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Abstract 17 

Studies indicate greenhouse gas emissions following permafrost thaw will amplify current rates of 18 

atmospheric warming, a process referred to as the permafrost carbon feedback (PCF). However, 19 

large uncertainties exist regarding the timing and magnitude of the PCF, in part due to uncertainties 20 

associated with subsurface permafrost parameterization and structure. Development of robust 21 

parameter estimation methods for permafrost-rich soils is becoming urgent under accelerated 22 

warming of the Arctic. Improved parameterization of the subsurface properties in land system 23 

models would lead to improved predictions and reduction of modeling uncertainty. In this work 24 

we set the groundwork for future parameter estimation (PE) studies by developing and evaluating 25 

a joint PE framework that estimates soil properties from time-series of soil temperature, moisture, 26 

and electrical resistance measurements. The framework utilizes the PEST (Model Independent 27 

Parameter Estimation and Uncertainty Analysis) toolbox and coupled hydro-thermal-geophysical 28 

modeling. We test the framework against synthetic data, providing a proof-of-concept for the 29 

approach. We use specified subsurface parameters and coupled models to setup a synthetic state, 30 
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perturb the parameters, then verify that our PE framework is able to recover the parameters and 31 

synthetic state. To evaluate the accuracy and robustness of the approach we perform multiple tests 32 

for a perturbed set of initial starting parameter combinations. In addition, we evaluate the relative 33 

worth of including various types and amount of data needed to improve predictions. The results of 34 

the PE tests suggest that using data from multiple observational datasets improves the accuracy of 35 

the estimated parameters. 36 

 37 

 38 

1. Introduction 39 

Subsurface soil property parametrization contributes to a wide uncertainty range in projected 40 

active layer depth and in simulated permafrost distribution in the Northern Hemisphere when 41 

predicted using Land System Models (LSM) (Koven et al., 2015; Harp et al., 2016). Reduction of 42 

this uncertainty is becoming urgent with recent accelerated thawing of permafrost (Biskaborn et 43 

al., 2019). Warming permafrost leads to increase infrastructure maintenance costs (Hjort et al., 44 

2018), has a positive feedback on global climate change (McGuire et al., 2018), and increases the 45 

probability of the potential hazards for human health (Schuster et al., 2018). Better subsurface soil 46 

property parametrizations in LSMs requires the development of methods that can robustly estimate 47 

these soil properties including porosity and thermal conductivity of peat and mineral layers. 48 

Direct measurements of subsurface soil properties are labor intensive, destructive, and not always 49 

feasible (Smith and Tice, 1988; Kern, 1994; Boike and Roth, 1997; Yoshikawa et al., 2004).  While 50 

soil sample analysis can provide critical information on soil properties at a fine scale, this 51 

information is limited to sparsely sampled locations.  Multiple methods used in the laboratory to 52 

measure soil properties by using soil cores extracted from the field site are well summarized by 53 

Nicolsky et al., (2009), but logistical and economic burden typically do not allow these 54 

measurements to be made in the field.  Inverse modeling serves as an alternative approach to 55 

recover soil properties using a combination of indirect measurements and physics-based numerical 56 

models. 57 

Different inverse modeling frameworks have been developed to estimate soil thermal properties 58 

using physical-based models and time-series of soil moisture, temperature and/or geophysical data.  59 

Many use a heat equation without phase change (Beck et al., 1985; Allifanov et al., 1996).  More 60 

recent works include phase change, which is an important component of the energy balance in 61 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-91
Manuscript under review for journal The Cryosphere
Discussion started: 15 May 2019
c© Author(s) 2019. CC BY 4.0 License.



3 
 

permafrost-affected soils (e.g. Nicolsky et al., 2007; 2009, Tran et al., 2017).  Nicolsky et al., 62 

(2007; 2009) used an optimization based inverse method and a variational data assimilation 63 

method to estimate soil properties. Harp et al., (2016) used an ensemble-based method to evaluate 64 

the uncertainty of projections of permafrost conditions in a warming climate due to uncertainty in 65 

subsurface properties.  Atchley et al., (2015) used data calibration to estimate hydrothermal 66 

properties of soils.  All these methods used ground temperature timeseries alone to estimate soil 67 

properties through their role in modulating heat fluxes.  Moreover, all these methods utilized 1D 68 

soil columns and therefore assume 1D soil structure. 69 

Recently, Tran et al., (2017) used a coupled hydrological–thermal–geophysical modeling approach 70 

to estimate soil organic content.  The approach was based on coupling the 1D Community Land 71 

Model (CLM4.5; Oleson et al., 2013) that simulates surface-subsurface water, heat and energy 72 

exchange and the 2D Boundless Electrical Resistivity Tomography (BERT) forward model 73 

(Rücker et al., 2006).  The simulated 1D profiles of the subsurface temperature, liquid water 74 

content and ice content from CLM model were explicitly linked to soil electrical resistivities via 75 

petrophysical relationships and then to soil electrical resistances using the BERT forward model.  76 

Here we modify and extend this approach to 2D by using the Advanced Terrestrial Simulator 77 

