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September 29, 2020

Summary and High Level Discussion

This paper is about using adjoint calculus to determine the sensitivity of ice
sheet surface velocities and elevation to perturbations in basal friction and basal
topography. The ice sheet models are the full Stokes and Shallow Shelf Approxi-
mation coupled with a time-dependent advection equation for the kinematic free
surface. The authors propose a few test cases with both numerical and analytic
solutions to the underlying forward and adjoint equations and argue that it is
necessary to include the time-dependent advection equation for the ice surface
elevation into the models. The reported findings show that: 1) there is a delay
in time between a perturbation at the ice base and the observation of the change
in elevation, 2) a perturbation at the base in the topography has a direct effect
in space at the surface above the perturbation and a perturbation in the basal
friction is propagated directly to the surface in time, and 3) perturbations with
long wavelength and low frequency will propagate to the surface while those of
short wavelength and high frequency are damped.

The topic of the paper is very interesting and it is worth publishing. However,
it needs a serious revision. The content as is presented is very difficult to digest.
Below I list several specific comments/recommendation.

Comments

Because we rearranged the structure of the manuscript, all the equation and
section numbers below refer to the unrevised version of this paper: https:

//tc.copernicus.org/preprints/tc-2020-108/tc-2020-108.pdf.

1. Introduction

(a) It is not entirely clear from the introduction (and abstract) what the
motivation for running a sensitivity analysis is. It would be great
if the authors could motivate this study and perhaps emphasize the
impact of the sensitivity study results (in the intro especially) explic-
itly.

Response: We have expanded on the motivation for the sensitiv-
ity analysis and the relation to the inverse problem in Introduction,
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before and in Sect. 3.1 and in Sect. 3.1.2. For example, certain
perturbations at the base induce small perturbations at the surface.
Such basal perturbations will be difficult to detect from observations
at the surface. Consequently, these perturbations will not appear as
a result of an inverse optimization based on surface data.

(b) It would be beneficial to discuss the companion paper (Cheng and
Lötstedt, 2020) in more detail; in particular, what is the novelty in
this paper compared to the previous one? If this companion paper
would be useful for the reader to help him/her understand the (heavy)
modeling part in this paper, it would be great to state this earlier or
explicitely. Are some of the derivations in the Appendix also done in
Cheng and Lötstedt, 2020? If so, perhaps the authors don’t need to
repeat these here.

Response: A short review of Cheng and Lötstedt, 2020, is written
in the end of Introduction. Only the results of the derivations in
Appendix are given in the companion paper with a marginal overlap
of contents. It is noted in the end of Section 3.1.3 that the computed
adjoint ψ is very small in Cheng and Lötstedt, 2020, as expected by
theory in the section. References to the companion paper concern-
ing the SSA and FS equations are made at Conclusions (i) and (v)
and after Conclusion (vi) in Section 3.2.3. The conclusions are mo-
tivated by numerical computations in Cheng and Lötstedt, 2020 and
agree with the conclusions in this paper where they are motivated by
analysis.

(c) In lines 18-19 on page 2, I would like to suggest the following reference
for the inversion for the geothermal heat flux as well: Zhu, H., Petra,
N., Stadler, G., Isaac, T., Hughes, T.J.R., Ghattas, O.: “Inversion
of geothermal heat flux in a thermomechanically coupled nonlinear
Stokes ice sheet model”. The Cryosphere 10, 1477-1494 (2016).

Response: Thanks for the reference. We refer to it now in Intro-
duction.

2. How is h(x, t) initialized, i.e., how is h0(x) defined?

Response: h0 could be any smooth function such that h0 > b. The
inequality is added.

3. Are there any constraints on C in equation (4)? For instance, does it have
to be positive? From line 13 it appears so. If this is the case, how are the
authors making sure that this constant stays positive during inversion?

Response: C is non-negative (changed now). We are not solving the
inversion problem but since it is an optimization problem one can add
inequality constraints C ≥ 0 to be satisfied at the optimum in an op-
timization algorithm. There are numerical techniques to do that. The
perturbation δC at the base has to be such that C + δC ≥ 0.

2



4. How are the Dirichlet boundary conditions set/defined, i.e., how are uu
and ud set?

Response: We consider the general case with the assumption in the
adjoint problems that the inflow velocity uu and the outflow velocity ud
of the ice are known. If the domain is at the ice divide then uu = 0 and
ud is the velocity at the calving front. If the latter is unknown, it can be
computed with a different boundary condition there e.g. like (9) and then
use u at Γd in the adjoint equations.

5. What is H in equation 7? I assume this H is the height as shown in Figure
1a, please clarify.

Response: It is defined in the beginning of Sect 2.1 but we repeat it after
(7).

6. In line 15, page 6, the authors state: “friction coefficient C(x, t) ≥ 0, just
as in the FS model. For the FS model it looks like C > 0, please clarify
the possible equality here.

Response: We have corrected the FS coefficient to C ≥ 0.

7. Second row, page 7: It is not clear how the adjoint equations have been
derived. The authors say “Lagrangian of the forward equation?” (same
in line 5, page 8). Do the authors mean the Lagrangian of the optimiza-
tion problem governed by this PDE? What is the optimization objective
function in the Appendix?

Response: The inverse problem is an optimization problem to find the
optimal b and C. In the sensitivity problem, δb and δC are known and we
want to know the effect of these perturbations at the surface. In the inverse
problem, we determine δb and δC iteratively such that u + δu → uobs.
The relation between the inverse and sensitivity problems is discussed in
an extended Section 3.1.2. The Lagrangian L for the sensitivity problem
is defined in the appendices for SSA in (A4) and for FS in (A15). It differs
from the Lagrangian of the inverse optimization problem in F (u, t) in (10)
(see the comment in the beginning of Section 3.1.2 and Section 2.2.5 in
Cheng and Lötstedt 2020). The adjoint equations are the same except for
the forcing terms Fu and Fh. A comment about this is added after (13).
Examples of different F -functions are found after (11).

8. Line 9, page 7: Need to define the topography b(x).

Response: The correction has been made.

9. Line 10, page 7: Please reformulate “its forward solution . . . “, it is not
clear what solution we are talking about here. Same for the adjoint.

Response: ‘its’ is replaced by ’the’

10. What do the authors mean by “The same forward and adjoint equations
are solved both for the inverse problem and the sensitivity problem but

3



with different forcing function F”, does this difference is due to inversion
versus sensitivity or due to the fact the the objective is different for the
two? In fact it is not clear how F is chosen for inversion versus sensitivity
study. The authors gave a few examples for F but did not specify if F is
or must be different. Same statement is made in line 5 on page 11 and
similarly in line 5, page 25.

Response: The F term in the Lagrangian is different in the sensitivity
and the inverse problems but the terms multiplied by the Lagrange mul-
tipliers ψ,v, and q are the same. This issue is discussed also in Comment
7. A better explanation of the difference is found after (12) and in Section
3.1.2.

11. The last 2-3 lines on page 7 need to be explained more clearly. It sounds
like there is an optimization/minimization problem solved, if so, what is
the gradient? How is this optimization problem solved?

Response: The optimization problem needs repeated solutions of the
forward and adjoint problems to iteratively reach the minimum. The
estimate of the sensitivity of perturbations is achieved by one forward and
one adjoint solution. This is now elaborated on before Section 3.1 and in
Section 3.1.2.

12. How is the nonlinear Stokes solved?

Response: They are solved by Elmer/Ice as we have written in a para-
graph after (18).

13. It would be beneficial to state the Lagrangian somewhere in the main text
in order to help the reader follow the derivations and given expressions.
This seems to be given in A15 for the Full Stokes, perhaps this should be
moved to the main text.

Response: The Lagrangian of the FS model is now also defined in the
main text.

14. Line 16, page 9: Why do the authors consider ei?

Response: We use the same unit vectors in Section 3.1.2. For instance,
if we are interested in δui, i = 1, 2, or 3 at (x∗, t∗) then

Fu = eiδ(x− x∗)δ(t− t∗).

In the examples, we take e1.

15. The effect of the perturbations seems to be local. How do the authors
choose where to induce these perturbations?

Response: The perturbations δb and δC can be local in space and time
or more extended in space and time. They can be located anywhere on the
bedrock. The effect at the surface is determined e.g. by the the formula
(16). Since it is a linearization in b and C, it is important that δb and δC
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are small. A comment about that is inserted before Section 3.1.1. The
perturbations at the surface are always registered in one point (x∗, t∗) in
space and time but it can be chosen in many other ways by changing
F (u, h).

16. In general, it is difficult to follow all the variables, it would be great if the
authors would remind the reader what is what. For instance I am not sure
what the ’perturbation δu1’ is (in the discussion for Fig 2 on page 10), is
u1 perturbed, or is it the effect of the perturbation in C or basal friction
on the velocity component u1?

Response: This is clarified now.

17. Please define exactly what “variation δF of the inverse problem” means?
Similarly, what does the “variation of a functional” mean (e.g., in line 3,
pag. 12))? Are these directional derivatives? It would be beneficial to
show the mathematical definition in general and then apply it.

Response: This is explained in words now in Section 3.1.2. δF tells what
happens to F when b and C change to b+ δb and C + δC.

18. It is not clear how equations 22 and 23 are related.

Response: The paragraph has been reorganized with additional text.

19. Line 9, page 18: What do the authors mean by “The relation in (38)...can
also be interpreted as a way to quantify the uncertainty in u”? Please be
more precise and define mathematically what you mean by “uncertainty”.
Same discussion needs more details in line 6 on page 25 and also in lines
5-6, page 3.

Response: Examples of uncertainties are given on page 3. They can be
known estimates of measurement errors in b and C. New text to explain
uncertainty and a book on uncertainty are included on page 9. ‘uncertain-
ties’ − > ’perturbations’ on page 25.

20. In general, this paper is difficult to follow. Perhaps the authors can add
some roadmap to the beginning of each section to guide the reader a bit
through the research and findings. For instance I had to write out the
sections to see how everything fits together because it got a bit impossible
to navigate through so many setups and subsections. The structure seems
to be the following:

1. Introduction

2. Ice Models

2.1 Full Stokes

2.2. Shallow shelf approximation.

3. Adjoint equations

3.1. Adjoint equations based on the FS model

3.1.1. Time-dependent perturbations
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3.1.2. The sensitivity problem and the inverse problem.

3.1.3. Steady state solution to the adjoint elevation equation in two dimensions.

3.2. Shallow shelf approximation

3.2.1. SSA in two dimensions.

3.2.2. The two-dimensional forward steady state solution.

3.2.3. The two-dimensional adjoint steady state solution with $F_u \neq 0$.

3.2.4. The two-dimensional adjoint steady state solution with $F_h \neq 0$.

3.2.5. The two-dimensional time dependent adjoint solution.

(a) Sometimes the titles are not very representative or consistent, for in-
stance Subsections 3.2.1 and 3.2.2 focus on forward equations and
solutions even though Section 3.2. is called “Adjoint Equations”,
this is a bit confusing. Perhaps the authors should move forward
problem matters to section 2.

Response: Thanks for the comments. We have moved the forward
SSA solutions in 2D to Section 2 and introduced new subsections
with the numerical examples in Section 3.

(b) Also, consider creating a table that summarizes all the examples and
cases, shows the similarities and differences, parameter values, etc.
and then refer back to this table from the sections and text. It is
difficult to see the big picture with all the small subsections and
various proposed scenarios.

Response: We have written more about the MISMIP example in
new Section 2.2.2 and refer to that in new Sections 3.1.2, 3.2.3, and
3.2.6.

(c) The description of adjoints and problem setups are mixed with re-
sults. I recommend separating these to the extent possible.

Response: The separation between theory and examples is more
explicit now in Sections 3.1 and 3.2 and a change of the order of the
paragraphs.

(d) Finally, there are several modeling information and parameter values
inserted in the text which makes the reading of the actual research
study and findings difficult. A table that summarizes somehow all
these values might help to ease the discussion.

Response: We have collected parameters in Table 1 together with
the description of the MISMIP test case in new Section 2.2.2.

21. Line 1 page 25, not sure what the point of the sentence ”...confirm the
conclusions here and are in good agreement with the analytical solutions.”
is here. Please add more details to explain.

Response: There is a brief summary of the paper now in Introduction.
Reference is made to it here and there in the text and in the first paragraph
of Conclusions. See also the reply to Comment 1b.
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22. Finally, the authors talk about sensitivity analysis, however throughout
the paper the authors compute the effect of some perturbation in the pa-
rameters on some quantity of interest. To do a proper sensitivity analysis
(or derive the sensitivity equations) one should look at the (total) deriva-
tive of the objective with respect to the parameter (of interest). This
will give the equations to compute the sensitivity of the forward solution
with respect to the parameter (or in finite dimensions to all the parameter
components), etc. The authors should define clearly at the begining what
they mean by “sensitivities” and how are these computed.

Response: We mean pointwise sensitivity in space and time at the ice
surface. This is how we have chosen F and F . There is great freedom to
choose another type of sensitivity by changing F in (10). This is remarked
in Introduction and before Section 3.1 there are examples of different F .
With our F , the adjoint solution yields the perturbation δu at a point in
space and time on the surface for any basal perturbation δC. Solving the
forward equation twice with C and C + δC yields the perturbation δu =
u(C+ δC)−u(C) everywhere on the surface for a particular perturbation
δC at the base.
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Response to the reviewer 2

September 29, 2020

Because we rearranged the structure of the manuscript, all the equation and
section numbers below refer to the unrevised version of this paper: https:

//tc.copernicus.org/preprints/tc-2020-108/tc-2020-108.pdf.
This is generally speaking a good paper and clearly in terms of the numerical

aspects a highly accomplished work.
Largely I have a very positive view of the manuscript, but the manuscript is

not particularly well written or structured. My main worry is that the authors
appear to have forgot to start their work by reading previous papers on the
subject. In fact many of the statements presented in the paper as new findings,
are not. For example the last three sentences in the abstract could have been in a
number of previous papers, and arguably really just reflect common knowledge.
Although, the sentence ‘There is a delay in time between a perturbation at the
ice base and the observation of the change in elevation’ is actually not quite
correct. (The surface topography responds immediately, but obviously it takes
finite time for a finite-sized surface bump to be formed at the surface.)
Response: We have included about 65 references related to the subject in
the paper and read them all. They are referred to in Introduction and in the
other sections. It is true that some of the conclusions are found in other papers
(e.g. about the damping of high frequency perturbations) but the analytical
derivations and the explicit expressions are not found elsewhere. The results
are valid for an entire ice sheet with variable height, not only for an ice slab with
frozen coefficients in the PDEs. The effect of time variable perturbations in FS
(Section 3.1.1) and SSA (Section 3.2.5) is new. There is a delay (or phase shift)
in time when the full effect of a perturbation of the topography is observed in
the elevation of the surface, see Figs. 3 and 9d. This holds true for the friction
in SSA too in Fig 9c. For an oscillatory perturbation as in Fig. 3, it is fair to call
this a delay in time. The weights wC and wb are ≈ 0 for δC and δb at (x∗, t∗)
in Figs 9c,d indicating that a sudden change is visible only later when wC 6= 0
and wb 6= 0. A perturbation in the summer is growing at the surface reaching
a maximum in the fall. This is also illustrated in a new example in Sect. 3.1.1
with a step perturbation where the surface effect is gradually growing from zero
(as the reviewer remarks) but there is a delay in time when the full effect is
reached.

The study is essentially numerical in nature. Similarly to other such nu-
merical studies, this approach cannot really give a proper overview over the
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transformation of bed properties to the surface. Inherently such studies will be
limited to giving some (typical) examples and to provide a flavor of what can
be expected. On the other hand, this numerical allows for all non-linearities
and finite-amplitude effects to be considered. I suggest that the authors do
some rewriting and focus on the real strength and the novelty of their work.
Fundamentally this a methodology paper where new time-dependent adjoint
capabilities are developed and tested. This represents important progress in the
field and is definitely publishable and of interest to the TC community. How-
ever, this is not a new theoretical study of study of the ‘Sensitivity of ice sheet
surface velocity and elevation to variations in basal friction and topography in
the Full Stokes and Shallow Shelf Approximation frameworks’ as a reader might
be lead to believe based on the title.
Response: With analysis of the adjoint FS equations in Section 3.1.1, we de-
rive expressions for the influence of a time dependent and a time-independent
perturbation δC on a velocity component and the elevation in (17) and (18).
Explicit expressions for how δu and δh depend on δC and δb in the SSA model
are given in (38) and (42). We believe that these results are new. The advantage
with analytical results compared to numerical results is that the dependence on
the forward solution (e.g. u and H) and parameters (e.g. a and C) is apparent
as the reviewer remarks. This is not the case with numerical calculations. The
expressions are compared to time dependent and steady state numerical com-
putations with FS and SSA in the companion paper Cheng and Lötstedt 2020.
The differences in the forward solutions with and without perturbations, e.g.
δu = u(C + δC)− u(C), agree very well with the predictions using the adjoint
techniques and the explicit formulas. The results from Cheng and Lötstedt 2020
are discussed now in several places in the text as a response to Referee 1. We
view the investigation of the sensitivity as the main contribution and the adjoint
equations as a tool to achieve that. The title reflects this in a better way now.

The paper should be refocused and shortened. For example the introduction
is very general and does not give the reader a feel for what the paper is really
about. The adjoint approach does not give the sensitivity of velocities, topogra-
phy, etc to a basal perturbations, that is it does not give the derivatives du/db
where u are surface velocities and b basal topography. It gives the derivative
dI/db where I is a (scalar) cost function. In this paper the I is referred to as
the Lagrangian function and is, for example, defined as the integral over surface
velocities multiplied by a delta function in time and space. This limitation is in-
herent in the methodology used. In fact the adjoint method can be thought of as
a computationally efficient approach to calculate dI/db without having to calcu-
late the sensitivities du/db. Arguably this makes the approach use less suitable
for providing general information about du/db than a calculation/estimate of
dI/db.
Response: By choosing F as in (12), the scalar functional F is u1(x, t), the x
component of the velocity. If we are interested in the y component u2 then F
will be slightly modified (e1 → e2). The same is true for the z component u3.
See also the Comment 14 of Reviewer 1. Later after (17), F is chosen such that
F is h(x, t). Both u1, u2, u3, and h and the corresponding F are scalar variables.
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In SSA in 2D in Section 3.2.1, the velocity u is scalar. Examples of other F
(e.g. for the inverse problem) are found in the beginning of Section 3. Suppose
that u1 is observed at discrete xi and C is perturbed at discrete yj . Then the
relation between δu1 and δC is δu1i =

∑
iWCijδCj where WC is a Jacobian

matrix with elements ∂u1i/∂Cj and can be determined by the adjoint approach.
This is discussed in a new paragraph in Section 3.2.3 and a reference to Cheng
and Lötstedt 2020 is made. For δu2, WC will be different. The relation between
the sensitivity problem and the inverse problem is established in Section 3.1.2.
See also the reply to Reviewer 1, Comments 1a, 7, and 22.

