on v at t =T'. As in (8), there is no time derivative in the

stress equation. With a Weertman friction law, viz. f(u) = ||u|™ ! and f,(t-u) = [t - u|™ ! (cf. also Appendix Al),

-1
Fw(u)::ri.u u®u, F,=m-1L

If the friction coefficient C' at the ice base (both where it is grounded on bedrock (C' > 0) and floating (C' = 0)) is changed by
0C, if the bottom topography is changed by db, and if the lateral friction coefficient C., is changed by dC,,, then it follows from
Appendix A2 that the Lagrangian £ is changed by (note that the weight in front of §C in (35) is actually the same as in (21))

T T
oL = //(217B(u) :D(v) +pgv-Vh+Vi-u)db— f(u)u-véC dedi— //fw(t ~u)t-ut-voC,dsdt. (35)
0 w 0 g
The same perturbations in dC, b, and 6C., could be allowed for the FS equations in (21) but because the FS equations are
more complicated than the SSA equations, the complexity of the derivation in the appendix and the expression for 4 £ would
increase considerably, which is why we refrain from considering them here.
Suppose that only % is observed with F}, # 0 and F,, = 0 in (33). Then the adjoint elevation equation must be solved for ¢ # 0
to have a v # 0 in the adjoint stress equation and a perturbation in the Lagrangian in (35). The same result follows from

the adjoint FS equations. If Fj, # 0 and F;, = 0 in (18), then ) # 0. Consequently, v # 0 and a perturbation C will cause a
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perturbation £ in (21). The conclusion that the adjoint elevation equation must be solved if the surface elevation is observed
is independent of the two ice models.
In a broader context, it is worth emphasizing that the adjoint equation derived in MacAyeal (1993) is identical to the stress

equation in (33), if H is constant, F,, = 0 (e.g. m = 1), and (u) = n(u).
3.2.1 The two-dimensional adjoint solution

The 2D adjoint SSA equations are derived from (33) in the same manner as (10), by letting 1) and v; be independent of y, and
setting vo = 0 and C', = 0. To simplify the notation, we also let v = v;. The adjoint equations for v and 1) follow either from

simplifying (33), or from the Lagrangian and (10) and read as follows:

Uy + uthy + (Nug — pgH vy + pgbgv =Fp,, 0<t<T,0<z <L,
Y(x,T) =0, ¢(L,t) =0,

(LnHv,), — Cmf(u)v — Hp, = —F,,

v(0,t) =0, v(L,t) =0.

(36)

Note that the viscosity above is multiplied by a factor 1/n, n > 0 which represents an extension of the adjoint SSA in MacAyeal

(1993) where n = 1 implicitly. The effect on the Lagrangian of perturbations db and §C is obtained from (35)

T L
0L = / /(dJTu + VaNua +vpghy) 00— v f(u)udC drdt. 37)
00

The weights or sensitivity functions w;, and we multiplying 6b and JC in the integral are defined by
wy(z,1) = Ypu+venue +vpghs, we(z,t) =—vf(u)u. (33)

The steady-state solutions to the system (36) can be analyzed as in the forward equations in Sect. 2.2.2 after simplifications. The
viscosity terms in (36) are often small and can hence be neglected, and we assume that the basal topography is characterized by
a small spatial gradient b,.. The advantage resulting from these simplifications is that both the forward and adjoint equations can
be solved analytically on a reduced computational domain where x € [0, 2¢1]. The analytical approximations are less accurate

close to the ice divide where some of the above assumptions are not valid. The adjoint equations (36) reduce to

wpy — pgHvy = F, 0 <z <zgp,
¥:(0) =0, Y(zgr) =0,
—Cmu™ v — Hpy, = —F,,

v(0) = 0.

(39)

3.2.2 The two-dimensional adjoint steady state solution with velocity observation

In this section, the analytical solution to the adjoint equation (39) is discussed. The derivation of the solution is detailed in
Appendix E to Appendix F. It is here sufficient to recall that the below given solution is derived under the assumptions that

b, < H, and that ¢ and C are constants.
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For observations of v at x..,
L
F= /u(m)é(m—x*)dx:u*, F,=6(x—x.), Fr, =0,
0

the adjoint solutions are

CCLm.'I,‘* m
Y(x) = W (xgp —a™), x. <z < z@L,
1 : Cazy , ,, m
P(x) :*E+7ngnL+3 (xdp —xl'), 0 < <z, “0)
AT, -
v(x) H™" z, <zx<zqr,

 pgHIP
v(z) =0,0<z <z,

where 1 (z) and v(x) have discontinuities at the observation point z.. The perturbation of the Lagrangian (37) is with the

Heaviside step function #(z) and the Dirac delta §(z) (cf. Appendix F)

TGL TGL
ou, =0L= /wb(5b—|—wc§Cdx: /(wzu—l—vznum—I—vpghz)(;b—vuméCdx
0 0

TGL
ax H™ az,(azx)™
Cwdb, oue 5 6C
© O H.  pgHI''? Clae)™ ((m+ 1) + 7 ) d,
or, after scaling with u.:
bu, _0be 1 7LC(ax)m m+1)22 129 gz o))

T

The relation in (42) between the relative perturbations b/ H,6C'/C and du/u can also be interpreted as a way to quantify the
uncertainty in u. The uncertainty may be due to measurement errors in the topography b. For example, it is known that the true
surface is in an interval [b — §b,b+ 0b] around b where e.g., b = 1 m or 0b has a normal distribution with zero mean and some
variance. Such an uncertainty 60 in b or similarly an uncertainty dC'in C'is propagated to an uncertainty du. in u at x, by (42),
see Smith (2014).

