
1 
 

Estimation of subsurface porosities and thermal conductivities of polygonal tundra by 1 

coupled inversion of electrical resistivity, temperature, and moisture content data 2 

 3 

Elchin E. Jafarov1, Dylan R. Harp1, Ethan T. Coon2, Baptiste Dafflon3, Anh Phuong Tran3,4, 4 

Adam L. Atchley1, Youzuo Lin1, and Cathy J. Wilson1  5 

 6 

1. Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, 7 

New Mexico, USA 8 

2. Climate Change Science Institute and Environmental Sciences, Oak Ridge National 9 

Laboratory, Oak Ridge, Tennessee, USA 10 

3. Climate and Ecosystem Division, Lawrence Berkeley National Laboratory, Berkeley, 11 

California, USA 12 

4. Department of Water Research Engineering and Technology, Water Research Institute,  13 

Hanoi, Vietnam 14 

 15 

 16 

Abstract 17 

Studies indicate greenhouse gas emissions following permafrost thaw will amplify current rates of 18 

atmospheric warming, a process referred to as the permafrost carbon feedback. However, large 19 

uncertainties exist regarding the timing and magnitude of the permafrost carbon feedback, in part 20 

due to uncertainties associated with subsurface permafrost parameterization and structure. 21 

Development of robust parameter estimation methods for permafrost-rich soils is becoming urgent 22 

under accelerated warming of the Arctic. Improved parameterization of the subsurface properties 23 

in land system models would lead to improved predictions and reduction of modeling uncertainty. 24 

In this work we set the groundwork for future parameter estimation (PE) studies by developing 25 

and evaluating a joint PE algorithm that estimates soil porosities and thermal conductivities from 26 

time-series of soil temperature and moisture measurements, and discrete in-time electrical 27 

resistivity measurements. The algorithm utilizes the Model Independent Parameter Estimation and 28 

Uncertainty Analysis toolbox and coupled hydro-thermal-geophysical modeling. We test the PE 29 

algorithm against synthetic data, providing a proof-of-concept for the approach. We use specified 30 
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subsurface porosities and thermal conductivities and coupled models to setup a synthetic state, 31 

perturb the parameters, then verify that our PE method is able to recover the parameters and 32 

synthetic state. To evaluate the accuracy and robustness of the approach we perform multiple tests 33 

for a perturbed set of initial starting parameter combinations. In addition, we varied types and 34 

quantities of data to better understand the optimal dataset needed to improve the PE method. The 35 

results of the PE tests suggest that using multiple types of data improve the overall robustness of 36 

the method. Our numerical experiments indicate that special care needs to be taken during the field 37 

experiment setup so that (1) the vertical distance between adjacent measurement sensors allows 38 

the signal variability in space to be resolved and (2) longer time interval between resistivity  39 

snapshots allows signal variability in time to be resolved. 40 

 41 

 42 

 43 

1. Introduction 44 

Subsurface soil property parametrization contributes to a wide uncertainty range in projected 45 

active layer depth and in simulated permafrost distribution in the Northern Hemisphere when 46 

predicted using Land System Models (Koven et al., 2015; Harp et al., 2016). Reduction of this 47 

uncertainty is becoming urgent with recent accelerated thawing of permafrost (Biskaborn et al., 48 

2019). Warming permafrost leads to increased infrastructure maintenance costs (Hjort et al., 2018), 49 

has a positive feedback on global climate change (McGuire et al., 2018), and increases the 50 

probability of the potential hazards for human health (Schuster et al., 2018). Better subsurface soil 51 

property parametrizations in Land System Models requires the development of methods that can 52 

robustly estimate these soil properties including porosity and thermal conductivity of peat and 53 

mineral layers. 54 

Direct measurements of subsurface soil properties are labor intensive, destructive, and not always 55 

feasible (Smith and Tice, 1988; Kern, 1994; Boike and Roth, 1997; Yoshikawa et al., 2004).  While 56 

soil sample analysis can provide critical information on soil properties at a fine scale, this 57 

information is limited to sparsely sampled locations.  Multiple methods used in the laboratory to 58 

measure soil properties by using soil cores extracted from the field site are well summarized by 59 

Nicolsky et al., (2009), but logistical and economic burden typically do not allow these 60 

measurements to be made in the field.  Inverse modeling serves as an alternative approach to 61 
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recover soil properties using a combination of indirect and direct measurements and physics-based 62 

numerical models. 63 

Different inverse modeling frameworks have been developed to estimate soil thermal properties 64 

using physical-based models and time-series of ground temperature data.  Some earlier studies 65 

used heat equation models without phase change (Beck et al., 1985; Allifanov et al., 1996).  More 66 

recent works include phase change, which is an important component of the energy balance in 67 

permafrost-affected soils (e.g. Nicolsky et al., 2007; 2009, Tran et al., 2017).  Nicolsky et al., 68 

(2007; 2009) used an optimization based inverse method and a variational data assimilation 69 

method to estimate soil properties.  In particular, Nicolsky et al., (2007; 2009) used measured 70 

subsurface temperatures to inversely estimate thermal conductivities, porosities, freezing point 71 

temperatures, and unfrozen water coefficients, pointing out that sensitivity analyses (i.e. 72 

perturbation of the parameter values) are required in order to robustly establish a set of estimated 73 

parameters.  Harp et al., (2016) used an ensemble-based method to evaluate the uncertainty of 74 

projections of permafrost conditions in a warming climate due to uncertainty in subsurface 75 

properties.  Atchley et al., (2015) used data calibration to estimate hydrothermal properties of soils.  76 

All these methods used ground temperatures alone to estimate soil properties and 1D soil columns 77 

assuming a 1D soil structure. 78 

Recently, Tran et al., (2017) used a coupled hydrological–thermal–geophysical modeling approach 79 

to estimate soil organic content.  The approach was based on coupling the 1D Community Land 80 

Model (CLM4.5; Oleson et al., 2013) that simulates surface-subsurface water, heat and energy 81 

exchange and the 2D Boundless Electrical Resistivity Tomography (BERT) forward model 82 

(Rücker et al., 2006).  The simulated 1D snapshots of the subsurface temperature, liquid water and 83 

ice content from the CLM model were explicitly linked to soil electrical resistivities via 84 

petrophysical relationships which were then used as input to BERT’s forward model to calculate 85 

apparent resistivities. Their inverse modeling framework aims to minimize the misfit between 86 

calculated and measured data, including soil temperature, liquid water content and apparent 87 

resistivity.   Here we modify and extend this approach to 2D by using the Advanced Terrestrial 88 