(ATS) model, which was specifically developed to study fine-scale hydrothermal processes of 78 

permafrost-affected soils. In addition, instead of estimating organic content of the soil as in Tran 79 

et al., (2017), we estimate properties of peat (organic) and mineral layers across a 2D transect 80 

within polygonal tundra. 81 

Modeling the full, continuous 2D transect allows us to simulate lateral hydro-thermal fluxes not 82 

possible with individual 1D columns known to be important in polygonal tundra (Abolt et al, 2018, 83 

Liljedahl et al, 2016).  At each grid cell in the transect, a unique state develops during the ATS 84 

simulation (temperature, saturation, etc.) that is then used to calculate heterogeneous electrical 85 

resistivities via petrophysical relations. This allows more realistic simulated electrical resistances 86 

that include the effects of lateral hydrothermal connectivity within the transect. 87 

Through this approach, we develop a parameter estimation (PE) framework that is able to estimate 88 

subsurface properties in permafrost-affected soils through joint inversion of hydrothermal and 89 

geophysical measurements.  Our main objective then is to evaluate which types and number of 90 

measurements are necessary to constrain the inversion to yield a robust and accurate prediction of 91 

subsurface properties.  The method jointly inverts based on matching multiple types of 92 
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measurements (temperature, saturation, and electrical resistivity) using a forward modeling 93 

framework that couples a state-of-the-art hydrothermal permafrost simulator with an electrical 94 

resistance simulator.  We progressively test the accuracy and robustness of the method using a 95 

series of synthetic problems by: 1) increasing the complexity of the meteorological data used to 96 

drive the coupled thermo-hydro-geophysical model and 2) testing the inclusion of individual and 97 

combinations of several available measurement types on the accuracy and repeatability of 98 

inversions.  We further used findings from this study to suggest how data should be collected to 99 

improve the accuracy of the estimated soil properties and to optimize total number measurements 100 

needed to make a robust subsurface PE.  The results of this work can be used to better understand 101 

uncertainties associated with subsurface soil property estimation.  In addition, the approach can be 102 

used to inform field campaigns to ensure that sufficient measurements are collected to allow soil 103 

property estimation at a desired accuracy. 104 

 105 

2. Methods 106 

We estimate effective soil properties for peat and mineral layers of a 2D transect within polygonal 107 

tundra. Our PE approach is summarized in Figure 1. We utilized the Advanced Terrestrial 108 

Simulator model version 0.86 (ATS), a fully 3D-capable coupled groundwater flow and heat 109 

transport model representing the soil physics needed to capture permafrost dynamics, including 110 

ice, air, and liquid saturation, flow of unfrozen water in the presence of phase change, and non-111 

homogeneous soil layering (Painter et al., 2016).  We sequentially coupled ATS with the 112 

Boundless Electrical Resistivity Tomography (BERT) model (Rücker et al., 2006), which we run 113 

in forward mode to compute ERT survey resistance values based on soil resistivities calculated 114 

using ATS output (temperatures, saturations, etc.) and petrophysical relations. The forward mode 115 

of BERT solves Poisson’s equation using the finite-element method to calculate ERT survey 116 

resistances in a two-dimensional tomography corresponding to the cross section of the ice-wedge 117 

polygonal tundra site. 118 
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 119 
Figure 1. Schematics of the parameter estimation algorithm.  120 
 121 

2.1 Synthetic Model 122 

To setup the synthetic model, we used digital elevation data of a transect through ice-wedge 123 

polygonal tundra at the Barrow Environmental Observatory (BEO), at Utqiagvik, Alaska.  The 124 

mesh shown on Figure 2A represents the cross-section of the polygonal tundra.  Thickness of the 125 

peat (organic) layer corresponds to observations at the site, with a thick peat layer on the sides 126 

(troughs) and thinner in the middle of the low center polygon.  A mineral layer was assigned below 127 

the peat layer across the transect. We initially designated six synthetic observation (temperature 128 

and soil moisture measurement) locations within the active layer thickness (ALT) similar to the 129 

sensor setup at the site (Dafflon et al., 2017). Then we added 4 more synthetic observation 130 
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locations below the ALT (Figure 2B) to better understand the effect of their inclusion on PE 131 

accuracy and robustness.  All observation locations are represented as stars on Figure 2A 132 

corresponding to the locations of the collected temperature and soil moisture timeseries.  The 133 

temperature and soil moisture timeseries were observed at depth 5, 20, 60, and 80 cm below the 134 

surface.  The overall depth of the modeling domain is 45 m.  We set the bottom boundary to a 135 

constant temperature of T=263.55K, and closed (zero heat and mass flux) boundary conditions on 136 

the vertical sides.  The required steps to establish a water table in permafrost soils in the ATS 137 

model have been documented in Atchley et al., (2015) and Jafarov et al., (2018). A seepage face 138 

was imposed at 4 cm below the surface on each side of the domain to allow drainage through 139 

connected trough networks and preventing water from pooling at the surface, as is typical of 140 

partially degraded polygonal ground (Liljedahl et al, 2016).  We use two types of meteorological 141 

datasets as surface boundary condition drivers for the ATS model: simplified (sinusoidal air 142 

temperature, constant precipitation, and constant radiative forcing) and actual weather data from 143 

the BEO site. The actual meteorological data were collected starting on January 1, 2015 and 144 

includes air temperature, rain and snow precipitation, humidity, long and shortwave radiation and 145 

wind speed. We present ground temperatures simulated for the synthetic model run with actual 146 