The perturbations du;; at discrete points &, ; due to perturbations 6C; at discrete points ; are connected by a transfer matrix

W in Cheng and Lotstedt (2020). The relation between du;; and 6C); is for all 4 and j that

5U1i = ZWCU(SOJ"
J

The elements W, of the transfer matrix correspond to quadrature coefficients in the discretization of the first integral in

(41) with 6b = 0. The properties of W are examined numerically in Cheng and Lotstedt (2020). We conclude that certain
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perturbations of C' (not only highly oscillatory) are difficult to observe in u; at the surface. The same analysis is performed for
the other combinations of b, 6C' and duq,dh.

Finally, let us comment on other approaches to investigate the sensitivity of surface data to changes in b and C, e.g. using
three linear models as in Gudmundsson (2008) and along a flow line at steady state in Gudmundsson and Raymond (2008)
with a linearized FS model with n =1 and m = 1. In these papers, transfer functions for the perturbations from base to
surface corresponding to our formulas (41) and (42) are derived by Fourier and Laplace analysis. The perturbations with
long wavelength A and small wave number % are propagated to the surface but short wavelengths are effectively damped in
Gudmundsson (2008). The transfer functions are utilized in Gudmundsson and Raymond (2008) to estimate how well basal
data can be retrieved from surface data. Retrieval of basal slipperiness C' is possible for perturbations §C' of long wavelength
and if the errors in the basal topography b is small. Short wavelength perturbations §b can be determined from surface data.
The same conclusions as in Gudmundsson (2008) and Gudmundsson and Raymond (2008) can be drawn from our explicit
expressions for the dependence of du, and dh, on 6C and 6b. For example, it follows from (44) that only dC' with a long
wavelength is visible at the surface and that §b also with a short wavelength affects du, in (42). If 6b is small or zero in (42),
then it is easier to determine the §C' that causes a certain ..

The analytical adjoint solutions ) (z) and v(z) in (40) of the MISMIP case in Fig. 2 with parameters in Table 1 at different x.

positions are shown in Fig. 4(a) and Fig. 5(a).

2,=0.25x 108 2,=0.5x108
x10~% x1072

= = —050F -
ot 1 —0.75F -
—1.00f -
00 02 04 06 08 1.0 00 02 04 06 08 1.0
z (m) x10° z (m) x 100

(a) (b)

Figure 4. The analytical solutions of 1) in (39) of the observations of (a) v and (b) h at different locations x, = 0.25 X 10%,0.5%x105,0.7x 106
and 0.9 x 10° m.

The weights w;, and we in (41) multiplying b and dC, defined in the same manner as in (37) and (38), are shown in Fig. 6(a)
and Fig. 7(a) with the solutions ¥ and v in Fig. 4(a) and Fig. 5(a). The Dirac term is plotted as a vertical line at z, in Fig. 7(a).
All perturbations in C' between z, and xgr will result in a perturbation of the opposite sign in u, at the surface because

we < 01in (z4,z¢r) in Fig. 6(a) and (41). The same conclusion holds true for perturbations in b because wp < 0in (x4, 2cr)
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Figure 5. The analytical solutions of v in (39) of the observations of (a) u and (b) h at different locations x,. = 0.25 x 10%,0.5%x10%,0.7x 108
and 0.9 x 10° m.

in Fig. 7(a) but an additional contribution is added from db at z, by the Dirac delta in w;. A perturbation is less visible in u the

farther away from x4, the observation point is since the amplitude of both w¢ and wy, decays when z.. decreases.

2,=0.25%x 106 2,=0.5%x106 2,=0.7x106 2,=0.9%x108
107 106
0 >< O T T T = T |_ 8 >< 0 T T T T T
l\\n
6 - -
o 2T i ook _
P
! | ot —
1 1 1 1 1 0 1 1 1 1 1 ]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
z (m) x10° x (m) x 106
(a) (b)

Figure 6. The analytical solution of the weights we = —vu™ on 6C in (37) for (a) u and (b) h observed at ., = 0.25 x 105,0.5x 10°,0.7 x
10% and 0.9 x 10° m.

The following conclusions can be drawn from (41) and (42) and Figs. 6 and 7:

(1). The closer perturbations in basal friction are located to the grounding line, the larger perturbations of velocity will be
observed at the surface. This is because the weight in front of 6C' increases when x, — x ¢, see Fig. 6, which in turn is

an effect of the increasing velocity w, and the decreasing thickness H,, as the grounding line is approached, see Fig. 2.
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Figure 7. The analytical solution of weights wy = 10,1+ v2Nus +vpghs on b in (37) for (a) u and (b) h observed at z, = 0.25 x 10°,0.5 x
10%,0.7 x 10% and 0.9 x 10° m.
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Or, compactly expressed, 6C' with support in [z, 2] will cause larger perturbations at the surface the closer ., is to
xar, and the closer §C(x) is to zy,. The same conclusion is drawn in Cheng and Létstedt (2020) with numerically

computed SSA adjoint solutions.

Variations in the observed velocity du, at the surface at observation point z, will include contributions from changes in
the frictional parameter, §C, between z, and the grounding line x, and from changes in basal topography, b, but it is

impossible to disentangle their individual contributions to §u..

When the variation in ice thickness is small compared to the overall ice thickness, H,, < H, a small perturbation in basal
topography 6b is directly visible in the surface velocity. This is because in such a case, du, ~ u.db,/H, and the main

effect on u, from the perturbation b is localized at each z,, see (41).