Simulator (ATS) model, which was specifically developed to study fine-scale hydrothermal 89 

processes of permafrost-affected soils. In addition, instead of estimating organic content of the soil 90 

as in Tran et al., (2017), we estimate porosities and thermal conductivities of peat (organic) and 91 

mineral layers across a 2D transect within polygonal tundra. 92 



4 
 

Modeling the full, continuous 2D transect allows us to simulate lateral hydro-thermal fluxes not 93 

possible with individual 1D columns known to be important in polygonal tundra (Abolt et al, 2018, 94 

Liljedahl et al, 2016).  At each grid cell in the transect, a physical state develops during the ATS 95 

simulation (temperature, saturation, etc.) that is then used to calculate heterogeneous electrical 96 

resistivities via petrophysical relations. This allows more realistic simulated apparent resistivities 97 

that include the effects of lateral hydrothermal connectivity within the transect. 98 

Through this approach, we develop a parameter estimation (PE) algorithm that aims to estimate 99 

porosities and thermal conductivities in permafrost-affected soils through joint inversion of 100 

hydrothermal and geophysical measurements, including ground temperature, saturation, and 101 

apparent resistivity.  Our main objective then is to evaluate which types and number of 102 

measurements are necessary to constrain the inversion to yield a robust and accurate prediction of 103 

subsurface porosities and thermal conductivities.  The inverse modeling framework couples the 104 

state-of-the-art hydrothermal permafrost simulator ATS, electrical resistivity software package 105 

BERT and the Model Independent Parameter Estimation and Uncertainty Analysis toolbox (PEST) 106 

software package (Doherty, 2001).  We progressively test the accuracy and robustness of the 107 

method using a series of synthetic problems by: 1) increasing the complexity of the meteorological 108 

data used to drive the coupled thermo-hydro-geophysical model and 2) testing the inclusion of 109 

individual and combinations of several available measurement types on the accuracy and 110 

robustness of inversions.  The results of this work can be used to better understand challenges 111 

associated with subsurface porosity and thermal conductivity estimation.  Additionally, we used 112 

findings from this study to suggest how data should be collected to improve the accuracy of the 113 

estimated soil properties and to optimize the total number of measurements needed to make a 114 

robust subsurface PE. 115 

 116 

2. Methods 117 

We estimate the soil properties of porosity and soil grain thermal conductivity for peat and mineral 118 

layers of a 2D transect within polygonal tundra. Our PE approach is summarized in Figure 1. Given 119 

specified “true” values of these parameters, we used the ATS version 0.86 model to solve for a 120 

transient, spatially distributed hydro-thermal state characterized by temperature and liquid and ice 121 

saturations. ATS is a 3D-capable coupled surface and groundwater flow and heat transport model 122 

representing the soil physics needed to capture permafrost dynamics, including flow of unfrozen 123 
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water in variably-saturated, partially-frozen, non-homogeneous soils (Painter et al., 2016).  Given 124 

this hydrothermal state, we calculate resistivity values at every grid cell via petrophysical 125 

relationships, and run the forward modelling component of the BERT software package (Rücker 126 

et al., 2006) to simulate resistance and related apparent resistivity values that would be measured 127 

with ground-coupled electrodes and an ERT acquisition system.   128 

 129 
Figure 1. Schematics of the parameter estimation algorithm. The algorithm starts with initial guesses on 130 
porosities and thermal conductivities {𝜙, 𝑘}={𝜙&,𝜙', 𝑘&, 𝑘'} for the peat and mineral layers. The coupled 131 
ATS-BERT forward model then simulates temperature (𝑇), liquid water saturation (𝑠*), ice saturation 132 
(𝑠+), and apparent resistivities (𝜌-), which are passed to the cost function. If the cost function is small 133 
enough, {𝜙, 𝑘} are considered to be the estimated parameters. If not, the values of the {𝜙, 𝑘}	are updated 134 
according to the Levenberg-Marquardt (LM) minimization algorithm and passed back to the ATS-BERT 135 
model. 136 
 137 

2.1 ATS-BERT Model  138 

To set up the synthetic model, we used digital elevation data of a transect through ice-wedge 139 

polygonal tundra at the Barrow Environmental Observatory (BEO), at Utqiagvik, Alaska (Fig. 2).  140 
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Our study includes an 11 m section covering a single polygon with an ice-wedge on each side.  In 141 

this study we do not explicitly assign ice properties for the ice-wedges.  Instead, we model bulk 142 

porosities and effective thermal conductivities that can be associated with peat and mineral layers 143 

of the entire transect. 144 

In Figure 2A,  we present the computational mesh representing the cross-section of the polygonal 145 

tundra that ATS is run on.  The thickness of the peat layer corresponds to observations at the site, 146 

with a thick peat layer on the sides (troughs) and a thinner layer in the middle of the low-centered 147 

polygon.  A mineral layer was assigned below the peat layer across the transect. We initially 148 

designated six synthetic direct temperature and soil moisture measurement locations within the 149 

active layer area, the maximum thaw layer from the ground surface to the top of the permafrost, 150 

similar to the sensor setup at the site (Dafflon et al., 2017).  The average active layer depth is about 151 

38cm, as it can be seen from the ground temperatures simulated for the synthetic model run with 152 

actual meteorological data in Figure 2B.  The linear white region on Fig. 2B indicates the bottom 153 

of the active layer within the transect (0o C).  Then we added four more synthetic direct 154 

measurement  locations below the active layer to evaluate the effect of their inclusion on PE 155 

accuracy and robustness.  All observation locations are represented as stars on Figure 2A 156 

corresponding to the locations of the collected daily averaged temperature and soil moisture 157 

timeseries.  The temperature and soil moisture timeseries were recorded at depths of 5, 20, 60, and 158 

80 cm below the surface.   159 

The setup of the ATS model followed a standard procedure described in several studies (Atchley 160 

et al., 2015; Painter et al., 2016; Jafarov et al., 2018). Typically, we set up the model in several 161 

steps: 1) initialization of the water table, 2) introduction of the energy equation to establish 162 

antecedent permafrost, and 3) spinup of the model with simplified and actual meteorological data 163 

from the BEO station. We spun up the model until the active layer achieved cyclical equilibrium.  164 