meteorological data in Figure 2B, where the linear white region indicates the ALT within the 147 

transect (i.e., 0o C). The deepest ALT is in the middle of the transect (42 cm) and shallowest on 148 

the sides (35 cm).  In addition, In Figure 3 we present corresponding liquid-water and ice saturation 149 

for the synthetic model run at different times of the year.  150 

ATS uses the designated porosities and thermal conductivities {𝜙, 𝑘} of peat and mineral soil layer 151 

to compute temperature (𝑇) and liquid-water saturation (𝑠() designated as the synthetic truth.  To 152 

calculate thermal conductivities of the air-water-ice-soil mixture, the ATS model interpolates 153 

between saturated frozen, saturated unfrozen, and fully dry states (Painter et al., 2016) where the 154 

thermal conductivities of each end-member state is determined by the thermal conductivity of the 155 

components (soil grains, air, water, or liquid) weighted by the relative abundance of each 156 

component in the cell (Johansen, 1977; Peters-Lidard et al, 1998; Atchley et al., 2015).  Standard 157 

empirical fits are used for the internal energy of each component of the air-water-ice-soil mixture.  158 

The corresponding equation used to calculate saturated, frozen thermal conductivity (𝜅*+,,-) has 159 

the following form: 160 

𝜅*+,,- = 𝜅*+,,/- ⋅ 𝜅1
2 ⋅ 𝜅3

42,      (1) 161 
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where 𝜅*+,,/-, 𝜅1, 𝜅3 are thermal conductivities for saturated unfrozen, ice, and liquid water, 162 

respectively, and 𝜙 is porosity.  163 

We sequentially couple the ATS and BERT numerical models via petrophysical relationships used 164 

by Tran et al., (2017).  In that approach, the electrical conductivity is determined as a function of 165 

temperature and liquid water saturation: 166 

𝑅(𝑇, 𝑠() = 1/(𝜙:[𝑠(<𝜎3 + (𝜙4: − 1)𝜎*] ⋅ [1 + 𝑐(𝑇 − 25)]),   (2) 167 

where 𝑅(𝑇, 𝑠() is the electrical resistivity, 𝜎3 and 𝜎* are the electrical conductivities of water and 168 

soil/sediments, respectively, 𝑛 is a saturation index, 𝑑 is a cementation index, and 𝑐 is a 169 

temperature compensation factor accounting for deviations from 𝑇 = 25F𝐶.  Calculated electrical 170 

resistivities get passed to the BERT model which computes electrical resistances (𝑟) such as 171 

measured during an ERT survey.  In this study we assume all constants used in equation (2) are 172 

known (see Tran et al., 2017) and focus on the uncertainty in the simulations instead of the 173 

accuracy of parameters used in the petrophysical relationships. 174 

 175 
Figure 2. A) The (vertically exaggerated for clarity) 2D transect mesh used by the ATS model. Green 176 
represents the peat layer and brown represents the mineral soil layer. Black stars correspond to the 6 177 
sensors collecting temperature and soil moisture content within the active layer. Red stars correspond 178 
to the 4 sensors collecting temperature and soil moisture content below the active layer.  B) Ground 179 
temperature distribution simulated by the ATS model, corresponding to the time of maximum 180 
subsurface thaw. The active layer thickness corresponds to the linear white region (i.e., 0oC region) 181 
dividing the thawed and frozen regions of the ground. 182 
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183 
Figure 3. Vertical transects of example model simulation results of liquid and ice saturation (rows) 184 
over winter and summer time periods (columns). 185 

 186 

2.2 Parameter estimation 187 

To test if the known soil properties can be recovered, we start with randomly selected initial 188 

parameter guesses as if the synthetic truth is unknown. We use a Latin Hypercube Sampling 189 

method to generate random initial guesses of porosity and thermal conductivities around the 190 

synthetic truth (McKay et al., 1979).  Each sample set includes four parameters: porosity and 191 

thermal conductivity for peat and mineral soil layers.  The rest of the hydrothermal properties are 192 

kept fixed. These parameters were chosen due to their strong controls on both hydrologic and 193 

thermal states (Atchley et al., 2015, Nicolsky et al., 2009). 194 
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The inverse approach involves the minimization of a cost function expressed as the sum-of-squared 195 

differences between simulated values and synthetic measurements using the Levenberg-Marquardt 196 

(LM) algorithm (K. Levenberg, 1944; D. W. Marquardt 1963) implemented in the PEST software 197 

package (Doherty, 2001), which was used to handle all parameter estimation runs. 198 

To estimate soil physical properties, we minimize the cost function (𝐽) representing the sum-of-199 

squared differences between the calculated and synthetic 𝑇, 𝑠(, and 𝑟 in the following form: 200 

𝐽(𝜙, 𝑘) = 𝑤K ∑(𝑇M − 𝑇*)N + 𝑤* ∑O𝑠(M − 𝑠(*P
N + 𝑤Q ∑(𝑟M − 𝑟*)N,   (3) 201 

where indices 𝑐	and s correspond to calculated and synthetic states of the system, 𝑤K,𝑤*, and 202 

𝑤Q	are the corresponding weights for the temperature, saturation and resistance residuals 203 

