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Abstract 
 
 We identify and map visible traces of subglacial meltwater drainage around the 

former Keewatin Ice Divide, Canada from high resolution Arctic Digital Elevation Model 

(ArcticDEM) data. We find similarities in the characteristics and spatial locations of 15 

landforms traditionally treated separately (i.e. meltwater channels, meltwater tracks 

and eskers) and propose that creating an integrated map of ‘meltwater routes’ 

captures a more holistic picture of the large-scale drainage in this area. We propose 

the grouping of meltwater channels and meltwater tracks under the term ‘meltwater 

corridor’ and suggest that these features in the order of 10s – 100s m wide, commonly 20 

surrounding eskers and transitioning along flow between different types, represent the 

interaction between a central conduit (the esker) and surrounding hydraulically 

connected distributed drainage system (the meltwater corridor). Our proposed model 

is based on contemporary observations and modelling which suggest that connections 

between conduits and the surrounding distributed drainage system within the ablation 25 

zone occur as a result of over pressurisation of the conduit. The widespread aerial 

coverage of meltwater corridors (5 – 36 % of the bed) provides constraints on the 

extent of basal uncoupling induced by basal water pressure fluctuations. Geomorphic 

work resulting from repeated connection to the surrounding hydraulically connected 

distributed drainage system suggests that basal sediment can be widely accessed and 30 

evacuated by meltwater. 
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1. Introduction  35 
 

 
Variations in the configuration of subglacial hydrological systems are key to 

understanding some of the most dynamic ice sheet behaviour at a range of spatial and 

temporal scales (e.g. Zwally et al., 2002; Das et al., 2008; Joughin et al., 2008; van de 40 

Wal et al., 2008; Shepherd et al., 2009; Palmer et al., 2011; Fitzpatrick et al., 2013; 

Doyle et al., 2014). Once water reaches the bed, its impact on ice flow is determined 

by the hydraulic efficiency of the subglacial hydrological system. Theory developed at 

alpine glaciers suggests that increasing water pressure results in enhanced ice motion 

owing to reduced ice-bed contact (Lliboutry, 1968; Bindschadler, 1983) and where 45 

sediment is present, enhanced sediment deformation (e.g. Engelhardt et al., 1978; 

Hodge, 1979; Iken and Bindshadler, 1986; Fowler, 1987; Iverson et al., 1999; Bingham 

et al., 2008). Water pressure at the bed depends on water supply to, storage within 

and discharge through the subglacial hydrological system (Iken et al., 1983; Kamb et 

al., 1985; Nienow et al., 1998). The configuration of the subglacial hydrological system 50 

is key to this, with a hydraulically efficient drainage system able to accommodate and 

evacuate an equivalent water flux without causing spikes in basal water pressure 

which have been linked to transient ice accelerations (e.g. Tedstone et al., 2013). 

 

Traditionally the subglacial hydrological system has been conceptualised as a 55 

binary model comprising (i) inefficient distributed drainage - taking the form of thin 

films of water (Weertman, 1972), linked cavities (Lliboutry, 1986; Walder, 1986; Kamb, 

1987), groundwater flow (Boulton et al., 1995) and / or wide shallow canals (Walder 

and Fowler, 1994);  and (ii) efficient channelised drainage  with conduits cut either up 

into the ice (Rothlisberger-channel) or down into the bed (Nye-channel) (e.g. 60 

Rothlisberger, 1972; Shreve, 1972; Nye,1973; Hooke et al., 1990). These two systems 

interact with each other over a range of spatial and temporal scales (e.g. Andrews et 

al., 2014; Hoffman et al., 2016; Rada and Schoof, 2018; Downs et al., 2018; Davison 

et al., 2019), resulting in: (i) a moulin-connected channelised system which remains 

hydraulically connected to surface meltwater inputs throughout the melt season; (ii) an 65 

active hydraulically connected distributed system strongly influenced by the 

channelised system and therefore surface inputs across a range of spatial and 

temporal scales (e.g. Hubbard et al., 1995) and; (iii) a weakly-connected distributed 

system largely isolated from the channelised system and only rarely – if ever - affected 
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by surface meltwater inputs  (Andrews et al., 2014; Hoffman et al., 2016; Rada and 70 

Schoof, 2018).  

 

 
Figure 1. Ice sheet hydrological system with varying surface and basal inputs (a) and a three-

system drainage model (b). In the three-system drainage model, the hydraulically connected 75 
distributed drainage system (light blue in a), is influenced regularly by surface meltwater inputs 

through the conduit. The weakly-connected distributed drainage system (dark brown) is largely 

isolated and rarely or never impacted by surface meltwater inputs. At present, the relative 

coverage of each is not yet known, nor the precise configuration or relation between each 

component.   80 
 

 

In theory, in a steady-state system, water flows from surrounding high pressure 

distributed regions into lower pressure conduits. Borehole measurements of subglacial 

water pressure, modelling and ice velocity proxy data (e.g. Hubbard et al., 1995; 85 

Gordon et al., 1998; Bartholomaus et al., 2008; Werder et al., 2013; Tedstone et al., 

2014) suggest, however, that given a sufficiently large and rapid spike in water delivery 

to a subglacial conduit, the hydraulic gradient can be reversed such that water is 
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forced out of and laterally away from the conduit into the hydraulically connected 

distributed drainage system. This has been variously termed a Variable Pressure Axis 90 

(VPA) (Hubbard et al., 1995), efficient subsystem (Rada and Schoof, 2018), efficient 

core (e.g. Davison et al., 2019) etc. Here, we use the term hydraulically connected 

distributed drainage which we consider to be the lateral limit of the influence of 

pressure variations that originate in a subglacial conduit and cause the flow of water 

in or out of the conduit. This mechanism has implications for overlying ice sheet 95 

dynamics, for example, overpressurisation overwhelms the conduit and can elicit ice 

flow acceleration and ice sheet surface uplift (e.g. van de Wal et al., 2008; 

Bartholomew et al., 2011; Doyle et al., 2013; Tedstone et al., 2015). The extent of this 

dynamic effect is much greater than the area of the bed directly affected by the 

meltwater.  100 

 

Beyond the hydraulically connected distributed drainage system, the remaining 

distributed drainage system – likely composed of linked cavities – is largely isolated 

or disconnected from surface meltwater inputs (Andrews et al., 2014; Hoffman et al., 

2016; Rada and Schoof, 2018). This area may exhibit some slow leakage into the 105 

hydraulically connected distributed drainage system (Hoffman et al., 2016; Rada and 

Schoof, 2018) and it is possible that pressure perturbations within the conduit also 

increase connections between these weakly connected parts of the bed and the 

hydraulically connected distributed drainage system. Weakly connected drainage 

areas potentially cover a large percentage of the bed and their gradual drainage over 110 

time is hypothesised to reduce regional basal water pressure, thereby increasing ice-

bed contact and reducing ice velocity (e.g. Sole et al., 2013; Andrews et al., 2014; 

Bougamont et al., 2014; Tedstone et al., 2015; Hoffman et al., 2016). 

 

Although we now have a better appreciation for the heterogeneous nature of the 115 

subglacial hydrological system, a lack of direct observations means that the reality of 

this interaction – its spatial and temporal occurrence, its expression and impact – 

remains speculative. For example, is the transition between the connected and 

isolated parts of the distributed drainage system abrupt (e.g. Hoffman et al., 2016) or 

transitional (e.g. Hubbard et al., 1995; Downs et al., 2018); how does the extent of the 120 

hydraulically connected distributed drainage system vary over space and time; does 



	 5	

the forcing of pressurised water out of the conduit have implications for sediment 

erosion rates?  

 

1.1 Palaeo-meltwater landforms 125 

 
Palaeo–meltwater landforms have been fundamental in inspiring and guiding 

conceptual and numerical models of how water self-organises into drainage systems 

beneath present day ice masses because they can be easily observed and 

investigated (Fig. 2). Such landforms are therefore key to contextualising spatially and 130 

temporally limited contemporary observations and are commonly used to support and 

develop the theory of ice sheet hydrological systems (e.g. Shreve, 1985; Clark and 

Walder, 1994; Boulton et al., 2007a, 2007b; 2009; Beaud et al., 2018a; 2018b; Hewitt 

and Creyts, 2019). Much of this focus has been on landforms such as eskers, 

meltwater channels and tunnel valleys which indicate efficient channelised subglacial 135 

drainage (e.g. Shreve, 1985; Brennand, 1994, 2000; Clark and Walder, 1994; Punkari, 

1997; Boulton et al., 2007a, 2007b, 2009; Storrar et al., 2014a; Livingstone and Clark, 

2016). We will now discuss each of these in more detail. 