The overall depth of the modeling domain is 50 m.  We set the bottom boundary to a constant 165 

temperature of T=263.55K and set zero heat and zero mass flux boundary conditions on the vertical 166 

sides.  A seepage face was imposed at 4 cm below the surface on each side of the domain to allow 167 

drainage to the trough network to prevent water from pooling at the surface, as is typical of partially 168 

degraded polygonal ground (Liljedahl et al, 2016).  We use two types of meteorological datasets 169 

as surface boundary condition drivers for the ATS model: simplified (sinusoidal air temperature, 170 

constant precipitation, and constant radiative forcing) and actual weather data from the BEO site. 171 
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The actual meteorological data were collected starting on January 1, 2015 and include air 172 

temperature, rain and snow precipitation, humidity, long and shortwave radiation, and wind speed.  173 

We created a synthetic truth by designating porosities and soil grain thermal conductivities {𝜙, 𝑘} 174 

of peat and mineral soil as parameters in the forward model. The resulting temperature (𝑇), liquid 175 

and ice-water saturations (𝑠*, 𝑠+), and apparent resistivities (𝜌-) were collected as the true state.  176 

Critical for these simulations is the calculation of the thermal conductivities of the bulk soil; 177 

calculated in ATS using Kersten numbers to interpolate between saturated frozen, saturated 178 

unfrozen, and fully dry states (Painter et al., 2016) where the thermal conductivities of each end-179 

member state is determined by the thermal conductivity of the components (soil grains, air, water, 180 

or liquid) weighted by the relative abundance of each component in the cell (Johansen, 1977; 181 

Peters-Lidard et al, 1998; Atchley et al., 2015).  Thermal conductivities of water, ice, and air are 182 

considered constant, leaving soil grain thermal conductivity as the remaining parameter to be 183 

estimated.  The equation to calculate saturated, frozen thermal conductivity (𝜅0-1,2) has the 184 

following form: 185 

𝜅0-1,2 = 𝜅0-1,42 ⋅ 𝜅+
6 ⋅ 𝜅7

86,      (1) 186 

where 𝜅0-1,42, 𝜅+, 𝜅7 are thermal conductivities for saturated unfrozen, ice, and liquid water, 187 

respectively, and 𝜙 is porosity.   188 

The freezing characteristic curve is thermodynamically derived using a Clapeyron relation and the 189 

unfrozen water retention curve, as described in Painter and Karra (2014) and Painter et al., (2016).  190 

In Figure 3 we present liquid and ice saturations for one realization of the model for winter 191 

(January) and summer (August) times of the year.  The ice saturation is high below the active layer 192 

all year long and lowest within the active layer in the summer. The peat layer holds more water; 193 

therefore, ice concentration is higher than in the mineral layer in the winter. The liquid saturation 194 

plot shows that by the end of the summer, the peat layer is drier than the mineral layer.   195 

We sequentially couple the ATS and BERT numerical models via petrophysical relationships used 196 

by Tran et al. (2017) and based on Archie (1942) and Minsley et al. (2015).  In that approach, the 197 

electrical resistivity (𝜌) is determined as a function of soil characteristics, temperature, porosity, 198 

liquid water saturation, fluid conductivity, and ice content: 199 

𝜌 = 1/(𝜙=[𝑠*?𝜎7 + (𝜙8= − 1)𝜎0] ⋅ [1 + 𝑐(𝑇 − 25)]),   (2) 200 
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where 𝜎7 is the fluid electrical conductivity, 𝜎0 is soil/sediments electrical conduction, 𝑛 is a 201 

saturation index, 𝑑 is a cementation index, and 𝑐 is a temperature compensation factor accounting 202 

for deviations from 𝑇 = 25I𝐶.   203 

The ice content is linked to water content through the liquid-water saturation and to 𝜎7, which is 204 

influenced by the concentration of Na+ and Cl- ions and the ice/liquid fraction.  Here 𝜎7 has the 205 

following form: 206 

𝜎7 = ∑ 𝐹M𝛽+|𝑧+|𝐶+(QRSTU)𝑆2W
8X?SYZ

+[\     (3) 207 

Where 𝐹M is Faraday’s constant, 𝛽+ and 𝑧+ the ionic mobility and valence respectively,	𝐶+ is the 208 

concentration of ith ion, α is factor influencing how the liquid water salinity increases when the 209 

fractions of liquid in ice-liquid water 𝑆2W decreases. 𝑆2Wis defined as:  210 

𝑆2W = 𝑠*/(𝑠* + 𝑠+)    (4) 211 

Both 𝑠* and 𝑠+ are simulated by ATS.  Note that 𝜙 in eq. (2) is an estimated parameter (see 212 

Figure 1).  In this study we assume that 𝑛, 𝑑, 𝜎0, α, 𝐹M, 𝛽^-_, 𝛽`*a, 𝐶^-_,	and 𝐶`*a	parameters used 213 

in equations (2) and (3) are known (see Tran et al., 2017) and focus on the robustness of the PE 214 

algorithm in estimating porosity and thermal conductivity. 215 

The 2D resistivity data inferred from ATS simulations and petrophysical relationships gets 216 

passed to BERT which simulates resistances that are then converted to the apparent resistivities 217 

(𝜌-).  The 𝜌- values correspond to an acquisition along an 11 m long transect using a 0.5 m 218 

electrode spacing and a Schlumberger configuration with a total of 138 measurements (see Fig. 219 

2B). This configuration implies that the measurements are mostly sensitive to the electrical 220 

resistivity in the top few meters.  221 

Since BERT and ATS operate on different unstructured meshes, we wrote a function that 222 

interpolates the values between the two meshes.  Note that the ATS mesh is 50m deep. We 223 

calculate 𝜌 by using corresponding outputs from the ATS model and the petrophysical 224 

relationships and then interpolated these values on a mesh defined in BERT and adapted to the 225 

acquisition geometry.  BERT’s mesh consists of a finely resolved mesh (11m wide by 4.5m 226 

deep) embedded within a coarser outer mesh that is about 120m wide and 85m deep.  We link 227 

hydrological variables with electrical resistivities in the fine mesh.  The coarse mesh is used to 228 

reduce the effect of boundaries.  It extends until the change in the electrical resistivity between 229 

two neighboring cells is negligible.  230 
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 231 
Figure 2. The (vertically exaggerated) 2D transect used by the ATS model. A) The unstructured mesh 232 
where green represents the peat layer and brown represents the mineral soil layer. Black stars represent 233 
the 6 sensors recording temperature and soil moisture content within the active layer. Red stars represent 234 
the 4 sensors recording temperature and soil moisture content below the active layer.  B) Ground 235 
temperature distribution simulated by the ATS model, corresponding to the time of maximum active layer 236 
depth. Here the depth of the active layer corresponds to the distance above the white linear feature (i.e., 237 
0oC) dividing the thawed and frozen regions of the ground. The light blue dots represent the location of 238 
the electrodes in this setup.  239 
 240 
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 241 
Figure 3. The 2D transect used by the ATS model. The rows from top to bottom correspond to ice 242 
saturation and liquid, respectively.  The columns from left to right indicate one-day snapshots taken in the 243 
middle of the winter and the day of maximum active layer depth in summer. 244 
 245 