(differences between calculated and synthetic values). 204 

The weights were chosen in order to scale the contribution of each type of residual so that 205 

contributions to the cost function are evenly distributed across temperature, saturation, and 206 

resistance residuals. For example, saturation residuals are on the order of a few tenths, while 207 

resistance residuals can be tens of ohms. The weights were selected based on evaluating the 208 

individual contributions to the cost function for each measurement type on an ensemble of 209 

simulations spanning the parameter ranges. The electrical resistance residual weight (wr) was set 210 

to one. The temperature and saturation residual weights (wT and ws) were then modified so that 211 

each measurement type component in the cost function had roughly equivalent magnitude over 212 

most of the parameter space. This resulted in weights of wr=1, wT=2.5x103, and ws=3.5x105. 213 

If the cost function satisfies minimum criteria or the maximum allowed number of iterations, which 214 

we chose to be equal to 25, is reached. The subsurface properties corresponding to the minimum 215 

of the cost function, i.e., the best fit between simulated and synthetic values, are considered the 216 

estimated parameter values as 217 

{𝜙, 𝑘} = argmin
2YZ[\2\2Y]^,
_YZ[\_\_Y]^

𝐽(𝜙, 𝑘),    (4) 218 

here {𝜙, 𝑘} are estimated porosities and thermal conductivities for peat and mineral soil. 219 

Based on sensitivity analyses using simplified meteorological data, the cost function response 220 

surface was smooth and convex over the parameter ranges of interest. Therefore, we chose the LM 221 

approach because of its robust gradient-based optimization scheme that takes advantage of smooth 222 

convex response surfaces to quickly converge to minima. 223 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-91
Manuscript under review for journal The Cryosphere
Discussion started: 15 May 2019
c© Author(s) 2019. CC BY 4.0 License.



10 
 

To build an understanding of the inverse framework, we start with a simple setup and then 224 

gradually add more complexity.  First, we use simplified meteorological data where we assume 225 

that air temperatures change according to a sinusoidal function and all other terms are constants. 226 

Initially we started with 3 observational points within the peat layer (refer to Figure 2A) and 1 227 

ERT profile.  Then we increase the number of ERT profiles up to 8 by adding profiles once per 228 

month from January till August. Each ERT profile calculated by BERT uses the set of daily 229 

averaged 𝑇 and 𝑠( simulated by ATS and petrophysical relations (eqn. 2) which are varying over 230 

time. Then we increase the number of observation points to 6 and add noise to the simulated data. 231 

Introduction of the noise allows us to evaluate the effect of measurement uncertainties that will be 232 

present in the actual application of the PE method. We added different levels of Gaussian noise to 233 

the synthetic measurements of	𝑇, 𝑠(, and 𝑟 in the following way: 1% to 𝑇, 5% to 𝑠(, and 10% to 𝑟. 234 

These levels of noise for the different types of measurements are based on published literature and 235 

our own experience (Wang et al., 2018; Dafflon et al., 2017). After that we substitute simplified 236 

meteorological data with actual data from the BEO site to evaluate our PE method under realistic 237 

ground surface boundary conditions. In this case we evaluate how much and what kind of data do 238 

we need to robustly recover subsurface porosities and thermal conductivities. To do this we test 239 

the inclusion of individual types of measurements in the cost function (equation 3) as well as all 240 

possible combinations of measurement types. We used different soil property ranges for the 241 

simplified and actual meteorological data PE runs which are summarized in Table 1. This was 242 

done to test the consistency and effectiveness of the PE method.  In addition, we compared the 243 

difference between estimated parameters for 8 ERT profiles collected once a month for 8 months 244 

versus once a day for 8 days. Notation and description of each run for simplified and actual 245 

meteorological data is summarized in Table 2. 246 

Table 1: Allowed range for the estimated subsurface properties.  247 
Properties Simplified meteorological data  Actual meteorological data 

peat mineral peat Mineral 

Porosity [𝑚a ⋅ 𝑚4a] 0.8±1.9 0.6+0.25 0.6±1.9 0.4+0.25 

Thermal conductivity,  
[𝑊	𝑚4c𝐾4c] 

0.225±0.2 2.0±0.5 0.15±0.1 1.6±0.5 

 248 

Table 2: Description of all PE cases used in this study.  249 
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Case 
number 

Simplified meteorological data (S)* Actual meteorological data 

1 (S)3𝑇3𝑠(1𝑟 6𝑇 

2 (S)3𝑇3𝑠(8𝑟 10𝑇 

3 (S)6𝑇6𝑠(1𝑟 6𝑠( 
4 (S)6𝑇6𝑠(8𝑟 1𝑟 

5 (S)6𝑇6𝑠(1𝑟+n 6𝑇1𝑟 

6 (S)6𝑇6𝑠(8𝑟+n 6𝑠(1𝑟 

7  6𝑇6𝑠( 
8  3𝑇3𝑠(1𝑟 
9  3𝑇3𝑠(8𝑟 
10  6𝑇6𝑠(8𝑟 
11  6𝑇6𝑠(8𝑟(s) ** 
12  10𝑇10𝑠(1𝑟 
13  10𝑇10𝑠(8𝑟 