I can’t see that the authors obtain any general results on the bed-to-surface
that expand over and above what we know already from papers such as Gud-
mundsson, 2008. This is not to say that the paper does provide many new
and valuable insights. However statements such as ‘Perturbations in the fric-
tion coefficient at the base observed in the surface velocity determined by SSA
are damped inversely’ are arguably less specific that some previously published
results. And a further example ’proportional to the wave number and the fre-
quency of the perturbations in (40) and (45), thus making very oscillatory per-
turbations in space and time difficult to register at the ice sheet surface.’ is
not a particularly precise or informative statement. If the authors want to
make statements about bed-surface relationships, forward or inverse, then they
should consider replicating some of the previous work first, and then maybe
expand on particular aspects.
Response: We have explicit expressions for the dependence of δu and δh on
time independent parameters in SSA in (38) and (42). Using these formulas
we derive an explicit expression (40) for how δu depends on the wave number
k with much more detail than previously. As an example, the sensitivity to
oscillatory perturbations increases as 1/H4(x) when the ice is getting thinner
closer to the GL and x → xGL. The expression is similar for δh, see the
end of Section 3.2.4. The formulas (38) and (42) are valid for any type of
perturbation, not just oscillatory ones. They tell how a basal perturbation at
any x is propagated to a perturbation at x∗ at the surface. The time dependent
weight function is approximated in (45) for an expression for perturbations
oscillating in time. The sentences quoted by the reviewer are summaries in
words of the precise formula (40) and the approximation (45). A comparison is
made with Gudmundsson’s results in Section 3.2.2. In Gudmundsson 2008, FS
for an ice slab is linearized with frozen coefficients and n = m = 1. Using Fourier
analysis as in Gudmundsson 2008, it is necessary to have constant coefficients
in the PDEs in the analysis and the perturbation at a point x∗ does not follow
from the analysis. The coefficients depending on u and H are not frozen in our
adjoint PDE (34) but vary with x as they do in an ice sheet. In our formula
(40), the expression in the parenthesis varies with x∗. Depending on k and
x∗/xGL the first two terms may cancel each other and then δu∗ ∼ 1/k2. Our
results are for the nonlinear SSA model with any m > 0 and, as a result of the
weak influence of the friction, independent of n.

I feel the authors missed a few citations. For example: Monnier, J. and des
Boscs, P.-E.: Inference of the bottom properties in shallow ice approximation

3



models, Inverse Probl., 33(11), 115001, doi:10.1088/1361-6420/aa7b92, 2017.
Response: Thanks for the reference. We refer to this paper now in Introduc-
tion.

I doubt the solution to (33) is new. I believe the same idea, and almost
identical solutions, have been published many time before. For example see Eq.
(8) in Weertman, 1961, and Nye 1959.
Response: We do not claim that the solution (35) of (33) is new but we need
u and H in (35) to derive the solutions (38) and (42) to the adjoint equations.
Three new sentences after (35) discuss Nye’s and Weertman’s solutions in rela-
tion to (35).

In summary, this manuscript should be shortened considerably and should
focus on the development and testing of new time-dependent adjoint capabilities.
I think this may actually not be that difficult, and may ultimately make the
paper more readable and focused.
Response: We have argued above that there are results in the paper that are
new and unique (not only the time dependent adjoint equations) and would
prefer to keep these in the revised version. Examples are the solutions to the FS
equations in Sections 3.1.1 and 3.1.3 and the explicit SSA solutions in Sections
3.2.3 and 3.2.4 and the propagation of δb and δC to δu and δh. The results
are all related to the sensitivity at the surface due to time dependent and time
independent perturbations at the base. The editor and the other referee sug-
gested no radical shortening of the paper. Our revised version contains the same
material (somewhat expanded as a response to the editor and the referees) as
the original version.
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Sensitivity of ice sheet surface velocity and elevation to variations in
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:::::::::::
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:::::::::::::::
equations
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Abstract. Predictions of future mass loss from ice sheets are afflicted with uncertainty, caused, among others, by insufficient

understanding of spatio-temporally variable processes at the inaccessible base of ice sheets for which few direct observa-

tions exist and of which basal friction is a prime example. Here, we use an inverse modeling approach and the associated

time-dependent adjoint equations, derived in the framework of a Full Stokes model and a Shallow Shelf/Shelfy Stream Ap-

proximation model, respectively, to determine the sensitivity of ice sheet surface velocities and elevation to perturbations in5

basal friction and basal topography. Analytical and numerical examples are presented showing the importance of including the

time dependent kinematic free surface equation for the elevation and its adjoint, in particular for observations of the elevation.

A closed form of the analytical solutions to the adjoint equations is given for a two dimensional vertical ice in steady state

under the Shallow Shelf Approximation. There is a delay in time between a perturbation at the ice base and the observation

of the change in elevation. A perturbation at the base in the topography has a direct effect
::
in

:::::
space at the surface above the10

perturbation and a perturbation in the friction is propagated directly to the surface in time. Perturbations with long wavelength

and low frequency will propagate to the surface while those of short wavelength and high frequency are damped.

1 Introduction

Over the last decades, ice sheets and glaciers have experienced mass loss due to global warming, both in the polar regions,

but also outside of Greenland and Antarctica (Farinotti et al., 2015; Mouginot et al., 2019; Pörtner et al., 2019; Rignot et al.,15

2019). The most common benchmark date for which future ice sheet and glacier mass loss and associated global mean sea

level rise is predicted is the year 2100 AD, but recently, even the year 2300 AD and beyond are considered (Pörtner et al.,

2019; Steffen et al., 2018). Global mean sea level rise is predicted to continue well beyond 2100 AD in the warming scenarios

typically referred to as RCPs’ (Representative Concentration Pathways, see van Vuuren et al. (2011)), but rates and ranges

are afflicted with uncertainty, caused by, among others, insufficient understanding of spatio-temporally variable processes at20

the inaccessible base of ice sheets and glaciers (Pörtner et al., 2019; Ritz et al., 2015). These include the geothermal heat

regime, subglacial and base-proximal englacial hydrology, and particularly, the sliding of ice sheet and glaciers across their
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base, for which only few direct observations exist (Fisher et al., 2015; Key and Siegfried, 2017; Maier et al., 2019; Pattyn and

Morlighem, 2020).

In computational models of ice dynamics, the description of sliding processes, including their parametrization, plays a central

role, and can be treated in two fundamentally different ways, viz. using a so-called forward approach on the one hand, or an

inverse approach on the other hand. In a forward approach, an equation referred to as a sliding law is derived from a conceptual5

friction model, and provides a boundary condition to the equations describing the dynamics of ice flow (in glaciology often re-

ferred to as the Full Stokes (FS) model) and which, once solved, render e.g. ice velocities as part of the solution. Studies of fric-

tional models and resulting sliding laws for glacier and ice sheet flow emerged in the 1950s(Fowler, 2011; Iken, 1981; Lliboutry, 1968; Nye, 1969; Weertman, 1957)

, ,
:::
see

::::
e.g.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Fowler (2011); Iken (1981); Lliboutry (1968); Nye (1969); Schoof (2005); Weertman (1957)

:
, and have subsequently

been implemented into numerical models of ice sheet and glacier behavior (Brondex et al., 2017, 2019; Gladstone et al., 2017; Tsai et al., 2015; Wilkens et al., 2015; Yu et al., 2018)10

:::
e.g.

::
in

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Brondex et al. (2017, 2019); Gladstone et al. (2017); Tsai et al. (2015); Wilkens et al. (2015); Yu et al. (2018), and con-

tinue to be discussed (Zoet and Iverson, 2020), occasionally controversially (Minchew et al., 2019; Stearn and van der Veen,

2018).

Because little or no observational data is available to constrain the parameters in such sliding laws (Minchew et al., 2016;

Sergienko and Hindmarsh, 2013), actual values of the former, and their variation over time (Jay-Allemand et al., 2011;15

Schoof, 2010; Sole et al., 2011; Vallot et al., 2017), often remain elusive. Yet, they can be obtained computationally by

solving an inverse problem provided that observations of e.g. ice velocities at the ice surface, and elevation of the ice sur-

face, are available (Gillet-Chaulet et al., 2016; Isaac et al., 2015). Note that the same approach, here described for the case

of the sliding law, can be used to determine other "inaccessibles", such as optimal initial conditions for ice sheet model-

ing (Perego et al., 2014), the sensitivity of melt rates beneath ice shelves in response to ocean circulation (Heimbach and20

Losch, 2012),
::
the

::::::::::
geothermal

::::
heat

:::
flux

::
at

:::
the

:::
ice

::::
base

:::::::::::::::
(Zhu et al., 2016), or to estimate basal topography beneath an ice sheet

(van Pelt et al., 2013)
::::::::::::::::::::::::::::::::::::::::::
(Monnier and des Boscs, 2017; van Pelt et al., 2013). The latter is not only difficult to separate from the

determination of the sliding properties (Kyrke-Smith et al., 2018; Thorsteinsson et al., 2003), but also has limitations related to

the spatial resolution of surface data and/or measurement errors, see Gudmundsson (2003, 2008); Gudmundsson and Raymond

(2008).25

Adopting an inverse approach, the strategy is to minimize an objective function describing the deviation of observed target

quantities (such as the ice velocity) from their counterparts as predicted following a forward approach when a selected param-

eter in the forward model (such as the friction parameter in the sliding law) is varied. The gradient of the objective function

is computed by solving the so-called adjoint equations to the forward equations, where the latter often are slightly simplified,

such as e.g. by assuming a constant ice thickness or a constant viscosity (MacAyeal, 1993; Petra et al., 2012). However, when30

inferring friction parameter(s) in a sliding law using an inverse approach, recent work (Goldberg et al., 2015; Jay-Allemand

et al., 2011) has shown that it is not sufficient to consider the time-independent (steady state) adjoint to the momentum balance

in the FS model. Rather, it is necessary to include the time-dependent advection equation for the ice surface height
::::::::
elevation

in the inversion. Likewise, but perhaps more intuitively understandable, the choice of the underlying glaciological model (FS

2



model, vs. e.g. Shallow shelf/stream approximation (SSA) model, see Sect. 2), has an impact on the values of the friction

parameters obtained from the solution of the corresponding inverse problem (Gudmundsson, 2008; Schannwell et al., 2019).

Here, we present an analysis of the sensitivity of the velocity field and the elevation of the surface of a dynamic ice sheet

(modelled by both FS and SSA, respectively, briefly described in Sect. 2) to perturbations in the sliding parameters contained

in Weertman’s law (Weertman, 1957) and the topography at the ice base. The adjoint problem
:::
The

:::::::::::
perturbations

::
in

::
a
:::::::
velocity5

:::::::::
component

::
or

:::
the

::
ice

::::::
surface

:::::::
elevation

:
at

:
a
::::::
certain

::::::
location

::::
and

::::
time

:::
are

:::::::::
determined

:::
by

:::
the

::::::::
solutions

::
to

:::
the

:::::::
forward

::::::::
equations

:::
and

:::
the

:::::::::
associated

::::::
adjoint

:::::::::
equations.

::
A

::::::
certain

::::
type

:::
of

::::::::::
perturbation

::
at
::::

the
::::
base

::::
may

:::::
cause

::
a
::::
very

:::::
small

::::::::::
perturbation

:::
at

:::
the

:::
top

::
of

:::
the

::::
ice.

:::::
Such

:
a
:::::

basal
:::::::::::

perturbation
::::
will

::
be

:::::::
difficult

:::
to

::::
infer

:::::
from

:::::::
surface

::::::::::
observations

:::
in

:::
an

::::::
inverse

::::::::
problem.

:::::
High

::::::::
frequency

:::::::::::
perturbations

::
in

:::::
space

::::
and

::::
time

:::
are

::::::::
examples

::::
when

:::::
little

::
is

:::::::::
propagated

::
to

:::
the

:::::::
surface.

::::
This

::
is

:::
also

:::
the

::::::::::
conclusion

::
in

:::::::::::::::::::::::::::::
Gudmundsson and Raymond (2008)

:
,
::::::
derived

::::
from

::
an

:::::::
analysis

:::::::
differing

::::
from

:::
the

::::
one

::::::::
presented

::::
here.

:::
The

::::::
adjoint

:::::::
problem

:
that10

is solved here to determine this sensitivity (Sect. 3) goes beyond similar earlier works by MacAyeal (1993); Petra et al. (2012)

because it includes the time-dependent advection equation for the kinematic free surface. The key concepts and steps introduced

in Sect. 3 are supplemented by detailed derivations, collected in Appendix A. The same adjoint equations are applicable in the

inverse problem to compute the gradient of the objective function and to quantify the uncertainty in the surface velocity and

height
::::::::
elevation due to uncertainties at the ice base.

:::::::
Examples

:::
of

::::::::::
uncertainties

:::
are

:::::::::::
measurement

::::::
errors

::
in

:::
the

::::
basal

::::::::::
topography15

:::
and

::::::::
unknown

::::::::
variations

::
in

:::
the

:::::::::
parameters

::
in

:::
the

::::::
friction

::::::
model. Analytical solutions in two dimensions of the stationary adjoint

equations subjected to simplifying assumptions are presented, from which the dependence of the parameters, on e.g. friction

coefficients and bedrock topography, becomes obvious. The time dependent adjoint equations are solved numerically, and the

sensitivity to perturbations varying in time is investigated and illustrated. The accuracy of the analytical solutions and the

adjoint approach has been discussed in20

:::
The

:::::::::
sensitivity

::
of

:::
the

:::::::
surface

:::::::
velocity

:::
and

::::::::
elevation

::
to

:::::::::::
perturbations

::
in

:::
the

:::::::
friction

:::
and

::::::::::
topography

::
is

:::::::::
quantified

::
in

::::::::
extensive

::::::::
numerical

:::::::::::
computations

::
in a companion paper (Cheng and Lötstedt, 2020), supported by extensive numerical computations.

::::::::::::::::::::::
(Cheng and Lötstedt, 2020)

:
.
:::
The

:::::::
adjoint

::::::::
equations

:::::::
derived

:::
and

:::::::
studied

::::::::::
analytically

::
in
::::

this
:::::
paper

::::
are

:::::
solved

:::::::::::
numerically

:::
for

:::
the

:::
FS

::::
and

::::
SSA

:::::::
models

::
in

::::::::::::::::::::::
Cheng and Lötstedt (2020)

:::
and

:::::::::
compared

::
to

:::::
direct

:::::::::::
calculations

::
of

:::
the

:::::::
surface

:::::::::::
perturbations

:::::
with

:::
the

:::::::
forward

:::::::::
equations.

:::::::
Discrete

::::::
transfer

::::::::
functions

:::
are

::::::::
computed

:::
and

::::::::
analyzed

::
as

::
in

::::::::::::::::::
Gudmundsson (2008)

::
for

:::
the

:::::::
relation

:::::::
between

::::::
surface

:::::::::::
perturbations25

:::
and

::::
basal

::::::::::::
perturbations.

:::::
While

:::::::::::::
Gudmundsson’s

:::::::
analysis

::
is

:::::
based

::
on

::::::
Fourier

::::::::
analysis,

:::
the

::::::
analysis

::
in

:::::::::::::::::::::::
Cheng and Lötstedt (2020)

::::
relies

:::
on

::::::::
analytical

::::::::
solutions

::
of

:::
the

::::
SSA

:::::::::
equations.

2 Ice models

In this section, the equations emerging from adopting a forward approach of describing ice dynamics are presented, together

with relevant boundary conditions, for the FS (4) and SSA model (8), respectively. These, and the notation and terminology30

introduced here, provide the framework in which the adjoint equations are discussed in Sect. 3.

The flow of large bodies of ice is described with the help of the conservation laws of mass, momentum and energy (Greve

and Blatter, 2009), which together pose a system of non-linear partial differential equations (PDEs) commonly referred to as

3



the FS equations in glaciological applications. In the FS equations, nonlinearity is introduced through the viscosity in Glen’s

flow law, a constitutive relation between strain rates and stresses (Glen, 1955). Continental sized ice masses (ice sheets, and,

if applicable, their floating extensions known as ice shelves), are shallow in the sense that their vertical extension V is orders

of magnitudes smaller than their horizontal extension L, such that the aspect ratio V/L is in the order 10−2 − 10−3
:::::
10−2

::
to

::::
10−3. The aspect ratio is used to introduce simplifications to the FS equations, resulting e.g. in the Shallow Ice (SIA) (Hutter,5

1983), Shallow Shelf (Morland, 1987), and Shelfy Stream (MacAyeal, 1989) Approximations, parts of which can be coupled

to FS using the ISCAL framework (Ahlkrona et al., 2016). They are all characterized by substantially reduced computational

costs for numerical simulation, compared to using the FS model. A common simplification, also adopted in our analysis in the

following, is the assumption of isothermal conditions, which implies that the balance of energy need not be considered.

The upper surface of the ice mass, and also the ice-ocean interface, constitute a moving boundary and satisfy an advection10

equation describing the evolution of its elevation and location (in response to mass gain, mass loss, or/and mass advection). For

ice masses resting on bedrock or sediments, sliding needs to be parameterized at the interface. The interface between floating

ice shelves and sea water in the ice shelf cavities is usually regarded as frictionless.

2.1 Full Stokes model

ocean
Ice flux

h(x, y, t)

b(x, y) xGL

H

ω

z

x

y

a
∗∗∗∗

∗
∗
∗∗∗

∗∗
∗∗∗

∗∗

∗∗

∗

∗

(a)

Γu ΓdγGL

Γb

Γw

y

x
z

n

(b)

Figure 1. A schematic view of an ice sheet in the (a) x− z plane and (b) x− y plane.

We adopt standard notation and denote vectors and matrices in three-dimensional space by bold characters, and derivatives15

with respect to the spatial coordinates and time by subscripts x,y,z and t. The horizontal plane ω is spanned by the x and

y coordinates, and z is the coordinate in the vertical direction, see Fig. 1(a). Specifically, we denote by u1,u2, and u3 the

velocity components of u= (u1,u2,u3)T in the x,y and z direction, where x= (x,y,z)T is the position vector and T denotes

the transpose. Further, the height
:::::::
elevation

:
of the upper ice surface is denoted by h(x,y, t), the elevation of the bedrock and

the location of the base of the ice shelf are b(x,y) and zb(x,y, t), and the ice thickness is H = h− b upstream
::::::::::
H = h− zb.20
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::::::::
Upstream

:
of the grounding line, γGL, and H = h− zb :::::

zb = b
:::
and

:
downstream of γGL ::

we
:::::

have
::::::
zb > b, see Fig. 1. In two

dimensions, γGL consists of one point with x-coordinate xGL.

The boundary Γ enclosing the domain Ω occupied by the ice has different parts, see Fig. 1(b): .
:
The lower boundaries in the

ω plane
::
of

::
Ω are denoted by Γb (where the ice is grounded at bedrock), and Γw (where the ice has lifted from the bedrock

and is floating on the ocean). These two regions are separated by the grounding line γGL, defined by (xGL(y),y) based on5

the assumption that ice flow is mainly along the x-axis. The upper boundary in the ω plane is denoted by Γs (ice surface) at

h(x,y, t) in Fig. 1(a). The boundary of ω itself
:::::::
footprint

:::
(or

:::::::::
projection)

::
of

::
Ω
:::

in
:::
the

::::::::
horizontal

:::::
plane

:
is denoted by

::
ω

:::
and

:::
its

::::::::
boundary

:
is
:
γ.

The vertical lateral boundary (in the x− z plane, Fig. 1(b)) has an upstream part denoted by Γu in black and a downstream

part denoted by Γd in blue, where Γ = Γu ∪Γd. Obviously, if x ∈ Γu, then (x,y) ∈ γu or if x ∈ Γd, then (x,y) ∈ γd where10

γ = γu ∪ γd. Letting n be the outward pointing normal on Γ (or γ in two dimensions (x,y)), the nature of ice flow renders the

conditionsn·u≤ 0 at Γu andn·u> 0 at Γd. In a two dimensional vertical ice (Fig. 1(a)), this corresponds to x= (x,z)T , ω =

[0,L], γu = 0, and γd = L where L is the horizontal length of the domain. In summary, the domains are defined as:

Ω = {x|(x,y) ∈ ω, zb(x,y, t)≤ z ≤ h(x,y, t)},
Γs = {x|(x,y) ∈ ω, z = h(x,y, t)},
Γb = {x|(x,y) ∈ ω, z = zb(x,y, t) = b(x,y), x < xGL(y)},
Γw = {x|(x,y) ∈ ω, z = zb(x,y, t), x > xGL(y)},
Γu = {x|(x,y) ∈ γu, zb(x,y, t)≤ z ≤ h(x,y, t)},
Γd = {x|(x,y) ∈ γd, zb(x,y, t)≤ z ≤ h(x,y, t)}.

