
Dear Dr. Farinotti, 
We are pleased to submit the suggested revisions and look forward to hearing from you 
regarding the next steps for publication. Below you will find our response to the reviewer 
comments and a highlighted version of the revised manuscript. 

In addition to the review comments, we felt that the title no longer reflected the content of the 
paper, after the addition of the energy balance modelling. While there is still focus on the ETI 
model, the paper looks at the performance of the EB model as well. We have updated the title 
to better reflect the new contents. 

1. I agree with the conclusion on large local variability in melt rates on glacier surfaces, and 
yet... when one spends time on a glacier in late summer, in both Arctic and temperate regions, 
the surface is not typically that variable. Stream channels certainly induce incision and 
additional melting, below the 'reference surface' of a glacier, but the reference surface is 
relatively even. Certainly not ~2:1 variations in cumulative summer melt. I wonder if the 
authors could think about and comment on this in the final conclusions, when it comes to 
heterogeneity of melt.
This is a good point and we have added this to the discussion on P14L26.

2. I like this result of the effects of meltwater features on additional ablation. e.g. p.1, l.14 and 
in the discussion, but I am wondering if it is possible to separate melting due to streamflow 
from that due to albedo effects. Water will absorb and also transmit more solar radiation to the 
ice (the channel bed), giving extra solar and possible thermal melting, if the water warms in the 
sun. This could contribute to the stream-associated ablation, so it is probably best to mention 
this as well as the kinetic/mechanical dissipation that is proposed here. Without specific 
measurements and modelling of these processes, I would recommend just to mention the 
different possible explanations and not pick a favorite.
We have added a reference to potential for albedo effects on P14L11. We feel that in other 
places of both the conclusions and discussion the language we use reflects the multiple 
possibilities for energy transfer, rather than a favorite and we have left that as is (P14L10, 
P15L21)

3. p.12, This is a good analysis - it shows pretty convincingly that the roughness alone can't 
explain the discrepancy very well, although part of it.
I worry that much of the systematic underestimation of melt in the distributed models may 
come from the systematic underestimation of SWin. Is it possible to add a short sensitivity test 
of this? I would suggest using the observed (AWS) SWin, maybe just adjusting for slope and 
aspect effects across your study area, vs. the full modelled SW radiation which has significant 
biases. This could help to say how much of the AWS vs. distributed model results can be 
explained from this. As it sits now, it looks like the reference AWS site has ~15% more melt 
energy than the average grid cell in your study area, which is possible but could also just be a 
reflection of the SW radiation error.
We agree that some of the systematic underestimation is resulting from lower modelled 
radiation and we have acknowledged this more explicitly in text (P10L16). However, the 



discrepancy between measured and modelled melt is greater across the grid than at the AWS 
site, indicating the difference is not due to solar radiation alone. We do not feel that a 
sensitivity analysis would add significantly to the results, but rather might show that improved 
radiation might reduce the systematic underestimation. We have acknowledged the 
shortcomings of the radiation model in text (P7L7,P10,L15) and feel this makes clear the 
potential improvements in this (as with any) model. 
 
Specific comments 
 
p.1, l.10, it would be useful to also report the total melt over the study period, and/or to report 
the model confidence as a percentage of the total melt. i.e. the models agree within *% of the 
observations. 
Done P1L9 
 
p.3, l.19, uncertainty reported for the melt rate - is this over 3 days? - suggest reporting a per-
day rate, for better comparison with the numbers below (0.06 m/d) 
We feel that reporting this uncertainty as a daily rate is misleading as it is linked closely to 
image resolution, reporting it as a rate would make it appear artificially low. 
 
p.3, l.21, there should be only 1 value for an average, Do you mean the range of daily melt 
rates? Or would it be better to report 0.042 +/- 0.012 m/d? 
We have changed this to be clearer P3L21 
 
p.3, l.27 and p.4, l.2, suggest using "surface height" rather than "position" for the SR50 signal. 
Just as you are not looking at (x,y) here, which I think is implied by "position" 
Done P3L27, P4L1 
 
p.5, l.22, For clarity, do you mean MJ per 12 hour period, MJ per day, or MJ over your full 
period? 
Clarified P5L22 
 
p.6, l2, suggest \sigma for Stefan-Boltzmann's constant, to be conformist. 
We recognize that \sigma is the standard notation for Stefan-Boltzmann's constant, but have 
chosen \delta to avoid confusion with standard deviation, for which \sigma is also the standard 
notation. 
 
p.10, l.20, Can you remind us here about the values of the observed melt at the AWS site, from 
a) the SR50 and b) the UAV results? This would help with the evaluation. 
This has been added P10L23 
 
p.10, l.24, "all four models underestimate melt at the point" - but aren't they tuned at the AWS 
site, and with a mean 0 residual as noted above? Do you mean underestimate over the study 
area? 