For an unperturbed basal topography, two different perturbations of the friction coefficient will result in the same pertur-
bation of the velocity. In other words: the perturbation C cannot be uniquely determined by one observation of du. This
follows if we let the perturbation of the friction coefficient be a constant 6Cy # 0 in [xg,21] € [«,2¢L], and evaluate

the integral in (41) to obtain

Z1

U a™u
Sty = ————— [ (az)™6Codz = ——————— (™ — 2™ t150,. 43
g [ a0 e = - @)
Z
The same du. is observed with a constant perturbation in [x2, 3] € [, 7] with the amplitude 6Co ("' —x{ 1) /(2T —
m+1
x5 ).

A rapidly varying friction coefficient at the base of the ice sheet will be difficult to identify by observing the velocity at

the ice surface. In contrast, a smoothly varying friction coefficient at the base will be easily observable at the ice sheet
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3.2.3

surface. This is seen as follows: Perturb C' by dC = ecos(kxz/x 1) in (41) for some wave number & which determines the
smoothness of the friction at the bedrock and amplitude € and let 66 = 0 and m = 1. The wavelength of the perturbation
is A = 2wz /k. When k is small then the wavelength is long and the variation of C'+ 6C' is smooth. When £ is large
then the friction coefficient varies rapidly in x with a short A. The perturbation in the velocity is

TGr

2 . ]f
Oy 2—/6a24xcos(x) dz
g P11 TGL (44)

a’r. 7% ( Ty (kx*) 1 ( (km)))
—€ —== | sin(k) — sin| — | + — [ cos(k) — cos .
pgH} k ) zTGr TGL k ) Tqr

For a thin ice with a small H,, a perturbation in C' is easier to observe at the surface than for a thick ice. When k& grows

at the ice base, the amplitude of the perturbation at the ice surface decays as 1/k. Thus, the effect of high wave number
perturbations of C' will be difficult to observe at the top of the ice but smooth perturbations at the base will propagate
to the surface. If k£ is large and the surface velocity is of interest in a numerical simulation, then there is no reason to
use a fine mesh at the base to resolve the fast variation in C because it will not be visible at the top of the ice. How the

damping depends on X in the FS equations is computed in Cheng and Lotstedt (2020).

A perturbation in the topography with long wavelength is easier to detect at the surface than a perturbation with short
wavelength. If §C = 0 and b is perturbed by db = ecos(kz/z¢1,), then any perturbation at x, is propagated to the surface
by %, which is the first term on the right hand side of (41). The effect is larger if the ice is thin and moving fast.
The integral term will behave in the same way as in (44) with mainly perturbations with small wave numbers and long

wavelengths visible at the surface.

The two-dimensional adjoint steady state solution with elevation observation

In the case when h is observed at . and F;, = 0 and F}, = 6(x — x..), the expressions for ¢ and v satisfying (39) are

v(z)

v(z)

Cam—l
:_W(ﬂf’&—xm), T, <z <7TgL,
*
Cam ! m m
= (25, —x 0<z<z
PQHQL-H ( GL * )7 * 9 (45)
HTVL
=————0—0m=, 1. <v < 2g1,
pgHI't!
=0,0<z <z,

The corresponding formulas when u is observed are found in (40). There is a discontinuity at the observation point . in v(z)

illustrated in Fig. 5(b), but ¢(z) is continuous in the solution of (39) and in Fig. 4(b).

The second derivative term (%nH vz ). 1s neglected in the simplified equation (39) but is of importance at x,. A correction 1/3

of ¢ at @, in (45) is therefore introduced to satisfy (1nHv,) — H, = 0. With v, (2,) = —0(z—2.)/(pgH. ), the correction

is (x) = —0(x — x,)n./(npgH,). The solution 1 is updated at each z, in Fig. 4(b) with ¢ as a vertical line representing the

negative Dirac delta.
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The perturbation in & is as in (41) with ¢ and v in (45) and the additional term 1&

TGL TGL
Oh UMy C(ax)™ o0b  oC
. / nng35 (x —,)0bdx + / ST <(m—|— )H + c > x
o - (46)

TGL
an. [ ob 1 / N sb sC
= - Dt s D=+ —= ;
g T2 <xH>I($ )+ P C(ax) ((m+ )H +7 dz

where a(x6b/H ), () = (udb),(x.) represents the z-derivative of udb evaluated at x,. When b =0 then du. in (42) and
Ohy = 6 H, in (46) satisfy du. H, = —0 H,u, as in the integrated form of the advection equation in (11) and in (D1).
As in (41), (46) is rewritten with the weights w; and w¢ in (38)

TGL TGL
Ohy = / (Ve + venug +vpghy) db —vu™ 6C dx = / wy 0b 4+ we 0C dx. 47)
0 0

These weights are shown in Fig. 6(b) and Fig. 7(b). The negative derivative of the Dirac delta is depicted in Fig. 7(b) as a
vertical line in the negative direction immediately followed by one in the positive direction.

The contribution from the integrals in (42) and (46) is identical except for the sign (compare w¢ in Fig. 6(a) and Fig. 6(b) and
wy, in Fig. 7(a) and Fig. 7(b)). The first term in (42) depends on 6b/H and the first term in (46) depends on the derivative of
axdb/H = udb. The derivative of udb at z,. directly affects the perturbation of h at x,.. A perturbation of b at the base is directly
visible locally in u at the surface while the effect of C' is non-local in the integral in (46). Because of the similarities between
(42) and (46) and the left and right columns of Fig. 6 and Fig. 7, the conclusions (i), (ii), (iv), (v), and (vi) in Sect. 3.2.2 from
(41) and (42) for du, are valid also for dh, in (46).