2.2 Parameter estimation using PEST 246 

To test if the known soil properties can be recovered by the PE approach, we start with randomly 247 

selected initial parameter guesses. We use a Latin Hypercube Sampling method to generate 248 

random initial guesses of porosity and thermal conductivities around the synthetic truth (McKay 249 

et al., 1979).  Each parameter combination includes four parameters: porosity and thermal 250 

conductivity for peat and mineral soil layers.  These parameters were chosen due to their strong 251 

controls on both hydrologic and thermal states (Atchley et al., 2015, Nicolsky et al., 2009). The 252 

rest of the hydrothermal properties are kept fixed.  253 
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The inverse approach involves the minimization of a cost function expressed as the sum-of-squared 254 

differences between simulated values and synthetic measurements using the Levenberg-Marquardt 255 

(LM) algorithm (K. Levenberg, 1944; D. W. Marquardt 1963) implemented in the PEST software 256 

package (Doherty, 2001), which was used to handle all parameter estimation runs. 257 

To estimate soil porosities and thermal conductivities, we minimize the cost function (𝐽), which 258 

includes calculated and synthetic 𝑇, 𝑠*, and 𝜌- in the following form: 259 

𝐽(𝜙, 𝑘) = 𝑤d ∑ ∑ e𝑇Mf+ − 𝑇0f+ g
h?ijkl

f
?lmZl
+ + 𝑤0 ∑ ∑ n𝑠*+Mf − 𝑠*

+
0fo

h?ijkl
f

?lmZl
+ +260 

𝑤pj ∑ ∑ e𝜌-qM& − 𝜌-q0&g
h?rmjl

&
?lZjs
q ,     (5) 261 

where subscripts 𝑐	and s correspond to calculated and synthetic states of the system, and 𝑤d,𝑤0, 262 

and 𝑤pj	are the corresponding weights for the temperature, saturation and apparent resistivity 263 

residuals. 𝑛0t?0 is the number of sensors, 𝑛=-u0 is the number of days over which we collected the 264 

data, 𝑛0?-' is the number of 𝜌- snapshots, and 𝑛&t-0 is the number of 𝜌- measurements during 265 

one snapshot.  𝑇M and 𝑠*Mare timeseries from multiple sensors collected daily from the beginning 266 

of June till the end of September. 𝜌- are apparent resistivity data snapshots taken at a certain day.  267 

The number of apparent resistivity snapshots depends on the particular case, varying from one to 268 

eight snapshots per year.  The one-snapshot case corresponds to only one snapshot in the month 269 

of August while the eight-snapshot case corresponds to a snapshot taken once per month from 270 

January till September.  In addition, we tested the case where we collected eight daily 𝜌- snapshots. 271 

This was done to compare how different time spacing would affect the estimated properties. 272 

The weights were chosen in order to scale the contribution of each type of residual so that 273 

contributions to the cost function are evenly distributed across temperature, saturation, and 274 

apparent resistivity residuals. For example, saturation residuals are on the order of a few tenths, 275 

while apparent resistivity residuals can be tens of ohm-meters. The weights were selected based 276 

on evaluating the individual contributions to the cost function for each measurement type on an 277 

ensemble of simulations spanning the parameter ranges. The apparent resistivity residual weight 278 

(𝑤pj) was set to one. The temperature and saturation residual weights (wT and ws) were then 279 

modified so that each measurement type component in the cost function had roughly equivalent 280 

magnitude over most of the parameter space. This resulted in weights of 𝑤pj = 1, 𝑤d =281 

√2.5 ⋅ 10y, and 𝑤0 = √3.5 ⋅ 10{. 282 
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If the cost function satisfies a minimum criterion or the maximum allowed number of iterations, 283 

which we chose to be equal to 25, is reached, the PE terminates. The porosities and thermal 284 

conductivities corresponding to the minimum of the cost function, i.e., the parameters associated 285 

with the best fit between simulated and synthetic values, are considered the estimated parameter 286 

values as 287 

{𝜙, 𝑘} = argmin
6rSZ�6�6rj�,
qrSZ�q�qrj�

𝐽(𝜙, 𝑘).    (6) 288 

Here {𝜙, 𝑘}, are estimated porosities and thermal conductivities for peat and mineral soil. 289 

Based on sensitivity analyses using simplified meteorological data, the cost function response 290 

surface was smooth and convex over the parameter ranges of interest. Therefore, we chose the LM 291 

approach because of its robust gradient-based optimization scheme that takes advantage of smooth 292 

convex response surfaces to quickly converge to minima. 293 

 294 

2.3 Experiments 295 

To build an understanding of the inverse framework, we start with a simple setup and then 296 

gradually add more complexity.  First, we use simplified meteorological data where we assume 297 

that air temperatures change according to a sinusoidal function and all other terms are constants. 298 

Initially we start with 3 temperature and moisture content measurement locations within the peat 299 

layer (refer to Figure 2A) and 1 ERT data snapshot.  Then we increase the number of ERT data 300 

snapshots up to 8 by adding snapshots once per month from January till August. Each ERT data 301 

snapshot calculated by BERT uses the set of daily averaged 𝑇 and 𝑠* simulated by ATS and 302 

petrophysical relations (eqns. 2 and 3) which are varying over time.  Then we increase the number 303 

of sensors to 6 and add noise to the simulated data.  Introduction of noise allows us to evaluate the 304 

effect of measurement uncertainties that will be present in the actual application of the PE method. 305 

We added different levels of Gaussian noise to the synthetic measurements of	𝑇, 𝑠*, and 𝜌- in the 306 

following way: 1% to 𝑇, 5% to 𝑠*, and 10% to 𝜌-. These levels of noise for the different types of 307 

measurements are based on published literature and our own experience (Wang et al., 2018; 308 