The numbers before 𝑇	and 𝑠( correspond to the number of measurement points used. Number before 𝑟 250 
corresponds to the number of resistance profiles used.  251 
n stands for noise added to the synthetic measurements. 252 
*(S) corresponds to runs driven by simplified meteorological data, no (S) corresponds to runs driven with 253 
actual meteorological data 254 
**All resistance profiles are taken once per month, except the case with (s) corresponding to sequential daily 255 
profiles.  256 
 257 

3. Results  258 

 259 

3.1 Simplified meteorological data 260 

To evaluate the PE method performance driven by simplified meteorological data, we ran PE 261 

experiments using 30 different random combinations of porosity and thermal conductivity values 262 

as the initial starting point.  It is important to note that one of the main points of this study is to 263 

demonstrate that one or two LM runs might lead to false assumptions about recovered parameters. 264 

Multiple runs starting from different initial guess values are necessary to ensure the robust 265 

recovery of the subsurface conditions. If most of the LM runs converge to the same set of 266 

parameters and have low cost function values, then that set most likely corresponds to the actual 267 

subsurface properties.  In Figure 4, the yellow triangles represent initial guesses (i.e. inversion 268 
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parameter combination starting points). In these plots, the synthetic truth is indicated by the 269 

intersection of the two dotted lines.  Bright turquoise lines connecting yellow triangles with red 270 

dots represent the path that the LM algorithm has taken from the initial guess to the estimated 271 

parameter combination represented by the red dot. The dots connecting turquoise lines indicate the 272 

location at each LM iteration.  Figure 4 indicates that the method is able to recover porosities more 273 

robustly than thermal conductivities.  According to the liquid saturation plot on Figure 3, liquid 274 

saturation of the mineral layer is quite dynamic and more saturated in comparison to the peat layer. 275 

Nevertheless, thermal conductivity of the mineral layer corresponds to the highest uncertainty. 276 

Three out of thirty red dots corresponding to thermal conductivity of mineral soil end up close to 277 

1.4 𝑊	𝑚41𝐾41 (the true value is 2 𝑊	𝑚4c𝐾4c), suggesting those values do not correspond to the 278 

‘truth’, since most of the estimated values (27 cases) are concentrated around the intersection of 279 

the dotted lines. In this case the response surface for the corresponding cost function (eqn. 3) lies 280 

in a flat, low-gradient region. This effect can be seen in Figure 5, the cost function corresponding 281 

to the estimated porosities (Figure 5A) has only one minimum, where the cost function 282 

corresponding to thermal conductivities (Figure 5B) has an elongated flat minima region indicating 283 

non-uniqueness of the estimated parameters. This case corresponds to the 6 near-surface 284 

observation points (Figure 2A) with short vertical distance between the points. The close proximity 285 

of the observation locations might be limiting variability in the calibration targets leading to 286 

difficulty in estimating the 𝑘f parameter. 287 

 288 
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Figure 4. Estimated values of a sample of 30 initial guesses to their “true” values shown as a cross-289 
section of two dotted lines for A) porosities and B) thermal conductivities for peat mineral soil layers. Blue 290 
lines correspond to different paths that have been taken by the LM algorithm. The red dots correspond to 291 
the estimated parameter values. Note that subfigures (A) and (B) are each showing 2D projections of the 292 
4D parameter space of the inversion. 293 

 294 
Figure 5. Cost function corresponding to A) porosities and B) thermal conductivities for peat and mineral 295 
soil layers. Here, the colorbar is a normalized cost function. Note that subfigures (A) and (B) are showing 296 
2D projections of a 4D parameter space that the inverse approach was applied to. 297 
 298 

Figure 6 illustrates estimated parameters for all cases corresponding to simplified meteorological 299 

data from Table 2.  Figure 6AB shows good convergence of the (S)6𝑇6𝑠(1𝑟 case for porosities and 300 

worse convergence for thermal conductivities with an averaged error of 0.1𝑊𝑚41𝐾41. Adding 301 

noise to the (S)6𝑇6𝑠(1𝑟+n case slightly worsens the estimated porosity values and significantly 302 

worsens mineral soil thermal conductivity with RMSE raising from 10% to more than 50% (Figure 303 

6CD). Figure 6EF shows that increasing the number of the monthly ERT profiles from 1 to 8 304 

improved soil property estimates, allowing four out of five PE runs to converge closer to the 305 

synthetic truth. If we do not consider the one outlier on the conductivity plot (Figure 6F) for case 306 

(S)6𝑇6𝑠(8𝑟+n  then uncertainty is smaller than for the (S)6𝑇6𝑠(1𝑟 case (without noise), suggesting 307 

that despite introduction of the 10% noise to the ERT data increasing the number of the monthly 308 

ERT profiles improves the overall PE. 309 
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Figure 6. Estimated values of a sample of 5 initial guesses to their “true” values shown as a cross-section 310 
of two dotted lines for the bulk porosities and bulk thermal conductivities for peat mineral soil layers. Blue 311 
lines correspond to different paths that have been taken by the LM algorithm. The red dots correspond to 312 
the estimated values. A-B) 6 observation points and 1 ERT resistance profile (S)6𝑇6𝑠(1𝑟; C-D) 6 313 

observation points and 1 ERT resistance profile with added noise (S)6𝑇6𝑠(1𝑟+n; E-F) 6 observation 314 

points and 8 ERT resistance profile with added noise (S)6𝑇6𝑠(8𝑟+n. Note that the plots are each 2D 315 
projections of the 4D parameter space of the inversion. 316 
 317 