 

1.1.1 Eskers 140 

 
Eskers are linear depositional landforms made up of glaciofluvial sand and gravel 

deposited from meltwater flowing through or beneath an ice mass in conduits metres 

to tens of metres in width and height. They exist as individual segments that often align 

to form networks extending up to several hundreds of kilometres (e.g. Shreve, 1985; 145 

Aylsworth and Shilts, 1989; Brennand, 2000; Storrar et al., 2014a; Stroeven et al., 

2016) and are typically taken to record the former position and characteristics of 

Röthlisberger-channels (R-channels) thermally eroded into the base of the ice by 

turbulent water flow. While most studies reduce esker mapping to a single crest-line 

and consider the ‘classic’ single straight-to-sinuous undulating ridge to be pervasive, 150 

more complex esker morphologies also occur (e.g. Banerjee and McDonald, 1975; 

Rust and Romanelli, 1975; Hebrand and Amark, 1989; Gorrell and Shaw, 1991; 

Warren and Ashley, 1994; Brennand, 2000; Mäkinen, 2003; Perkins et al., 2016; 

Storrar et al., 2019). These include fine-grained sandy fan shape elements or ‘splays’, 

alongside and associated with the coarse gravelly central ridge (e.g. Cummings et al., 155 
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2011a; Prowse, 2017). These splays are an order of magnitude wider and more gently 

sloped than the main ridge (Cummings et al., 2011a). They are proposed to form in 

proglacial environments, representing subaqueous outwash fans deposited by 

sediment laden plumes exiting a subglacial conduit into a proglacial lake (e.g. Powell, 

1990; Hoyal et al., 2003; Cummings et al., 2011b), supraglacial environments (e.g. 160 

Prowse, 2017) and subglacial environments, with sedimentation in subglacial cavities 

alongside the main esker ridge during periods of high water pressure within the conduit 

(e.g. Gorrell and Shaw, 1991; Brennand, 1994). 

 

1.1.2 Meltwater channels and tunnel valleys 165 

 
Erosional subglacial meltwater channels, or Nye-channels (N-channels), incised 

into bedrock or sediment substrate range in size from metres to tens of metres wide 

(e.g. Sissons, 1961; Glasser and Sambrook Smith, 1999; Piotrowski, 1999) to large 

tunnel valleys several kilometres in width and tens of kilometres long (e.g. Kehew et 170 

al., 2012; van der Vegt et al., 2012; Livingstone and Clark, 2016). Tunnel valleys are 

observed to occur at various developmental stages from mature and clearly defined 

to indistinct valleys often associated with hummocky terrain or as a series of aligned 

depressions (e.g. Kehew et al., 1999; Sjogren et al., 2002). Their formation has been 

linked to subglacial meltwater erosion at the ice-bed interface (c.f. Ó Cofaigh, 1996; 175 

Kehew et al., 2012; van der Vegt et al., 2012) with the assumption that channels 

transported large volumes of sediment and water. However, their precise mechanism 

of formation is still debated with the main arguments focussing on i) catastrophic 

outburst formation with rapid erosion following the release of sub or supraglacially 

stored water (e.g. Piotrowski, 1994; Cutler et al., 2002; Hooke and Jennings, 2006; 180 

Jørgensen and Sandersen, 2006); ii) gradual steady-state formation with headward 

erosion of soft-sediments in low water pressure conduits (e.g. Boulton and Hindmarsh, 

1987; Mooers, 1989; Praeg, 2003; Boulton et al., 2009); and iii) formation from 

seasonal meltwater flow (Beaud et al., 2016, 2018b). 

 185 

Here, we use the term meltwater channel to refer to palaeo-evidence of erosional 

channelised flow preserved on the ice sheet bed (i.e. the outline of the path the water 

took) at all scales from N-channels through to tunnel valleys. We use the term conduit 
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to refer to the active channelised flow beneath a contemporary ice mass (i.e. the 

enclosed (sediment or ice walled) pipe carrying water at the ice-bed interface).  190 

 

1.1.3 Meltwater tracks  
 

Detailed mapping in northern Canada and Scandinavia has identified the presence 

of linear tracks variously termed ‘hummock corridors’, ‘glaciofluvial corridors’, ‘washed 195 

zones’ and ‘esker corridors’, typically a few hundred meters to several kilometres wide 

and a few kilometres to hundreds of kilometres long (e.g. St-Onge, 1984; Dredge et 

al., 1985; Rampton, 2000; Utting et al., 2009; Burke et al., 2012; Kerr et al., 2014a, 

2014b; Sharpe et al., 2017; Peterson et al., 2017; Peterson and Johnson, 2018; 

Lewington et al., 2019). These features often contain eskers and hummocks which 200 

vary in size, shape and relief (Peterson and Johnson, 2018) as well as ‘patches’ of 

glaciofluvial deposits and areas of exposed bedrock. While a subglacial meltwater 

origin is largely agreed upon, their precise mode of formation is not yet known. These 

features are collectively termed meltwater tracks hereon in.  

 205 

Meltwater landforms are typically mapped and interpreted individually (e.g. Clark 

and Walder, 1994; Brennand, 2000; Storrar et al. 2013; Burke et al., 2015; Livingstone 

and Clark, 2016; Mäkinen et al., 2017) rather than as a holistic drainage signature (c.f. 

Storrar and Livingstone, 2017). As such, it is not yet clear whether or how differing 

expressions of subglacial drainage are interrelated and to what extent variations in 210 

drainage or background conditions (e.g. bed substrate, geology and local topography) 

control the preserved geomorphic signature we see today. This study aims to identify 

and map all discernible evidence of subglacial meltwater drainage across the 

Keewatin District of northern Canada from the ArcticDEM. We collectively refer to 

these as meltwater routes. Producing an integrated map of all visible subglacial 215 

meltwater evidence allows us to quantify the varying dimensions and 

geomorphological expressions of these features, to investigate associations between 

features traditionally treated separately and to explore potential controls on expression 

and formation.  Importantly, we note this is a minimum map as some landforms – 

particularly tunnel valleys – may be fully or partially buried (e.g. Jørgensen and 220 

Sandersen, 2006). 
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Figure 2 (above). Varying geomorphic expressions of subglacial meltwater flow: (a) increasing 

depth hummock corridor transitioning into a tunnel valley; (b-d) hummock corridors with negative 

relief containing eskers, esker fans and glaciofluvial deposits. Corridor edges vary in straightness; 225 
(e-h) hummock corridors with more subdued relief, largely detectable by the elongated tracts of 

hummocks which stand out from the surrounding streamlined terrain and often surround an esker; 

(i) an esker surrounded by lateral fans i.e. esker splays. 

 
 230 

2. Study Area 
 

This study focusses on an area approximately 1 million km2 to the west of Hudson 

Bay in northern Canada, surrounding the location of the former Keewatin Ice Divide of 

the Laurentide Ice Sheet (LIS) (Fig. 3) (Lee et al., 1957; McMartin et al., 2004). The 235 

area generally exhibits negligible local relief and is underlain by resistant Precambrian 

bedrock that is either exposed or covered by till ranging from thin and discontinuous 

(typically < 2 m) to thick and pervasive (typically > 2 m) (e.g. Clark and Walder, 1994).  
 

Traditionally, eskers have been identified as the predominant meltwater landform 240 

within the Keewatin area, although meltwater tracks (e.g. St-Onge, 1984; Aylsworth 

and Shilts, 1989; Rampton, 2000; Utting et al., 2009; Sharpe et al., 2017; Lewington 

et al., 2019) and meltwater channels (e.g. Storrar and Livingstone, 2017) have also 

been recorded. At a large scale, eskers radiate out from the ice divide, beneath which 

they are rare (Shilts et al., 1987; Aylsworth and Shilts, 1989; Storrar et al., 2013, 245 

2014a). At a local to regional scale, they exhibit a dendritic pattern and 12–15 km 

quasi-uniform spacing (e.g. Banerjee and McDonald, 1975; St-Onge, 1984; Shilts et 

al., 1987; Bolduc, 1992; Storrar et al., 2014a). 
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Figure 3.  Large-scale distribution of eskers around Hudson Bay (Storrar et al., 2013) (a). The 250 
Laurentide Ice Sheet extent displayed in the inset is the Last Glacial Maximum (LGM) at 18 
14C ka BP (21.4 cal. ka BP) (Dyke et al., 2003) and the extent of the Precambrian shield is 

also mapped (Wheeler et al., 1996). Zoomed in location of the study area focussed on the 

area around the former Keewatin Ice Divide (b).  