Dafflon et al., 2017). After that we substitute simplified meteorological data with actual data from 309 

the BEO site to evaluate our PE method under realistic ground surface boundary conditions. In 310 

this case we evaluate how much and what kind of data we need to robustly recover subsurface 311 

porosities and thermal conductivities. To do this we test the inclusion of individual types of 312 
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measurements in the cost function (equation 3) as well as all possible combinations of 313 

measurement types. We used different soil property ranges for the simplified and actual 314 

meteorological data PE runs which are summarized in Table 1. This was done to ensure that PE is 315 

able to recover different sets of parameters, and to test the consistency and effectiveness of the PE 316 

method.  Finally, we compared the difference between estimated parameters for 8 ERT data 317 

snapshots collected once a month versus once a day for 8 days. Notation and a description of each 318 

run for simplified and actual meteorological data are summarized in Table 2. 319 

Table 1: Allowed range for the estimated parameters.  320 
Properties Simplified meteorological data  Actual meteorological data 

peat mineral peat Mineral 

Porosity [𝑚y ⋅ 𝑚8y] 0.8±1.9 0.6+0.25 0.6±1.9 0.4+0.25 

Thermal conductivity,  
[𝑊	𝑚8\𝐾8\] 

0.225±0.2 2.0±0.5 0.15±0.1 1.6±0.5 

 321 

Table 2: Description of all PE cases used in this study.  322 
The numbers before 𝑇	and 𝑠* correspond to the number of sensors used. Number before 𝜌- corresponds 323 
to the number of apparent resistivity snapshots used.  n stands for noise added to the synthetic 324 
measurements. (S) corresponds to runs driven by simplified meteorological data. (s) represents daily 𝜌- 325 
snapshots. 326 
Case 
# 

Simplified meteorological data (S) Actual meteorological data 

Case name Description Case name Description 

1 (S)3𝑇3𝑠*1𝜌- All data from #1 to #3 
sensors, and 1 𝜌- snapshot 

6𝑇 Sensors from #1 to #6, temperature 
only 

2 (S)3𝑇3𝑠*8𝜌- All data from #1 to #3 
sensors, and 8 𝜌- 
snapshots 

10𝑇 Sensors from #1 to #10, temperature 
only 

3 (S)6𝑇6𝑠*1𝜌- All data from #1 to #6 
sensors, and 1 𝜌- snapshot 

6𝑠* Sensors from #1 to #6, liquid 
saturation only 

4 (S)6𝑇6𝑠*8𝜌- All data from #1 to #6 
sensors, and 8 𝜌- 
snapshots 

1𝜌- 1 𝜌- snapshot on month of August 

5 (S)6𝑇6𝑠*1𝜌-+n All data from #1 to #6 
sensors, and 1 𝜌- snapshot 
with added noise 

6𝑇1𝜌- Temperature sensors from #1 to #6, 
and 1 𝜌- snapshots 

6 (S)6𝑇6𝑠*8𝜌-+n All data from #1 to #6 
sensors, and 8 𝜌- 

6𝑠*1𝜌- Liquid saturation sensors from #1 to 
#6, and 1 𝜌- snapshots 
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snapshots with added 
noise 

7   6𝑇6𝑠* Temperature  and liquid saturation 
sensors from #1 to #6 

8   3𝑇3𝑠*1𝜌- All data from #1 to #3 sensors, and 
1 𝜌- snapshot 

9   3𝑇3𝑠*8𝜌- All data from #1 to #3 sensors, and 
8 𝜌- snapshots 

10   6𝑇6𝑠*8𝜌- All data from #1 to #6 sensors, and 
8 𝜌- snapshots 

11   6𝑇6𝑠*8𝜌-(s) All data from #1 to #6 sensors, and 
8 𝜌- snapshots, taken every day  

12   6𝑇6𝑠*1𝜌- Special case, we moved sensors #4, 
#5 and #6 below the active layer 
depth (at 80cm depth), and 1 𝜌- 
snapshot 

13   10𝑇10𝑠*1𝜌- All data from #1 to #10 sensors, and 
1 𝜌- snapshot 

14   10𝑇10𝑠*8𝜌- All data from #1 to #10 sensors, and 
8 𝜌- snapshots 

 327 

3. Results  328 

 329 

3.1 Simplified meteorological data 330 

To evaluate the PE method performance driven by simplified meteorological data, we ran PE 331 

experiments using 30 different random combinations of porosity and thermal conductivity values 332 

as the initial starting point.  We used 30 PE samples of {𝜙, 𝑘} starting points in the first experiment 333 

((S)3𝑇3𝑠*1𝜌-) to illustrate the overall performance of the parameter estimation using a large 334 

number of samples. After that, we did only five PE runs for the simplified meteorological data and 335 

10 for all other runs with actual meteorological data.  For all figures after Figure 4, for consistency 336 

and clarity, we show results for only five PE runs per case.  It is important to note that the number 337 

of samples that one needs to run to ensure the robust convergence of the estimated parameters 338 

depends on the specifics of the corresponding case (i.e. experiment specific).  If most of the LM 339 

runs converge to the same set of parameters and have low cost function values, then that set of 340 

runs most likely corresponds to the actual {𝜙, 𝑘}.  In Figure 4, the red triangles represent initial 341 
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guesses (parameter combinations) and the synthetic truth is indicated by the intersection of the two 342 

dotted lines.  Yellow lines connecting red triangles with white crosses represent the path that the 343 

LM algorithm has taken from the initial guess to the estimated parameter combination (white 344 

crosses, Fig. 4). The yellow dots along the yellow lines indicate the location at each LM iteration.  345 

Figure 4 indicates that the method is able to recover porosities more robustly than thermal 346 

conductivities, i.e. estimated porosities are similar to their true state.  According to the liquid 347 

saturation plot on Figure 3, liquid saturation of the mineral layer is quite dynamic and more 348 

saturated in comparison to the peat layer. Nevertheless, thermal conductivity of the mineral layer 349 

(𝑘&) corresponds to the highest mismatch. Three out of thirty inversions corresponding to 𝑘& end 350 

up close to 1.4 𝑊	𝑚81𝐾81 (the true value is 2 𝑊	𝑚8\𝐾8\), suggesting those values do not 351 

correspond to the ‘truth’, since most of the estimated values (27 cases) are concentrated around 352 

the intersection of the dotted lines. The response surface for the corresponding cost function (eqn. 353 