(1)

Before the forward FS equations for the evolution of the ice surface Γs and the ice velocity in Ω can be given, further notation15

needs to be introduced: ice density is denoted by ρ, accumulation and/or ablation rate on Γs by a, and gravitational acceleration

by g.
:::
The

:::::
values

:::
of

::::
these

:::::::
physical

::::::::::
parameters

:::
are

::::
given

::
in
:::::
Table

::
1.
:
On Γs, h= (hx,hy,−1)T describes the spatial gradient of

the ice surface (in two vertical dimensions h= (hx,−1)T ). The strain rate D and the viscosity η are given by

D(u) = 1
2 (∇u+∇uT ), η(u) = 1

2A
− 1

n (trD2(u))ν , ν = 1−n
2n , (2)

where trD2 is the trace of D2. The rate factor A in (2) depends on the temperature and Glen’s flow law determines n > 0, here20

taken to be n= 3. The stress tensor is

σ(u,p) = 2ηD(u)− Ip, (3)

where p is the
:::::::
isotropic pressure and I is the identity matrix.

Turning to the ice base, the basal stress on Γb is related to the basal velocity using an empirical friction law. The friction coef-

ficient has a general form β(u,x, t) = C(x, t)f(u) where C(x, t) is independent of the velocity u and f(u) represents some25

linear or nonlinear function of u. For instance, f(u) = ‖u‖m−1 with the norm ‖u‖= (u ·u)
1
2 introduces a Weertman type

friction law (Weertman, 1957) on ω with a Weertman friction coefficient C(x, t)> 0
:::::::::
C(x, t)≥ 0

:
and an exponent parameter
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m> 0. Common choices of m are 1
3 and 1. Finally, a projection (Petra et al., 2012) on the tangential plane of Γb is denoted by

T = I−n⊗n where the Kronecker outer product between two vectors a and c or two matrices A and C is defined by

(a⊗ c)ij = aicj , (A⊗C)ijkl =AijCkl.

With these prerequisites at hand, the forward FS equations
:::
and

:::
the

::::::::
advection

:::::::
equation for the ice sheet’s height

:::::::
elevation

:
and

velocity for incompressible ice flow are5

ht +h ·u= a, on Γs, t≥ 0,

h(x,0) = h0(x), x ∈ ω, h(x, t) = hγ(x, t), x ∈ γu,
−∇ ·σ(u,p) =−∇ · (2η(u)D(u)) +∇p= ρg, ∇ ·u= 0, in Ω(t),

σn= 0, on Γs,

Tσn=−Cf(Tu)Tu, n ·u= 0, on Γb,

σn=−pwn, on Γw,

(4)

where h0(x) is the initial height
:::
pw ::

is
:::
the

:::::
water

:::::::
pressure

::
at

:::
Γw,

:::::::::::
h0(x)> b(x)

::
is

:::
the

:::::
initial

::::::
surface

::::::::
elevation and hγ(x, t) is a

given height on the inflow boundary. The boundary conditions for the velocity on Γu and Γd are of Dirichlet type such that

u|Γu = uu, u|Γd
= ud, (5)

where uu and ud are known.
:::::
These

:::
are

::::::
general

:::::::
settings

::
of

:::
the

:::::
inflow

::::
and

::::::
outflow

:::::::::
boundaries

::::::
which

::::
keep

:::
the

::::::::::
formulation

::
of

:::
the10

::::::
adjoint

::::::::
equations

::
as

::::::
simple

::
as

::
in

:::::::::::::::
Petra et al. (2014)

:
. Should Γu be at the ice divide, the horizontal velocity is set to u|Γu = 0.

:::
The

:::
ice

:::::::
velocity

::
at

:::
the

::::::
calving

:::::
front

:
is
:::::::
defined

::
as

::
ud:::

to
:::::::
simplify

:::
the

:::::::
analysis. The vertical component of σn vanishes on Γu.

2.2 Shallow shelf approximation.

The three dimensional FS problem (4) in Ω can be simplified to a two dimensional, horizontal problem with x= (x,y) ∈ ω,

by adopting the SSA, in which only u= (u1,u2)T is considered. This is because the basal shear stress is negligibly small at15

the base of the floating part of the ice mass, viz. the ice shelf, rendering the horizontal velocity components almost constant in

the z direction (Greve and Blatter, 2009; MacAyeal, 1989; Schoof, 2007). The SSA is often also used in regions of fast-flow

over lubricated bedrock (MacAyeal, 1989; Pattyn et al., 2012).

The simplifications associated with adopting the SSA imply that the viscosity (see (2) for the FS model) is now given by

η(u) =
1

2
A−

1
n

(
u2

1x +u2
2y +

1

4
(u1y +u2x)2 +u1xu2y

)ν
=

1

2
A−

1
n

(
1

2
B : D

)ν
, (6)20

where B(u) = D(u)+∇·uI with∇·u= trD(u). This η differs from (2) because B 6= D due to the cryostatic approximation

of p in the SSA. In (6), the Frobenius inner product between two matrices A and C is used, defined by A : C =
∑
ijAijCij :::::::::::::::::

A : C =
∑
ijAijCij .

The vertically integrated stress tensor ς(u) (cf. (3) for the FS model) is given by

ς(u) = 2HηB(u) ., (7)
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:::::
where

::
H

::
is

:::
the

:::
ice

::::::::
thickness,

:::
see

::::
Fig.

::
1. The friction law in the SSA model is defined as in the FS case. Note that basal velocity

is replaced by the horizontal velocity. This is possible because vertical variations in the horizontal velocity are neglected in

SSA. Then, Weertman’s law is β(u,x, t) = C(x, t)f(u) = C(x, t)‖u‖m−1 with a friction coefficient C(x, t)≥ 0, just as in

the FS model. In summary, the forward equations describing the evolution of the ice surface and ice velocities based on an

SSA model (in which u is not divergence-free) read5

ht +∇ · (uH) = a, t≥ 0, x ∈ ω,
h(x,0) = h0(x), x ∈ ω, h(x, t) = hγ(x, t), x ∈ γu,
∇ · ς −Cf(u)u= ρgH∇h, x ∈ ω,
n ·u(x, t) = uu(x, t),x ∈ γu, n ·u(x, t) = ud(x, t),x ∈ γd,
t · ςn=−Cγfγ(t ·u)t ·u, x ∈ γg, t · ςn= 0, x ∈ γw.

(8)

Above, t is the tangential vector on γ = γu ∪ γd such that n · t= 0. The inflow and outflow normal velocities uu ≤ 0 and

ud > 0 are specified on γu and γd. The lateral side of the ice γ is split into γg and γw with γ = γg ∪γw. There is friction in the

tangential direction on γg which depends on the tangential velocity t ·u with the friction coefficient Cγ and friction function

fγ . There is no friction on the wet boundary γw.10

For ice sheets that develop an ice shelf, the latter is assumed to be at hydrostatic equilibrium. In such a case, a calving front

boundary condition (Schoof, 2007; van der Veen, 1996) is applied at γd, in the form of the depth integrated stress balance (ρw

is the density of seawater)

ς(u) ·n=
1

2
ρgH2

(
1− ρ

ρw

)
n, x ∈ γd. (9)

With15

2.2.1
::::
SSA

::
in

:::
two

::::::::::
dimensions

::
In

:::
this

:::::::
section,

:::
the

::::
SSA

::::::::
equations

:::
are

:::::::::
presented

:::
for

:::
the

::::
case

::
of

::
an

:::::::::
idealized,

::::::::::::::
two-dimensional

::::::
vertical

:::::
sheet

::
in

:::
the

:::
x-z

::::::
plane,

:::
see Fig. 1.

::::
The

:::::::
forward

::::
SSA

::::::::
equations

:::
are

::::::
derived

::::
from

:
(8)

::
by

:::::
letting

:::
H

:::
and

::
u1:::

be
::::::::::
independent

::
of

::
y,

::::
and

:::::
setting

:::::::
u2 = 0.

:::::
Since

::::
there

::
is

:::
no

:::::
lateral

::::::
force,

:::::::
Cγ = 0.

:::
The

:::::::
position

:::
of

:::
the

:::::::::
grounding

:::
line

::
is
:::::::

denoted
:::

by
:::::
xGL,

:::
and

::::::::::::::::::::::::::
Γb = [0,xGL], Γw = (xGL,L].

::::
Basal

:::::::
friction

::
C

::
is

:::::::
positive

:::
and

::::::::
constant

:::::
where

:::
the

:::
ice

:::::
sheet

::
is

::::::::
grounded

:::
on

:::::::
bedrock,

:::::
while

::::::
C = 0

::
at

:::
the

:::::::
floating

:::
ice

::::::
shelf’s20

:::::
lower

::::::::
boundary.

::
To

::::::::
simplify

:::::::
notation,

:::
we

:::
let

::::::
u= u1.

::::
The

:::::::
forward

::::::::
equations

::::
thus

::::::
become

:

ht + (uH)x = a, 0≤ t≤ T, 0≤ x≤ L,
h(x,0) = h0(x), h(0, t) = hL(t),

(Hηux)x−Cf(u)u− ρgHhx = 0,

u(0, t) = uu(t), u(L,t) = ud(t),
::::::::::::::::::::::::::::::::::::

(10)
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:::::
where

:::
uu :

is
:::
the

:::::
speed

::
of

:::
the

:::
ice

::::
flux

::
at

:::::
x= 0

:::
and

:::
ud :

is
:::
the

:::::
speed

::
at

:::
the

::::::
calving

:::::
front

::
at

::::::
x= L.

:
If
:::::
x= 0

::
is
::
at

:::
the

:::
ice

::::::
divide,

::::
then

::::::
uu = 0.

:::
By

:::
the

:::::
stress

::::::
balance

:
(9), a calving rate uc can be determined at the ice front, see .

::
the

:::::::
calving

::::
front

:::::::
satisfies

ux(L,t) =A

[
ρgH(L,t)

4
(1− ρ

ρw
)

]n
.

:::::::::::::::::::::::::::::::

::::::::
Assuming

::::
that

:::::
u > 0

:::
and

:::::::
ux > 0,

::
the

::::::::
viscosity

::::::::
becomes

::::::::::::::
η = 2A−

1
nu

1−n
n

x ,
:::
and

:::
the

::::::
friction

::::
term

::::
with

::
a
::::::::
Weertman

::::
law

::::
turns

::::
into

::::::::::::::
Cf(u)u= Cum.5

2.2.2
:::
The

:::::::::::::::
two-dimensional

:::::::
forward

::::::
steady

:::::
state

:::::::
solution

:::
We

:::
turn

::::
now

::
to

:
a
:::::::::
discussion

::
of

::::::::::
steady-state

::::::::
solutions

::
to

::
the

::::::
system

:
(10)

:
.
::::::
Except

::::
from

:::::
letting

:::
all

::::
time

:::::::::
derivatives

::::::
vanish,

::::
even

:::
the

::::::::::
longitudinal

:::::
stress

:::
can

::
be

:::::::
ignored

::
in

:::
the

::::::
steady

::::
state

:::::::
solution,

:::
see

::::::::::::
Schoof (2007)

:
.
::::
With

:
a
::::::
sliding

::::
law

::
in

:::
the

::::
form

::::::::::::
f(u) = um−1

:::
and

:::
the

::::::::
thickness

:::::
given

::
at

::::
xGL,

:
(10)

:::
thus

::::::
reduces

::
to
:

(uH)x = a, 0≤ x≤ xGL,
H(xGL) =HGL,

−Cum− ρgHhx = 0,

u(0) = 0.
:::::::::::::::::::::::::

(11)10

:::
The

:::::::
solution

::
to

:::
the

:::::::
forward

:::::::
equation

:
(11)

:
is

::::::
derived

:::
for

:::
the

::::
case

:::::
when

::
a

:::
and

::
C

:::
are

::::::::
constant,

:::
(for

:::::::
details,

:::
see (D3)

:::
and

:
(D4)

::
in

::::::::
Appendix

:::
D):

:

H(x) =

(
Hm+2
GL +

m+ 2

m+ 1

Cam

ρg
(xm+1
GL −xm+1)

) 1
m+2

, 0≤ x≤ xGL,

H(x) =HGL, xGL < x < L,

u(x) =
ax

H
, 0≤ x≤ xGL, u(x) =

ax

HGL
, xGL < x < L.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(12)

:::
The

:::::::
solution

::
is

::::::::
calibrated

:::::
with

:::
the

::
ice

::::::::
thickness

::::::::::::::
HGL =H(xGL)

::
at
:::
the

:::::::::
grounding

::::
line.

:::::::
Similar

::::::::
equations

::
to

:::::
those

::
in (11)

:::
are

::::::
derived

::
in

::::::::::
Nye (1959)

:::::
using

::
the

:::::::::
properties

::
of

:::::
large

:::
ice

:::::
sheets.

::
A
:::::::
formula

:::
for

:::::
H(x)

::::::::::
resembling (12)

:::
and

::::::::
involving

:::::
H(0)

::
is

:::
the15

::::::
solution

:::
of

:::
the

:::::::::
equations.

:::
By

::::::::
including

:::
the

::::::::::
longitudinal

::::::
stress

::
in

:::
the

::::
ice,

::
an

:::::::::::
approximate,

:::::
more

:::::::::::
complicated

:::::::::
expression

:::
for

:::::
H(x)

:
is
::::::::
obtained

::
in

::::::::::::::
Weertman (1961)

:
.

Figure 2
::::::
displays

:::::::::
solutions

::::
from

:
(12)

:::::::
obtained

:::::
with

::::
data

::::
from

::::
the

::::::::
MISMIP

:::::::::::::::::
(Pattyn et al., 2012)

:::
test

::::
case

::::
EXP

::
1
:::::::

chosen

::
in

::::::::::::::::::::::
Cheng and Lötstedt (2020).

::::
The

:::::::::
modeling

:::::::::
parameters

:::
in (12)

::
are

:::::
given

:::
in

:::::
Table

::
1.

:::
The

:::
ice

:::::
sheet

:::::
flows

:::::
from

:::::
x= 0

:::
to

:::::::::::
L= 1.6× 106

:::
m

:::
on

:
a
::::::

single
:::::
slope

::::
bed

:::::::
defined

::
by

:::::::::::::::::::
b(x) = 720− 778.5x

7.5×105 :::
and

::::
lifts

:::::
from

::
it
::
at
::::

the
:::::::::
grounding

:::
line

::::::::
position20

::::::::::::::::
xGL = 1.035× 106m

:
.
:::
As

:
x
::::::::::
approaches

::::
xGL,

:::
H

::::::::
decreases

::
to

::::::::
approach

::
to

::::
HGL::

in
:
Fig. 2

::
(b).

:

:::
The

:::::
larger

:::
the

:::::::
friction

:::::::::
coefficient

::
C

::::
and

:::::::::::
accumulation

::::
rate

:
a
::::
are,

:::
the

::::::
steeper

:::
the

::::::::
decrease

::
in

::
H

::
is
:::
in (12)

:
.
::::
The

:::::::::
numerator

::
in

:
u
::::::::
increases

::::
and

:::
the

::::::::::
denominator

:::::::::
decreases

:::::
when

::::::::
x→ xGL::::::::

resulting
::
in

:
a
:::::
rapid

:::::::
increase

::
in

:::
u.

:::
The

::::::::
MISMIP

:::::::
example

::
is
:::::

such

8



:::::::
Parameter

: :::::::
Quantity

:

::::::
a= 0.3 m year−1

::::::
Surface

::::
mass

::::::
balance

::::::::::::::
A= 1.38× 10−24 s−1 Pa−3

:::
Rate

:::::
factor

::
of

:::::
Glen’s

::::
flow

:::
law

:::::::::::::
C = 7.624× 106 Pa m−1/3 s1/3

::::
Basal

::::::
friction

::::::::
coefficient

::::::
g = 9.8 m s−2

:::::::::
Acceleration

::
of
::::::
gravity

:::::::
m= 1/3

::::::
Friction

:::
law

:::::::
exponent

:::::
n= 3

:::::::
Flow-law

:::::::
exponent

::::::
ρ= 900

:
kg m−3

::
Ice

::::::
density

Table 1.
:::
The

:::::
model

:::::::::
parameters.

:::
that

:::
the

::::
SSA

:::::::
solution

::
is
:::::
close

::
to

:::
the

:::
FS

:::::::
solution.

:::::::::
Numerical

:::::::::::
experiments

::
in

::::::::::::::::::::::
Cheng and Lötstedt (2020)

::::
show

::::
that

::
an

::::::::
accurate

::::::
solution

:::::::::
compared

::
to

:::
the

:::
FS

:::
and

::::
SSA

::::::::
solutions

::
is

:::::::
obtained

::::
with

::
u

:::
and

::
H

:::
in (12)

::::::
solving (11).

:

::::::
Finally,

::
it
::
is

:::::
noted

::::
that

:::
an

:::::::::
alternative

:::::::
solution

:::
to (10)

::::
valid

::::
for

:::
the

:::::::
floating

:::
ice

:::::
shelf,

::::::::
x > xGL,

::::
but

:::::
under

:::
the

::::::::::
restraining

:::::::::
assumption

::
of

:::::
H(x)

:::::
being

:::::
linear

::
in

::
x,
::
is
:::::
found

:::
in

::::::::::::::::::::
Greve and Blatter (2009)

:
.

0.0 0.2 0.4 0.6 0.8 1.0

x (m) ×106

0.0

0.5

1.0

u
(m

yr
−

1
)

×103

(a)

0.0 0.2 0.4 0.6 0.8 1.0

x (m) ×106

1

2

3

4
H

(m
)

×103

(b)

Figure 2.
:::
The

::::::::
analytical

:::::::
solutions

::::
u(x)

:::
and

::::
H(x)

::
in (12)

::
for

:
a
::::::::
grounded

::
ice

::
in

:::::::
[0,xGL].

3 Adjoint equations5

In this section, the adjoint equations are discussed, as emerging in a FS framework (Sect. 3.1) and in a SSA framework

(Sect. 3.2), respectively. The adjoint equations follow from the Lagrangian of
::::
based

:::
on the forward equations after partial

integration. Lengthy derivations have been moved to Appendix A.
:
A
:::::::::

numerical
::::::::

example,
::::::

based
::
on

::::
the

::::::
Marine

:::
Ice

::::::
Sheet

:::::
Model

::::::::::::::
Intercomparison

::::::
Project

:::::::::
(MISMIP)

:::::::::::::::::
(Pattyn et al., 2012)

::::
used

:::
also

::
in
:::::::::::::::::::::::
Cheng and Lötstedt (2020)

::::::::
illustrates

:::
the

:::::::
findings

::::::::
presented.