 255 

 

3. Methods 
 
3.1 Data sources and mapping  
 260 

 High-resolution digital elevation data, made available through the ArcticDEM 

(10 m) (freely available at https://www.pgc.umn.edu/data/arctcidem), and generated 

by applying stereo and auto-correlation techniques to overlapping pairs of high-

resolution optical satellite images (Noh and Howat, 2015; Porter et al., 2018), were 

used in this study to identify and map meltwater landforms. In addition, eskers mapped 265 

by Storrar et al., (2013) from 30 m resolution Landsat ETM+ multispectral imagery 
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were used to inform further high-resolution esker mapping from the 10 m resolution 

ArcticDEM. The automatic mapping approach developed in Lewington et al. (2019) 

was used to create a first pass map of hummock corridors – classified as meltwater 

tracks here (Appendices Fig. A1) - to augment the improved esker map. Together, 270 

these were used to create an integrated map of meltwater routes by manually mapping 

centrelines of all visible traces of subglacial meltwater drainage including meltwater 

tracks, meltwater channels and eskers. Multiple orthogonal hillshades were generated 

to avoid azimuth bias (Smith and Clark, 2005) and mapping was undertaken at a range 

of spatial scales to maximise the number of features captured (Chandler et al., 2018).  275 

 

3.2. Classification and morphometry 
 
 

The meltwater routes were used to explore the occurrence and morphology of 280 

different types of meltwater landforms. Former ice-margin estimates from Dyke et al. 

(2003) were used as transects (Fig. 4). These transects are spaced approximately 30 

– 40 km apart and in the study area, cover c. 1,000 years of deglaciation between 9.7 

and 8.6 ka. This period encompasses the final stages of deglaciation when the ice 

sheet was experiencing a strongly negative surface mass balance with associated 285 

increasing rates of meltwater production (e.g. Carlson et al., 2008, 2009). Retreat rates 

were generally between 100 - 200 m yr-1 from 13 to 9.5 ka, increasing rapidly between 

9.5 and 9 ka to around 400 m yr-1 after which retreat rate decreased briefly before 

another increase from ~8.5 ka (Dyke et al., 2003).  

 290 

When a meltwater route intersected a transect, an intersection point was 

added, and the following information recorded: 

 

- Landform type (i.e. esker ridge, esker with lateral splay, meltwater track or 

meltwater channel) 295 

- Width of landform (or landforms if an esker ridge was present within a meltwater 

track, meltwater channel or surrounded by a lateral splay) 

- Bed substrate and geology (Fulton, 1995; Wheeler et al., 1996).  

 

Spacing between adjacent meltwater route centrelines was calculated along each 300 

transect with centrelines at the end of each transect and those separated by clear 
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breaks (e.g. due to the coincidence of a lake) discounted. The total length of meltwater 

route centrelines was calculated automatically in a GIS.  

 

 305 

Figure 4. (a) Ice margin estimates (Dyke et al., 2003) for the Keewatin sector of the LIS; (b) 

Intersection points between mapped meltwater routes and ice margin estimates used for 

sample locations; (c) A zoomed in example of meltwater routes, margin isochrones and 

intersections from the SW of the study area; (d) Method for recording meltwater route 

characteristics and; (e) lateral spacing.   310 
 

 

 

 

 315 
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3.3 Testing controls on meltwater routes width and expression 
 

This study takes a large-scale approach to exploring controls on meltwater 

route width and expression. While this approach results in a compromise in terms of 

data resolution available for the surface substrate and geology maps, it also increases 320 

statistical confidence in the results due to the larger sample size. Before analysis was 

undertaken, three test sites were selected from the study area to allow for more 

detailed mapping and comparisons (Appendices Figs. A2 and A3).  

 

 To explore substrate and geological controls on meltwater route occurrence, 325 

distribution and properties, the overall length of meltwater routes overlying each 

substrate type (Fulton, 1995) and geology (Wheeler et al., 1996) within the three test 

sites was calculated. The total area of each basal unit within the test sites was also 

calculated and values converted to percentages. Following this, the percentage area 

was subtracted from the percentage of meltwater routes for each individual substrate 330 

and geology type, giving a positive (over-represented) or negative (under-

represented) value. Next, meltwater routes were split and classified by feature type 

(i.e. esker, esker with lateral splay, meltwater channel and meltwater track). The above 

analysis was then repeated by feature type to explore whether geomorphological 

expression is controlled by surface substrate or geology. It is important to note that 335 

categorisations along meltwater routes were not always independent as the same 

section was sometimes coded as a meltwater track and an esker with splay as often 

‘positive’ features are situated within wider erosional corridors.  

 

It was noted that landform type varies both across adjacent meltwater routes 340 

and along individual meltwater route centrelines. To assess any potential relationship 

between landform type and background controls in more detail, individual centrelines 

were selected and sampled with a higher frequency (1 km intervals). At each sample 

location the width of the meltwater track or meltwater channel, the presence or 

absence of an esker (and its width if present), surface substrate, bed geology and 345 

elevation were recorded.  

 

The transfer of surface meltwater to the bed via moulins is thought to be 

strongly controlled and largely fixed by bed topography; ice flow over bedrock ridges 
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can cause elevated tensile stresses resulting in crevassing (Catania and Neumann, 350 

2011), while the transfer of bed topography to the ice-surface preconditions where 

surface lakes form (e.g. Gudmundsson, 2003; Karlstrom and Yang, 2016; Crozier et 

al., 2018; Ignéczi et al., 2018).  To investigate the spatial coincidence between 

subglacial meltwater pathway density and basal roughness, we initially applied a 

circular median filter with a 2 km diameter to the bed topography (the 10 m resolution 355 

resampled to 100 m). This was based on the understanding that bed perturbations 

below  1 - 3 times the ice thickness are not transferred to the surface (Gudmundsson, 

2003; Ignéczi et al., 2018) and that the LIS ice thickness was typically 500 – 2000 m 

thick. Standard deviation was then calculated over a 20 km diameter window as per 

Ignéczi et al., (2018), who found this smoothing distance matched the requirements 360 

that the smoothing window should not exceed 10 times the ice thickness 

(Gudmundsson, 2003) while still capturing longer scale variations and dampening 

rapid changes in local topography (Ng et al., 2018).  

 

Finally, ice stream locations (Margold et al., 2015) were quantitatively compared to 365 

the distribution of meltwater routes. This allowed us to determine whether or not there 

was a difference in expression of subglacial meltwater pathways between ice stream 

and non-ice stream areas. 
 

 370 
4. Results  
4.1 An integrated drainage signature  
 
 Mapping all traces of meltwater drainage reveals the ubiquity of former 

subglacial drainage across the study area (Fig 5). A total of ~ 3000 meltwater routes 375 

were mapped over a ~1 million km2 area with a total length of almost 55,000 km. The 

meltwater routes exhibit a similar overall pattern to earlier esker maps (e.g. Aylsworth 

and Shilts, 1989; Storrar et al., 2013) radiating out from the former Keewatin Ice 

Divide. Greater than 90 % of mapped esker ridges in this region are estimated to occur 

along a meltwater route and therefore form part of the same network. In terms of the 380 

large-scale pattern, there are no obvious trends in meltwater route density, width or 

feature type associated with margin retreat. However, the study area only covers 
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approximately 1,000 years, associated with a period of intense meltwater production 

and rapid retreat 

Figure 5. Integrated map of meltwater routes.  Note how meltwater routes in this new map 385 
are less fragmented and denser than the existing esker map (Fig. 2b). Points and boxes 

represent locations of other figures.  

 

Within the study area, 84 % of sample locations captured a meltwater track (65 %) 

or meltwater channel (19 %). The remaining samples captured an esker ridge alone 390 

(6 %), an esker ridge with a lateral splay (6 %) or were deemed unclassified (4 %). 

However, subglacial meltwater signatures were not always mutually exclusive and 

often esker ridges or sometimes even eskers with lateral splay, were recorded within 

the meltwater tracks and channels. Esker mapping by Storrar et al., (2013) was 

updated in the study area. Due to the higher resolution data available and the smaller 395 

spatial area covered, smaller features which may have been missed could be included. 