3.2.4 The two-dimensional time dependent adjoint solution

Finally, the time dependent adjoint equation (36) is investigated. Equation (36) is solved numerically for the same MISMIP test
case as Fig. 2 in Sect. 2.2.2 with the parameters in Table 1. As in Sect. 3.1.2, the friction coefficient C has a seasonal variation

(period one year, 1 yr, where the beginning of the year is associated with winter) in the forward equation (10):
C(z,t) = Co(l+ kcos(2mt)), 0 < Kk < 1. (48)

Apparently, C has its highest value at t =n, n =0,1,2,..., i.e. the winter, and its lowest value at t = n+ 1/2, i.e. the summer,
as in Fig. 3. The amplitude of the variation in C' is set to x = 0.5 and the forward equation (10) is solved for 11 years. The GL
will move in time because of the variation in C'. The topography b is kept constant in time. Observations of v and h are taken
at z, =9 x 10° m for 0.1 yr in the four seasons starting from the summer of the tenth year, e.g., in the summer (. = 9.5), the
fall (t. =9.75), the winter (¢, = 10), and the spring (¢, = 10.25). The forward equations (10) are solved numerically from
t = 0 with the steady state solution as initial data to the observation points ¢t = ¢, and the adjoint equations (36) are solved
from ¢ = ¢, backward in time to ¢t = 0. According to a convergence test, the time step is chosen to be 0.01 yr and the spatial
resolution is 103 m. A visual inspection of the computed solutions after halving the step sizes indicates that a sufficiently

converged solution has been reached.
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Fig. 8 shows the results for the adjoint weights we (x,t) and wy(z,t) multiplying the perturbations §C' and b, as defined in
(37), for the observations of w and h at z, =9 x 10° m in all four seasons, where each column represents one season. The
friction coefficient C follows the seasonal variation in (48). Each row is one of the combinations of the weights w¢ and wy, for
the observations of v and h . The time axis (or ordinate) in the figure follows the time direction in the forward problem (10).
Most of the weights in space and time are negligible implying that perturbations in those domains are not visible at (x.,t,).
Only 6C and 6b in a narrow interval around x, for ¢ in [0,¢.] have an influence on du, and §h.. Therefore, we take a snapshot
of the x axis (or abscissa) with the width of 10°> m in space around x, in Fig. 8. The weights oscillate in time because of the
seasonal variation in the basal conditions in (48). A perturbation at the base is propagated to the x, position on the surface but
with a possible delay in time. The earlier a perturbation in C' or b takes place in the interval [0, ¢, ), the smaller the effect of it
is at t,. After five years a perturbation can hardly be detected at the surface.

The temporal variations of the adjoint weights at =, in Fig. 8 are shown in Fig. 9 for the four seasons with four different colors.
As expected, the weights vanish when ¢ > t,. In Fig. 9(a) and (b), the perturbations dC, and 6b, have a direct effect on du, at
t«, where both we (24, t, ) and wy (24, . ) are negative. The same direct effect of C' is found for duy . solving the FS equations
(23) in Sect. 3.1.1. A change in 6C, at the base is observed immediately as a change in u at the surface. The effect of C
on du, for t < t, is weak in Fig. 9(a), i.e. the memory of old perturbations is short. The largest effect of 6C on du, and dh,
appears with ¢, in the summer when C is small in (48) (the blue lines in Fig. 9(a) and (b)).

However, when h is observed, the effects of C, and &b, are not visible directly because wc. =~ 0 and wp. =~ 0 in Fig. 9(c)
and Fig. 9(d). An intuitive explanation is that there is an immediate effect on the velocity but there is a delay in A since it
is integrated in time from the velocity field. Additionally, the effects of 0C and db are difficult to separate, since the weight
wp(x4,t) has a shape similar to we(z.,t). The largest effect on dh, is from dC' in the summer due to the peaks in w¢ in
Fig. 9(c). For the same dC, the largest dh, is observed in the fall (orange), then the second largest 0/, is in the winter (green)
followed by the spring observation (red). If dh. is observed in the fall and the time dependency is ignored, then the wrong
conclusion is drawn that §C' in the fall has the strongest effect (but it is the summer perturbation). There is a delay in time
between the perturbation and the observation of the effect in the surface elevation. The same shift in time is what we found in
Sect. 3.1.1, (24), and Fig. 3 for the FS equations.

A reference adjoint solution at =, observed during the fall season (¢, = 9.75) with time independent C and b, x = 0 in (48), in
the forward equations is shown in black dashed lines in all the four panels of Fig. 9. The weight w;, at x,. for a constant b is
well approximated by wp. exp(—(7"' —t)/7) in time with 7 = 1.4 yr for some wy.. for the observation of both u and h. For the
weight we, the same exponential function holds with weight we., but the time constant 7 = 1.8 yr for the observation of h,
and 7 = 2.2 yr for the u, case.