:
10
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On the ice surface Γs and over the time interval [0,T ], we consider the functional F

F =

T∫
0

∫
Γs

F (u,h)dxdt . (13)

We wish to determine its sensitivity to perturbations in both the friction coefficient C(x, t) at the base of the ice, and the

topography b(x) of the base itself .
:::::
b(x),

:::::
which

::
is

:
a
:::::::
smooth

:::::::
function

::
in

::
x. We distinguish two cases: either u and h satisfy the

FS equations (4), or the SSA equations (8). Given F , its
:::
the forward solution (u,p,h) to (4) or (u,h) to (8), and its

:::
the adjoint5

solution (v, q,ψ) or (v,ψ) to the adjoint FS and adjoint SSA equations (both derived in the following and in Appendix A), we

introduce a Lagrangian L(u,p,h;v, q,ψ;b,C).
:::
The

::::::::::
Lagrangian

::
for

:::
the

:::
FS

::::::::
equations

::
is
:

L(u,p,h;v, q,ψ;C) =

T∫
0

∫
Γs

F (u,h) +ψ(ht +h ·u− a)dxdt

+

T∫
0

∫
ω

h∫
b

−v · (∇ ·σ(u,p))− ρg ·v− q∇ ·u dxdt

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(14)

::::
with

:::
the

::::::::
Lagrange

:::::::::
multipliers

::::
v, q,

:::
and

::
ψ
::::::::::::

corresponding
:::

to
:::
the

::::::
forward

:::::::::
equations

:::
for

::::
u,p,

:::
and

:::
h. The effect of perturbations

δC and δb in C and b on F is given by the perturbation δL, viz.10

δF = δL= L(u+ δu,p+ δp,h+ δh;v+ δv, q+ δq,ψ+ δψ;b+ δb,C + δC)−L(u,p,h;v, q,ψ;b,C). (15)

Examples of F (u,h) in (13) are F = ‖u−uobs‖2, and F = |h−hobs|2 in an inverse problem, in which the task is to find b and

C such that they match observations uobs and hobs at the surface Γs, see also Gillet-Chaulet et al. (2016); Isaac et al. (2015);

Morlighem et al. (2013); Petra et al. (2012). Another example is F (u,h) = 1
T u1(x, t)δ(x−x∗) with the Dirac delta δ at x∗

to measure the time averaged horizontal velocity u1 at x∗ on the ice surface Γs with15

F =

T∫
0

∫
Γs

F (u,h)dxdt=
1

T

T∫
0

u1(x∗, t)dt,

F =

T∫
0

∫
Γs

F (u,h)dxdt=
1

T

T∫
0

u1(x∗, t)dt,

::::::::::::::::::::::::::::::::::::

(16)

where T is the duration of the observation at Γs. If the horizontal velocity is observed at (x∗, t∗) then F (u,h) = u1(x, t)δ(x−
x∗)δ(t− t∗) and20

F =

T∫
0

∫
Γs

F (u,h)dxdt= u1(x∗, t∗). (17)

10



The sensitivity in F and u1 in (16)
:
or
:

(17) to perturbations in C and b is then given by (15) with the forward and adjoint

solutions.

The same forward and adjoint equations are solved both for the inverse problem and the sensitivity problem but with different

forcing function F .
:
in
:

(13)
:
.
::
If

:::
we

:::
are

::::::::
interested

::
in
::::
how

:::
u1:::::::

changes
::
at

:::
the

::::::
surface

:::::
when

::
b
:::
and

:::
C

:::
are

:::::::
changed

::
at

:::
the

::::
base

:::
by

::::
given

:::
δb

:::
and

::::
δC,

::::
then

::
F

::
is
::
as
:::

in (17).
::::
The

:::::::
forward

:::
and

::::::
adjoint

:::::::::
equations

:::
are

::::
then

::::::
solved

:::::
once. In the inverse problem , the5

::::
with

:::::::
velocity

:::::::::::
observations,

::
F

::
is

:::
the

:::::::
objective

::::::::
function

::
in

:
a
:::::::::::
minimization

:::::::::
procedure

:::
and

::::::::::::::::
F = ‖u−uobs‖2.

:::
The

:
change δF in

F is of interest when δC and δb
:
C
::::
and

:
b
:
are changed during the solution procedure. In order to minimize F , δC and δb are

chosen such that δF < 0 and F decreases .
::::
with

:::::::
C + δC

:::
and

::::::
b+ δb

::::
and

::
u

::
is

:::::
closer

::
to

:::::
uobs.::::::::

Precisely
::::
how

::::
δC

:::
and

:::
δb

:::
are

::::::
chosen

:::::::
depends

::
on

:::
the

:::::::::::
optimization

:::::::::
algorithm.

:
This procedure is repeated iteratively

:::
and

::
b

:::
and

::
C

:::
are

:::::::
updated

:::
by

:::::
b+ δb

::::
and

::::::
C + δC until δF → 0 and F has reached a minimum.

::::
The

::::::
forward

::::
and

::::::
adjoint

::::::::
equations

::::
have

::
to

:::
be

:::::
solved

::
in
:::::
each

:::::::
iteration

::
in10

::
the

:::::::
inverse

:::::::
problem.

3.1 Adjoint equations based on the FS model

In this section, we introduce the adjoint equations and the perturbation of the Lagrangian function. The detailed derivations

of (18) and (21) below are given in Appendix A, starting from the weak form of the FS equations (4) on Ω, and by using

integration by parts, and applying boundary conditions as in Martin and Monnier (2014); Petra et al. (2012).15

The definition of the Lagrangian L for the FS equations is given in (14)
:::
and (A15) in Appendix Awhere (v, q,ψ) are the

Lagrange multipliers corresponding to the forward equations for (u,p,h). To determine (v, q,ψ), the following adjoint problem

is solved:

ψt +∇ · (uψ)−h ·uzψ = Fh +Fu ·uz, on Γs, 0≤ t≤ T,
ψ(x,T ) = 0, ψ(x, t) = 0, on Γd,

−∇ · σ̃(v, q) =−∇ · (2η̃(u) ?D(v)) +∇q = 0, ∇ ·v = 0, in Ω(t),

σ̃(v, q)n=−(Fu +ψh), on Γs,

Tσ̃(v, q)n=−Cf(Tu)(I+Fb(Tu))Tv, on Γb,

n ·v = 0, on Γb,

(18)

where the derivatives of F with respect to u and h are20

Fu =

 ∂F

∂u1
,
∂F

∂u2
,
∂F

u∂3

∂F

∂u3
:::

T

, Fh =
∂F

∂h
.

Note that (18) consists of equations for the adjoint height
:::::::
elevation

:
ψ, the adjoint velocity v, and the adjoint pressure q.

:::
The

::::::::
equations

:::
are

:::
the

:::::
same

::
as

:::::
when

:::
the

:::::::::
derivatives

::::
are

::::::::
computed

::
in
:::

the
:::::::

inverse
:::::::
problem

::::::
except

:::
for

:::
the

:::::
terms

:::::::::
depending

:::
on

:::
F ,

:::::
which

::
is

:::
the

:::::
misfit

:::::::
between

:::
the

:::::::::
numerical

:::::::
solution

:::
and

::::
the

:::::::::
observation

:::
in

:::
the

::::::
inverse

::::::::
problem. Compared to the steady state

adjoint equation for the FS equations discussed in Petra et al. (2012), an advection equation is added in (18) for the Lagrange25

multiplier ψ(x, t) on Γs with a right hand side depending on the observation function F and one term depending on ψ in

11



the boundary condition on Γs. The adjoint height
:::::::
elevation

:
equation for ψ can be solved independently of the adjoint stress

equation since it is independent of v. If h is observed and Fh 6= 0 and Fu = 0, then the adjoint height
:::::::
elevation equation must

be solved together with the adjoint stress equation. Otherwise, the term ψh vanishes
::
is

::::::
ignored

:
in the right hand side of the

boundary condition of the adjoint stress equation and the solution is v = 0 with δF = 0 in (21), see below.

The adjoint viscosity and adjoint stress are5

η̃(u) = η(u)
(
I + 1−n

nD(u):D(u)D(u)⊗D(u)
)
,

σ̃(v, q) = 2η̃(u) ?D(v)− qI,
(19)

cf. also Petra et al. (2012). For the rank four-tensor I, Iijkl = 1 only when i= j = k = l, otherwise Iijkl = 0. The ? operation

in (19) between a rank four-tensor A and a rank two-tensor (viz., a matrix) C is defined by (A ?C)ij =
∑
klAijklCkl. In

general, Fb(Tu) in (18) is a linearization of the friction law f(Tu) in (4) with respect to the variable Tu. For instance, with

a Weertman type friction law, f(Tu) = ‖Tu‖m−1,10

Fb(Tu) =
m− 1

Tu ·Tu (Tu)⊗ (Tu). (20)

The perturbation of the Lagrangian function with respect to a perturbation δC in the slip coefficient C(x, t) involves the

tangential components of the forward and adjoint velocities, Tu and Tv at the ice base Γb, and is given by:

δF = δL=

T∫
0

∫
Γb

f(Tu)Tu ·Tv δC dxdt. (21)

:::
For

:::
this

:::::::
formula

::
to

::
be

::::::::
accurate,

:::
δC

:::
has

::
to

:::
be

:::::
small.

:::::::::
Otherwise,

::::::::
nonlinear

::::::
effects

::::
may

::
be

:::
of

::::::::::
importance.15

3.1.1 Time-dependent perturbations

Let us now investigate the effect of time-dependent perturbations in the friction parameter on modelled ice velocities and ice

surface height. A numerical example, based on the Marine Ice Sheet Model Intercomparison Project (MISMIP) (Pattyn et al., 2012)

used also in ? illustrates the findings presented.

::::::::
elevation. Suppose that the velocity component u1∗ = u1(x∗, t∗) is observed at (x∗, t∗) at the ice surface as in (17) and that20

t∗ < T , then

u1∗ = F =

T∫
0

∫
Γs

F (u)dxdt,

u1∗ = F =

T∫
0

∫
Γs

F (u)dxdt,

:::::::::::::::::::::::

(22)

with F (u) = u1δ(x−x∗)δ(t− t∗), Fu1 = δ(x−x∗)δ(t− t∗), Fu2 = Fu3 = 0, Fh = 0. Above, we have introduced the sim-25

plifying notation that a variable with subscript ∗ is a short-hand for it being evaluated at (x∗, t∗), or, if it is time independent, at

12



x∗.::::
Here

:::
we

::::
have

::::::
chosen

::
to
::::::::
consider

:::
the

::::::::::
perturbation

::
at

:
a
::::::
certain

:::::
point

::
in

:::::
space

:::
and

:::::
time

::::::
(x∗, t∗):, :::::

which
::
is

::::::::
sufficient

:::::::
because

::::
other

:::::
types

::
of

::::::::
sensitivity

::::
over

::
a
::::::
certain

:::::
period

::
of

::::
time

::::
and

::::
space

:::
as

:
in
:
(16)

::
are

:::
the

:::::
linear

::::::::::
combination

:::
of

::::::::
point-wise

:::::::::::
sensitivities.

The procedure to determine the sensitivity is as follows. First, the forward equation (4) is solved for u(x, t) from t= 0 to

t= T . Then, the adjoint equation (18) is solved backward in time (from t= T to t= 0) with ψ(x,T ) = 0 as the corresponding

final condition. Obviously, the solution for t∗ < t≤ T is ψ(x, t) = 0 and v(x, t) = 0. Letting ei denote the unit vector with 15

in the i:th component, the boundary condition in (18) becomes

σ̃(v, q)n=−e1δ(x−x∗)δ(t− t∗)−ψh

::::::::::::::::::::::::::::::::::
σ̃(v, q)n=−e1δ(x−x∗)δ(t− t∗)−ψh at t= t∗. For t < t∗, σ̃(v, q)n=−ψh. Since ψ is small for t < t∗ (see Sect. 3.1.4),

the dominant part of the solution is v(x, t) = v0(x)δ(t− t∗) for some v0.

We start by investigating the response of ice velocities to perturbations in friction at the base: When the slip coefficient at the10

ice base is changed by δC, then the change in u1∗ at Γs is, according to (21), given by

δu1∗ = δL=

T∫
0

∫
Γb

f(Tu)Tu ·Tv δC dxdt≈
∫
Γb

f(Tu)Tu ·Tv0 δC(x, t∗)dx. (23)

This implies that the perturbation δu1∗ mainly depends on δC at time t∗ and that contributions from previous δC(x, t), t < t∗,

are small. If we observe the horizontal velocity, then it responds instantaneously in time to the change in basal friction.

Further, to investigate the response of the ice surface height
::::::::
elevation, h∗ at Γs, to perturbations in basal friction, one considers15

F (h) = h(x,t)δ(x−x∗)δ(t− t∗), Fh = δ(x−x∗)δ(t− t∗), Fu = 0.

The solution of the adjoint equation (18) with σ̃(v, q)n=−ψh at Γs for v(x, t) is non-zero since ψ(x, t) 6= 0 for t < t∗.

In applied scenarios, friction at the base of an ice sheet is expected to exhibit seasonal variations. These can be expressed by

δC(x, t) = δC0(x)cos(2πt/τ), viz. a time dependent perturbation added to a stationary time average C(x), with 0< δC0 ≤
C. If, for illustrational purposes, τ = 1 (so, one year, from January to December), then Northern hemisphere cold and warm20

seasons can in a simplified manner be associated with nτ, n= 0,1,2, . . . (winter) and (n+ 1/2)τ , n= 0,1,2, .... (summer).

Assume further that f(Tu)Tu ·Tv is approximately constant in time. This is the case if u varies slowly
::
in

::::
time. Then

ψ ≈ const and v ≈ const for t < t∗. The change in ice surface elevation, δh, due to time-dependent variations in basal friction

varies as

δh∗ = δL=

T∫
0

∫
Γb

f(Tu)Tu ·Tv δC(x, t)dxdt≈ J
t∗∫

0

cos(2πt/τ)dt= J τ

2π
sin(2πt∗/τ), (24)25

:::::
where

J =

∫
Γb

f(Tu)Tu ·Tv δC0 dx.

:::::::::::::::::::::::::

(25)
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Obviously, from the properties of the cosine function, the friction perturbation δC is large at t∗ = 0, τ/2, τ . . . , and vanishes

at t∗ = τ/4,3τ/4, . . .. Yet, (24) shows that δh∗ = 0 at t∗ = 0, τ . . . (so, during maximal friction in the winter) and at t∗ =

τ/2,3τ/2 . . . (so, during minimal friction in the summer), while δh∗ 6= 0 when δC = 0 at t∗ = τ/4,3τ/4, . . . in the spring and

the fall. The response in h by changing C is delayed in phase by π/2 or in time by τ/4 = 0.25 yr. This is in contrast to the

observation of u1 in (23) where a perturbation in C is directly visible.5

Particularly in an inverse problem where the phase shift between δC and δh in (24) is not accounted for, if h∗ is measured in

the summer with δh(x, t∗) = 0, then the wrong conclusion would be drawn that there is no change in C.

To illustrate this
::
In

:::::::
another

::::::::
example,

:::::::
suppose

:::
that

:::::
there

::
is

:::
an

::::::
interval

:::::
with

:
a
::::
step

::::::
change

:::
of

::
C

::::
with

::::::::::::::::::::
δC(x, t) = δC0(x)s(t)

:::::
where

:::::::
s(t) = 1

::
in

:::
the

::::
time

:::::::
interval

:::::
[t0, t1]

::::
and

:
0
:::::::::
otherwise.

:::::
Then

::::
with

::
J

::
in (25),

:::
δh∗ ::

in (24)
:
is
:

δh∗ ≈ J
t∗∫

0

s(t)dt=


0, t∗ ≤ t0,
J (t∗− t0), t0 < t∗ < t1,

J (t1− t0), t∗ > t1.
::::::::::::::::::::::::::::::::::::::::::

10

:::
The

:::::
effect

::
of

:::
the

:::::
basal

::::::::::
perturbation

:::::::::::
successively

:::::::
increases

::
in
:::
the

::::::::
elevation

:::::
when

::::::
t∗ > t0:::

and
:::::
stays

::
at

:
a
::::::
higher

::::
level

:::
for

:::::::
t∗ > t1.

3.1.2
::::::::
Example

::::
with

:::::::
seasonal

:::::::::
variation

::
To

::::::::
illustrate

:::
the

:::::
phase

:::::
delay

::
in

:::
an

:::::::::
oscillatory

::::::::::
perturbation

:
, a two-dimensional numerical example is shown in Fig. 3, where

the time scale and friction coefficient are chosen as follows: τ = 1 yryr, δC(x,t) = 0.01C cos(2πt) in x ∈ [0.9,1.0]× 106 m.

The ice sheet flows from x= 0 to L= 1.6× 106 m and m.
:::
We

:::::
reuse

:::
the

::::::::
MISMIP

:::::::::::::::::
(Pattyn et al., 2012)

:::
test

::::
case

:::::
EXP

:
1
:::

as15

::
in Sect. 2.2.2.

::::
The

::::::::::
parameters

::
of

:::
the

:::::
setup

:::
are

:::
the

:::::
same

:::
as

::
in

:
Fig. 2

:::
and

:::
are

:::::
given

::
in
::::::

Table
::
1.

::::
The

:::::::
variables

:
u1 and h are

observed at x ∈ [0.85,1.02]× 106 m. The grounding line is m.
::::
The

::::::
steady

::::
state

:::::::
solution

::
of

:::
the

:::::::
forward

:::::::
equation

::::
with

:::
the

:::
GL

located at xGL = 1.035×106 m.For additional details of the setup, we refer to the MISMIP (Pattyn et al., 2012) test case used

already in ?m
:
is
::::::::
perturbed

:::
by

::::
δu1 :::

and
:::
δh

:::::
when

::
C

::
is

::::::::
perturbed

:::
by

:::
δC

::
as

:::::::::
expressed

::
in

:::::::
formulas

::::::::::::::::::::::::
δu1 = u1(C + δC)−u1(C)

:::
and

:::::::::::::::::::::
δh= h(C + δC)−h(C).

::::
After

:::::::::::
perturbation,

:::
the

:::
GL

:::::::
position

:::
will

:::::::
oscillate

:::
in

::::
time. The ice sheet is simulated by FS with20

Elmer/Ice (Gagliardini et al., 2013) for 10 years.

Fig. 3 shows that the perturbations δu1 and δh in the grounded part of the ice sheet, specifically at x∗ = 0.85,0.9,0.95,1.0,

and 1.02×106 m for which individual panels are shown, oscillate regularly with a period of 1 year. The perturbations are small

outside the interval [0.9,1.0]× 106. The initial condition at t= 0 is the steady state solution of the MISMIP problem and the

FS solution with a variable C is essentially that steady state solution plus a small oscillatory perturbation, as in Fig. 3.25

The weight f(Tu)Tu ·Tv0 in (23) is negative and an increase in the friction, δC > 0, leads to a decrease in the velocity and

δC < 0 increases the velocity in all panels of Fig. 3. The velocities δu1 and the surface elevations δh are separated by a phase

shift in time, ∆φ= π/2, as predicted by (23) and (24).

The weight in (24) for δC0 in the integral over x changes sign when the observation point is passing from x∗ = 0.9× 106 to

1.0× 106 explaining why the shift changes sign in the red dashed lines shown in the two lower panels of Fig. 3.30
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Figure 3. Observations at x∗ = 0.85,0.9,0.95,1.0,1.02× 106 m with FS in time t ∈ [0,10] of δu1 (solid blue) and δh (dashed red) with

perturbation δC(t) = 0.01C cos(2πt) for x ∈ [0.9,1.0]× 106 m. Notice the different scales on the y-axes.

3.1.3 The sensitivity problem and the inverse problem.

From a theoretical point of view, it is interesting to note that there is a relation between the sensitivity problem where the effect

of perturbed parameters in the forward model is estimated and the inverse problem used to infer ‘unobservable’ parameters

such as basal friction from observable data, e.g. ice velocity at the ice sheet surface. The same adjoint equations (18) are solved

in both problems but with different driving functions defined by F (u,h) in (13).5

Let (vi, qi,ψi), i= 1, . . . ,d, be the
:::::
steady

::::
state

:
solution to (18) when ui is observed at x̄ and Fu = eiδ(x− x̄). The

:::::
These

:::
are

:::::::
solutions

::
to

:::
the

:::::::::
sensitivity

::::::::
problem.