5) lies hereby in a flat, low-gradient region. The projections of the cost function response surfaces 354 

corresponding to porosities (Figure 4A) has a better defined minimum, as opposed to projections 355 

of the cost function response surfaces corresponding to thermal conductivities (Figure 4B), 356 

indicating non-uniqueness of the estimated parameters. For this experiment, we used time-series 357 

of 𝑇 and 𝑠* only from the first 3 near-surface sensors (Figure 2A). All of these 3 sensors are located 358 

in the peat layer, suggesting that using just near-surface sensors only from one upper layer might 359 

not be enough to recover the deeper layer thermal conductivity. 360 

 361 
Figure 4. Estimated properties from 30 inversions of the (S)3T3s�1ρ� case, where the “true” values are 362 
shown as a cross-section of two dashed lines for the bulk porosities and effective thermal conductivities 363 
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for peat and mineral soil layers. Yellow lines correspond to the paths taken by the LM algorithm. The 364 
white dots correspond to the estimated values. A) projection of the cost function with respect to porosities 365 
of peat and mineral layer. B) projection of the cost function with respect to thermal conductivities of peat 366 
and mineral layer. The color bar represents the cost function normalized by its maximum logarithmic 367 
value. 368 
 369 

To illustrate the effect of noise on the robustness of the estimated parameters we used cases with 370 

6 near-surface sensors (6𝑇 and 6𝑠*), and a varying number of ERT snapshots driven with simplified 371 

meteorological data.  Similarly to the (S)3𝑇3𝑠*1𝜌- case, (S)6𝑇6𝑠*1𝜌-	shows good convergence 372 

for porosities and poor convergence for thermal conductivities with an averaged error of 373 

0.1𝑊𝑚8\𝐾8\ (Figure 5AB).  Adding noise to the (S)6𝑇6𝑠*1𝜌-+n case slightly worsens the 374 

estimated porosity values and significantly worsens 𝑘& with root-mean-squared error (RMSE) 375 

raising from 10% to more than 50% (Figure 5CD).  Figure 5EF shows that increasing the number 376 

of ERT snapshots from 1 to 8 per year (i.e. collected once per month from January till September) 377 

improves 𝑘& estimates, allowing better convergence for four out of five samples to the synthetic 378 

truth.  If we compare all three cases on Figure 5 on how well they are able to estimate 𝑘&, it is 379 

clear from Figure 5D that for the case (S)6𝑇6𝑠*1𝜌-+n none of the 𝑘&’s were correctly estimated, 380 

whereas significantly improved 𝑘& values were found by increasing the number of monthly ERT 381 

snapshots (Figure 5F).  Moreover, all except one estimated value showed a better match with its 382 

true value than the (S)6𝑇6𝑠*1𝜌- case without any added noise. 383 
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 384 
Figure 5. Estimated properties from 5 inversions of the three different cases, where the “true” values are 385 
shown as a cross-section of the two dashed lines for the bulk porosities and effective thermal 386 
conductivities for peat and mineral soil layers. Yellow lines correspond to the paths taken by the LM 387 
algorithm. The white dots correspond to the estimated values. The rows from top to bottom correspond to 388 
cases (S)6T6s�1ρ�, (S)6T6s�1ρ�+n, and (S)6T6s�8ρ�+n respectively.  The columns from left to right 389 
correspond to the projection of the cost function with respect to porosities and thermal conductivities. The 390 
color bar represents the cost function normalized by its maximum logarithmic value. 391 
 392 
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In Figure 6, we summarize results of the five PE runs for each of the first six cases corresponding 393 

to simplified meteorological data listed in Table 2.  The first three matrix tables correspond to the 394 

normalized RMSE values for each measurement type (∆𝑇, ∆𝑠*, and ∆𝜌-).  The last two matrix 395 

tables correspond to the normalized Euclidian distances between the synthetic truth and estimated 396 

parameter values of 𝛿𝜙 and 𝛿𝑘.  We normalized the values in each matrix by dividing by the 397 

maximum value from the corresponding matrix.  The normalized values are marked with tildes 398 

and range from 0 to 1, where values closer to 0 correspond to a better match and values closer to 399 

1 correspond to a worse match.  As shown above, the method is able to accurately estimate, both, 400 

peat and mineral soil porosities as well as peat layer thermal conductivity (𝑘'), but cannot always 401 

accurately estimate 𝑘&.  There is not much difference between cases (S)3𝑇3𝑠*1𝜌- and 402 

(S)6𝑇6𝑠*1𝜌- except for a slight improvement in 𝑘&, suggesting that the small vertical distance (10 403 

cm) between sensors 1 and 4, 2 and 5, and 3 and 6 could be limit the recorded data variability, 404 

leading to difficulties in the estimation of the 𝑘& parameter.  Since all 6 sensors lie within the 405 

active layer, we added additional sensors below the active layer in the later experiments (red stars 406 

in Figure 2A).  The 𝜙 and 𝑘 matrix tables show that increasing the number of monthly ERT 407 

snapshots consistently improve the estimates of 𝜙 and 𝑘.  This suggests that increasing the number 408 

of monthly ERT snapshots can lead to improved convexity of the cost function (eqn.5). 409 

 410 

 411 
Figure 6. Five matrix tables presenting fitness metrics between synthetic model values and values 412 
obtained by the parameter estimation method using simplified meteorological data. Matrix tables from left 413 
to right correspond to the normalized root mean squared errors for temperatures, liquid water saturations, 414 
and apparent resistivities and to the normalized Euclidian distances between synthetic (“true”) and 415 
estimated porosity, and thermal conductivity values.  Each matrix value was normalized by dividing it by 416 
the matrix maximum value. The normalized values are indicated by tildes. 417 
 418 
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3.2 Meteorological data from Utqiagvik (Barrow) site 2015 419 

After testing the PE method for the simplified meteorological data, we applied measured 420 

meteorological data from the BEO site for the year 2015. To better understand the importance of 421 

each measurement type and their combinations within the developed PE algorithm, we tested all 422 

of the scenarios corresponding to the ‘actual meteorological data’ column from Table 2. The results 423 

of these runs are summarized in the colored matrix tables in Figure 7. Since there are more than 424 

twice the number of actual meteorological cases than simplified meteorological cases, it is difficult 425 

to analyze all matrix tables at once.  426 

To compare the match between all estimated and observational values within a single plot we 427 

calculated Euclidean norms for each case independently:   428 

𝛥e𝛥𝑇� , 𝛥𝑠*� , 𝛥𝜌-� g
+
= �n �dS

�drj�
o
h
+ � �0�S

�0�rj�
�
h
+ n �pjS

�prj�
o
h
	   (7) 429 

𝛥e𝛿𝜙� , 𝛿𝑘�g
+
= �n �6S

�6rj�
o
h
+ n �qS

�qrj�
o
h
   (8) 430 

The index i indicates hereby the case number (see Table 2).  Then we applied k-means clustering 431 

analysis to identify groups of cases with similar match between data and estimated parameters.  432 