Suppose that the temporal perturbation is oscillatory with frequency f and located in space at =, with

0C (x,t) = 6Cycos(2m ft)0(x — xx).
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Figure 8. The adjoint weights for the observations at z. = 9 x 10° m of the four seasons. (a) wc for the observation of u. (b) w; for the

observation of u. (¢) we for the observation of h. (d) wy for the observation of h.
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A low frequency f with f < 1 corresponds decennial or centennial variations and a high frequency with f >> 1 corresponds

to diurnal or weekly variations. Then the perturbation in h att =, is

L

cos(2m ft,) + 2m7 fsin(2m ft,) —e~t/7
Ohy = /wc* exp(—(tx —t)/7)dCq cos(2m ft) dt = ( P p— wex0Cy, (49)

0
cf. (44). With a high frequency, f >> 1, then dh, o< 1/f and high frequency perturbations are damped efficiently. At certain
times of observation ¢, when sin(27 ft,) = 0, the damping is even stronger with §h,, o< 1/f2. If the frequency is low, f < 1,
then dh, o< 7 and the change in h, is insensitive to the frequency. The same conclusions hold true for §b where decennial

perturbations seem more realistic.
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Figure 9. The adjoint weights at x,. in the four seasons of the tenth year with seasonally varying friction coefficient. The black dashed line is

a reference solution without seasonal variations which is observed at t. = 9.75. (a) w¢ for the observation of u. (b) wy for the observation

of u. (¢) we for the observation of h. (d) w;, for the observation of A .

4 Conclusions

The adjoint equations are derived in the FS and the SSA frameworks including time and the surface elevation equation. Time-
dependent perturbations 6C and b in basal friction coefficient C' and basal topography b are introduced and their effect on

observations of the velocity u and the surface elevation h at the top surface of the ice is studied. With the solution of the adjoint
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equations, we can determine the perturbation at a given point in space and time on the surface due to all basal perturbations.
By solving the forward equations twice with C' and C'4 6C or b and b+ §b, we can compute the perturbation in all points in
space and time on the surface, e.g. du; = u1(C + 6C) — u1(C) in the first velocity component, for a given §C' or 6b.

The perturbations in the observations are determined numerically in Cheng and Lotstedt (2020) either using the adjoint equa-
tions and their solutions in Sect. 3 or by solving the forward equations with unperturbed and perturbed parameters to obtain
duy and dh.,. The numerical solutions are compared to each other and to analytical solutions for SSA. The agreement is good
in the comparisons.

In Sect. 3.1.3, a relation is established between the inverse problem (aiming to infer parameters from data) and the sensitivity
problem (aiming to quantify the effect of variations in parameters): The same adjoint equations are solved. However, the forcing
functions differ and are specific to the inverse problem and the sensitivity problem, respectively. Common to both problems is
that the adjoint equations tell how perturbations in the parameters at the ice base are propagated to perturbations in the velocity
and the elevation of the surface.

For steady state problems, and in an FS setting where u is observed, we find (cf. Sect. 3.1.4) that the contribution of the
solution of the adjoint elevation equation (31) is small, and that it therefore suffices to solve only the adjoint stress equations,
see e.g. Gillet-Chaulet et al. (2016); Isaac et al. (2015); Petra et al. (2012), in order to be able to draw conclusions regarding
perturbations of u. For steady state problems in a two-dimensional SSA setting, (42), (46), and Figs. 6 and 7 show that
the sensitivity of the velocity and elevation increases (because the velocity increases and the ice thickness decreases) as the
observation point x, approaches the grounding line.

In this setting, there is moreover observed a non-local effect of a perturbation in C, in the sense that 6C'(x) affects both u(z.)
and h(x,) even if x # x., but a perturbation ¢b in b has a strong local effect concentrated at x,.. Nevertheless, the shapes of the
two sensitivity functions (or weights) for db and dC' are very similar except for the neighborhood of z.,., which makes it difficult
to separate their respective contribution in an observation. Different combinations of the perturbations in the basal friction and
bedrock elevation can produce the same effect on the velocity and surface elevation changes at one observation point.

In the inverse problems based on time dependent simulations of FS and SSA, it is necessary to include the adjoint elevation
equation. If the perturbations in the basal conditions are time dependent and 5 is observed (see Fig. 3, Fig. 9(c), and Fig. 9(d)),
then time cannot be ignored in the inversion. If time dependence is ignored, wrong conclusions concerning the conditions at
the ice base may be drawn from observations of h, in both the FS and the SSA model. In the time dependent solution of SSA, a
perturbation of the basal condition at z. has the strongest impact at z.. on the surface, possibly with a time delay. Such a time
delay occurs when a perturbation at the ice base is visible at the surface in A, but in w it is observed immediately (Fig. 9). The
effect of a perturbation disappears more quickly, the older the perturbation is.

Perturbations in the friction coefficient at the base observed in the surface velocity determined by SSA are damped inversely
proportional to the wave number and the frequency of the perturbations in (44) and (49), thus making very oscillatory pertur-
bations in space and time difficult to register at the ice sheet surface. In such a case, there is no need to have a fine mesh and a

small time-step in a numerical solution to resolve the rapid oscillations in C' at the base.

28



10

15

20

Appendix A: Derivation of the adjoint equations
Al Adjoint viscosity and friction in SSA

The adjoint viscosity 7(u) in SSA in (19) is derived as follows. The SSA viscosity for u and u + du is

~ 1 n(2u11+u2y)6u11+ (u1y+u2'p)6u21+(2u2y+u1w)6u2y+ (u1y+u21‘)6uly)
n(u+du) ~ () (1+ ; .

Determine B(u) such that
o(u,0u)B(u) = B(u) xB(du).
First note that

B(u) :D(du) = (D(u) + V- ul): D(éu) = D(u) : D(du) + (V- u)(V - du)
=D(u): (B(0u) — V- oul)+ (V- u)(V-éu) =D(u) : B(éu).

Then use the * operator to define 5

S 2o Br(w) Dia(6w) Bij(w) - = 552 325 Dia(w) Bra(6w) Bij(u) - = 325 Bijui(w) Dy (6u) = (B* D)yj.

Thus, let

1—n -
Biji = %Bij(u)Dkl(u)a Nije(w) = n(w)(Zijrr + Bijri(w)),

or in tensor form

1—-n .
B= B D) S EDPM), Au) =n(u)(Z+B5).