:::
We

:::
will

:::::
show

::::
that

::
the

:
adjoint solution and the variation δF of the inverse problem can be

expressed in (vi, qi,ψi).
:::
The

:::::::::::
perturbations

:::
δb

:::
and

:::
δC

:::
are

::::::
chosen

::::
such

::::
that

:::::::
δF < 0

::
in

::::
each

::::
step

::
in

:::
the

:::::::
iterative

:::::::
solution

::
of

:::
the

::::::
inverse

:::::::
problem.

:::::
Then

:::
the

::::::::
objective

:::::::
function

::
F

::::::::
decreases

:::::::
stepwise

::::::
toward

:::
the

:::::::::
minimum.

:
.
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It is shown in Appendix B that∫
ω

d∑
i=1

wi(x̄)vi dx̄,
∫
ω

d∑
i=1

wi(x̄)qi dx̄,
∫
ω

d∑
i=1

wi(x̄)ψi dx̄


∫
ω

d∑
i=1

wi(x̄)vi dx̄,
∫
ω

d∑
i=1

wi(x̄)qi dx̄,
∫
ω

d∑
i=1

wi(x̄)ψi dx̄


:::::::::::::::::::::::::::::::::::::::::::::::::

is a solution of (18) with arbitrary weights wi(x̄), i= 1, . . . ,d, when5

Fu =

∫
ω

d∑
i=1

wi(x̄)eiδ(x− x̄)dx̄=

d∑
i=1

wi(x̄)ei. (26)

When C is perturbed, the first variation of the functional in (21) is

δF =

∫
Γb

f(Tu)Tu ·T

∫
ω

d∑
i=1

wi(x̄)vi dx̄

 δC dx. (27)

In the inverse problem in Petra et al. (2012),

F =
1

2

∫
ω

‖u(x)−uobs(x)‖2 dx, Fu = u(x)−uobs(x). (28)10

The weights in (26)
:::
for

::
the

:::::::
inverse

:::::::
problem are wi(x) = ui(x)−uobs,i(x)and the effect of δC on F is by

δF =

∫
Γb

f(Tu)Tu ·Tṽ(x)δC dx,

where
:
.
:::
Let

:̃
v is

:::::
denote

:
a weighted sum of the solutions of the sensitivity problem vi over the whole domain ω

ṽ(x) =

∫
ω

d∑
i=1

(ui(x̄)−uobs,i(x̄))vi dx̄.

15

ṽ(x) =

∫
ω

d∑
i=1

(ui(x̄)−uobs,i(x̄))vi dx̄.

::::::::::::::::::::::::::::::::

(29)

::::
Then

:::
the

:::::
effect

::
of

:::
δC

:::
on

::
F

::
in

:::
the

::::::
inverse

:::::::
problem

::
is

:::
by (27)

δF =

∫
Γb

f(Tu)Tu ·Tṽ(x)δC dx.

::::::::::::::::::::::::::::

(30)
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The same construction of the solution is possible when hobs is given. Then d= 1, F (h) = 1
2 (h−hobs)

2, and Fh = w =

h−hobs.

If
::
We

:::::
have

::::::::::
investigated

::
the

:::::::
relation

:::::::
between

:::
the

:::::::::
sensitivity

:::::::
problem

:::
and

:::
the

::::::
inverse

::::::::
problem.

::
By

:::::::
solving

:
d
:::::::::
sensitivity

::::::::
problems

::::
with

:::::::::::::::::::::::::
Fu = eiδ(x− x̄), i= 1, . . . ,d,

::
to

::::::
obtain

::::
their

::::::
adjoint

::::::::
solutions

:::::::::
(vi, qi,ψi)

::::
and

:::::::
combine

:::::
them

::::
with

:::
the

:::::::
weights

::
wi:::::

from

::
Fu:::

in (28)
::
for

:::
the

:::::::
inverse

:::::::
problem,

:::
the

::::::
adjoint

:::::::
solution

:::
to

:::
the

::::::
inverse

:::::::
problem

::
is (29).

::::
This

:::::::
solution

::::
can

::::
then

::
be

:::::::
inserted

::::
into5

(27)
:
to
:::::::
evaluate

:::
the

:::::
effect

:::
in

::
F

::
of

:
a
::::::
change

:::
in

::
C

::
as

::
in (30).

::
In

::::::::
practice,

:
if
:
we are interested in solving the inverse problem and

determine δF in (27) in order to iteratively compute the optimal solution with a gradient method, then we solve (18) directly

with Fu = u−uobs or Fh = h−hobs to obtain ṽ without computing
:
d
::::::
vectors vi.

::::::
Taking

:::::::::::::::::::
δC =−f(Tu)Tu ·Tṽ

:::
in (30)

:::::::::
guarantees

:::
that

:::::::
δF < 0.

3.1.4 Steady state solution to the adjoint height
:::::::
elevation

:
equation in two dimensions.10

A further theoretical consideration shows that the solution ψ to the adjoint height
:::::::
elevation

:
equation need not be computed

to estimate perturbations in the velocity for a two-dimensional vertical ice sheet at steady state. We show with the analytical

solution in the FS model that the influence of ψ is negligible. It is sufficient to solve the adjoint stress equation for v to estimate

the perturbation in the velocity.

The adjoint steady state equation in a two dimensional vertical ice in (18) is15

(u1ψ)x = Fh + (hψ+Fu) ·uz, z = h, 0≤ x≤ L. (31)

The velocity from the forward equation is u(x,z) = (u1,u3)T and the adjoint height
:::::::
elevation

:
ψ satisfies the right boundary

condition ψ(L) = 0.

The analytical solution ψ to (31) is derived in Appendix C. Let g(x) = u1z(x) if u1 is observed and let g(x) = 1 if h is

observed. Then the adjoint solution is20

ψ(x) =


− g(x∗)
u1(x)

exp

− x∗∫
x

h ·uz(y)

u1(y)
dy

 , 0≤ x≤ x∗,

0, x∗ < x≤ L.

(32)

So, this solution has a jump −g(x∗)/u1(x∗) at x∗.

With a small h ·uz(y)≈ 0 in (32), an approximate solution is ψ(x)≈−g(x∗)/u1(x). If u1 is observed and g(x) = u1z ≈ 0,

then ψ(x)≈ 0 in (32) and ψh≈ 0 in (18). This is the case in the SSA of the FS model where u1z(x) = 0 and in the SIA of

the FS equations where u1z(x,h) = 0 (Greve and Blatter, 2009; Hutter, 1983). When these approximations are accurate then25

u1z will be small. Consequently, when u1 is observed, the effect on v in the adjoint stress equation of the solution ψ of the

adjoint advection equation in (18) is small. Solving only the adjoint stress equation for v as in Gillet-Chaulet et al. (2016); Isaac

et al. (2015); Petra et al. (2012) yields an adequate answer.
:::::::::
Numerical

:::::::
solution

::
in

::::::::::::::::::::::
Cheng and Lötstedt (2020)

::
of

:::
the

::::::
adjoint

:::
FS

:::::::
equation (18)

::
in

:::
two

::::::::::
dimensions

::::::::
confirms

:::
that

:::::
when

:::
u1 ::

is
:::::::
observed

::::
then

:::::
ψ(x)

::
is

:::::::::
negligible. The situation is different when h

is observed and ψ 6= 0
::::::::::::
ψ ≈ 1/u1(x∗) in (32).30

17



3.2 Shallow shelf approximation
::::::
Adjoint

:::::::::
equations

::::::
based

::
on

::::
SSA

Starting from (8), a LagrangianL of the SSA equations is defined, using the technique described and applied to the FS equations

in Petra et al. (2012). By evaluating
::::
The

::::
SSA

::::::::::
Lagrangian

::
in (A4)

:
in

:::::::::
Appendix

::
A

::
is

::::::
similar

::
to

:::
the

:::
FS

:::::::::
Lagrangian

::
in
:
(14)

:
.
:::
By

:::::
partial

:::::::::
integration

::
in L

:::
and

:::::::::
evaluation at the forward solution (u,h)and at the adjoint solution (v,ψ), the adjoint SSA equations

are obtained. Then, the effect of perturbed data at the ice base manifests itself at the ice surface as a perturbation δL; for details,5

see Appendix A. The adjoint SSA equations read:

ψt +u · ∇ψ+ 2ηB(u) : D(v)− ρgH∇ ·v+ ρgv · ∇b= Fh, in ω, 0≤ t≤ T,
ψ(x,T ) = 0, in ω, ψ(x, t) = 0, on γw,

∇ · ς̃(v)−Cf(u)(I+Fω(u))v−H∇ψ =−Fu, in ω,

t · ς̃(v)n=−Cγfγ(t ·u)(1 +Fγ(t ·u))t ·v, on γg, t · ς̃(v)n= 0, on γw,

n ·v = 0, on γ,

(33)

where the adjoint viscosity η̃ and adjoint stress ς̃ are (cf. (19) for the case of FS)

η̃(u) = η(u)
(
I + 1−n

nB(u):D(u)B(u)⊗D(u)
)
,

ς̃(v) = 2Hη̃(u) ?B(v).
(34)

From (33) it is seen that the adjoint SSA equations have the same structure as the adjoint FS equations (18). There is one10

stress equation for the adjoint velocity v, and one equation for the Lagrange multiplier ψ corresponding to the height
::::::
surface

:::::::
elevation

:
equation in (8). However, the advection equation for ψ in (33) depends on v, implying a fully coupled system for v

and ψ. Equations (33) are solved backward in time with a final condition on ψ at t= T . As in (8), there is no time derivative in

the stress equation. With a Weertman friction law, viz. f(u) = ‖u‖m−1 and fγ(t ·u) = |t ·u|m−1 (cf. also Appendix A1),

Fω(u) =
m− 1

u ·u u⊗u, Fγ =m− 1.15

If the friction coefficient C at the ice base (both where it is grounded on bedrock (C > 0) and floating (C = 0)) is changed by

δC, if the bottom topography is changed by δb, and if the lateral friction coefficient Cγ is changed by δCγ , then it follows from

Appendix A2 that the Lagrangian L is changed by (note that the weight in front of δC in (35) is actually the same as in (21))

δL=

T∫
0

∫
ω

(2ηB(u) : D(v) + ρgv · ∇h+∇ψ ·u)δb− f(u)u ·v δC dxdt−
T∫

0

∫
γg

fγ(t ·u)t ·ut ·v δCγ dsdt. (35)

The same perturbations in δC,δb, and δCγ could be allowed for the FS equations in (21) but because the FS equations are20

more complicated than the SSA equations, the complexity of the derivation in the appendix and the expression for δL would

increase considerably, which is why we refrain from considering them here.

Suppose that only h is observed with Fh 6= 0 and Fu = 0 in (33). Then the adjoint height
:::::::
elevation

:
equation must be solved for

ψ 6= 0 to have a v 6= 0 in the adjoint stress equation and a perturbation in the Lagrangian in (35). The same result follows from

the adjoint FS equations. If Fh 6= 0 and Fu = 0 in (18), then ψ 6= 0. Consequently, v 6= 0 and a perturbation δC will cause a25
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perturbation δL in (21). The conclusion that the adjoint height
:::::::
elevation

:
equation must be solved if the height

::::::
surface

::::::::
elevation

is observed is independent of the two ice models.

In a broader context, it is worth emphasizing that the adjoint equation derived in MacAyeal (1993) is identical to the stress

equation in (33), if H is constant, Fω = 0
:::
(e.g.

:::::::
m= 1),

:
and η̃(u) = η(u).

3.2.1 SSA in two dimensions.
:::
The

:::::::::::::::
two-dimensional

:::::::
adjoint

:::::::
solution5

In this section, the forward and adjoint SSA equations are presented for the case of an idealized, two-dimensional vertical

sheet in the x-z plane, see . In , numerical examples of the steady state case are given. The forward and
:::
The

:::
2D

:
adjoint SSA

equations are derived from and (33) by letting H and u1 :
in

:::
the

:::::
same

::::::
manner

:::
as (10)

:
,
::
by

::::::
letting

::
ψ

:::
and

:::
v1 be independent of y,

and setting u2 = 0. Since there is no lateral force,
:::::
v2 = 0

:::
and

:
Cγ = 0. The position of the grounding line is denoted by xGL,

and Γb = [0,xGL], Γw = (xGL,L]. Basal friction C is positive and constant where the ice sheet is grounded on bedrock, while10

C = 0 at the floating ice shelves’ lower boundary. To simplify
:::
the

:
notation, we let u= u1 and

:::
also

:::
let v = v1. The forward

equations thus become

ht + (uH)x = a, 0≤ t≤ T, 0≤ x≤ L,
h(x,0) = h0(x), h(0, t) = hL(t),

(Hηux)x−Cf(u)u− ρgHhx = 0,

u(0, t) = uu(t), u(L,t) = ud(t),

where uu is the speed of the ice flux at x= 0 and ud is the calving speed at x= L. If x= 0 is at the ice divide, then uu = 0.

By the stress balance , the calving front satisfies15

ux(L,t) =A

[
ρgH(L,t)

4
(1− ρ

ρw
)

]n
.

Assuming that u > 0 and ux > 0, the viscosity becomes η = 2A−
1
nu

1−n
n

x , and the friction term with a Weertman law turns into

Cf(u)u= Cum. The adjoint equations for v and ψ follow either from simplifying (33), or from
::
the

::::::::::
Lagrangian

:::
and (10) and

read as follows:

ψt +uψx + (ηux− ρgH)vx + ρgbxv = Fh, 0≤ t≤ T, 0≤ x≤ L,
ψ(x,T ) = 0, ψ(L,t) = 0,

( 1
nηHvx)x−Cmf(u)v−Hψx =−Fu,
v(0, t) = 0, v(L,t) = 0.

(36)20

Note that the viscosity above is multiplied by a factor 1/n, n > 0 which represents an extension of the adjoint SSA in MacAyeal

(1993) where n= 1
::::::::
implicitly. The effect on the Lagrangian of perturbations δb and δC is obtained from (35)

δL=

T∫
0

L∫
0

(ψxu+ vxηux + vρghx)δb− vf(u)uδC dxdt. (37)
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The weights or sensitivity functions wb and wC multiplying δb and δC in the integral are defined by

wb(x,t) = ψxu+ vxηux + vρghx, wC(x,t) =−vf(u)u. (38)

3.2.2 The two-dimensional forward steady state solution.

We turn now to a discussion of
:::
The steady-state solutions to the system (36) . Except from letting all time derivatives vanish,

even the longitudinal stress can be ignored in the steady state solution, see Schoof (2007). Moreover, the
::
can

:::
be

::::::::
analyzed5

::
as

::
in

:::
the

:::::::
forward

::::::::
equations

::
in

:
Sect. 2.2.2

::::
after

:::::::::::::
simplifications.

:::
The

:
viscosity terms in (36) are often small and can hence be

neglected, too
:::
and

:::
we

::::::
assume

::::
that

:::
the

::::
basal

::::::::::
topography

::
is

:::::::::::
characterized

::
by

::
a

::::
small

::::::
spatial

:::::::
gradient

:::
bx. The advantage resulting

from these simplifications is that both the forward and adjoint equations can be solved analytically on a reduced computational

domain where x ∈ [0,xGL]. The analytical approximations are less accurate close to the ice divide where some of the above

assumptions are not valid. With a sliding law in the form f(u) = um−1, thus reduces to10

(uH)x = a, 0≤ x≤ xGL,
H(0) =H0,

−Cum− ρgHhx = 0,

u(0) = 0,

and the
::::
The adjoint equations (36) reduce , under the assumption that the basal topography is characterized by a small spatial

gradient bx, to

uψx− ρgHvx = Fh, 0≤ x≤ xGL,
ψx(0) = 0, ψ(xGL) = 0,

−Cmum−1v−Hψx =−Fu,
v(0) = 0.

(39)

The solution to the forward equation is presented for the case when a and C are constant, (for details, see and in Appendix D):15

H(x) =

(
Hm+2
GL +

m+ 2

m+ 1

Cam

ρg
(xm+1
GL −xm+1)

) 1
m+2

, 0≤ x≤ xGL,

H(x) =HGL, xGL < x < L,

u(x) =
ax

H
, 0≤ x≤ xGL, u(x) =

ax

HGL
, xGL < x < L.

The solution is calibrated with the ice thickness HGL =H(xGL) at the grounding line.

displays solutions from obtained with data from the MISMIP test case (Pattyn et al., 2012) chosen in ?. The ice sheet rests on

a downward sloping bedrock with constant slope angle and lifts from it at the grounding line position xGL. As x approaches

xGL, H decreases to approach to HGL in (b). The larger the friction coefficient C and accumulation rate a are, the steeper the20

decrease in H is in . The numerator in u increases and the denominator decreases when x→ xGL resulting in a rapid increase

20



in u. The MISMIP example is such that the SSA solution is close to the FS solution. Numerical experiments in ? show that an

accurate solution compared to the FS and SSA solutions is obtained with u and H in solving .

Finally, it is noted that an alternative solution to valid for the floating ice shelf, x > xGL, but under the restraining assumption

of H(x) being linear in x, is found in Greve and Blatter (2009).

The analytical solutions u(x) and H(x) in for a grounded ice in [0,xGL].5

3.2.2 The two-dimensional adjoint steady state solution with Fu 6= 0.
:::::::
velocity

::::::::::
observation

In this section, the analytical solution to the adjoint equation (39) is discussed. The derivation of the solution is detailed in

Appendix E to Appendix F. It is here sufficient to recall that the below given solution is derived under the assumptions that

bx�Hx, and that a and C are constants.

For observations of u at x∗,10

F =

L∫
0

u(x)δ(x−x∗)dx= u∗, Fu = δ(x−x∗), Fh = 0,

the adjoint solutions are

ψ(x) =
Camx∗
ρgHm+3

∗
(xmGL−xm), x∗ < x≤ xGL,

ψ(x) =− 1

H∗
+

Camx∗
ρgHm+3

∗
(xmGL−xm∗ ), 0≤ x < x∗,

v(x) =
ax∗

ρgHm+3
∗

Hm, x∗ < x≤ xGL,

v(x) = 0, 0≤ x < x∗,

(40)

where ψ(x) and v(x) have discontinuities at the observation point x∗. The
:::
The

::::::::::
perturbation

::
of
:::
the

::::::::::
Lagrangian

:
(37)

::
is

::::
with

:::
the

::::::::
Heaviside

::::
step

:::::::
function

:::::
H(x)

:::
and

:::
the

:::::
Dirac

::::
delta

:::::
δ(x)

:::
(cf.

::::::::
Appendix

::
F)

:
15

δu∗ = δL=

xGL∫
0

wb δb+wC δC dx=

xGL∫
0

(ψxu+ vxηux + vρghx)δb− vum δC dx

=

xGL∫
x−
∗

ax∗Hm

Hm+3
∗

[(m+ 1)HxH(x−x∗) +Hδ(x−x∗)] δb−
ax∗(ax)m

ρgHm+3
∗

δC dx

=
u∗δb∗
H∗

− u∗
ρgHm+2

∗

xGL∫
x∗

C(ax)m
(

(m+ 1)
δb

H
+
δC

C

)
dx,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(41)

::
or,

::::
after

::::::
scaling

:::
with

::::
u∗:

δu∗
u∗

=
δb∗
H∗
− 1

ρgHm+2
∗

xGL∫
x∗

C(ax)m
(

(m+ 1)
δb

H
+
δC

C

)
dx.