We divided all cases into four classes shown in Figure 8.  Class I indicates the best cases that 433 

provide an accurate parameter estimation as well as accurate matches with the synthetic “true” 434 

measurements. Class II includes the cases that have accurate parameter estimates and less accurate 435 

matches with the measurements. Class III indicates all cases that have less accurate parameter 436 

estimates but accurate matches with the measurements.  Finally, Class IV includes the cases that 437 

showed the worst performance in terms of parameter estimates and the worst matches with the 438 

measurements. We summarized the results from Figure 8 in Table 3.  439 

Class I (see Table 3) suggest that sensors located below the active layer as well as increasing the 440 

number of sensors lead to more accurate parameter estimation. In contrast, Case #4 (corresponding 441 

to the one ERT snapshot, 1𝜌-), suggests that already one ERT data snapshot could be enough for 442 

parameter estimation while Class II indicates that in general an increase of the numbers of monthly 443 

ERT snapshots is important for more accurate PE. However, increasing the number of monthly 444 

ERT snapshots leads to a less accurate match with measurements. These results are consistent with 445 

the results for simplified meteorological data with added noise (Figure 5). 446 
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Class III includes 6 cases suggesting that if we have only soil moisture data available for PE, then 447 

we should expect less accurate soil property estimates. The last element in this class suggests that 448 

taking daily ERT snapshots improves the apparent resistivity match (Figure 7, resistivity table) but 449 

does not improve {𝜙, 𝑘} estimates, where monthly ERT snapshots improve thermal conductivity 450 

convergence. 451 

Class IV once again clearly indicates that measurements obtained below the active layer provide 452 

more accurate parameter estimates, however, they do not improve matches to measurements. This 453 

is mainly due to significant mismatch with 𝜌-, which can be seen from the 𝛥𝜌-�  matrix table on 454 

Figure 8.  At the actual site, the depth to the mineral soil can be deeper than 20 cm, not having 455 

sensors lower than 20 cm limits therefore the amount of data that can help to improve the convexity 456 

of the cost function in our case. 457 

Table 3: K-mean analysis of the accuracy for each 13 cases. 458 
Class I  Class II Class III Class IV 

10𝑇10𝑠*1𝜌- 6𝑇6𝑠*8𝜌- 6𝑠* 10𝑇 

10𝑇10𝑠*8𝜌- 3𝑇3𝑠*8𝜌- 6𝑠*1𝜌- 6𝑇 

1𝜌-  6𝑇1𝜌-  

6𝑇6𝑠*1𝜌-  3𝑇3𝑠*1𝜌-  

  6𝑇6𝑠*  

  6𝑇6𝑠*8𝜌-(𝑠)  

 459 

From Figure 8 and Table 3 we know that the 6T case has the worst performance in terms of 460 

matching {𝜙, 𝑘}. Similar to the experiments with simplified meteorological data, the main 461 

difficulty for experiments with actual meteorological data is estimating thermal conductivity. The 462 

last matrix table (𝛿𝑘�) on Figure 7 shows that 6𝑇6𝑠*8𝜌-(s) has the highest maximum and mean 463 

mismatch in thermal conductivity estimates. However, since 𝜙 estimates are a better match with 464 

their corresponding “true” values, the case 6𝑇6𝑠*8𝜌-(s) falls into class III in Figure 8, as opposed 465 

to case 6𝑇, which falls into class IV. The highest mismatch in thermal conductivity values for the 466 

6𝑇6𝑠*8𝜌-(s) case suggests that collecting daily ERT snapshots improves the 𝜌- match (Figure 7, 467 

Δ𝜌-�  matrix table) but does not improve estimated parameters, where monthly ERT snapshots 468 

improve thermal conductivity estimation. 469 
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To illustrate this, we plot values of estimated parameters and the corresponding response surfaces 470 

of the cost function for cases 10𝑇10𝑠*8𝜌- and 6𝑇6𝑠*8𝜌-(s) on Figure 9. The PE method was able 471 

to match 4 out of 5 estimates almost perfectly and missed the 𝑘' for the 10𝑇10𝑠*8𝜌- case. The 472 

corresponding cost function has a visible minimum and clear convexity. In contrast to this, the 473 

6𝑇6𝑠*8𝜌-(s) case completely missed 2 estimates by converging on values outside the boundaries, 474 

and 3 other estimates do not converge to the desired cross section as well. The contour lines suggest 475 

that the corresponding response surfaces of the cost function do not have a well-defined global 476 

minimum.  477 

 478 

4. Discussion  479 

 480 

The existence of multiple minima is common in inverse modeling and can lead to false 481 

convergence of the PE algorithm to physically non-realistic subsurface parameters (Nicolsky et 482 

al., 2007).  This is one of the main reasons for using multiple initial guesses. If most of the 483 

inversions converge to a similar set of parameter estimates with the lowest cost function value, 484 

then that set of values is most likely the global minimum. Testing the PE algorithm using multiple 485 

starting points is a commonly used approach in evaluating the robustness of an inverse model (e.g. 486 

Hansen, 1998).  487 

A potential strategy to improve the developed PE algorithms is to reduce the specified convergence 488 

tolerance value (i.e. minimum condition, see Figure 1) or increase the allowable number of 489 

iterations. However, this could lead to a significant increase in computational effort.  In addition, 490 