In Figure 7, we summarize results from the five PE runs for the first six cases corresponding to 318 

simplified meteorological data listed in Table 2.  The first row of tables corresponds to the final 319 

root-mean-squared error (RMSE) values for each measurement type (∆𝑇, ∆𝑠(, and ∆𝑟).  The second 320 

row of tables corresponds to the Euclidian distances between the synthetic truth and estimated 321 

parameter values of 𝛿𝜙 and 𝛿𝑘. As it was shown above, the method is able to accurately estimate 322 

both peat and mineral soil porosities and peat layer thermal conductivity (𝑘i), but cannot always 323 

accurately estimate the thermal conductivity of the mineral soil (𝑘f).  That is why the matrix table 324 

with estimated thermal conductivities on Figure 7 shows the highest discrepancy (bottom row, last 325 

table). However, one can see from the 𝜙 and 𝑘 matrix tables that increasing the number of monthly 326 

ERT profiles improves the estimates of 𝜙 and 𝑘.  This suggests that by increasing the number of 327 

monthly ERT profiles, we are improving the convexity of the cost function (eqn.3).  Increasing the 328 

number of  𝑇 and 𝑠( observational points from 3 to 6 has a less significant effect on estimated 329 
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values of 𝜙 and 𝑘.  This could be due to the fact that all 6 observational points lie within the active 330 

layer zone. Suggesting that adding observations below the active layer might have more significant 331 

effect on the estimated properties.  Therefore, we added extra observational points (red stars in 332 

Figure 2A), to test this assumption in the experiment with actual meteorological data. 333 

 334 

 335 
Figure 7. Five matrix tables presenting fitness metrics between synthetic model values and values 336 
obtained by the parameter estimation method using simplified meteorological data. First row corresponds 337 
to the root mean squared errors for temperatures, liquid water saturations, and resistances. Second row 338 
includes tables corresponding to Euclidian distances between synthetic (“true”) and estimated parameter 339 
values.  340 
 341 

3.2 Meteorological data from Utqiagvik (Barrow) site 2015 342 
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After testing the PE method for the simplified meteorological data, we applied measured 343 

meteorological data from the BEO site for year 2015. To better understand the importance of each 344 

measurement type and their combinations within the developed PE framework we tested all of the 345 

scenarios corresponding to the ‘actual meteorological data’ column from Table 2. The results of 346 

these runs are summarized in the colored matrix tables in Figure 8. Since there are twice the 347 

number of actual meteorological cases than the simplified meteorological cases, it is hard to 348 

analyze all matrix tables at once. To combine the data from all five matrices we normalized the 349 

mean values in the middle column in each table by their maximum value as Δk = l
lY]^

  and δn =350 

o
oY]^

.  This normalized the magnitudes of different measurement and soil property types.  Then we 351 

calculated the RMSE of the normalized mean values for combined measurement and soil property 352 

types, Δ(ΔTq, Δssq , Δrq) and Δ(δϕq, δkq), respectively . Based on these normalized and combined 353 

RMSE values, we used k-mean clustering analysis to identify groupings of data collection 354 

strategies that result in similarly performing inversions. The analysis identified four clusters of 355 

data collection strategies resulting in similarly performing inversions shown in Figure 9.  Class I 356 

and II indicate all the cases that provide good accuracy for the estimated properties. Class I 357 

indicates the best cases that provide an accurate parameter estimation as well as accurate matches 358 

with the synthetic “true” measurements. Class II includes the cases that have accurate parameter 359 

estimates and less accurate matches with the measurements. Class III indicates all cases that have 360 

less accurate parameter estimates but accurate matches with the measurements.  Finally, Class IV 361 

includes the cases that showed the worst performance in terms of parameter estimates and the 362 

worst matches with the measurements. We summarized the results from Figure 9 in Table 3.  363 

Cases in Class I (see Table 3) suggest that measurement locations below the active layer lead to 364 

better PE, meaning that by increasing the number of measurement locations leads to more accurate 365 

parameter estimation. In contrast, the last element of the first class is a case with one ERT profile 366 

(1𝑟), suggesting that one ERT profile could be enough for effective parameter estimation. This is 367 

due to the design of this numerical experiment, i.e. due to the fact that we are using a synthetic 368 

“truth” produced by the same model used in the inversion, which improves the convexity of the 369 

cost function and leads to a well constrained unique minimum.  However, in reality, collection of 370 

the additional information, such as organic layer thickness and temperature data, are extremely 371 

important and are required for model calibration (Jafarov et al., 2012; Atchley et al., 2015). In 372 
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addition, real ERT surveys can be perturbed by noise and their interpretation may require site-373 

specific petrophysical relationships as opposed to the general petrophysical relationships used in 374 

this study. Therefore, we do not suggest to collect only one ERT measurement without any 375 

additional data.  376 

Class II indicates that increasing the number of monthly ERT profiles is important for more 377 

accurate PE. However, increasing the number of ERT profiles leads to a less accurate match with 378 

measurements. These results are consistent with the previous results for simplified data and added 379 

noise (Figure 6). 380 

Class III includes 6 cases suggesting that if we have only soil moisture data available for PE, then 381 

we should expect less accurate soil property estimates. The last element in this class suggests that 382 

collecting daily resistance profiles improves the resistance match (Figure 8, resistivity table) but 383 

does not improve soil property estimates, where monthly ERT profiles improve thermal 384 

conductivity convergence. 385 

Class IV once again clearly indicates that measurements obtained below the active layer provide 386 

more accurate parameter estimates, however, they do not improve matches to measurements. This 387 

is mainly due to significant mismatch with the ERT data, which can be seen on the RMSE 388 

resistance table (Δr) in Figure 8.  In reality, the depth of the mineral soil can be deeper than 20 cm, 389 

not having sensors lower than 20 cm limits the amount of data that can help to improve the 390 

convexity of the cost function in our case. 391 

Table 3: K-mean analysis of the accuracy for each 13 cases. 392 
Class I  Class II Class III Class IV 