::::::::::::::::::::::::::::::::::::::::::::::::::::

(42)
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:::
The

:::::::
relation

::
in (42)

:::::::
between

:::
the

::::::
relative

:::::::::::
perturbations

:::::::::::
δb/H,δC/C

::::
and

::::
δu/u

::::
can

:::
also

:::
be

:::::::::
interpreted

::
as

::
a

:::
way

:::
to

:::::::
quantify

:::
the

:::::::::
uncertainty

::
in

::
u.

::::
The

:::::::::
uncertainty

::::
may

::
be

::::
due

::
to

:::::::::::
measurement

:::::
errors

::
in

:::
the

::::::::::
topography

::
b.

:::
For

:::::::
example,

::
it
::
is

::::::
known

:::
that

:::
the

::::
true

::::::
surface

::
is

::
in

::
an

::::::
interval

:::::::::::::
[b− δb,b+ δb]

::::::
around

:
b
:::::
where

::::
e.g.,

::::::
δb= 1 m

:
or

:::
δb

:::
has

:
a
::::::
normal

::::::::::
distribution

::::
with

::::
zero

:::::
mean

:::
and

:::::
some

:::::::
variance.

:::::
Such

::
an

:::::::::
uncertainty

:::
δb

::
in

:
b
::
or

::::::::
similarly

::
an

::::::::::
uncertainty

:::
δC

::
in

::
C

:
is
::::::::::
propagated

::
to

::
an

:::::::::
uncertainty

::::
δu∗::

in
::
u

:
at
:::
x∗::

by
:
(42)

:
,

:::
see

:::::::::::
Smith (2014).

:
5

:::
The

:::::::::::
perturbations

::::
δu1i::

at
:::::::
discrete

:::::
points

::::
x∗,i:::

due
::
to
::::::::::::
perturbations

:::
δCj::

at
:::::::
discrete

:::::
points

:::
xj:::

are
:::::::::
connected

::
by

:
a
:::::::
transfer

::::::
matrix

::::
WC ::

in
::::::::::::::::::::::
Cheng and Lötstedt (2020).

::::
The

::::::
relation

::::::::
between

::::
δu1i :::

and
::::
δCj ::

is
:::
for

::
all

:
i
::::
and

:
j
::::
that

δu1i =
∑
j

WCijδCj .

:::::::::::::::::

:::
The

::::::::
elements

:::::
WCij:::

of
:::
the

:::::::
transfer

:::::
matrix

::::::::::
correspond

::
to

::::::::::
quadrature

:::::::::
coefficients

:::
in

:::
the

:::::::::::
discretization

:::
of

:::
the

::::
first

::::::
integral

:::
in

(41)
::::
with

::::::
δb= 0.

::::
The

::::::::
properties

:::
of

::::
WC:::

are
:::::::::
examined

::::::::::
numerically

::
in

::::::::::::::::::::::
Cheng and Lötstedt (2020)

:
.
:::
We

::::::::
conclude

::::
that

::::::
certain10

:::::::::::
perturbations

::
of

::
C

:::
(not

::::
only

::::::
highly

::::::::::
oscillatory)

:::
are

::::::
difficult

::
to
:::::::
observe

::
in

:::
u1 ::

at
::
the

:::::::
surface.

::::
The

::::
same

:::::::
analysis

::
is

:::::::::
performed

:::
for

::
the

:::::
other

:::::::::::
combinations

::
of
::::::
δb,δC

::::
and

::::::
δu1, δh.

::::::
Finally,

:::
let

::
us

::::::::
comment

:::
on

:::::
other

:::::::::
approaches

:::
to

:::::::::
investigate

:::
the

:::::::::
sensitivity

::
of

:::::::
surface

::::
data

::
to

:::::::
changes

::
in

::
b
:::
and

:::
C,

::::
e.g.

:::::
using

::::
three

:::::
linear

:::::::
models

::
as

::
in

:::::::::::::::::::
Gudmundsson (2008)

:::
and

:::::
along

:
a
::::
flow

::::
line

::
at

::::::
steady

::::
state

:::
in

::::::::::::::::::::::::::::::
Gudmundsson and Raymond (2008)

::::
with

:
a
:::::::::

linearized
:::
FS

::::::
model

::::
with

:::::
n= 1

::::
and

:::::::
m= 1.

::
In

:::::
these

:::::::
papers,

::::::
transfer

:::::::::
functions

:::
for

:::
the

:::::::::::
perturbations

:::::
from

::::
base

:::
to15

::::::
surface

::::::::::::
corresponding

::
to

::::
our

::::::::
formulas (41)

:::
and

:
(42)

:::
are

::::::
derived

:::
by

:::::::
Fourier

:::
and

:::::::
Laplace

::::::::
analysis.

::::
The

:::::::::::
perturbations

:::::
with

::::
long

:::::::::
wavelength

::
λ
::::
and

:::::
small

::::
wave

:::::::
number

::
k

:::
are

:::::::::
propagated

:::
to

:::
the

::::::
surface

:::
but

:::::
short

::::::::::
wavelengths

::::
are

:::::::::
effectively

:::::::
damped

::
in

:::::::::::::::::
Gudmundsson (2008)

:
.
::::
The

::::::
transfer

:::::::::
functions

:::
are

::::::
utilized

:::
in

::::::::::::::::::::::::::::::
Gudmundsson and Raymond (2008)

:
to
::::::::

estimate
::::
how

::::
well

:::::
basal

:::
data

::::
can

::
be

::::::::
retrieved

::::
from

::::::
surface

:::::
data.

::::::::
Retrieval

::
of

::::
basal

::::::::::
slipperiness

:::
C

::
is

:::::::
possible

:::
for

:::::::::::
perturbations

:::
δC

::
of

::::
long

::::::::::
wavelength

:::
and

::
if

:::
the

:::::
errors

::
in

:::
the

:::::
basal

:::::::::
topography

:::
δb

::
is

:::::
small.

:::::
Short

::::::::::
wavelength

:::::::::::
perturbations

::
δb

::::
can

::
be

::::::::::
determined

::::
from

::::::
surface

:::::
data.20

:::
The

:::::
same

::::::::::
conclusions

:::
as

::
in

:::::::::::::::::::
Gudmundsson (2008)

::
and

:::::::::::::::::::::::::::::::
Gudmundsson and Raymond (2008)

:::
can

::
be

::::::
drawn

:::::
from

:::
our

:::::::
explicit

:::::::::
expressions

:::
for

:::
the

:::::::::::
dependence

::
of

::::
δu∗ :::

and
::::
δh∗:::

on
:::
δC

:::
and

:::
δb.

::::
For

::::::::
example,

:
it
:::::::

follows
:::::
from (44)

:::
that

::::
only

::::
δC

::::
with

:
a
:::::

long

:::::::::
wavelength

::
is

::::::
visible

::
at

:::
the

::::::
surface

::::
and

:::
that

:::
δb

:::
also

::::
with

::
a
::::
short

::::::::::
wavelength

::::::
affects

::::
δu∗ ::

in (42).
::
If

::
δb

::
is
:::::
small

::
or

::::
zero

::
in

:
(42)

:
,

:::
then

::
it
::
is

:::::
easier

::
to

:::::::::
determine

:::
the

:::
δC

:::
that

::::::
causes

:
a
::::::
certain

::::
δu∗.:

:::
The

:
analytical adjoint solutions ψ(x) and v(x)

::
in (40) of the MISMIP case as in Fig. 2

::::
with

:::::::::
parameters

::
in

:::::
Table

:
1 at different25

x∗ positions are shown in Fig. 4(a) and Fig. 5(a). In all figures, m= 1 in the friction model.
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Figure 4. The analytical solutions ofψ in (39) of the observations of (a) u and (b) h at different locations x∗ = 0.25×106,0.5×106,0.7×106

and 0.9× 106 m.
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(b)

x∗=0.25×106 x∗=0.5×106 x∗=0.7×106 x∗=0.9×106

Figure 5. The analytical solutions of v in (39) of the observations of (a) u and (b) h at different locations x∗ = 0.25×106,0.5×106,0.7×106

and 0.9× 106 m.
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The perturbation of the Lagrangian is with the Heaviside step functionH(x) and the Dirac delta δ(x) (cf. Appendix F)

δu∗ = δL=

xGL∫
0

(ψxu+ vxηux + vρghx)δb− vum δC dx

=

xGL∫
x−
∗

ax∗Hm

Hm+3
∗

[(m+ 1)HxH(x−x∗) +Hδ(x−x∗)] δb−
ax∗(ax)m

ρgHm+3
∗

δC dx

=
u∗δb∗
H∗

− u∗
ρgHm+2

∗

xGL∫
x∗

C(ax)m
(

(m+ 1)
δb

H
+
δC

C

)
dx,

or, after scalingwith u∗:

δu∗
u∗

=
δb∗
H∗
− 1

ρgHm+2
∗

xGL∫
x∗

C(ax)m
(

(m+ 1)
δb

H
+
δC

C

)
dx.

The weights wb and wC in (41) multiplying δb and δC, defined in the same manner as in (37) and (38), are shown in Fig. 6(a)5

and Fig. 7(a) with the solutions
::
ψ

:::
and

::
v in Fig. 4(a) and Fig. 5(a). The Dirac term is plotted as a vertical line at x∗ in Fig. 7(a).

All perturbations in C between x∗ and xGL will result in a perturbation of the opposite sign in u∗ at the surface because

wC < 0 in (x∗,xGL) in Fig. 6(a) and (41). The same conclusion holds true for perturbations in b because wb < 0 in (x∗,xGL)

in Fig. 7(a) but an additional contribution is added from δb at x∗ by the Dirac delta in wb. A perturbation is less visible in u the

farther away from xGL the observation point is since the amplitude of both wC and wb decays when x∗ decreases.10

The relation in between the relative perturbations δb/H,δC/C and δu/u can also be interpreted as a way to quantify the

uncertainty in u. An uncertainty δC in C and an uncertainty δb in b is propagated to an uncertainty δu∗ in u at x∗ by .

0.0 0.2 0.4 0.6 0.8 1.0

x (m) ×106
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0

w
C

×10−7

(a)

0.0 0.2 0.4 0.6 0.8 1.0

x (m) ×106

0
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4

6

8

w
C

×10−6

(b)

x∗=0.25×106 x∗=0.5×106 x∗=0.7×106 x∗=0.9×106

Figure 6. The analytical solution of the weightswC =−vum on δC in (37) for (a) u and (b) h observed at x∗ = 0.25×106,0.5×106,0.7×
106 and 0.9× 106 m.
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w
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Figure 7. The analytical solution of weightswb = ψxu+vxηux+vρghx on δb in (37) for (a) u and (b) h observed at x∗ = 0.25×106,0.5×
106,0.7× 106 and 0.9× 106 m.

The following conclusions can be drawn from (41) and (42) and Figs. 6 and 7:

(i). The closer perturbations in basal friction are located to the grounding line, the larger perturbations of velocity will be

observed at the surface. This is because the weight in front of δC increases when x∗→ xGL, see Fig. 6, which in turn is

an effect of the increasing velocity u∗ and the decreasing thickness H∗, as the grounding line is approached, see Fig. 2.

Or, compactly expressed, δC with support in [x∗,xGL] will cause larger perturbations at the surface the closer x∗ is5

to xGL, and the closer δC(x) is to xGL.
:::
The

:::::
same

:::::::::
conclusion

::
is

:::::
drawn

:::
in

::::::::::::::::::::::
Cheng and Lötstedt (2020)

::::
with

::::::::::
numerically

::::::::
computed

::::
SSA

::::::
adjoint

::::::::
solutions.

(ii). Variations in the observed velocity δu∗ at the surface at observation point x∗ will include contributions from changes in

the frictional parameter, δC, between x∗ and the grounding line xGL, and from changes in basal topography, δb, but it is

impossible to disentangle their individual contributions to δu∗.10

(iii). When the variation in ice thickness is small compared to the overall ice thickness,Hx�H , a small perturbation in basal

topography δb is directly visible in the surface velocity. This is because in such a case, δu∗ ≈ u∗δb∗/H∗ and the main

effect on u∗ from the perturbation δb is localized at each x∗, see (41).

(iv). For an unperturbed basal topography, two different perturbations of the friction coefficient will result in the same pertur-

bation of the velocity. In other words: the perturbation δC cannot be uniquely determined by one observation of δu. This15

follows if we let the perturbation of the friction coefficient be a constant δC0 6= 0 in [x0,x1] ∈ [x∗,xGL], and evaluate

the integral in (41) to obtain

δu∗ =− u∗
ρgHm+2

∗

x1∫
x0

(ax)mδC0 dx=− amu∗
(m+ 1)ρgHm+2

∗
(xm+1

1 −xm+1
0 )δC0. (43)
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The same δu∗ is observed with a constant perturbation in [x2,x3] ∈ [x∗,xGL] with the amplitude δC0(xm+1
1 −xm+1

0 )/(xm+1
3 −

xm+1
2 ).

(v). A rapidly varying friction coefficient at the base of the ice sheet will be difficult to identify by observing the velocity at

the ice surface. In contrast, a smoothly varying friction coefficient at the base will be easily observable at the ice sheet

surface. This is seen as follows: PerturbC by δC = εcos(kx/xGL) in (41) for some wave number k which determines the5

smoothness of the friction at the bedrock and amplitude ε and let δb= 0 and m= 1. The wavelength
::
of

:::
the

::::::::::
perturbation

is λ= 2πxGL/k. When k is small then the wavelength is long and the variation of C + δC is smooth. When k is large

then the friction coefficient varies rapidly in x with a short λ. The perturbation in the velocity is

δu∗ =−
xGL∫
x∗

ε
a2x∗
ρgH4∗

xcos

(
kx

xGL

)
dx

=−ε a
2x∗

ρgH4∗

x2
GL

k

(
sin(k)− x∗

xGL
sin

(
kx∗
xGL

)
+

1

k

(
cos(k)− cos

(
kx∗
xGL

)))
.

(44)

:::
For

:
a
::::
thin

:::
ice

::::
with

:
a
:::::
small

::::
H∗, :

a
::::::::::
perturbation

::
in

::
C
::
is
:::::
easier

:::
to

::::::
observe

::
at

:::
the

::::::
surface

::::
than

:::
for

::
a

::::
thick

::::
ice. When k grows10

at the ice base, the amplitude of the perturbation at the ice surface decays as 1/k. Thus, the effect of high wave number

perturbations of C will be difficult to observe at the top of the ice but smooth perturbations at the base will propagate

to the surface.
:
If
::
k
::
is
:::::
large

:::
and

:::
the

:::::::
surface

:::::::
velocity

::
is

::
of

:::::::
interest

::
in

:
a
:::::::::
numerical

:::::::::
simulation,

:::::
then

::::
there

::
is

:::
no

::::::
reason

::
to

:::
use

:
a
::::
fine

::::
mesh

::
at
:::
the

::::
base

:::
to

::::::
resolve

:::
the

:::
fast

::::::::
variation

::
in

::
C

:::::::
because

::
it

:::
will

:::
not

:::
be

::::::
visible

::
at

:::
the

:::
top

::
of

:::
the

:::
ice.

:::::
How

:::
the

:::::::
damping

::::::::
depends

:::
on

:
λ
::
in

:::
the

:::
FS

::::::::
equations

::
is

::::::::
computed

::
in
::::::::::::::::::::::
Cheng and Lötstedt (2020)

:
.15

(vi). A perturbation in the topography with long wavelength is easier to be detected
:::::
detect at the surface than a perturbation

with short wavelength. If δC = 0 and b is perturbed by δb= εcos(kx/xGL), then any perturbation at x∗ is propagated to

the surface by u∗δb∗
H∗

, which is the first term on the right hand side of (41). The
:::::
effect

:
is
:::::
larger

::
if

:::
the

:::
ice

:
is
::::
thin

:::
and

:::::::
moving

:::
fast.

::::
The

:
integral term will behave in the same way as in (44) with mainly perturbations with small wave numbers and

long wavelengths visible at the surface.20

Finally, let us comment on other approaches to investigate the sensitivity of surface data to changes in b and C, e.g. using

three linear models as in Gudmundsson (2008) and along a flow line at steady state in Gudmundsson and Raymond (2008)

with a linearized FS model with n= 1 and m= 1. In these papers, transfer functions for the perturbations from base to surface

corresponding to our formulas and are derived by Fourier and Laplace analysis. The perturbations with long wavelength λ and

small wave number k are propagated to the surface but short wavelengths are effectively damped in Gudmundsson (2008). The25

transfer functions are utilized in Gudmundsson and Raymond (2008) to estimate how well basal data can be retrieved from

surface data. Retrieval of basal slipperiness C is possible for perturbations δC of long wavelength and if the errors in the basal

topography δb is small. Short wavelength perturbations δb can be determined from surface data. The same conclusions as in

Gudmundsson (2008) and Gudmundsson and Raymond (2008) can be drawn from our explicit expressions for the dependence

of δu∗ and δh∗ on δC and δb. For example, it follows from that only δC with a long wavelength is visible at the surface and30
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that δb also with a short wavelength affects δu∗ in . If δb is small or zero in , then it is easier to determine the δC that causes a

certain δu∗.

3.2.3 The two-dimensional adjoint steady state solution with Fh 6= 0.
::::::::
elevation

::::::::::
observation

In the case when h is observed at x∗ and Fu = 0 and Fh = δ(x−x∗), the expressions for ψ and v satisfying (39) are

ψ(x) =− Cam−1

ρgHm+1
∗

(xmGL−xm), x∗ < x≤ xGL,

ψ(x) =− Cam−1

ρgHm+1
∗

(xmGL−xm∗ ), 0≤ x < x∗,

v(x) =− Hm

ρgHm+1
∗

, x∗ < x≤ xGL,

v(x) = 0, 0≤ x < x∗.

(45)5

The corresponding formulas when u is observed are found in (40). There is a discontinuity at the observation point x∗ in v(x)

illustrated in Fig. 5(b), but ψ(x) is continuous in the solution of (39) and in Fig. 4(b).

The second derivative term ( 1
nηHvx)x is neglected in the simplified equation (39) but is of importance at x∗. A correction ψ̂

of ψ at x∗ in (45) is therefore introduced to satisfy
(

1
nηHvx

)
x
−Hψ̂x = 0. With vx(x∗) =−δ(x−x∗)/(ρgH∗), the correction

is ψ̂(x) =−δ(x−x∗)η∗/(nρgH∗). The solution ψ is updated at each x∗ in Fig. 4(b) with ψ̂ as a vertical line representing the10

negative Dirac delta.

The perturbation in h is as in (41) with ψ and v in (45) and the additional term ψ̂

δh∗
H∗

=

xGL∫
x−
∗

− uη∗
nρgH2∗

δx(x−x∗)δb dx+

xGL∫
x∗

C(ax)m

ρgHm+2
∗

(
(m+ 1)

δb

H
+
δC

C

)
dx

=
aη∗

nρgH2∗

(
x
δb

H

)
x

(x∗) +
1

ρgHm+2
∗

xGL∫
x∗

C(ax)m
(

(m+ 1)
δb

H
+
δC

C

)
dx,

(46)

where a(xδb/H)x(x∗) = (uδb)x(x∗) represents the x-derivative of uδb evaluated at x∗. When δb= 0 then δu∗ in (42) and

δh∗ = δH∗ in (46) satisfy δu∗H∗ =−δH∗u∗ as in the integrated form of the advection equation in (11) and in (D1).15

As in (41), (46) is rewritten with the weights wb and wC in (38)

δh∗ =

xGL∫
0

(ψxu+ vxηux + vρghx)δb− vum δC dx=

xGL∫
0

wb δb+wC δC dx. (47)

These weights are shown in Fig. 6(b) and Fig. 7(b). The negative derivative of the Dirac delta is depicted in Fig. 7(b) as a

vertical line in the negative direction immediately followed by one in the positive direction.