A comparison between the updated esker map and the new meltwater routes map 

confirms the large-scale association between eskers and wider meltwater features 
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which often flank and connect intervening segments. Eskers were recorded at 43 % 

of all sample locations. Where they were recorded, 87 % of the time they were flanked 400 

by a meltwater track, channel or splay.  

 
Table 1. Summary statistics for meltwater routes in the study area. 

 
 Length (km) Width (km) Centreline spacing (km) 

Min 0.7 0.05 0.4 

Lower quartile 4.8 0.5 3.3 

Upper quartile 20.1 1.1 10.1 

Max 339.9 3.3 77.9 

Mean 18.1 0.9 8.1 

Std dev. 26.5 0.6 7.4 

 405 

  

Meltwater routes reach a maximum of 3.3 km in width and 340 km in length 

(Table 1), but are noted to reach up to 760 km when they extend beyond the limits of 

the study area (Storrar et al., 2014a). Meltwater channels and meltwater tracks are 

typically an order of magnitude wider (mean width: 900 m) than the eskers which they 410 

often contain (mean width: 97 m). Meltwater routes appear to vary in width across the 

study area and along individual centrelines but show no clear trend from the ice divide 

towards the margin. If these landforms are assumed to have formed time-

transgressively, this would suggest no clear trend in width during deglaciation. Within 

the study area, adjacent centrelines are spaced on average 8 km apart (Table 1). This 415 

is at the lower end of the range reported in the literature (Fig. 6) (e.g. Banerjee and 

McDonald, 1975; St-Onge, 1984; Shilts et al., 1987; Hebrand and Amark, 1989; 

Bolduc, 1992; Boulton et al., 2009; Hewitt, 2011). This is not surprising given that we 

mapped all traces of subglacial meltwater flow including meltwater tracks not 

containing eskers. Like variations in width, there appears to be no coherent change in 420 

spacing during deglaciation (Fig. 4) if we assume time transgressive formation.  
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Figure 6. Examples of esker and subglacial channel spacing quoted in the literature with bars 425 
representing maximum and minimum and the points the mean (Storrar et al. 2014a). The top 

two bars represent a large-scale esker sample taken from an area which includes this study 

(Storrar et al., 2014a) and the spacing recorded by all visible traces of subglacial meltwater 

(i.e. eskers and meltwater corridors). For these two, the bars represent standard deviation and 

the points the mean. (Modified from Storrar et al., 2014a).  430 
 

 

 Eskers have been widely mapped in northern Canada. Initial mapping was 

largely undertaken by the Geological Survey of Canada using aerial photography and 

field observations (e.g. Aylsworth and Shilts, 1989). This included mapping of ‘esker 435 

systems’ – comprising a series of hummocks or short, flat-topped segments which 

phase downstream into relatively continuous esker ridges or occasionally beaded 

eskers – across 1.3 million km2 of the Keewatin sector of the LIS (Aylsworth and Shilts, 

1989; Aylsworth et al., 2012). Discontinuous esker ridges are connected to areas of 

outwash, meltwater channels or belts of bedrock stripped free of drift. More recently, 440 

increasing availability of remotely sensed data allowed Storrar et al., (2013) to digitise 

eskers at an ice sheet scale for the LIS (including the Keewatin sector) using Landsat 

7 ETM+ imagery. From this, a secondary dataset was derived by interpolating a 

straight line between successive aligned esker ridges, creating a continuous pathway, 

which reflects the location of the major conduits in which the eskers formed (Storrar et 445 

al., 2014a). This paper extends earlier work, which recognises links between eskers 

and broader traces of subglacial meltwater flow but does not explicitly describe or 
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formally quantify them (e.g. Aylsworth and Shilts, 1989; Storrar et al., 2014a). It is 

encouraging that despite different datasets and mapping procedures, the overall 

patterns are similar (Fig. 7). 450 

 

 
Figure 7. Comparison of existing maps of ‘esker systems’ (green) from air photo interpretation 

(Aylsworth and Shilts, 1989; Aylsworth et al., 2012), esker ridges (red) from Landsat imagery 

(Storrar et al., 2013) and the new meltwater routes from the ArcticDEM (blue). Mapping of 455 
meltwater routes includes all traces of subglacial meltwater flow (eskers, eskers with lateral 

splays, meltwater tracks and meltwater channels). The locations of test site 1, test site 2 and 

test site 3 are identified in Fig. 5. DEM(s) created from the Canadian Digital Elevation Model 

(CDEM). Ottawa, ON: Natural Resources Canada. [2015] 

 460 
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4.3 Geomorphological variations  
 

Landforms along meltwater routes exhibit a high degree of geomorphic 

variability and each of the palaeo-meltwater landforms outlined in section 1.1 465 

(meltwater channels, meltwater tracks and eskers) are identified in the study area. 

Meltwater channels exhibit negative relief down to ~ 30 m below their immediate 

surroundings (e.g. Fig. 2a). Meltwater tracks exhibit less pronounced (e.g. Fig. 2b - 

2d) or even negligible relief (e.g. Fig, 2e - 2h), the latter being identified due to the 

presence of elongated tracts of hummocks. Meltwater route edges vary from straight 470 

(e.g. Fig 2a, 2e, 2h) to crenulated (e.g. Fig. 2c) and may be discontinuous along 

sections. A variety of landforms are found within the meltwater tracks and channels. 

These include hummocks of varying size, shape and relief  (e.g. Fig 2e – 2h) and 

eskers and associated glaciofluvial material (e.g. Fig. 2a – 2d). In places, till may be 

entirely eroded, revealing patches of bedrock. Eskers display a high degree of 475 

variability along the meltwater routes with single, continuous ridges the exception 

rather than the norm. Meltwater routes vary in geomorphological expression both 

across flow, between adjacent routes, and along flow, with multiple transitions to and 

from ‘different’ feature types (Fig. 8).  

 480 

Figure 8 (below). Examples of transitions and associations along meltwater routes. The left 

panel shows the DEM and the right panel shows an interpretation of the feature types with an 

inset (top right) showing how meltwater routes are mapped as single lines through all types. 

White patches in the DEM represent areas of missing data due to the presence of hydrological 

features (e.g. lakes and rivers) or in areas of cloud cover and shadow. DEM(s) created by the 485 
Polar Geospatial Center from DigitalGlobe, Inc. imagery. 
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 Despite variations in expression (e.g. relief, definition and the presence or 490 

absence of hummocks, glaciofluvial material and eskers), meltwater tracks and 

meltwater channels are both associated with eskers (Fig. 2) and form an integrated 

and coherent large-scale spatial pattern (Fig. 5). Furthermore, both features have a 

qualitatively similar width range of several hundred meters to ~3 kilometres (Fig. 9). 

However, the null hypothesis that the data in each pairing are from the same 495 

continuous distribution using the two-sample Kolmogorov-Smirnov test could not be 

rejected for any pairings (esker, esker with splay, meltwater channel and meltwater 

track) at the 5 % significance level.  
 

 500 
 
Figure 9. Width distributions (in metres) of (a) all esker ridges (n = 259), (b) eskers with lateral 

splays (n = 37), (c) meltwater channels (n = 118) and (d) meltwater tracks (n = 408) from the 

whole study area. The median is marked on in red and the mean in blue.  

 505 
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4.4 Controls on the width and expression of meltwater landforms 510 

 

Most subglacial meltwater landforms occur within areas of till (Fig. 10). 

Meltwater tracks, meltwater channels and eskers with lateral splays are 

overrepresented in areas of till blanket, while esker ridges are strongly 

underrepresented. Meltwater features appear most commonly over areas of 515 

metamorphic bedrock, although meltwater channels (incisional features) are 

overrepresented on more erodible sedimentary rocks.  

 

 
Figure 10. Substrate control on geomorphological expression. Occurrence (percentage of 520 
length) and relative abundance of different meltwater features over varying surface substrates 

(Fulton, 1995) and background geology (Wheeler et al., 1996). ‘Other’ includes marine, 

lacustrine and glaciofluvial sediments. Blue represents over representation and red represents 

under representation.  

 525 
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 Figure 11 reveals high topographic variability in the NE of the study area. This 

coincides with the highest density of meltwater routes. Palaeo-ice streams are rare in 

the Keewatin District region (Stokes and Clark, 2003a, 2003b; Margold et al., 2018), 

but where they do occur, meltwater routes are noticeably sparser (Fig. 12). Comparing 

the spatial density of meltwater routes inside and outside of the ice streams (calculated 530 

simply as total length of meltwater routes per unit area) shows that the two datasets 

are statistically different (p = 0.03). On the bed of the Dubawnt Lake Ice Stream,  

meltwater routes also exhibit a more dendritic arrangement and extend further towards 

the ice divide.  
 535 

 
Figure 11. Meltwater routes overlain on local bed roughness calculated for the approximate 

wavelength expected to be relevant for the transfer of basal undulations to the ice surface). 

