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Part ll: Michael Zaiser

Prof. Michael Zaiser has raised questions about the concept of FFM and its implica-
tions at hand of two thought experiments.

We used the two thought experiments to further explain the concept of FFM — with
special focus on size effects.
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We thank the referee for the detailed review of our manuscript. We changed manuscript
to provide a clearer introduction of FFM and the size effect example.

Reviewer comments

The paper deals with the formulation of a failure criterion for collapse-like failure of snow
and application to skier triggering of avalanches. It combines a fracture mechanical
and a strength-of-materials approach to formulate a criterion for weak layer failure that
does not rely on assuming a pre-existing flaw. Fracture mechanical and strength-of-
materials ('snow stability index’) approaches to snow failure have both been used in the
snow literature, and sometimes in a manner that confounds their respective domains
of application. Thus a unification of sorts is an inherently desirable undertaking.

The authors first discuss contradictions that may arise from an uncritical application
of either strength-of-materials or fracture mechanical criteria to situations where those
criteria do not apply. A nice example is given by Eqgs. (3) and (4) which are particularly
instructive as | have encountered very similarly flawed reasoning in a recent manuscript
under review for The Cryosphere: Basically, one cannot simply apply an energy argu-
ment to an uncracked specimen and deduce a failure stress from it, nor can one invert
the argument and convert a failure stress into a fracture toughness by evaluating the
overall energy stored within the sample. By contrast, | find the argument surrounding
Figure 1 less convincing. Reference is made to Bazant 1984 but, if we adopt Bazant’s
reasoning | see no reason why the strength of an uncracked specimen as shown in
Figure 1 should be size dependent (in fact, Bazant’s relation predicts strength to be
size independent at small sample sizes whatever the crack length).

It is important to note that Bazant’s [1] arguments are based on the consideration
of the microstructure of the material. Hence, Fig. 1 (see Figure 1) in his work does
not indicate absolute size on the horizontal axis but a nondimensional size parameter
(SIZE = X = d/d,), which is a characteristic structural dimension d normalized by a
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characteristic dimension of the microstructure d,. This is a very important difference to
Fig. 1 in our manuscript.

Bazant’s Fig. 1 implies that when the size of the structure is of the order of the size of
its particles d/d, ~ 1 (logd/d, = 0), failure is governed by stress. When the structure
is much larger than its microstructure d/d, > 1, the problem is dominated by energy.
The structures considered in Fig. 1 in our manuscript fall into the transition zone be-
tween the two extremes. Hence, Bazant’s work supports our argument that fracture
processes are always governed by strength and toughness simultaneously, even if one
often hides the other.

In fact, he draws the similar conclusions as FFM. To quote his 1984 paper [1]:

"2. Dimensional analysis based on the foregoing basic hypothesis shows
that, for structures that are geometrically similar (i.e., have the same
shape), the nominal stress at failure varies with the structure size as
(1+ X/ Xo)~'/2 where )\, is a constant and X is the ratio of the size of the
structure to the maximum size of the aggregate.”

That is, as the size of the structure d decreases, A decreases and, hence, according to
the above conclusion, the nominal structural strength increases.

A recent study by Leguillon et al. [2] draws very similar conclusions from FFM. Because
the apparent strength of very brittle materials such as ceramics is governed by intrinsic
defects such as pores or surface flaws, the authors raised the question of the intrinsic
strength of such materials. To answer this, they revisited experimental failure data of
surface-flawed metallic ceramics and modeled surface defects of the tested specimens
using FFM. The experiments and the FFM model (Figure 2) paint a very similar picture
as Bazant’s size effect law (Figure 1). That is, when the surface flaws are smaller than
the microstructure (obtained, e.g., by surface etching), the problem is governed by (the
intrinsic) stress. When the flaws are deep, they act crack-like. The transition resembles
C3

Bazant's size effect law and is well captured by the physical arguments of FFM.

Another example for how FFM describes the transition from stress to energy is given
by WeiBBgraeber et al. [3]. The authors consider ellipses of varying aspect ratios a/b
under uniaxial tension (Figure 3). When a narrow ellipsis is oriented perpendicular
to the loading direction (a/b > 1), it behaves crack-like and can be described using
linear elastic fracture mechanics (LEFM, dashed line) with the corresponding 1/+/a-
size effect. Narrow ellipsis oriented in loading direction (a/b < 1) represent only very
weak stress concentrations and the problem is governed by stress (Strength, dotted
line) without size effect. Again the transition (0.1 < a/b < 100) is described by finite
fracture mechanics (PM FFM, solid line). The FFM model also captures the size effect
of circular holes. This is evident comparing the PM FFM curves at the aspect ratio of
a/b = 1. Here, the stress at failure is a function of the hole radius a = b.

The FFM criterion attempts to resolve the well-known conundrum that exists in theo-
ries of fracture, namely that the transition from stress-induced damage accumulation
(no crack) to the propagation of a critical crack is not well understood. It does so by
combining a strength of materials criterion to obtain an upper estimate of the crack
length (a crack can at maximum form over a length where the stress is above sigma_c)
with a lower estimate (the ensuing crack must be able to propagate). The crack forms if
the lower bound falls below the upper one. Taking the example provided by the authors
makes me wonder whether | understand the criterion correctly. Consider the tensile
beam of Egs. (3),(4) of the manuscript. Load this beam at the stress sigma_c such
that the stress based criterion for mode | failure is fulfilled over the entire cross sec-
tion. Finite fracture mechanics seems to indicate that all energy stored in the beam is
released if a cross-section spanning crack is formed. If that is true, however, then Eq.
(3) entails a critical beam length I ~ (2EG_c/sigma_c”"2) below which the beam cannot
fail because that energy is insufficient. Now | insert typical values of steel, say Klc = 40
MPa m”1/2, sigma_c = 500 MPa, to obtain with EG_c ~ Klc”2 a critical length in the
range of 1 cm. Ehem. Do the authors want to imply that my 1cm tensile sample is too
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The suggested thought experiment is an example of a size effect. As shown in many
works of Bazant (see, e.g., his review [4]), they exist in virtually any structure (with or
without pre-cracks).