The contribution from the integrals in (42) and (46) is identical except for the sign (compare wC in Fig. 6(a) and Fig. 6(b) and20

wb in Fig. 7(a) and Fig. 7(b)). The first term in (42) depends on δb/H and the first term in (46) depends on the derivative of

axδb/H = uδb. The derivative of uδb at x∗ directly affects the perturbation of h at x∗. A perturbation of b at the base is directly

visible locally in u at the surface while the effect of δC is non-local
::
in

:::
the

:::::::
integral in (46). Because of the similarities between
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(42) and (46) and the left and right columns of Fig. 6 and Fig. 7, the conclusions (i), (ii), (iv), (v), and (vi) in Sect. 3.2.2 from

(41) and (42) for δu∗ are valid also for δh∗ in (46).

3.2.4 The two-dimensional time dependent adjoint solution.

Finally, the time dependent adjoint equation (36) is investigated. Equation (36) is solved numerically for the same MISMIP test

case as Fig. 2 in Sect. 2.2.2
::::
with

:::
the

:::::::::
parameters

::
in

:::::
Table

:
1. As in Sect. 3.1.2, the friction coefficient C has a seasonal variation5

(period one year, 1 yr, where the beginning of the year is associated with winter) in the forward equation (10):

C(x,t) = C0(1 +κcos(2πt)), 0< κ < 1. (48)

Apparently, C has its highest value at t= n, n= 0,1,2, . . ., i.e. the winter, and its lowest value at t= n+1/2, i.e. the summer,

as in Fig. 3. The amplitude of the perturbation
:::::::
variation

::
in

:::
C is set to κ= 0.5 and the forward equation (10) is solved for

11 years.
:::
The

:::
GL

::::
will

:::::
move

::
in

:::::
time

::::::
because

:::
of

:::
the

::::::::
variation

::
in

::
C. The topography b is kept constant in time. Observations10

of u and h are taken at x∗ = 9× 105 m for 0.1 a
:
yr

:
in the four seasons starting from the summer of the tenth year, e.g., in

the summer (t∗ = 9.5), the fall (t∗ = 9.75), the winter (t∗ = 10), and the spring (t∗ = 10.25). The forward equations (10) are

solved numerically from t= 0 with the steady state solution as initial data to the observation points t= t∗ and the adjoint

equations (36) are solved from t= t∗ backward in time to t= 0. According to a convergence test, the time step is chosen to be

0.01 yr and the spatial resolution is 103 m. A visual inspection of the computed solutions after halving the step sizes indicates15

that a sufficiently converged solution has been reached.

Fig. 8 shows the results for the adjoint weights wC(x,t) and wb(x,t) multiplying the perturbations δC and δb, as defined in

(37), for the observations of u and h at x∗ = 9× 105 m in all four seasons, where each column represents one season. The

friction coefficient C follows the seasonal variation in (48). Each row is one of the combinations of the weights wC and wb for

the observations of u and h . The time axis (or ordinate) in the figure follows the time direction in the forward problem (10).20

Most of the weights in space and time are negligible implying that perturbations in those domains are not visible at (x∗, t∗).

Only δC and δb in a narrow interval around x∗ for t in [0, t∗] have an influence on δu∗ and δh∗. Therefore, we take a snapshot

of the x axis (or abscissa) with the width of 105 m in space around x∗ in Fig. 8. The weights oscillate in time because of the

seasonal variation in the basal conditions . The earlier a
::
in (48).

::
A

:
perturbation at the base

:
is
::::::::::
propagated

::
to

:::
the

::
x∗:::::::

position
:::
on

::
the

:::::::
surface

:::
but

::::
with

:
a
:::::::
possible

:::::
delay

::
in

:::::
time.

:::
The

::::::
earlier

::
a

::::::::::
perturbation

::
in

::
C

::
or

::
b takes place in the interval [0, t∗), the smaller25

the effect of it is at t∗. A perturbation at the base is propagated to the x∗ position on the surfacebut with a possible delay in

time.
::::
After

::::
five

::::
years

::
a
::::::::::
perturbation

:::
can

::::::
hardly

::
be

::::::::
detected

:
at
:::
the

:::::::
surface.

The temporal variations of the adjoint weights at x∗ in Fig. 8 are shown in Fig. 9 for the four seasons with four different colors.

As expected, the weights vanish when t > t∗. In Fig. 9(a) and (b), the perturbations δC∗ and δb∗ have a direct effect on δu∗ at

t∗, where both wC(x∗, t∗) and wb(x∗, t∗) are negative. The same direct effect of δC is found for δu1∗ solving the FS equations30

(23) in Sect. 3.1.1. A change in δC∗ at the base is observed immediately as a change in u at the surface. The effect of δC

on δu∗ for t < t∗ is weak in Fig. 9(a), i.e. the memory of old perturbations is short. The largest effect of δC on δu∗ and δh∗

appears with t∗ in the summer when C is small in (48) (the blue lines in Fig. 9(a) and (b)).
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Figure 8. The adjoint weights for the observations at x∗ = 9× 105 m of the four seasons. (a) wC for the observation of u. (b) wb for the

observation of u. (c) wC for the observation of h. (d) wb for the observation of h.
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However, when h is observed, the effects of δC∗ and δb∗ are not visible directly because wC∗ ≈ 0 and wb∗ ≈ 0 in Fig. 9(c)

and Fig. 9(d). An intuitive explanation is that there is an immediate effect on the velocity but there is a delay in h since it

is integrated in time from the velocity field. Additionally, the effects of δC and δb are difficult to separate, since the weight

wb(x∗, t) has a shape similar to wC(x∗, t). The largest effect on δh∗ is from δC in the summer due to the peaks in wC in

Fig. 9(c). For the same δC, the largest δh∗ is observed in the fall (orange), then the second largest δh∗ is in the winter (green)5

followed by the spring observation (red). If δh∗ is observed in the fall and the time dependency is ignored, then the wrong

conclusion is drawn that δC in the fall has the strongest effect (but it is the summer perturbation). There is a delay in time

between the perturbation and the observation of the effect in the height
::::::
surface

::::::::
elevation. The same shift in time is what we

found in
::::
Sect.

:::::
3.1.1,

:
(24),

:
and Fig. 3 for the FS equations.

A reference adjoint solution
::
at

::
x∗ observed during the fall season (t∗ = 9.75) with time independent C and b, κ= 0 in (48),10

in the forward equations is shown in black dashed lines in all the four panels of Fig. 9. The weight wb :
at

:::
x∗ for a constant b

is well approximated by exp(−(T − t)/τ)
:::::::::::::::::
wb∗ exp(−(T − t)/τ)

:
in time with τ = 1.4 yr

::
for

:::::
some

::::
wb∗ for the observation of

both u and h. For the weight wC , the same exponential function holds
::::
with

::::::
weight

::::
wC∗, but the time constant τ = 1.8 yr for

the observation of h∗ and τ = 2.2 yr for the u∗ case.

Suppose that the temporal perturbation is oscillatory δC0 cos(2πft) with frequency f .
:::
and

::::::
located

::
in

:::::
space

::
at

:::
x∗ ::::

with15

δC(x,t) = δC0 cos(2πft)δ(x−x∗).
:::::::::::::::::::::::::::::

A low frequency f with f � 1 corresponds decennial or centennial variations and a high frequency with f � 1 corresponds

to diurnal or weekly variations. Then the perturbation in h at t= t∗ is

δh∗ =

∫
0

T t∗wC∗
:::::

exp(−(T − tt∗− t
::::

)/τ)δC0 cos(2πft)dt=

cos(2πfT ) + 2πτf sin(2πfT )− e−T/τ
4π2τf2 + τ−1

cos(2πft∗) + 2πτf sin(2πft∗)− e−t∗/τ
4π2τf2 + τ−1

:::::::::::::::::::::::::::::::::

wC∗
:::

δC0,

(49)

cf. (44). With a high frequency, f � 1, then δh∗ ∝ 1/f and high frequency perturbations are damped efficiently.
::
At

::::::
certain20

::::
times

:::
of

:::::::::
observation

:::
t∗ ::::

when
::::::::::::::
sin(2πft∗) = 0,

:::
the

::::::::
damping

:
is
:::::
even

:::::::
stronger

::::
with

::::::::::
δh∗ ∝ 1/f2. If the frequency is low, f � 1,

then δh∗ ∝ τ and the change in h∗ is insensitive to the frequency. The same conclusions hold true for δb where decennial

perturbations seem more realistic.

4 Conclusions

The adjoint equations are derived in the FS and the SSA frameworks including time and the height
::::::
surface

::::::::
elevation equation.25

Time-dependent perturbations δC and δb in basal friction coefficient C and basal topography b are introduced and their effect

on observations of the velocity u and the height
:::::
surface

::::::::
elevation

:
h at the top surface of the ice is studied. Our main results

and conclusions from the equations
::::
With

:::
the

:::::::
solution

:::
of

:::
the

::::::
adjoint

:::::::::
equations,

:::
we

:::
can

:::::::::
determine

:::
the

::::::::::
perturbation

::
at

::
a
:::::
given

::::
point

::
in
::::::

space
:::
and

::::
time

:::
on

:::
the

:::::::
surface

:::
due

:::
to

:::
all

::::
basal

::::::::::::
perturbations.

:::
By

:::::::
solving

:::
the

:::::::
forward

::::::::
equations

::::::
twice

::::
with

::
C

::::
and
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Figure 9. The adjoint weights at x∗ in the four seasons of the tenth year with seasonally varying friction coefficient. The black dashed line is

a reference solution without seasonal variations which is observed at t∗ = 9.75. (a) wC for the observation of u. (b) wb for the observation

of u. (c) wC for the observation of h. (d) wb for the observation of h .

::::::
C + δC

::
or
::
b and their solutions are:

:::::
b+ δb,

:::
we

:::
can

::::::::
compute

:::
the

::::::::::
perturbation

::
in

:::
all

:::::
points

::
in

:::::
space

:::
and

::::
time

:::
on

:::
the

::::::
surface,

::::
e.g.

:::::::::::::::::::::::
δu1 = u1(C + δC)−u1(C)

::
in

:::
the

:::
first

:::::::
velocity

::::::::::
component,

:::
for

:
a
:::::
given

:::
δC

::
or
:::
δb.

General results
:::
The

:::::::::::
perturbations

::
in

:::
the

:::::::::::
observations

:::
are

:::::::::
determined

::::::::::
numerically

::
in

::::::::::::::::::::::
Cheng and Lötstedt (2020)

:::::
either

:::::
using

:::
the

::::::
adjoint

::::::::
equations

:::
and

::::
their

::::::::
solutions

::
in Sect. 3

::
or

:::
by

::::::
solving

:::
the

:::::::
forward

::::::::
equations

::::
with

::::::::::
unperturbed

:::
and

::::::::
perturbed

::::::::::
parameters

::
to

:::::
obtain

::::
δu∗ :::

and
::::
δh∗.:::

The
:::::::::
numerical

::::::::
solutions

:::
are

::::::::
compared

::
to

::::
each

:::::
other

:::
and

::
to

::::::::
analytical

::::::::
solutions

:::
for

::::
SSA.

::::
The

:::::::::
agreement5

:
is
:::::
good

::
in

:::
the

:::::::::::
comparisons.

The
:
In

:
Sect. 3.1.3,

::
a
:
relation is established in between the inverse problem

:::::::
(aiming to infer parameters from data

:
)
:
and the

sensitivity problem
::::::
(aiming

:
to quantify the effect of variations in the parameters.

::::::::::
parameters):

:
The same adjoint equations are

solvedin the inverse problem but with other forcing functions .

The numerical results in ? confirm the conclusions here and are in good agreement with the analytical solutions.10

:
.
::::::::
However,

:::
the

:::::::
forcing

::::::::
functions

:::::
differ

::::
and

:::
are

:::::::
specific

:::
to

:::
the

::::::
inverse

::::::::
problem

::::
and

:::
the

:::::::::
sensitivity

::::::::
problem,

:::::::::::
respectively.

:::::::
Common

::
to
:::::
both

:::::::
problems

::
is
::::
that

:::
the

::::::
adjoint

::::::::
equations

:::
tell

::::
how Steady state

:::::::::::
perturbations

::
in

:::
the

:::::::::
parameters

::
at

:::
the

:::
ice

::::
base

:::
are

:::::::::
propagated

::
to

:::::::::::
perturbations

::
in

:::
the

:::::::
velocity

:::
and

:::
the

::::::::
elevation

::
of

:::
the

:::::::
surface. If

:::
For

:::::
steady

::::
state

:::::::::
problems,

:::
and

::
in

::
an

:::
FS

::::::
setting

:::::
whereu is observedthen we find in

:
,
::
we

::::
find

:::
(cf. Sect. 3.1.4)

:
that the contribution

of the solution of the adjoint height equation is small and it
:::::::
elevation

::::::::
equation (31)

::
is

:::::
small,

::::
and

:::
that

::
it
::::::::
therefore suffices to15
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solve only the adjoint stress equation as is the case in many articles on inversion
::::::::
equations,

:::
see e.g. Gillet-Chaulet et al. (2016);

Isaac et al. (2015); Petra et al. (2012).

The analytical solutions based on the SSA equations for a two dimensional vertical ice at steady state show in , , , and ,
::
in

:::::
order

::
to

::
be

::::
able

::
to

::::
draw

::::::::::
conclusions

::::::::
regarding

:::::::::::
perturbations

::
of

:::
u.

:::
For

::::::
steady

::::
state

::::::::
problems

::
in

:
a
::::::::::::::
two-dimensional

::::
SSA

::::::
setting,

:
(42)

:
,

(46)
:
,
:::
and

:::::
Figs.

:
6
:::
and

::
7
:::::
show that the sensitivity grows as the observation point x∗ is approaching the grounding line separating5

the grounded and the floating parts of the ice. The reason is that the
::
of

:::
the

:::::::
velocity

:::
and

::::::::
elevation

::::::::
increases

:::::::
(because

:::
the velocity

increases and the thickness of the ice decreases. In the steady state solution of SSA in , , , and , there is
::
ice

::::::::
thickness

:::::::::
decreases)

::
as

:::
the

:::::::::
observation

:::::
point

:::
x∗ :::::::::

approaches
:::
the

:::::::::
grounding

::::
line.

::
In

:::
this

:::::::
setting,

:::::
there

::
is

::::::::
moreover

::::::::
observed

:
a non-local effect of a perturbation in C,

:
in the sense that δC(x) affects both

u(x∗) and h(x∗) even if x 6= x∗, but a perturbation δb in b has a strong local effect concentrated at x∗. Nevertheless, the10

shapes of the two sensitivity functions or weights
:::
(or

:::::::
weights)

:
for δb and δC are very similar except for the neighborhood of

x∗making ,
::::::
which

:::::
makes

:
it difficult to separate the contribution of them

::::
their

:::::::::
respective

::::::::::
contribution

:
in an observation. The

same effect on the velocity and height changes at one observation point can be achieved by different
:::::::
Different

:
combinations of

the perturbations in the basal friction and bedrock elevation . Time dependence
:::
can

:::::::
produce

:::
the

::::
same

:::::
effect

:::
on

::
the

:::::::
velocity

::::
and

::::::
surface

:::::::
elevation

:::::::
changes

::
at
::::
one

::::::::::
observation

:::::
point.15

In the inverse problems based on time dependent simulations of FS and SSA, it is necessary to include the adjoint height

:::::::
elevation

:
equation. If the perturbations in the basal conditions are time dependent and h is observed as in

:::
(see

:
Fig. 3, Fig. 9(c),

and Fig. 9(d)
:
), then time cannot be ignored in the inversion. The wrong conclusions on

:
If

::::
time

::::::::::
dependence

::
is

:::::::
ignored,

::::::
wrong

:::::::::
conclusions

::::::::::
concerning the conditions at the ice base may be drawn from observations of hwith only static snapshots for

:
,
::
in

both the FS and the SSA model.20

In the time dependent solution of SSA, the strongest impact of a perturbation
:
a
::::::::::
perturbation

:::
of

:::
the

:::::
basal

::::::::
condition

:
at x∗ is

made
::
has

:::
the

::::::::
strongest

::::::
impact

:
at x∗ at the surface

::
on

:::
the

::::::
surface,

:
possibly with a time delay. There is

::::
Such a time delay

:::::
occurs

when a perturbation at the ice base is visible at the surface in h,
:
but in u it is observed immediately in

:
(Fig. 9.

:
).

:::
The

::::::
effect

::
of

:
a
::::::::::
perturbation

:::::::::
disappears

:::::
more

:::::::
quickly,

:::
the

::::
older

:::
the

::::::::::
perturbation

:::
is.

Perturbations in the friction coefficient at the base observed in the surface velocity
:::::::::
determined

:::
by

::::
SSA

:
are damped inversely25

proportional to the wave number and the frequency of the perturbations in (44) and (49), thus making very oscillatory pertur-

bations in space and time difficult to register at the top.
::
ice

:::::
sheet

:::::::
surface.

::
In

::::
such

::
a
::::
case,

:::::
there

::
is

::
no

:::::
need

::
to

::::
have

:
a
::::
fine

:::::
mesh

:::
and

:
a
:::::
small

::::::::
time-step

::
in

:
a
:::::::::
numerical

:::::::
solution

::
to

::::::
resolve

:::
the

:::::
rapid

:::::::::
oscillations

::
in
:::
C

:
at
:::
the

:::::
base.

Appendix A: Derivation of the adjoint equations

A1 Adjoint viscosity and friction in SSA30

The adjoint viscosity η̃(u) in SSA in (19) is derived as follows. The SSA viscosity for u and u+ δu is

η(u+ δu)≈ η(u)
(

1 + 1−n
2n

(2u1x+u2y)δu1x+ 1
2 (u1y+u2x)δu2x+(2u2y+u1x)δu2y+ 1

2 (u1y+u2x)δu1y

η̂

)
. (A1)
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Determine B(u) such that

%(u, δu)B(u) = B(u) ?B(δu).

First note that

B(u) : D(δu) = (D(u) +∇ ·uI) : D(δu) = D(u) : D(δu) + (∇ ·u)(∇ · δu)

= D(u) : (B(δu)−∇ · δuI) + (∇ ·u)(∇ · δu) = D(u) : B(δu).

Then use the ? operator to define B5

1−n
2nη̂

∑
klBkl(u)Dkl(δu)Bij(u) = 1−n

2nη̂

∑
klDkl(u)Bkl(δu)Bij(u) =

∑
klBijkl(u)Dkl(δu) = (B ?D)ij .

Thus, let

Bijkl =
1−n
2nη̂

Bij(u)Dkl(u), η̃ijkl(u) = η(u)(Iijkl +Bijkl(u)),

or in tensor form

B =
1−n

nB(u) : D(u)
B(u)⊗D(u), η̃(u) = η(u)(I +B) . (A2)10

Replacing B in (A2) by D we obtain the adjoint FS viscosity in (19).