10𝑇10𝑠(1𝑟 6𝑇6𝑠(8𝑟 6𝑠( 10𝑇 

10𝑇10𝑠(8𝑟 3𝑇3𝑠(8𝑟 6𝑠(1𝑟 6𝑇 

1𝑟  6𝑇1𝑟  

  3𝑇3𝑠(1𝑟  

  6𝑇6𝑠(  

  6𝑇6𝑠(8𝑟(𝑠)  

 393 

From Figure 9 and Table 3 we know that the 6T case has the worst performance in terms of 394 

matching {𝜙, 𝑘}. Similar to the experiments with simplified meteorological data, the main 395 

difficulty for experiments with actual meteorological data is matching thermal conductivity. The 396 
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last matrix table (𝜎(𝑘)) on Figure 9 shows that 6𝑇6𝑠(8𝑟(s) has the highest maximum and mean 397 

mismatch in thermal conductivity estimates. However, since 𝜙 estimates are a better match with 398 

their corresponding “true” values, the case 6𝑇6𝑠(8𝑟(s) falls into class III in Figure 9, as opposed 399 

to case 6𝑇, which falls into class IV. The highest mismatch in thermal conductivity values for the 400 

6𝑇6𝑠(8𝑟(s) case suggests that collecting daily resistance profiles improves the resistance match 401 

(Figure 8, resistivity table) but does not improve estimated parameters, where monthly ERT 402 

profiles improve thermal conductivity estimation. 403 

To illustrate this, we plot values of estimated thermal conductivities and the corresponding cost 404 

functions for cases 10𝑇10𝑠(8𝑟 and 6𝑇6𝑠(8𝑟(s) on Figure 10. The PE method was able to match 4 405 

out of 5 points perfectly and missed the 𝑘i for the 10𝑇10𝑠(8𝑟 case. The corresponding cost 406 

function is almost perfectly convex with only one minimum. In contrast to this, the 6𝑇6𝑠(8𝑟(s) 407 

case completely missed 2 points by converging on values outside the boundaries, and 3 other points 408 

do not converge to the desired cross section as well. The corresponding cost functions does not 409 

have a well-defined global minimum.  410 

 411 

4. Discussion  412 

 413 

The existence of multiple minima is common in inverse modeling and leads to false convergence 414 

of the LM algorithm and physically non-realistic subsurface parameters (Nicolsky et al., 2007). 415 

This is one of the main reasons of using multiple initial guesses. We suggest to run at least ten 416 

different initial guesses. If most of those runs converge to a similar set of values with the lowest 417 

cost function value, then that set of values is most likely the global minimum.   418 

There will always be cases like 6𝑇6𝑠(8𝑟(s), where all runs converge to different values of 𝑘f, 419 

indicating that using certain combinations of datasets does not allow the inverse approach to 420 

properly recover 𝑘f. It is likely that 6𝑇6𝑠(8𝑟(s) does not capture much variability in soil 421 

temperatures and soil moisture and therefore ERT profiles do not have much variability as well. 422 

Once the cost function converges for one of the ERT profiles, it immediately converges on the 423 

other daily profiles. In fact, although 6𝑇6𝑠(8𝑟(s) has a good accuracy with observations (see the 424 

“RMSE Resistance” table in Figure 8), it is unable to recover the value of 𝑘f. Here, a 425 

regularization technique may improve the corresponding data accuracy.  The regularization 426 
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techniques have been widely used in solving ill-posed inverse problems (Vogel, 2002).  Its overall 427 

idea is to constrain the objective function by imposing additional priors on the estimated model 428 

parameters.  The PEST package allows us to add a regularization term to the cost function (eqn. 429 

4).  In particular, the PEST package provides several categories of regularization techniques 430 

including Tikhonov regularization, subspace-type of regularization, and hybrid regularization.  431 