Replacing B in (A2) by D we obtain the adjoint FS viscosity in (19).

(AD)

(A2)

The adjoint friction in SSA in w and at ~y, in (33) with a Weertman law is derived as in the adjoint FS equations (18) and

(19). Theninw with§ =u,{ =v,c=C,F=F,,andaty, with{ =t-u,{ =t-v,c=C,, f = f,,F = F,, we arrive at the

adjoint friction term cf (&) (I+ F(&)) ¢ where

F(¢) = ﬁé ®E.

A2 Adjoint equations in SSA

The Lagrangian for the SSA equations is with the adjoint variables ¥, v, q
L(u,h;0,45b,C,,C) = [ [ F(u,h) + ¢(he + V- (wH) —a)dadt
+f0wa’U -V-(2HnB(u)) - Cf(u)v-u—pgHv-Vhdzdt
= L F(u,h) +(he + V- (uH) —a)dzdt + [, [ —2Hn(u)(D(v) : D(u) +V-uV-v)
—Cf(u)v-u—pgHv-Vhdxdt — fOwag Cyfy(t-u)t-ut-vdsdt
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after partial integration and using the boundary conditions. The perturbed SSA Lagrangian is split into the unperturbed La-

grangian and three integrals

L(u+ du,h + 5h;v + 6v,9 + §¢; b+ 6b,C, + 6C.,,C + 50)

= [ F(u+8u,h+60) + [ [ (0 +80) (hy +Shy + V- ((w + 6u)(H + 6H)) — a)dzdt

+f0 J.,—2(H+6H)n(u+du)D(v+0v) : B(u+du) — (C +6C) f(u+ du)(u+ 0u) - (v + 0v) (AS)
—pg(H +H)V(h+0h) - (v+§'v)dwdt—f0 fﬂ/ (Cy+0C,) f(t- (u+du))t- (u+du)t- (v+dv)dsdt

= L(u,h;v,9;b,C,,,C) + 1) + Iy + I5.

The perturbation in £ is
=1 +1+1Is. (A6)
Terms of order two or more in d £ are neglected. Then the first term in 6 L satisfies

L = [) [ F(u+bu,h+08h) — F(u,h)dedt = [ [ F,éu+ Fyéhdadt. (A7)

Using partial integration, Gauss’ formula, and the initial and boundary conditions on w and H and ¢(x,T) =0, € w, and

P(x,t) =0, & € v, in the second integral we have

L o= [y [,0¢(h+ V- (uH)—a)+9(6h + V- (0uH)+ V- (udH))dedt a8
= foT fw o(hy +V - (uH)—a)dxdt + fOT fw —py6h — HVY - du — Vip - udH dx dt.
The first integral after the second equality vanishes since h is a weak solution and I is
= i, — (b +u-V)Sh — HVY - bu+u- Vyodbdzdt. (A9)

Using the weak solution of (8), the adjoint viscosity (34), (A2), the friction coefficient (A3), Gauss’ formula, the boundary

conditions, and neglecting the second order terms, the third and fourth integrals in (AS5) are

I3 = I3+ I,
I3 = fo [, —2(H + 6H)n(u + 6u)D(v + v) : B(u + du)
—(C+0C) f(u+du)(u+du) - (v+ov) —pg(H+0H)V(h+0h) - (v+dv)) dedt (A10)

—fo J(Cy +0C) (- (u+du))t- (u+du)t- (v+dv)dsdt
= I311+ I312 — I313,
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where

I311 = fOTf 72HD(’U

w

): (n(u+du)B(u+o0u)) +2HD(v) : (n(u)B(w))dzdt
= [y [, —2HD() : (i(w)  B(ou)) dw di
I312 = fOwag —5C f(u)u - vdwdt+f0 fwg —C(f(u+6u)v- (u+ou) — f(u)v-u)dedt
= Jo [, —0CF(@)u v+ Cf(u)(I+Fy(u))du-vdedt

(A11)
I35 = fo fvg L4+ 0C)(fy(t- (u+du))t- vt (u+du)— fy(t-u)t -vt-u)dsdt
= fo f,y (Cy+0C)(fy(t-u)t-ut-v+Cyfy(t-u)(I+F,(t-u))t-dut-vdsdt
I3o = fo J.,—pgHVh-v—2nD(v) : B(u)dH — pgVh-véH — pgHv - Vihda dt
= fOT J.,—pgHVh-v—(2nD(v) : B(u) + pgVh-v)dH + pgV - (Hv)dhdx dt.
Collecting all the terms in (A7), (A9), and (A10), the first variation of L is
oL = Li+I+1;
= fOT [, Fubu—2HD(v) : (7(u) *B(du)) — HV1) - Sudxdt — fOT fwg Cf(u)I+F,(u))v-dudedt
—Jo J, Cofo (8- w)(T+Fy(t-w))t - vt-Gudsdt — [ [ 6C, £ (¢ w)t-ut-vdsdt (A12)

+f0 fw Fr— (b1 +u-Viy+2nD(v) : B(u) — pgVb-v + pgHV - v))dhdzdt
+ [ [, —6C f(u)v-u+ (27D(v) : B(w) + pgVh- v +u- Vi))dbdzdt.