The adjoint friction in SSA in ω and at γg in (33) with a Weertman law is derived as in the adjoint FS equations (18) and

(19). Then in ω with ξ = u,ζ = v, c= C,F = Fω , and at γg with ξ = t ·u,ζ = t ·v, c= Cγ ,f = fγ ,F = Fγ , we arrive at the

adjoint friction term cf(ξ)(I+F(ξ))ζ where

F(ξ) =
m− 1

ξ · ξ ξ⊗ ξ. (A3)15

A2 Adjoint equations in SSA

The Lagrangian for the SSA equations is with the adjoint variables ψ,v, q

L(u,h;v,ψ;b,Cγ ,C) =
∫ T

0

∫
ω
F (u,h) +ψ(ht +∇ · (uH)− a)dxdt

+
∫ T

0

∫
ω
v · ∇ · (2HηB(u))−Cf(u)v ·u− ρgHv · ∇h dxdt

=
∫ T

0

∫
ω
F (u,h) +ψ(ht +∇ · (uH)− a)dxdt+

∫ T
0

∫
ω
−2Hη(u)(D(v) : D(u) +∇ ·u∇ ·v)

−Cf(u)v ·u− ρgHv · ∇h dxdt−
∫ T

0

∫
γg
Cγfγ(t ·u)t ·ut ·vdsdt

(A4)

after partial integration and using the boundary conditions. The perturbed SSA Lagrangian is split into the unperturbed La-

grangian and three integrals20

L(u+ δu,h+ δh;v+ δv,ψ+ δψ;b+ δb,Cγ + δCγ ,C + δC)

=
∫ T

0

∫
ω
F (u+ δu,h+ δh) +

∫ T
0

∫
ω

(ψ+ δψ)(ht + δht +∇ · ((u+ δu)(H + δH))− a)dxdt

+
∫ T

0

∫
ω
−2(H + δH)η(u+ δu)D(v+ δv) : B(u+ δu)− (C + δC)f(u+ δu)(u+ δu) · (v+ δv)

−ρg(H + δH)∇(h+ δh) · (v+ δv) dxdt−
∫ T

0

∫
γg

(Cγ + δCγ)fγ(t · (u+ δu))t · (u+ δu)t · (v+ δv)dsdt

= L(u,h;v,ψ;b,Cγ ,C) + I1 + I2 + I3.

(A5)
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The perturbation in L is

δL= I1 + I2 + I3. (A6)

Terms of order two or more in δL are neglected. Then the first term in δL satisfies

I1 =
∫ T

0

∫
ω
F (u+ δu,h+ δh)−F (u,h)dxdt=

∫ T
0

∫
ω
Fuδu+Fhδhdxdt. (A7)

Using partial integration, Gauss’ formula, and the initial and boundary conditions on u and H and ψ(x,T ) = 0,x ∈ ω, and5

ψ(x, t) = 0, x ∈ γw, in the second integral we have

I2 =
∫ T

0

∫
ω
δψ(ht +∇ · (uH)− a) +ψ(δht +∇ · (δuH) +∇ · (uδH))dxdt

=
∫ T

0

∫
ω
δψ(ht +∇ · (uH)− a)dxdt+

∫ T
0

∫
ω
−ψtδh−H∇ψ · δu−∇ψ ·uδH dxdt.

(A8)

The first integral after the second equality vanishes since h is a weak solution and I2 is

I2 =
∫ T

0

∫
ω
−(ψt +u · ∇ψ)δh−H∇ψ · δu+u · ∇ψδbdxdt. (A9)

Using the weak solution of (8), the adjoint viscosity (34), (A2), the friction coefficient (A3), Gauss’ formula, the boundary10

conditions, and neglecting the second order terms, the third and fourth integrals in (A5) are

I3 = I31 + I32,

I31 =
∫ T

0

∫
ω
−2(H + δH)η(u+ δu)D(v+ δv) : B(u+ δu)

−(C + δC)f(u+ δu)(u+ δu) · (v+ δv)− ρg(H + δH)∇(h+ δh) · (v+ δv)) dxdt

−
∫ T

0

∫
γ
(Cγ + δCγ)fγ(t · (u+ δu))t · (u+ δu)t · (v+ δv)dsdt

= I311 + I312− I313,

(A10)

where

I311 =
∫ T

0

∫
ω
−2HD(v) : (η(u+ δu)B(u+ δu)) + 2HD(v) : (η(u)B(u))dxdt

=
∫ T

0

∫
ω
−2HD(v) : (η̃(u) ?B(δu))dxdt

I312 =
∫ T

0

∫
ωg
−δCf(u)u ·vdxdt+

∫ T
0

∫
ωg
−C(f(u+ δu)v · (u+ δu)− f(u)v ·u)dxdt

=
∫ T

0

∫
ωg
−δCf(u)u ·v+Cf(u)(I+Fω(u))δu ·vdxdt

I313 =
∫ T

0

∫
γg

(Cγ + δCγ)(fγ(t · (u+ δu))t ·v t · (u+ δu)− fγ(t ·u)t ·v t ·u)dsdt

=
∫ T

0

∫
γg

(Cγ + δCγ)(fγ(t ·u)t ·ut ·v+Cγfγ(t ·u)(I+Fγ(t ·u))t · δut ·vdsdt

I32 =
∫ T

0

∫
ω
−ρgH∇h ·v− 2ηD(v) : B(u)δH − ρg∇h ·vδH − ρgHv · ∇δhdxdt

=
∫ T

0

∫
ω
−ρgH∇h ·v− (2ηD(v) : B(u) + ρg∇h ·v)δH + ρg∇ · (Hv)δhdxdt.

(A11)

Collecting all the terms in (A7), (A9), and (A10), the first variation of L is15

δL = I1 + I2 + I3

=
∫ T

0

∫
ω
Fuδu− 2HD(v) : (η̃(u) ?B(δu))−H∇ψ · δudxdt−

∫ T
0

∫
ωg
Cf(u)(I+Fω(u))v · δudxdt

−
∫ T

0

∫
γg
Cγfγ(t ·u)(I+Fγ(t ·u))t ·v t · δudsdt−

∫ T
0

∫
γg
δCγfγ(t ·u)t ·ut ·vdsdt

+
∫ T

0

∫
ω

(Fh− (ψt +u · ∇ψ+ 2ηD(v) : B(u)− ρg∇b ·v+ ρgH∇ ·v))δhdxdt

+
∫ T

0

∫
ω
−δCf(u)v ·u+ (2ηD(v) : B(u) + ρg∇h ·v+u · ∇ψ)δbdxdt.

(A12)
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The forward solution (u∗,p∗,h∗) and adjoint solution (v∗, q∗,ψ∗) satisfying (8) and (33) are inserted into (A4) resulting in

L(u∗,p∗;v∗, q∗;h∗,ψ∗;b,Cγ ,C) =
∫ T

0

∫
ω
F (u∗,h∗)dxdt. (A13)

Then (A12) yields the variation in L in (A13) with respect to perturbations δb,δCγ , and δC in b,Cγ , and C

δL =
∫ T

0

∫
ω

(2ηD(v∗) : B(u∗) + ρg∇h∗ ·v∗+u∗ · ∇ψ∗)δbdxdt

−
∫ T

0

∫
γg
δCγfγ(t ·u∗)t ·u∗ t ·v∗ dsdt−

∫ T
0

∫
ω
δCf(u∗)v∗ ·u∗ dxdt.

(A14)

A3 Adjoint equations in FS5

The FS Lagrangian is as in (14)

L(u,p,h;v, q,ψ;C) =
∫ T

0

∫
Γs
F (u,h) +ψ(ht +h ·u− a)dxdt

+
∫ T

0

∫
ω

∫ h
b
−v · (∇ ·σ(u,p))− q∇ ·u− ρg ·v dxdt

=
∫ T

0

∫
Γs
F (u,h) +ψ(ht +h ·u− a)dxdt+

∫ T
0

∫
ω

∫ h
b

2η(u)D(v) : D(u)− p∇ ·v− q∇ ·u− ρg ·v dxdt

+
∫ T

0

∫
Γb
Cf(Tu)Tu ·Tvdxdt.

(A15)

In the same manner as in (A5), the perturbed FS Lagrangian is

L(u+ δu,p+ δp;v+ δv, q+ δq;h+ δh,ψ+ δψ;C + δC) = L(u,p,h;v, q,ψ;C) + I1 + I2 + I3. (A16)

Terms of order two or more in δu, δv, δh are neglected. The first integral I1 in (A16) is10

I1 =
∫ T

0

∫
Γs
F (u(x,h+ δh,t) + δu,h+ δh)−F (u(x,h, t),h)dxdt=

∫ T
0

∫
Γs
Fu(δu+uzδh) +Fhδhdxdt. (A17)

Partial integration, the conditions ψ(x,T ) = 0 and ψ(x, t) = 0 at Γs, and the fact that h is a weak solution simplify the second

integral

I2 =
∫ T

0

∫
Γs
δψ(ht +h ·u− a) +ψ(δht +u · δh+uz ·hδh+h · δu)dxdt

=
∫ T

0

∫
Γs
δψ(ht +h ·u− a)dxdt+

∫ T
0

∫
Γs

(−ψt−∇ · (uψ) +h ·uzψ)δh+h · δuψdxdt.
(A18)

Define Ξ, ξ, and Υ to be15

Θ(u,p;v, q;C) = 2η(u)D(v) : D(u)− p∇ ·v− q∇ ·u− ρg ·v,
θ(u;v;C) = Cf(Tu)Tu ·Tv,

Υ(u,p;v, q) = −v · (∇ ·σ(u,p))− q∇ ·u− ρg ·v.
(A19)

Then a weak solution, (u,p), for any (v, q) satisfying the boundary conditions, fulfills

T∫
0

∫
ω

h∫
b

Θ(u,p;v, q;C)dxdt−
T∫

0

∫
Γb

θ(u;v;C)dxdt= 0. (A20)
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The third integral in (A16) is

I3 = I31 + I32,

I31 =
∫ T

0

∫
ω

∫ h
b

Θ(u+ δu,p+ δp;v+ δv, q+ δq;C + δC)dxdt−
∫ T

0

∫
Γb
θ(u+ δu;v+ δv;C + δC)dxdt,

I32 =
∫ T

0

∫
ω

∫ h+δh

h
Υ(u,p;v, q)dxdt.

(A21)

The integral I31 is expanded as in (A10) and (A11) or Petra et al. (2012) using the weak solution, Gauss’ formula, and the

definitions of the adjoint viscosity and adjoint friction coefficient in Appendix A1. When b < z < h we have Υ(u,p;v, q) = 0.

If Υ is extended smoothly in the positive z-direction from z = h, then with z ∈ [h,h+ δh] for some constant c > 0 we have5

|Υ| ≤ cδh. Therefore,

|
h+δh(x,t)∫

h

Υ(u,p;v, q)dz| ≤
h+δh(x,t)∫

h

sup |Υ|dz ≤ c|δh(x,t)2|,

and the bound on I32 in (A21) is

|I32| ≤ ct|ω|max |δh(x,t)|2, (A22)

where |ω| is the area of ω. This term is a second variation in δh which is neglected and I3 = I31.10

The first variation of L is then

δL = I1 + I2 + I3

=
∫ T

0

∫
Γs

(Fu +ψh) · δudxdt+
∫ T

0

∫
Γs

(Fh +Fuuz − (ψt +∇ · (uψ)−h ·uψ))δhdxdt

+
∫ T

0

∫
ω

∫ h
b

2D(v) : (η̃(u) ?D(δu))− δp∇ ·v− q∇ · δudxdt

+
∫ T

0

∫
Γb
Cf(Tu)(I+Fb(u))Tv ·Tδudxdt+

∫ T
0

∫
Γb
δCf(Tu)Tu ·Tvdxdt.

(A23)

With the forward solution (u∗,p∗,h∗) and the adjoint solution (v∗, q∗,ψ∗) satisfying (4) and (18), the first variation with

respect to perturbations δC in C is (cf. (A14))

δL=

T∫
0

∫
Γb

f(Tu∗)Tu∗ ·Tv∗ δC dxdt. (A24)15

Appendix B: The adjoint solution in the inverse and sensitivity problems

Assume that (vi, qi,ψi), i= 1, . . . ,d, solves adjoint FS equations (18) in the steady state with observation of ui with d= 2 or

3

F = ui(x) =

∫
ω

uiδ(x− x̄)dx̄, Fu = eiδ(x− x̄), i= 1, . . . ,d, (B1)

or observation of h with d= 120

F = h(x) =

∫
ω

hδ(x− x̄)dx̄, Fh = δ(x− x̄). (B2)
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Introduce the weight functions wi(x), i= 1, . . . ,d. It follows from (18) that (wi(x̄)vi(x),wi(x̄)qi(x),wi(x̄)ψi(x)) is a solu-

tion with Fu = wi(x̄)eiδ(x− x̄) or Fh = w(x̄)δ(x− x̄). Therefore, also∫
ω

wi(x̄)vi dx̄,
∫
ω

wi(x̄)qi dx̄,
∫
ω

wi(x̄)ψi dx̄

 (B3)

is a solution with Fu =
∫
ω
wi(x̄)eiδ(x− x̄)dx̄= wi(x)ei or Fh =

∫
ω
w(x̄)δ(x− x̄)dx̄= w(x). A sum over i, i= 1, . . . ,d,

of each integral in (B3) is also a solution.5

Consider a target functional F for the steady state solution with a weight vectorw(x̄) with components wi(x̄) multiplying δui

in the first variation of F . Using (21), δF is

δF =

∫
ω

w(x̄) · δudx̄=

∫
ω

d∑
i=1

wi(x̄)δui dx̄=

∫
ω

d∑
i=1

wi(x̄)

∫
Γb

f(Tu)Tu ·Tvi δC dxdx̄

=

∫
Γb

f(Tu)Tu ·T

∫
ω

d∑
i=1

wi(x̄)vi dx̄

 δC dx.

(B4)

Appendix C: Steady state solution of the adjoint height equation in the FS model

In a two dimensional vertical ice with u(x,z) = (u1,u3)T , the stationary equation for ψ in (18) is10

(u1ψ)x = Fh + (hψ+Fu) ·uz, z = h, 0≤ x≤ L. (C1)

When x > x∗, where Fh = 0 and Fu = 0, we have ψ(x) = 0 since the right boundary condition is ψ(L) = 0.

If u1 is observed at Γs then F (u,h) = u1(x)χ(x) and Fu = (χ(x),0)T and Fh = 0. The weight χ on u1 may be a Dirac delta,

a Gaussian, or a constant in a limited interval. On the other hand, if F (u,h) = h(x)χ(x) then Fh = χ(x) and Fu = 0.

Let g(x) = u1z(x) when Fu 6= 0 and let g(x) = 1 when Fh 6= 0. Then by (31)15

(u1ψ)x−h ·uzψ = g(x)χ(x). (C2)

The solution to (C2) is

ψ(x) =− 1

u1(x)

x∗∫
x

exp

− ξ∫
x

h ·uz(y)

u1(y)
dy

g(ξ)χ(ξ)dξ, 0≤ x < x∗,

ψ(x) = 0, x∗ < x≤ L.

(C3)

In particular, if χ(x) = δ(x−x∗) then F = u1(x∗) or F = h(x∗) and the multiplier is

ψ(x) =− g(x∗)
u1(x)

exp

− x∗∫
x

h ·uz(y)

u1(y)
dy

 , 0≤ x < x∗, (C4)20

which has a jump −g(x∗)/u1(x∗) at x∗.
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Appendix D: Simplified SSA equations

The forward and adjoint SSA equations in (11) and (39) are solved analytically. The conclusion from the thickness equation in

(11) is that

u(x)H(x) = u(0)H(0) + ax= ax, (D1)

since u(0) = 0. Solve the second equation in (11) for u on the bedrock with x≤ xGL and insert into (D1) using the assumptions5

for x > 0 that bx�Hx and hx ≈Hx to have

ρg

C
Hm+1Hx =

ρg

C(m+ 2)
(Hm+2)x =−(ax)m. (D2)

The equation for Hm+2 for x≤ xGL is integrated from x to xGL such that

H(x) =

(
Hm+2
GL +

m+ 2

m+ 1

Cam

ρg
(xm+1
GL −xm+1)

) 1
m+2

,

u(x) =
ax

H
, Hx =−Ca

m

ρg

xm

Hm+1
.

(D3)

For the floating ice at x > xGL, ρgHhx = 0 implying that hx = 0 and Hx = 0. Hence, H(x) =HGL. The velocity increases10

linearly beyond the grounding line

u(x) = ax/H(x) = ax/HGL, x > xGL. (D4)

By including the viscosity term in (10) and assuming that H(x) is linear in x, a more accurate formula is obtained for u(x) on

the floating ice in (6.77) of Greve and Blatter (2009).

Appendix E: Jumps in ψ and v in SSA15

Multiply the first equation in (39) by H and the second equation by u to eliminate ψx. We get

−Cmumv− ρgH2vx =HFh−uFu. (E1)

Use the expression for u and Hx in (D3). Then

ρgH(mHxv−Hvx) =HFh−uFu, (E2)

or equivalently20 ( v

Hm

)
x

=− 1

ρgHm+2
(HFh−uFu). (E3)

The solutions ψ(x) and v(x) of the adjoint SSA equation (36) have jumps at the observation point x∗. For x close to x∗ in a

short interval [x−∗ ,x
+
∗ ] with x−∗ < x∗ < x+

∗ , integrate (E3) to receive

x+
∗∫

x−
∗

( v

Hm

)
x

dx=−
x+
∗∫

x−
∗

HFh−uFu
ρgHm+2

dx. (E4)
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Since H is continuous and u and v are bounded, when x−∗ → x+
∗ , then

v(x+
∗ )− v(x−∗ ) =− 1

ρgH2∗

H∗ x
+
∗∫

x−
∗

Fh dx−u∗
x+
∗∫

x−
∗

Fu dx

 . (E5)

A similar relation for ψ can be derived

ψ(x+
∗ )−ψ(x−∗ ) =

1

H∗

x+
∗∫

x−
∗

Fu dx. (E6)

With Fu = 0 and Fh = 0 for x < x∗ and v(0) = ψx(0) = 0, we find that5

v(x) = ψx(x) = 0, ψ(x) = ψ(x−∗ ), 0≤ x < x∗. (E7)

If F (u,h) = uδ(x−x∗), then by (E5) and (E6)

v(x+
∗ ) =

u∗
ρgH2∗

, ψ(x+
∗ )−ψ(x−∗ ) =

1

H∗
, (E8)

and if F (u,h) = hδ(x−x∗), then

v(x+
∗ ) =− 1

ρgH∗
, ψ(x+

∗ )−ψ(x−∗ ) = 0. (E9)10

Appendix F: Analytical solutions in SSA

By Appendix E, v(x) = 0 for 0≤ x < x∗. Use equations in (39) with Hx in (D3) for x∗ < x≤ xGL to have

vx
v

=−axCmu
m−1

ρgH3
=−Cmu

m

ρgH2
=
mHx

H
.

LetH(x−x∗) =
∫ x−x∗
−∞ δ(s)ds be the Heaviside step function at x∗. Then

v(x) = CvH(x)mH(x−x∗), 0≤ x≤ xGL. (F1)15

To satisfy the jump condition in (E8) and (E9), the constant Cv is

Cv =


ax∗

ρgHm+3
∗

, F (u,h) = uδ(x−x∗),

− 1

ρgHm+1
∗

, F (u,h) = hδ(x−x∗).
(F2)

Combine (F1) with the relation ψx = (Fu−Cmum−1v)/H and integrate from x to xGL to obtain

ψ(x) = Cva
m−1C (xmGL−xm) , x∗ < x≤ xGL. (F3)
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With the jump condition in (E8) and (E9), ψ(x) at 0≤ x < x∗ is

ψ(x) =


− 1

H∗
+

Camx∗
ρgHm+3

∗
(xmGL−xm∗ ), F (u,h) = uδ(x−x∗),

− Cam−1

ρgHm+1
∗

(xmGL−xm∗ ), F (u,h) = hδ(x−x∗).
(F4)

The weight for δC in the functional δL in (37) is non-zero for x∗ < x≤ xGL

−vum =−Cv(ax)m. (F5)

Use (F1) and (39) in (37) to determine the weight for δb in δL,5

ψxu+ vxηux + vρghx = ρg(Hv)x+Fh

= CvρgH
m [(m+ 1)HxH(x−x∗) +Hδ(x−x∗)] +Fh.

(F6)
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