This is where the densest surface meltwater networks and ponding is likely to occur given 

sufficient melt conditions (Ignéczi et al., 2018). DEM created by the Polar Geospatial Center 540 
from DigitalGlobe, Inc. imagery. 
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Figure 12. (a) Comparison of meltwater routes and palaeo-ice streams (Margold et al., 2015); 

(b) Spatial density was calculated for each of the randomly placed sample boxes (100 x 100 545 
km). Ice stream density was compared to the non-ice stream density using a two sample t-

test. The null hypothesis is rejected at the 5% significance level (p = 0.03); c) Visual 

comparison between meltwater routes in ice stream and non-ice stream areas.  

 

To explore potential controls that govern how meltwater landform expression 550 

changes with variable background conditions (e.g. substrate, geology, topography), 

measurements of width, feature type and substrate were extracted along individual 

meltwater routes (Fig. 13). Although there is not a consistent ratio between esker width 

and the associated width of the meltwater track or meltwater channel when measured 

at the same location, there is a general positive relationship between the two, 555 

specifically when following topographic steps (e.g. Fig. 13a and 13d) and after the 

merging of tributaries (e.g. Fig. 13b and 13d). In Fig. 13a for example, a large increase 

in width (883 – 1550 m) is associated with an increase in elevation (~ 70 m over 6 km), 
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which also coincides with a transition from a strongly negative feature (a meltwater 

channel) to a positive relief depositional feature (esker with lateral splay). This sharp 560 

transition may be related to the emergence of the meltwater route out of the Thelon 

sedimentary basin.  

 

 
Figure 13. Exploring local-scale controls on meltwater route  width and type. Detailed profiles 565 
(sampled at 1 km intervals along individual meltwater routes (location identified in green in fig. 

5 ) show how esker width, elevation, feature expression and surface substrate vary along flow 

from the interior (left) to the exterior (right). Black points on the elevation plot represent the 

location of joining tributaries.  

 570 
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5. Discussion  
 

Our new meltwater routes map shows that meltwater tracks and meltwater 

channels, which flank and connect (in an along-flow direction) esker ridges, are a 

dominant part of the landscape across the former Keewatin sector of the LIS. Mapping 575 

complete drainage pathways means we are better able to identify regional meltwater 

drainage patterns and unravel controls on feature expression.  

 

The large-scale distribution and pattern of meltwater tracks and meltwater 

channels exhibit several key similarities, including width, spacing, association with 580 

eskers and occurrence within an integrated network characterised by transitions to 

and from different expressions along individual meltwater routes (Fig. 8). Together, 

this provides strong evidence that these meltwater landforms are varying expressions 

of the same phenomenon and we therefore group these features with widths in the 

order of 100s to 1000s of meters and term them meltwater corridors (Table 2). This is 585 

consistent with previous conceptual work linking meltwater landforms. For example, 

Sjogren et al., (2002) identify various tunnel valley (meltwater channel) expressions 

that they attribute to different developmental stages, from discontinuous through to 

fully developed valleys. Peterson and Johnson (2018) suggest that negative relief 

hummock corridors (meltwater tracks) are a type of tunnel valley and positive relief 590 

hummock corridors are equivalent to ‘glaciofluvial corridors’ in Canada (e.g. Utting et 

al., 2009). 

 

  Esker splays also have similar widths and a close spatial association with 

meltwater corridors (e.g. transitions along flow or occurring within meltwater corridors). 595 

However, it is possible that some or even all of these features were deposited 

marginally (e.g. Hebrand and Amark, 1989) rather than in subglacial cavities. In fact, 

marginal deposition is supported by the fact that some of the esker splays align across 

flow in line with estimated ice sheet isochrones (Dyke et al., 2003). Nonetheless, it is 

difficult to constrain their formation from geomorphology alone.  600 
 

While recognised previously in local case studies (e.g. St-Onge, 1984; 

Rampton, 2000; Utting et al., 2009), we confirm that across this 1 million km2 area of 

the former LIS, meltwater corridors of varying geomorphic expression are widespread 
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(captured at 84 % of all sample points) rather than an isolated phenomenon. Esker 605 

ridges are captured at just 43 % of sample locations, however, we do note that the 

presence or absence of an esker at the sample point may not be indicative of the entire 

length of the meltwater route as in many cases the esker ridges within a meltwater 

corridor are fragmented. Nonetheless, we suggest that the model of R-channels 

across the Canadian Shield (e.g. Clark and Walder, 1994) is an oversimplification and 610 

may under-represent the modes and thus coverage of drainage in this sector and fail 

to capture important processes recorded on the bed. 

 

Holistic mapping of meltwater routes including features cut up into the ice (i.e. 

eskers) and features cut down into the bed (i.e. meltwater corridors) creates a more 615 

complete and less fragmented drainage map than mapping individual features (Fig. 

7). The broad scale pattern of palaeo-drainage radiating out from the former Keewatin 

Ice Divide, which remains noticeably absent of meltwater evidence (Fig. 5), is 

consistent with previous studies (Shilts et al., 1987; Aylsworth and Shilts, 1989; Storrar 

et al., 2013, 2014a), but our mapping results in a greater density, narrower spacing 620 

(Fig. 6) and higher number of tributaries. 
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Table 2. Proposed classification for subglacial meltwater traces observed on palaeo-ice sheet 625 
beds. Meltwater routes encompass all visible evidence and consists of negative and negligible 

relief meltwater corridors with widths in the order 100’s of meters and esker ridges with widths 

in the order of 10’s of meters.  

Proposed 
Classification Description Example 

Meltwater 
route 

All visible traces of 
subglacial meltwater 
drainage (i.e. all of 

below) 

 

Meltwater 
corridor 

- Meltwater channel 
- Tunnel channel  
- Tunnel valley  
 
- Hummock corridor 

(negative) (e.g. 
Peterson and 
Johnson, 2018; 
Lewington et al., 
2019) 

- Erosional corridor 
(e.g. Burke et al., 
2011) 

- Esker corridor (e.g. 
Sharpe et al., 
2017) 

- Meltwater corridor 
(e.g. Rampton, 
2000) 

- Washed zone (e.g. 
Ward et al., 1997)  

 
- Hummock corridor 

(positive) (e.g. 
Peterson and 
Johnson)  

                                   

Esker with 
lateral splay 

Esker ridge flanked by 
lateral splay (e.g. 

Cummings et al., 2011) 

 

Esker ridge 
Single, multiple or 

anastomosing esker 
ridges 

 

increasing 
erosion 



	 29	

5.1 Proposed model for meltwater corridor formation 
 630 

To interpret palaeo-landforms and reconstruct subglacial meltwater behaviour 

an understanding of the processes that formed the landforms is needed. This is the 

‘glacial inversion’ problem (e.g. Kleman and Borgström, 1996). One approach to 

understanding glacial processes is through contemporary observations. In this 

section, we demonstrate how contemporary observations and modelling of the 635 

hydraulically connected distributed drainage system (e.g. Hubbard et al., 1995; 

Bartholomaus et al., 2008; Andrews et al., 2014; Hoffman et al., 2016) is consistent 

with the form and distribution of mapped meltwater corridors and can explain the range 

of depositional to erosional signatures observed in the study area.    
 640 

Although hydrological theory dictates that a conduit in steady state will operate 

at lower pressure than the surrounding distributed system, large or relatively rapid 

fluctuations in surface meltwater inputs (compared to the rate at which conduits 

expand from melting caused by turbulent heat dissipation) during the melt season 

mean the system is rarely in steady-state (Bartholomew et al., 2012). Once a conduit 645 

system has evolved gradually to accommodate high meltwater fluxes (Cowton et al., 

2013), it is likely to operate at lower pressure than the surrounding high-pressure 

weakly connected system during periods of low meltwater input (e.g. at night and later 

in the melt season), thus drawing water in (Fig. 14a and 14c). During this phase, the 

geomorphic work in the hydraulically connected distributed drainage system is likely 650 

limited by the small cross-sectional area of passage and slow water movement (Willis 

et al., 1990; Alley et al., 1997). However, there could be migration of finer sediments 

into the central conduit contributing to gradual lateral channel growth over time; this 

has been invoked to explain steady state growth of tunnel valleys for example, (e.g. 