The forward solution (u*,p*, h*) and adjoint solution (v*,¢*,1*) satisfying (8) and (33) are inserted into (A4) resulting in
L(u*,p*50* g% 0" 0%:b,C,,C) = [ [ F(u*,h*)dzdt. (A13)
Then (A12) yields the variation in £ in (A13) with respect to perturbations 6b,0C.,, and 6C' in b,C.,, and C

fo [, @2nD(v*) : B(u*) + pgVh* - v* +u* - Vip*)dbda dt

(A14)
_fo f’yg 0C, fr(t-u*)t-u*t v*dsdt — fOT [, 0Cf(u*)v* - u* dedt.

A3 Adjoint equations in FS

The FS Lagrangian is as in (14)

L(w,p,h;v,q.9:C) = [ [ F(u,h) +1(hy + h-u—a)dzdt

+fo Ly fb (V- Uup)) qV-u—pg-vdxdt

—fo Jo, F(u,h) +4(he +h- u—a)da:dt—i—fo /, fb 2n(u)D(v) : D(u) —pV-v—¢qV - -u—pg-vdedt
+ Jr, Cf(Tu)Tu- Todzdt.

(A15)

In the same manner as in (AS5), the perturbed FS Lagrangian is

L(u+du,p+0p;v+dv,q+6q;h+ 5h, ) + 0¢;C + 6C) = L(u,p,h;v,q,9;C)+ I + Iy + I5. (A16)

Terms of order two or more in du,dv,dh are neglected. The first integral /7 in (A16) is

I —fo fr w(x,h+ 0h,t) +du,h+35h) — F(u (a:,h,t),h)da:dt—fo fF w(0u +u.0h) + Fpdhdzdt. (A17)
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Partial integration, the conditions ¢)(x,T") = 0 and 1(x,t) = 0 at I, and the fact that h is a weak solution simplify the second

integral

Iy = [} fo 0%(he+h-w—a)+9(h +u-0h+u. - hoh+ h-ou)dadt Als)
= fonrs 51/)(ht+h-u—a)dxdt—|—fOTfFS(—1/)t — V- (u)+h-u,)h+h-Supdedt.

Define =,£, and T to be

O(u,p;v,q;C) = 2n(u)D(v):D(u) —pV-v—q¢V-u—pg-v,
O(u;v;C) = Cf(Tu)Tu-To, (A19)
Y(u,piv,q) = —v-(V-o(u,p)—qV-u—pg-v.

Then a weak solution, (u,p), for any (v, q) satisfying the boundary conditions, fulfills

T ok T
///@(u,p;v,q;C’)dmdt—//G(U;U;C)dscdt:O. (A20)
0 w b

0Ty

The third integral in (A16) is

I3 = I3+ Iz,
Iy = fOT L, fth(u+§u,p+5p;v+6v,q+5q;0+60)dmdt—fOTbe0(u+6u;v+5'v;0+50)dwdt, (A21)
Lo=Jy [ Ji """ T(u.piv,q)ddr,

The integral I3; is expanded as in (A10) and (A11) or Petra et al. (2012) using the weak solution, Gauss’ formula, and the
definitions of the adjoint viscosity and adjoint friction coefficient in Appendix Al. When b < z < h we have Y (u,p;v,q) = 0.
If T is extended smoothly in the positive z-direction from z = h, then with z € [h, h + dh] for some constant ¢ > 0 we have

|T| < cdh. Therefore,

h+8h(z,t) h+8h(z,t)
| / T (u,p;v,q)dz| < / sup|T|dz§c\5h(a:,t)2|,
h h

and the bound on I35 in (A21) is
| Is2| < ct|w|max |[5h(z,1)|?, (A22)

where |w] is the area of w. This term is a second variation in dh which is neglected and I5 = I5;.

The first variation of L is then

0L = Li+1+13
= Jy Jo (Putvh)-dudzdt+ [ [, (Fy+ Fuu. — (b + V- (ugp) — h-w)))shda dt
+f0wa fthD(v) S (N(u)*D(0u)) — dpV - v — ¢V - dudxdt
+f0T Jr, Cf(Tu)(I+Fy(u))Tv - Téudzdt + fOT Jr, 9Cf(Tu) Tu- Tvdzdt.

(A23)
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With the forward solution (u*,p*,h*) and the adjoint solution (v*,q*,1*) satisfying (4) and (18), the first variation with
respect to perturbations dC in C'is (cf. (A14))

T
5£=//f(Tu*)Tu*-Tv*dCdmdt. (A24)

0 Ty

Appendix B: The adjoint solution in the inverse and sensitivity problems

Assume that (v?,¢%,v%),i =1,...,d, solves adjoint FS equations (18) in the steady state with observation of u; with d = 2 or
3
F=u(x)= /uzé(az —z)dz, F,=€e'd(x—2),i=1,...,d, (B1)

w

or observation of h withd =1
f:h(w):/hé(w—:i)diz, Frp=0(x—). (B2)

Introduce the weight functions w;(x),i = 1,...,d. It follows from (18) that (w;(Z)v*(x),w;(Z)q" (x), w;(Z)1*(x)) is a solu-

tion with Fy, = w;(Z)e'd(x — &) or Fy, = w(Z)d(x — &). Therefore, also

Jui@v'ta. [wi@a ta. [wi@ia (B3)
is a solution with Fy, = [ w;(Z)e'd(x — &) dx = w;i(x)e’ or F, = [ w(x)d(x —)dx = w(x). A sumover i,i =1,....d,

of each integral in (B3) is also a solution.
Consider a target functional F for the steady state solution with a weight vector w(Z) with components w; (Z) multiplying du’

in the first variation of F. Using (21), § F is

d d
oF z/w(ac)~6udx:/iz_;wi(m)5uidac:/;wi(az)r/f(Tu)Tu.T'vi5Cda:dm

d (B4)
= /f(Tu)Tu -T /Zwl(fv)v’ dz | 6Cdx.
Ty w =1
Appendix C: Steady state solution of the adjoint height equation in the FS model
In a two dimensional vertical ice with u(x, 2) = (u1,u3)?, the stationary equation for ¢ in (18) is
(u1)e = Fr+ (hp+ Fy) -u,, 2=h, 0< 2z < L. (CD)