Of course also the small tensile steel sample will break. However, it will do so at a
slightly higher critical load. A sufficiently long sample will fail at 0 = o.. One that is
shorter than the critical length (at which the energy condition is not satisfied anymore),
requires a slightly higher load o > o to fulfill the energy balance for crack nucleation.
Hence, as the sample size is further decreased below the critical length, the effective
sample strength will increase owing to the energy condition. This argument holds pro-
vided the sample is still much larger than its microstructure (so that we find ourselves
in the transition zone of Bazant’s [1] Fig. 1 size effect law).

| have a second objection. Consider again a thin tensile beam with thickness a and
length | < a loaded at a stress slightly above sigma_c. Let us now assume the energy
criterion is fulfilled: sigma_c"2 | >2 E G_c. So the beam breaks. Now consider the
same beam but embedded as surface fiber into a bending beam as in Figure 1. Let
the bending moment be such that a region of thickness a from the surface is above the
critical stress. In that case, the energy release will be less than for the free standing
beam, and it may well be that the crack cannot form since sigma_c"2 a <2 E G_c.
However, the stress state in the considered volume is identical in both cases. The
only thing which the volume elements (and the microstructure, grains, dislocations,
atoms......) in the beam know about the outside world is the local stress acting on them.
How do they understand that, in the first case, they should form a crack instantaneously,
and in the second case, not?

The fundamental principle of linear elastic fracture mechanics is (global) conservation
of energy applied to crack growth. This is reflected in Griffith’s crack propagation cri-
terion G = G = —dII/dA, where II is the total potential energy of the system. That
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is, Griffith’s criterion and, hence, fracture mechanics in general, always considers the
global energy balance.

Let us apply your thought experiment to a crack tip: If, as you suggest, volume ele-
ments only know local stress acting on them, any crack should grow at arbitrarily small
loads because crack tip stresses are singular. However, they do not because the global
energy balance (reflected by Giriffith’s criterion) must be satisfied. Finite fracture me-
chanics uses the Giriffith condition in its original sense where it was defined not only for
infinitesimal crack growth and applies it to finite crack extension.

Considering strain energy density locally represents another form of a local criterion
(the square of a simple stress criterion). Hence, strain energy density concepts can-
not be used to address fracture mechanics problems unless a length scale (a critical
distance or an area) is assumed.

| kindly request the authors to clarify the above two points.

Once we accept the basic approach, the development of stress and energy based
failure criteria looks sensible. Concerning the skier loading, | have a question since
the loading model is not very clearly described. | presume the authors assume plane
strain conditions in which case F would need to be a load per unit length. On line 11,
page 11 there is a mysterious b which seems not defined.

Yes, we consider the weight load of a skier (mg) distributed over an assumed effective
length of skis (I,) which provides a force per unit length that corresponds to the load in
a unit out-of-plane width plane strain model. If we use an out-of-plane width b < [, that
is not unity, the total force loading of this strip is given by F' = mgb/l,. This is explained
in part | but was missing in part Il. We have addressed this in our revision of part II.

As to material parameter choices, | commented on that point in relation to the compan-
ion paper.

In this second part, we only investigate qualitative effects of model parameters. Of
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course, the absolute value of model outputs is affected by, e.g., the choice of Young’s
modulus. However, observations do not change qualitatively. An analysis the model’s
sensitivity to material parameters, shows, for instance, a rather weak effect of the weak
layer’s Young’s modulus. Hence, it does not seem important to choose a certain set of
parameters. We now indicate references for our parameter choices in Table 1.

A minor point: It is noted as an inherent flaw of models that assume subcritical damage
accumulation that 'such models would predict avalanche release if only enough skiers
ski the same slope in close temporal succession’. While such may not be generic
behavior, | cannot see why this should be impossible to happen. | know of several
passages in the avalanche literature reporting that several skiers may ski a slope before
number X triggers an avalanche, and | have seen it myself happening once.

We agree that this question cannot be resolved conclusively at this point. However, if
the general understanding of dry-slab avalanche release comprises damage accumu-
lation by subcritical load, then the consequential release after repeated loading must
also be a generally observed feature. The sudden crack formation described by FFM
is a though model. It does not necessarily mean that the crack actually appears spon-
taneously. Instead, by considering only the intact and the fractured state, we can also
interpret the crack jump as an accumulation of damage which is just not resolved in
time.
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Fig. 1. Fig. 1 by Bazant [1]. The x-axis shows a nondimensional size parameter (SIZE =
d/d_a), where d is a structural dimension and d_a th e size of the microstructure.
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Fig. 2. Using FFM, Leguillon et al. [2] show that failure (vertical axies) is governed by stress
(horizontal asymptote) when initial flaws (horizontal axis) become smaller than the microstruc-
ture.
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Fig. 3. Stress at failure over aspect ratio a/b of an ellipsis. Transition from stress problem
(Strength, dotted) to linear elastic fracture mechanics (LEFM, dashed) captured by FFM (solid)
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