Boulton and Hindmarsh, 1987). 655 

 

Variations in borehole water pressure measurements observed at glaciers in 

the Alps (e.g. Hubbard et al., 1995; Gordon et al., 1996), Canada (e.g. Rada and 

Schoof, 2018) and Alaska (e.g. Bartholomaus et al., 2008), ice velocity measurements 

taken from the Greenland Ice Sheet (e.g. Tedstone et al., 2014) and numerical 660 

modelling (e.g. Werder et al., 2013), suggest that large or rapid meltwater inputs can 

cause spikes in conduit water pressure (Cowton et al., 2013). This temporarily 
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reverses the hydraulic potential gradient and causes water to flow out of the conduit 

and into the surrounding hydraulically connected distributed drainage system (Fig. 

14b).  665 

 

The width of the hydraulically connected distributed drainage system affected 

and the form the drainage takes likely depends on the magnitude of the pressure 

perturbation, determined by the volume and rate of meltwater input, basal substrate 

and antecedent conduit conditions (e.g. Iken and Bindschadler, 1986; Andrews et al., 670 

2014; Rada and Schoof, 2018; Nanni et al., 2020). For example, the hydraulically 

connected distributed drainage system is widest during the early melt season when 

the hydrological system is less developed and the system can be easily over 

pressurised. Later during the summer, the same magnitude meltwater input does not 

cause the same degree of over pressurisation as conduits have increased their 675 

capacity to accommodate fluctuations in surface meltwater inputs (e.g. Rada and 

Schoof). The magnitude of the pressure perturbation is also likely to result in different 

forms of drainage through the hydraulically connected distributed drainage system. 

This may range from expansion of linked cavities during smaller magnitude events 

(Fig. 14b1), to drainage re-organisation into braided canals (e.g. Catania and Paola, 680 

2001) or anastomosing conduits (e.g. Gulley et al., 2012) (Fig. 14b2), and finally to 

narrow sheet floods (e.g. Russell et al., 2007) (Fig. 14b3). While water flows laterally 

out of the conduit down the pressure gradient during these high-pressure events, the 

dominant flow direction is still parallel to the main conduit (i.e. down-flow). Fluctuations 

in pressure within the subglacial conduits may therefore be key to understanding how 685 

sediment is accessed and eroded and for explaining variations in sediment flux.  

 

The hydrological system is responsible for transporting the majority of 

subglacial sediment (e.g. Walder and Fowler, 1994; Richards and Moore, 2003). This 

is influenced by access to sediment (e.g. Willis et al., 1996; Burke et al., 2015) and 690 

subglacial water velocity (e.g. Walder and Fowler, 1994; Ng, 2000). Water flow through 

the distributed system is slow and inefficient with limited sediment mobilisation and 

restricted transport (e.g. Willis et al., 1990; Alley et al., 1997). Faster and more 

turbulent water flow within conduits is more efficient at eroding and transporting 

sediment and this capability increases rapidly with increased discharge (Alley et al., 695 

1997). However, conduits cover only a small fraction of the bed, which restricts their 
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ability to erode and transport sediment across large areas (Alley et al., 2019). Thus, 

there is a need for an additional mechanism(s) to access surrounding sediments. 

While deformation of till into channels (e.g. Boulton and Hindmarsh, 1987) and lateral 

conduit migration (e.g. Beaud et al., 2018b) have been proposed, our model focusses 700 

on the connection of the hydraulically connected distributed drainage system to the 

conduit in a range of forms (Fig. 14b). This idea is grounded in the wider glacio-fluvial 

literature, which suggests that rapid increases in water input create high water 

pressures that overwhelm the conduit and surrounding drainage system, causing both 

increased access to and high enough water velocities to carry sediment (e.g. Swift et 705 

al., 2002, 2005b; Gimbert et al., 2016; Delaney et al., 2018). This enhanced sediment 

transport typically occurs at the start of the melt season (e.g. Liestol, 1967; Hooke et 

al., 1985; Collins, 1989; 1990), but also during large meltwater events (e.g. 

precipitation (Delaney et al., 2018)). An extreme example is during the 1996 Icelandic 

jökulhlaup, when a subglacial flood evacuated sediment creating a large tunnel valley 710 

(Russell et al., 2007). Thus, fluctuations in subglacial conduit pressure within the 

ablation zone of ice sheets are likely to be a key mechanism by which sediment either 

side of the conduit is accessed and mobilised.  

 

In our proposed model, meltwater corridor relief is caused by localised turbulent 715 

flow enhancing erosion (e.g. Rampton, 2000). Sedimentological evidence suggests 

that hummocks within the corridors occur as a result of both erosional and depositional 

processes. Our proposed model can account for either process, with hummocks 

forming as a result of: (i) erosion by high energy turbulent water flow along conduits 

and across the hydraulically connected distributed system (e.g. Rampton, 2000; 720 

Peterson et al., 2018); or (ii) deposition during waning stages of the flood within 

cavities either melted up into the overlying ice by turbulent floods (e.g. Utting et al., 

2009), or minor conduits and linked cavities alongside the conduit (e.g. Brennand, 

1994). Hummocks may also form as a combination of processes akin to the 

interpretation of triangular shaped landforms (‘murtoos’), which are attributed to 725 

subglacial till transported by creep and subsequently eroded and shaped by subglacial 

meltwater (Mäkinen et al., 2017; Ojala et al., 2019).  
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Figure 14. Effects of pressure perturbations on the hydraulic conductivity within the conduit 730 
connected distributed subsystem: (a) steady state – water is drawn in from across the 

connected distributed system into the conduit (low pressure) down the pressure gradient, 

geomorphic work is limited to the conduit, although there may be some lateral sapping (e.g. 

Boulton and Hindmarsh, 1987); (b) During over-pressurisation events water is forced out of 

the conduit across and into the surrounding hydraulically connected distributed drainage 735 
system. The width and form (i.e. flood or cavity expansion) this takes likely depends on the 

magnitude of the pressure perturbation. Geomorphic work (erosion and deposition) likely 

occurs during this phase; (c) Return to steady state as meltwater input decreases or the 

conduit expands to accommodate a sustained increase in input; (d) Proposed cumulative 

geomorphic imprint of the process over time, creating the meltwater corridors (white dashed 740 
lines) preserved on the landscape today. The inset in the upper right corner demonstrates that 
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pressure perturbations within the conduit fluctuate throughout the melt season and vary in size 

from regular diurnal fluctuations (e.g. b1) to irregular larger ‘events’ (e.g. b2 and b3), which 

may represent precipitation or supra/sub-glacial lake drainages.  
 745 

 

In areas of thicker sediment, pressure-driven drainage reorganisation, which 

takes the form of cavity expansion or sheet floods in other areas, may result in braiding 

across the hydraulically connected distributed system (e.g. Catania and Paola, 2001). 

This is consistent with braided meltwater channels identified within tunnel valleys in 750 

the North Sea (Kirkham et al., 2020), while the spacing and shape of the hummocky 

topography observed along meltwater corridors has been interpreted as remnants of 

braided conduits and intervening bars (e.g. Dahlgren, 2013; Peterson et al., 2018). 

Likewise water driven from the conduit into the hydraulically connected distributed 

system during discrete recharge from moulins has been recognised to form 755 

anastomosing conduits (Gulley et al., 2012). Thus, anastomosing or braided conduits 

moving around at the bed and formed during conduit over pressurisation may produce 

an erosional signature wider than the individual conduit.  

 

While we fully expect to see transient conduit migration and reconfiguration 760 

during conduit over pressurisation, we also do not rule out the possibility that individual 

conduits could migrate laterally across the bed over longer periods of time, for instance 

due to changes in ice thickness, subglacial topography, and regional and local basal 

water pressure. This theory has been invoked to explain the formation of some tunnel 

valleys by the lateral merging of a series of smaller discrete drainage events over time 765 

(e.g. Jørgensen and Sandersen, 2006; Kehew et al., 2012; Beaud et al., 2018b). 