Tikhonov regularization, being the most commonly used regularization technique in inverse 432 

problems, imposes a L2 norm constraint on the estimated model parameters (Vogel, 2002).  The 433 

resulting cost function tends to be smoother over the parameter space.  The subspace regularization 434 

technique is developed based on truncated singular value decomposition.  It promotes the 435 

numerical stability of the iteration by discarding the eigenvectors associated with small singular 436 

values so that the solution space can be spanned by the dominant eigenvectors.  The hybrid 437 

regularization technique is a combination of Tikhonov regularization and subspace regularization 438 

techniques.  The numerical results presented in this manuscript demonstrates that our problems 439 

may not be severely ill-posed.  Hence, reasonable results can be obtained with enough data 440 

coverage.  Having regularization techniques incorporated into our current method may help to 441 

constrain the estimated parameters from significant divergence as in Figure 10C.  However, 442 

exploration of the regularization options in PEST requires in depth experimentation beyond the 443 

scope of the current study. 444 

We have shown that even in the ideal situation where we either generate observational data or use 445 

simplified meteorological data, we cannot always fit modeling results to observations. In reality, 446 

noise (e.g. sensor's measuring resolution) contaminates the observational data. To investigate the 447 

impact of measurement noise, we introduced multiple levels of noise to the simplified 448 

meteorological data.  The PE showed that dealing with noisy data is challenging, even for a simple 449 

cases (Figure 6). However, our analysis showed that adding more data into the cost function (in 450 

particular resistivity data) can improve the overall PE accuracy. 451 

The distance between sensors could be another reason that might lead to the uncertainty in PE.  As 452 

it was pointed out by Nicolsky et al., (2009), it is important to make sure that a vertical difference 453 

between the adjacent measurements do not introduce additional noise that can confuse the 454 

minimization algorithm. If sensors are really close to each other, then measurements might be the 455 

same or within the noise variability. In our setup the vertical distance between the first 6 sensors 456 

is about 10cm. This could lead to small temperature variability between sensors. Indeed, providing 457 
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greater vertical distance between observational points improved the PE accuracy (see cases with 458 

10 observational points).	459 

Combining hydrothermal observations from multiple depths with monthly ERT measurements 460 

resulted in improving the shape of the cost function leading to better defined minima (Figure 10).  461 

Increasing the number of the monthly ERT profiles improved the accuracy of the estimated data. 462 

In addition, we showed that having observation points below the ALT combined with ERT profiles 463 

shows the best accuracies both in the terms of estimating parameters and matching observations.  464 

 465 

5. Conclusion 466 

 467 

The overarching goal of this study was to validate a newly developed PE framework using a 468 

synthetic setup and 2D coupled thermal-hydro-geophysical model based on the polygonal tundra 469 

at the BEO study site. The results of this study show that estimating subsurface properties even for 470 

a synthetic setup can be quite complicated. Nevertheless, the PE method evaluated here shows that 471 

there are cases when the method is able to robustly recover synthetic properties. The robustness of 472 

the method depends on the frequency and diversity of the collected data. For example, we found 473 

that adding monthly ERT surveys into the cost function significantly improves the accuracy of the 474 

estimated properties. It is important to note that to improve the overall robustness of the PE, it is 475 

better to collect such data from multiple depths within and below the active layer.  Furthermore, 476 

we conclude that different data types query the system in different ways; we find that the most 477 

robust predictions result from inversions that include multiple data types. 478 

As it was shown in this study, different measurement types as well as a combination of multiple 479 

measurements might lead to the different shapes of the cost function with multiple minima and/or 480 

ill-defined global minimum (flat spots in the response surface). To improve the overall PE 481 

performance we suggest the following: 1) restricting of the parameter range to better constrain the 482 

local minimum; 2) introducing different types of data (𝑇,𝑠(,𝑟) into the cost function to improve PE 483 

accuracy. If most of the runs from the sample converge to the same parameter values and the cost 484 

function is lower at this location, then those values most likely correspond to the actual soil 485 

properties. The ability to refine the cost function with more data (monthly ERT and timeseries 486 

from multiple depths) has to be further explored with actual data. 487 
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Implication of the PE method to the actual measured data might require adjustment of the initial 488 

conditions of the model (saturation and temperature). Incorporating the initial condition data into 489 

the PE framework might lead to a better match with actual subsurface observations. This work 490 

demonstrates the feasibility of the developed PE framework. However, further evaluation of 491 

regularization methods and recovery of the soil properties using measured subsurface data from 492 

the BEO site is needed and are beyond the scope of the current paper.  493 

 494 

 495 
Figure 8. Five matrix tables represent fitness metric between synthetic model values and values obtained 496 
by the parameters estimation method using meteorological data from year 2015 from BEO site in Alaska. 497 
First three tables correspond to the root mean squared values for temperatures, liquid water saturations, 498 
and resistances, the last two tables correspond to Euclidian distances between synthetic and estimated 499 
conductivities and porosities, correspondingly. 500 
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 501 
Figure 9. A k-mean analysis applied to the RMSE of the normalized means of estimated soil properties 502 
and the corresponding fit between calculated and observed values. Each color and marker represent a 503 
certain class as result of the k-mean cluster analysis. 504 
 505 
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 506 
Figure 10. A) and C) parameter search trajectories for 5 inversions where the “true” values are shown as 507 
a cross-section of two dotted lines for the bulk porosities and bulk thermal conductivities for peat mineral 508 
soil layers. Blue lines correspond to different paths that have been taken by the LM algorithm. The red 509 
dots correspond to the estimated parameter values. First row corresponds to 10 measurement locations 510 
and 8 ERT resistance monthly profiles (10𝑇10𝑠(8𝑟), and the second row corresponds to 6 measurement 511 

locations and 8 ERT resistance daily profiles (6𝑇6𝑠(8𝑟(𝑠)).  B) and D) the colormap plots on the right 512 
represent the cost function values associated with the corresponding thermal conductivities. 513 

 514 
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