When x > z,., where Fj, = 0 and F,, = 0, we have ¢)(x) = 0 since the right boundary condition is ¢(L) = 0.
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If uy is observed at ' then F'(u, h) = u; (z)x(z) and Fy, = (x(z),0)” and F}, = 0. The weight y on u; may be a Dirac delta,
a Gaussian, or a constant in a limited interval. On the other hand, if F'(u,h) = h(x)x(z) then F}, = x(«) and F,, = 0.
Let g(z) = w1, (x) when F, # 0 and let g(x) = 1 when F}, # 0. Then by (31)

(u1))e —h-u.p = g(x)x (). (C2)

The solution to (C2) is

T %

&
= *71 ex — 7}1’ ‘Ye (y) X xr
vw) = few |- [R5y ) g 0< o <. )

Y(x) =0,z <z <L
In particular, if x(x) = 0(z — ) then F = u; (x,) or F = h(z,) and the multiplier is

T x

0(w) = -2 oy —/Wdy 0<z<a, (C4)

x

which has a jump —g(x,)/u1(x,) at z..

Appendix D: Simplified SSA equations

The forward and adjoint SSA equations in (11) and (39) are solved analytically. The conclusion from the thickness equation in

(11) is that
u(z)H (z) =u(0)H(0) + az = ax, (DD

since u(0) = 0. Solve the second equation in (11) for w on the bedrock with = < z ¢, and insert into (D1) using the assumptions

for x > 0 that b, < H, and h, ~ H, to have

PY prmtipy Py (Hm+2)

c = Cm+2) = =—(az)" (D2)

The equation for H™ 12 for 2 < x¢y, is integrated from z to z¢, such that

1
m+2Ca™ m+2
H(x) = (H’C?IQ + (xglfl — a:"”'l)) ,

m+1 P9 (D3)
ax Ca T
we) =g He=——

For the floating ice at > x¢ 1, pgHh, = 0 implying that h,, = 0 and H, = 0. Hence, H(z) = H¢gy,. The velocity increases

linearly beyond the grounding line
u(z)=ax/H(z)=ax/Hgr, > zar. (D4)

By including the viscosity term in (10) and assuming that H () is linear in x, a more accurate formula is obtained for u(x) on

the floating ice in (6.77) of Greve and Blatter (2009).
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Appendix E: Jumps in 1) and v in SSA
Multiply the first equation in (39) by H and the second equation by u to eliminate /. We get
—Cmu™v — pgH?v, = HF), — uF,. (ED)
Use the expression for  and H,, in (D3). Then

5 pgH(mH,v— Hv,)=HF}, —uF,, (E2)
or equivalently

") = Ly, —urF E3

(7). =~ pgggesa I =0 3
The solutions 1(x) and v(z) of the adjoint SSA equation (36) have jumps at the observation point z,. For z close to x, in a
short interval [z, ,x}] with z; < x, <z, integrate (E3) to receive

+ +

x x

o f HE, — uF,

L5 Ly

Since H is continuous and u and v are bounded, when 7 — x, then

T

ot
1
. / Fode—u, | Fydz | (ES)

+) =
oat) —vleT) =~

T, T,

A similar relation for 1) can be derived
af
1
vlat) = vler) =5 [ Fude (E6)

15 With F, =0 and F}, = 0 for z < z, and v(0) = 1,,(0) = 0, we find that

v() = u(2) =0, P(x)=9(x,), 0 <z <. (ET)

If F(u,h) = ud(x — x.), then by (E5) and (E6)

) U
pgH?2’

()

PYlah) =) = ! (E8)

and if F(u,h) = hd(z — x.), then

1

20 v(zh)=-———
(=) pgH.

*

, plah) —yr) =0. (E9)
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Appendix F: Analytical solutions in SSA

By Appendix E, v(z) = 0 for 0 < z < z,. Use equations in (39) with H,, in (D3) for 2. < x < z¢, to have

Vg axCmu Cmu™ mH,

v pgH® ——  pgH?> — H

m—1

Let H(x —x,) = [*_"" 6(s) ds be the Heaviside step function at x,.. Then

o0

5 v(z)=C,H(x)"H(zx—=2z,), 0<z<zcL. (F1)

To satisfy the jump condition in (E8) and (E9), the constant C, is

%, F(u,h) =ud(z — x.),

C,={ P9H" (F2)
v T 1

Combine (F1) with the relation 1, = (F,, — Cmu™ 1v)/H and integrate from x to 2, to obtain

Y(z) = Coa™ 1C (2, —2™), 7. <z < TGL- (F3)

10  With the jump condition in (E8) and (E9), ¢ (z) at 0 < z < x, is

1 Ca™z. , .. m
_H*+W(xGL_x* ), F(u,h) =ud(x —z.),
() = ot (F4)
- (x&; — ), F(u,h) = hé(x — x,).
=) (u,) = Wi —.)
The weight for 4C in the functional 6L in (37) is non-zero for z, < z < zgyp,
—ou™ = —Cy(ax)™. (F5)

Use (F1) and (39) in (37) to determine the weight for b in 6 L,

5 Vet vens +upghe = pg(Hv)otF, F6)
=CopgH™[(m+ 1)H, H(x — ) + Hé(x — 24)] + Fh.
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