Indeed, seismic tremor observations suggest that areas with low hydraulic gradients 

(i.e. flatter parts of the bed, higher up the ice sheet) are characterised by quasi-stable 

conduit configurations where water is less restricted and can flow through multiple 

conduits, which alternate and migrate on multiday timescales (Vore et al., 2019). In 770 

contrast, the same research suggests that nearer the margin where the hydraulic 

gradient is steeper, conduits are relatively stable in space (Vore et al., 2019). This fits 

with esker sinuosity studies which demonstrate that eskers are often very straight 

(median sinuosity 1.04 on the Canadian Shield) with esker segments aligning over 

distances of 10s of km’s (Storrar et al., 2014a). If the conduit migrated extensively in 775 
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the marginal zone, we would expect to find more sinuous eskers or esker sections 

which are offset. Our work and earlier studies indicate that esker ridges can be 

superimposed on hummocks within meltwater corridors, but to date, there are no 

examples of hummocks overlying eskers (e.g. Peterson et al., 2018). Together, this 

suggests that the formation of eskers are separated in time from the meltwater 780 

corridors in which they often occur (e.g. Beaud et al., 2018a; Hewitt and Creyts, 2019; 

Livingstone et al., 2020). This supports the notion that palaeo-ice sheet beds are a 

composite picture of geomorphic effects, combining different stages and potentially 

different subglacial drainage regimes (Greenwood et al., 2016).  

 785 

Using an inland limit of 60 km for subglacial channelisation (e.g. Chandler et 

al., 2013), and minimum and maximum retreat rates in the study area (~ 230 m yr-1 - 

~ 540 m yr-1), we estimate the time likely spent beneath the channelised zone 

influenced by surface meltwater inputs at between ~ 110 and ~ 260 years. We 

therefore suggest that meltwater corridors reflect the geomorphic work arising from 790 

repeated pressure perturbations in the ablation zone over 10s – 100s years. The most 

significant erosion likely occurred where fluctuating surface meltwater inputs were 

clustered (e.g. Alley et al., 2019) or where cumulative upstream drainage produced 

the threshold shear stresses required to erode and transport the substrate, which may 

have occurred upstream of the peak local meltwater input. While the location of 795 

surface meltwater drainage and discrete water input points (crevasses and moulins) 

are important controls on the distribution of subglacial drainage at the bed (e.g. 

Decaux et al., 2019), observations suggest that both supraglacial networks (e.g. Koziol 

et al., 2017) and moulin locations (e.g. Catania and Neumann, 2010) are relatively 

stable, at least over decadal timescales. Where changes in surface meltwater input 800 

areas are observed, this occurs over relatively short distances (~ 300 m2) with the new 

routes likely occurring along the same drainage axes and thus not resulting in 

significant subglacial drainage system reorganisation (Decaux et al., 2019). This is 

consistent with geomorphological evidence, which reveals a coherent drainage 

network (Fig. 5) with individual meltwater corridors extending 100s km (Table 1).  805 

 

The variable extent to which the hydraulically connected drainage system (and 

thus the meltwater corridors width) is affected by conduit over pressurisation may be 

influenced by ambient variations in the conduits lateral hydropotential gradient (e.g. 



	 35	

narrower meltwater corridors within a steep ‘hydropotential valley’). However, we 810 

suggest the key control will be the magnitude of the pressure perturbation, which will 

vary depending on meltwater input and antecedent subglacial drainage conditions. If 

a corridor represents a single maximum flow, meltwater corridor widths in this study 

(0.05 – 3.3 km (mean 0.9 km)) are comparable to measurements in alpine settings (~ 

140 m (Hubbard et al., 1995; Gordon et al., 1998)) and modelled ice sheet settings (~ 815 

2 km (Werder et al., 2013)).  

 

5.3  Exploring potential controls on network patterns and variations in 
expression of meltwater routes  

 820 

In this section, we explore spatial controls governing the overall pattern of the 

subglacial hydrologic network, as well as variations in meltwater landform expression 

(i.e. the patterns of and balance between erosion and deposition and the resulting 

geomorphic expression) along individual meltwater routes. Erosional and depositional 

features are frequently observed along the same meltwater route and even at the 825 

same location, for example eskers with lateral splays occurring within meltwater 

corridors.  

 

There is a high degree of channelisation across the Keewatin sector of the ice 

sheet bed, but channelisation is not uniform and the densest areas of meltwater routes 830 

coincide with the ‘roughest’ basal topography (Fig. 11). This may be the result of 

subglacial drainage route fragmentation around bed obstacles, with a greater number 

of tributaries and broken patterns common in regions of high bed roughness (e.g. Test 

Site 3). Basal topography also preconditions the large-scale spatial structure of 

surface drainage (Ignéczi et al., 2018) and the association between rough areas and 835 

dense clusters of meltwater routes could be a response to more surface water 

penetrating to the bed as the result of extensive crevassing. For a typical melt season 

in west Greenland, crevasses capture a significant amount of surface water – more 

than moulins or the hydrofracture of surface lakes (Koziol et al., 2017). Surface 

meltwater inputs are thought to be an important control on the distribution of drainage 840 

across the bed (e.g. Gulley et al., 2012; Banwell et al., 2016) and the formation and 

evolution of subglacial meltwater landforms (e.g. Banerjee and McDonald, 1975; St-
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Onge, 1984; Hooke and Fastook, 2007; Storrar et al., 2014b; Livingstone et al., 2015; 

Peterson and Johnson, 2017). 

 845 

There are significantly fewer meltwater routes coinciding with palaeo-ice stream 

locations – particularly the Dubawnt Lake Ice Stream (Fig. 12). In addition, the network 

pattern of meltwater routes corresponding with the location of the Dubawnt Lake Ice 

Stream are more dendritic and extend further towards the ice divide. These 

observations are consistent with Livingstone et al., (2015), who find fewer eskers on 850 

palaeo-ice stream beds where modelled subglacial meltwater drainage is greatest. We 

suggest the scarcity of meltwater routes beneath palaeo-ice streams could be the 

result of (i) lower ice-surface slopes and hydraulic potential gradients, which favour 

distributed rather than channelised drainage (e.g. Kamb, 1987; Bell, 2008) or (ii) lack 

of preservation beneath fast flowing ice (Boulton, 1996). Where channelised drainage 855 

does occur beneath palaeo-ice streams, networks are typically more dendritic, which 

may also be the result of shallower hydraulic gradients and lower relief bed topography 

enabling greater lateral water flow.  

 

Dynamic ice mass loss via streaming or surging (and subsequent melting and 860 

iceberg calving) has implications for ice sheet stability (e.g. Bell, 2008; Christianson et 

al., 2014; Christoffersen et al., 2014). The Keewatin sector of the LIS had a relatively 

low spatial density of ice streams compared to the western and southern margins 

(Margold et al., 2015; Stokes et al., 2016). This may be partially attributed to the low 

relief, resistant bed of the shield which was unable to provide the fine grained 865 

sediments required to lubricate ice flow and the fact that the margin reached this 

position later during deglaciation when the remaining ice sheet was much smaller (e.g. 

Margold et al., 2015; Stokes et al., 2016). Nonetheless, we also suggest that efficient 

evacuation of meltwater through the dense channelised network, which developed in 

this region during the final stages of deglaciation, as the climate warmed (Storrar et 870 

al., 2014b), could have inhibited the development of fast flow and potentially 

contributed to the shut-down of existing ice streams. This is consistent with recent 

physical modelling (Lelandais et al., 2018) and modern temporal observations that link 

decadal-scale ice-flow decelerations with more pervasive and efficient drainage 

channelisation driven by increased surface meltwater inputs to the bed (Sole et al., 875 

2013; Tedstone et al., 2014; van de Wal et al., 2015; Davison et al., 2019) and vice 
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versa (Williams et al., 2020). If this hypothesis is correct we would expect to see this 

large-scale inverse spatial relationship between channelisation and ice streaming in 

other palaeo-ice sheet settings. This potential drainage control on ice-sheet velocity 

and stability may also influence the pace of deglaciation; we note slower retreat rates 880 

(~230 m yr-1) in the northwest of the study area, which coincide with the highest density 

of meltwater routes, compared to much faster retreat rates (~540 m yr-1) associated 

with the sparsest meltwater routes. This conclusion is tentative given uncertainty in 

the regions deglacial chronology (Dyke et al., 2003) and the many other factors that 

can influence retreat rate, and thus requires further testing.  885 

 

At a large-scale, there is a general tendency for meltwater routes to preferentially 

form on till, which is more easily eroded than bedrock and where geomorphic evidence 

is likely to be better developed. Eskers are over-represented on harder, more resistant 

rock (Fig. 10d) where R-channels are more likely to form (Clark and Walder, 1994; 890 

Storrar, 2014a), while there is a slight tendency for meltwater channels (i.e. incisional 

features) to form on the softer, more erodible sedimentary rock (Fig. 10b). Eskers with 

lateral splays (i.e. depositional features) appear preferentially on till blankets (Fig. 10c) 

where there is an abundance of sediment that may overwhelm and clog up the conduit 

(e.g. Burke et al., 2015), while isolated esker ridges favour thin till and are under-895 

represented on thick till. Though detailed long-profiles (Fig. 13) hint at local 

relationships between bed substrate changes and the resultant landform expression, 

we caution against the assumption that this is a widespread occurrence rather than 

an isolated coincidence. 