PEST provides multiple additional settings of inversion parameters to achieve a better 491 

convergence.  Parameter regularization is one of them.  Regularization techniques have been 492 

widely used in solving ill-posed inverse problems (Vogel, 2002).  The overall idea is to constrain 493 

the objective function by imposing additional priors on the estimated model parameters.  We 494 

recognize that including parameter regularization into the cost function may improve the 495 

robustness of our method.  However, inclusion of the regularization would require an extensive 496 

exploration of the multiple regularization methods and values that could be applied to it, which is 497 

beyond the scope of this paper. Here we illustrate that without using regularization it is possible to 498 

achieve reasonable results by using the simple weighted cost function. 499 



22 
 

The good performance of the case with only one ERT snapshot (1𝜌-) could be misleading due to 500 

the design of this numerical experiment, i.e. we are using a synthetic “truth” produced by the same 501 

model used in the inversion, which improves the convexity of the cost function and leads to a well 502 

constrained unique minimum.  However, in reality, collection of additional information, such as 503 

organic layer thickness and temperature data, are extremely important and are required for model 504 

calibration (Jafarov et al., 2012; Atchley et al., 2015). In addition, real ERT surveys can be 505 

perturbed by noise and their interpretation may require site-specific petrophysical relationships as 506 

opposed to the general petrophysical relationships used in this study. Therefore, we do not  suggest 507 

inversion based on one ERT snapshot without any additional data.  508 

The 6𝑇6𝑠*8𝜌-(s) case, where all runs converge to different values of 𝑘&, indicates that using 509 

certain combinations of datasets does not allow the inverse approach to properly recover 𝑘&. It is 510 

likely that 6𝑇6𝑠*8𝜌-(s) does not capture much variability in soil temperatures and soil moisture, 511 

and therefore ERT snapshots do not have much variability as well. Once the cost function 512 

converges for one of the ERT snapshots, it immediately converges on the other daily snapshots 513 

due to their similarity. In fact, although 6𝑇6𝑠*8𝜌-(s) has a good accuracy with observations (see 514 

the 𝛥𝜌-�  matrix table in Figure 7), it is unable to recover the value of 𝑘&.  515 

We have shown that even in the ideal situation where we either generate observational data or use 516 

simplified meteorological data, we cannot always fit modeling results to observations. In reality, 517 

noise (e.g. the sensor's measuring resolution) influences the collected data. To investigate the 518 

impact of measurement noise, we introduced multiple levels of noise to the simplified 519 

meteorological data.  The resulting PE showed that dealing with noisy data could be challenging 520 

(Figure 5). However, our results showed that adding monthly taken ERT snapshots into the cost 521 

function improves the overall PE accuracy. 522 

The distance between sensors could be another source of uncertainty in the PE.  As pointed out by 523 

Nicolsky et al., (2009), it is important to make sure that a vertical difference between adjacent 524 

measurements do not introduce additional noise that can mislead the minimization algorithm 525 

without providing new information. If sensors are close to each other, measurements might be the 526 

same or within the noise variability. In our setup the vertical distance between the first two rows 527 

of sensors is about 10cm. This could lead to small temperature variability between sensors.  Indeed, 528 

providing greater vertical distance between sensors improved the PE accuracy.  The Case #12 529 
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(6𝑇6𝑠*1𝜌-) clearly illustrates this point, that by increasing the vertical distance between sensors 530 

we can improve estimated parameter accuracy.	531 

Combining hydrothermal observations from multiple depths with monthly ERT measurements 532 

resulted in an improvement of the shape of the cost function and lead to better defined minima 533 

(Figure 9).  Increasing the number of the monthly ERT snapshots improved the accuracy of the 534 

estimated parameters. In addition, we showed that having sensors below the active layer combined 535 

with ERT snapshots shows the best accuracies, both, in terms of estimating parameters and 536 

matching observations.  537 

 538 

5. Conclusion 539 

The overarching goal of this study was to develop and validate a parameter estimation algorithm 540 

using a synthetic setup and a 2D coupled thermal-hydro-geophysical model based on a polygonal 541 

tundra site within the Barrow Environmetal Observatory.  Combining hydrothermal observations 542 

from multiple depths with monthly ERT measurements resulted in an improved shape of the cost 543 

function and led to better defined minima and improved accuracy of the estimated parameters.  544 

This was presented in fitness matrices for six cases using simplified meteorological data.  Similar 545 

conclusion were found for inversion runs with actual meteorological data.  It is important to note 546 

that it was not only the number of ERT data snapshots that improved the robustness of the PE 547 

method but rather the time frequency of the ERT data snapshots, i.e. monthly vs daily snapshots.  548 

In addition, collecting data from several soil layers might improve the thermal conductivity 549 

estimates for the corresponding soil layer.  Our experiments show that robust PE can be achieved 550 

not just by adding more sensors into the ground and increasing number of ERT snapshots, but also 551 

by optimally distributing those sensors within the transect (e.g., the 6𝑇6𝑠*1𝜌- case).  Overall, the 552 

inversion runs that we investigated consistently indicated that collecting data from multiple soils 553 

layers, providing enough vertical separation between sensors, and collecting temporally diverse 554 

ERT data should lead to robust parameter estimation.  The exception from this conclusion is the 555 

case 1𝜌-, which showed robust parameter estimation due to specifics of the model setup. As 556 

discussed above, estimating porosities and thermal conductivities based on 1 ERT snapshot would 557 

not be possible without additional information on the subsurface properties. 558 
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This work developed and demonstrated the feasibility of a PE algorithm that can be used to better 559 

inform large-scale Land System Model subsurface parameterization.  Here we demonstrated the 560 

proof-of-concept of the PE method.  Further improvements such as introduction of a PE 561 

regularization parameter into the cost function and leveraging additional PEST capabilities could 562 

improve method robustness.  Finally, the PE method must still be tested using measured thermal-563 

hydro-geophysical data from the BEO site. 564 

 565 
Figure 7. Five matrix tables presenting fitness metrics between synthetic model values and values 566 
obtained by the parameter estimation method using meteorological data from the year 2015 from BEO 567 
site in Alaska. Matrix tables from left to right correspond to the normalized root mean squared errors for 568 
temperatures, liquid water saturations, and apparent resistivities, and to the normalized Euclidian 569 
distances between synthetic (“true”) and estimated porosity, and thermal conductivity values.  Each matrix 570 
value was normalized by dividing it by the matrix maximum value.  The normalized values are indicated 571 
by tildes. 572 
 573 
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 574 
Figure 8. A k-means clustering analysis applied to the Euclidean norms of the normalized mean 575 
differences of estimated soil properties and the corresponding fit between calculated and observed 576 
values. Each color and marker represent a certain class as a result of the k-means clustering analysis. 577 
 578 
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 579 
Figure 9. Estimated properties from five inversions of the two different cases: 10T10s�8ρ� (top) and 580 
6T6s�8ρ�(s) (bottom). The “true” values are shown as a cross-section of the two dashed lines for the bulk 581 
porosities and effective thermal conductivities for peat and mineral soil layers. Yellow lines correspond to 582 
the paths taken by the LM algorithm. The white dots correspond to the estimated values. The columns 583 
from left to right correspond to the projection of the cost function with respect to porosities and thermal 584 
conductivities. The color bar represents the cost function normalized by its maximum logarithmic value. 585 
 586 
 587 
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