 900 

5.3  Implications 
 

Western sectors of the contemporary Greenland Ice Sheet are broadly analogous 

to our study area: both are underlain by resistant Precambrian Shield rocks and both 

experience(d) rapid retreat and high meltwater production rates. This is also similar to 905 

southern Sweden, which lay beneath the palaeo Scandinavian Ice Sheet, where 

similar geomorphic features to those described here, occur extensively (e.g. Peterson 

et al., 2017; Peterson and Johnson, 2017). This study therefore has potential 

implications for our understanding of the impact of subglacial hydrology on overlying 

ice dynamics and ice flow regulation of past, current and future ice sheets. 910 
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The interaction between a subglacial conduit and the surrounding hydraulically 

connected distributed drainage system is believed to be widespread in contemporary 

glaciological settings (e.g. Hubbard et al., 1995; Gordon et al., 1996; Bartholomaus et 

al., 2008; Werder et al., 2013; Tedstone et al., 2014) and has been identified as key 915 

to understanding ice velocity variations and predicting future ice sheet mass loss 

(Davison et al., 2019). However, the true extent and influence of the hydraulically 

connected distributed drainage system beneath the Greenland Ice Sheet is unknown 

due to the challenge of observing contemporary subglacial environments. Palaeo-

studies, such as this one, offer the potential to reveal new insights into the nature and 920 

configuration of the subglacial hydrological system at an ice sheet scale and potential 

quantification of how much of the bed and ice surface dynamics were affected by 

subglacial meltwater. 

 

Based on our proposed model, we estimate the coverage of each drainage element 925 

across the bed of the Keewatin Ice Sheet. Conduits (i.e. eskers) cover ~ 0.5 % of the 

bed based on an average esker width of 100 m and spacing of 18.8 km (Storrar et al., 

2014a). The coverage of conduits and the surrounding hydraulically connected 

distributed drainage system (i.e. meltwater corridors) increases to an average of ~ 13 

% using the average width and spacing of meltwater routes in this study, but could 930 

realistically vary between 5 % (lower quartile width and upper quartile spacing) and 36 

% (upper quartile width and lower quartile spacing). This represents an area 25 times 

greater than the conduits (eskers) alone, but assumes that all meltwater routes were 

active at the same time. 

 935 

Based on the above and while we propose a significant increase in the area of the 

bed influenced by surface meltwater inputs, these findings also fit with the hypothesis 

that the weakly-connected distributed system covers a large percentage of the 

subglacial bed (Hoffman et al., 2016). Our results suggest that somewhere between 

64 – 95 % of the bed existed within the weakly-connected distributed system where 940 

there are no visible traces of subglacial meltwater flow. This finding is similar to Hodge 

(1979) who suggested that 90 % of the bed at the South Cascade Glacier in 

Washington was hydraulically isolated. Quantifying the relative coverage of the 

inactive hydraulically isolated regions of the bed and better understanding how they 
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regulate the active drainage regions and modulate basal traction is likely to be 945 

important for understanding ice sheet dynamics (Hoffman et al., 2016).  

 

In contemporary settings, the hydraulically connected distributed drainage system 

is strongly linked to surface meltwater inputs and conduit over pressurisation. The LIS 

is expected to have exhibited strong surface melting during the period of retreat over 950 

this area (estimated at -0.85 m yr-1 for 9 ka) with surface ablation accounting for much 

of this (Carlson et al., 2009). The widespread presence of meltwater corridors across 

Keewatin thus complements their interpretation and reveals a geomorphic signature 

of this interaction.  

 955 

Finally, there are large uncertainties as to how sediment is accessed by subglacial 

meltwater and transported to conduits (Alley et al., 2019). We suggest that the over 

pressurisation of conduits and their interaction with the surrounding hydraulically 

connected distributed drainage is a key driver of sediment erosion and entrainment 

within the ablation zone and may help address this question. As a result, conduits may 960 

be less sediment limited than previously thought and, much like the evolution of the 

subglacial drainage system (e.g. Schoof, 2010), rates of subglacial fluvial erosion may 

be strongly controlled by melt supply variability rather than the overall input of 

meltwater into the system.   

 965 

 

6. Conclusions  
	
We used the ArcticDEM to identify and map all visible traces of subglacial 

meltwater drainage in the Keewatin sector of the former LIS. We found that wider 970 

meltwater features (meltwater tracks and meltwater channels) on the order of 100’s to 

1000’s m flanking or joining up intervening segments of esker ridges were common. 

These have previously been termed and described as different features. However, as 

they form part of the same integrated network and display similarities in spacing and 

morphometry, we propose collectively grouping these features under the term 975 

meltwater corridor (Table 2). Combing esker ridges and all varying geomorphic 

expressions of meltwater corridors within a single meltwater routes map, we have 

created the first large-scale holistic map of subglacial meltwater drainage for this area.  
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 Based on our observations and modern analogues, we propose a new model, 980 

which accounts for the formation and geomorphic variations of meltwater corridors. In 

this model, we propose that a principal conduit (i.e. the esker) interacts with the 

surrounding hydraulically connected distributed drainage network (i.e. the meltwater 

corridor) with the extent and intensity of this interaction, determined by the magnitude 

of water pressure fluctuations within the conduit. The geomorphic expression (i.e. net 985 

erosion or deposition), is likely governed by a combination of glaciological (i.e. relative 

water pressure fluctuation) and background controls (i.e. topography, basal substrate 

and geology). Eskers likely represent the final depositional imprint of channelised 

drainage within the large-scale meltwater routes network close to the ice margin, while 

meltwater corridors represent a composite imprint of drainage formed over 10s - 100s 990 

years. If our model is correct, the drainage footprint of the hydraulically connected 

distributed drainage system in this sector is 25 times greater than previously assumed 

from eskers alone, which only account for the central conduit. 

 

 Our results suggest that the overall distribution and pattern of drainage is 995 

influenced by background topography, with greater relief resulting in denser 

channelised networks, possibly due to fragmentation of subglacial drainage around 

basal obstacles and the result of more spatially distributed meltwater delivery to the 

bed. Channelised drainage is relatively rare beneath palaeo ice streams, which 

instead favour distributed drainage configurations due to the lower ice surface slopes 1000 

and subglacial hydraulic gradients, and likely also exhibit reduced landform 

preservation potential. The style of meltwater drainage may influence ice dynamics, 

with the high degree of channelisation observed in the region able to efficiently 

dewater the bed leading to slower ice-flow and limited ice stream activity.  

 1005 

Finally, our results suggest that conduit over pressurisation events and the 

subsequent connection between conduits and the surrounding hydraulically 

connected distributed drainage system may be important for understanding how 

sediment is accessed and entrained at the bed. While conduits (eskers) alone cover 

~ 0.5 % of the bed, the connected distributed drainage system (meltwater corridors), 1010 

cover 5 – 36 % of the bed, providing a greater area for sediment erosion and likely the 

high velocity flows required to do so.   
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 Further research should focus on determining how common the proposed 

interaction between conduits and the surrounding distributed drainage system is 1015 

beneath other palaeo and contemporary ice sheets and the controls governing its 

variability. We hypothesise that where less surface meltwater is delivered to the bed 

or ice-surface slopes are shallower for instance when the LIS was larger and the 

climate colder, the geomorphic expression will be less extensive and subtler. This is 

because conduits are less likely to evolve due to lower hydraulic gradients, and their 1020 

interaction with the surrounding distributed system is limited because of invariant melt 

supply. Understanding where this interaction and signature occurs will help confirm or 

refute our proposed model, and develop understanding of how meltwater drainage 

evolves and influences ice dynamics and mass balance over long time-scales. 

 1025 
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9. Appendices  
 

 
Figure A1. Automatic mapping output (cleaned up) for test site using code associated with 1700 
Lewington et al., 2019. 
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Figure A2. Surface substrate across the three test sites (left – right) used for analysis in  1705 
section 3.3 



	 57	

 

Figure A3. Bed geology across the three test sites (left to right) used for analysis in section 

3.3 