We found a calculation error in our total residual statistics which has been corrected here and 
in Table 2, given that we have clarified this sentence (P10L26). However, we also note that 
although models are tuned at the AWS they will never perfectly predict observations, and the 
text here is indeed referring to tuned models at the measurement site. 
 
p.12, l.12, also there is a strong diurnal variation in the zenith angle - places with 24-hour light 
still have strong diurnal cycles, e.g. greater than 2:1 variations in incoming SW radiation at local 
noon vs. local midnight, depending on the latitude 
We clarified this and added an explicit reference to zenith angle variations, which we did not 
mean to ignore previously P12L14 
 
p.12, l.13, "in. The strength of that variation is much greater in the EB models than the ETI 
models". This does not make sense to me - don't both models use incoming SW, using the same 
model for this? As this reads, the shortwave radiation varies more for the EB model than the ETI 
model. Do you mean the errors or residuals, rather than the SW radiation here? 
We have clarified this P12L16 
 
p13, l.5, here, it is both EB and ETI models that come up short, non? Maybe refer to them as the 
"distributed melt models" ? 
As this discussed is regarding the TF coefficient, it does not apply to EB models and we have left 
this unchanged. 
 
Figure 2 caption. For the SW, it would be helpful to note the duration of time used for the units 
here MJ/m2) as this is a cumulative value - are these hourly values? In which case it is 
cumulative or total hourly (vs. hourly averaged) SW. It is more like PDD with MJ. 
The caption already states that all values are hourly averages. 
 
Figure 4b - is there a reason to show just the second half of July here? it works fine, maybe just 
not clear why some things are all of July and some just the second half. 
We have explicitly noted the SR50 measurements are only available July 14-31 in text (P3L26) 
and in this caption. 
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Abstract. Models of glacier surface melt are commonly used in studies of glacier mass balance and runoff, however, with

limited data available most models are validated based on ablation stakes and data from automatic weather stations (AWS).

The technological advances of unmanned aerial vehicles (UAVs) and structure-from-motion (SfM), have made it possible to

measure glacier surface melt in detail over larger portions of a glacier. In this study, we use melt measured using SfM processing

of UAV imagery to assess the performance of an energy balance (EB) and enhanced temperature index (ETI) melt model in5

two-dimensions. Imagery collected over a portion of the ablation zone of Fountain Glacier, Nunavut, on July 21, 23, and 24,

2016 was previously used to determine distributed surface melt. An AWS on the glacier provides some measured inputs for both

models, as well as an additional check on model performance. Modelled incoming solar radiation and albedo derived from UAV

imagery, are also used as inputs for both models which were used to estimate melt from July 21-24, 2016. Both models estimate

total melt at the AWS within 16% of observations (4% for ETI). Across the study area the median model error, calculated as the10

difference between modelled and measured melt (EB=-0.064 m, ETI=-0.050 m), is within the uncertainty of the measurements.

The errors in both models were strongly correlated to the density of water flow features on the glacier surface. The relation

between water flow and model error suggests that energy from surface water flow is contributing significantly to surface melt

on Fountain Glacier. Deep surface streams with highly asymmetrical banks are observed on Fountain Glacier, but the processes

leading to their formation are missing in the model assessed here. The failure of the model to capture flow-induced melt would15

lead to significant underestimation of surface melt should the model be used to project future change.

Copyright statement. TEXT

1 Introduction

The Canadian Arctic Archipelago holds approximately 14% of the world’s area of glacier ice outside the major ice sheets and

rates of glacier melt in the region have increased since the late 1990s (Gardner et al., 2011; Noël et al., 2018; Lenaerts et al.,20

2013; Gardner et al., 2012). Fisher et al. (2012) show that recent melt rates on Canadian Arctic ice caps are the highest in

4000 years, while Gardner et al. (2012) found that glaciers of the southern Canadian Arctic Archipelago contributed over 16%

of 2003-2010 sea-level rise. Future projections indicate the glaciers from across Arctic Canada will continue to be the largest
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mountain glacier contributors to sea-level rise through the end of this century (Radić and Hock, 2011). Given the importance

of Canadian Arctic glaciers to global sea-level rise and the rapid change in melt rates observed in recent years, it is critical to

better understand the processes contributing to melt rates on these glaciers.

Direct measurements of melt rates on Arctic glaciers are scarce, only five glaciers from the Canadian Arctic have current

data available online (WGMS, 2018). Where in situ data is collected, it is often based on ablation stake networks and data from5

automatic weather stations (AWS; e.g. Bash et al., 2018; WGMS, 2018). These in situ measurements must be extrapolated

to provide estimates of melt at other locations on a glacier, or at other glaciers where no measurements exist. Several kinds

of models are commonly used to extrapolate glacier surface melt measurements, including temperature index (TI; e.g. Hock,

1999, 2005), enhanced temperature index (ETI; e.g. Irvine-Fynn et al., 2014; Bash and Marshall, 2014), and energy balance

(EB; e.g. MacDougall and Flowers, 2011; Shaw et al., 2016). The TI or ETI models are often preferred for regional scale10

models, because of their lower computational needs and the ease with which input variables can be estimated. Energy balance

models require more inputs and as a result are preferred for in depth studies of individual glaciers.

Lack of data for Arctic glaciers also makes it difficult to validate model results. Datasets are often split into training and

validation periods to assess model performance, however, these measurements represent only a few locations on the glacier

surface (Mair et al., 2003; Wake and Marshall, 2015; Matthews et al., 2015). Where outlet streams are measured, studies use15

total stream discharge and aggregated surface melt to validate results (e.g. Pellicciotti et al., 2005; Bash and Marshall, 2014).

Validation with total melt provides insight into the average performance of these models over an entire glacier, but neither this

method or the validation based on point data provide insight into model performance across a glacier surface.

Technological advances have allowed for increasingly detailed change detection from imagery obtained by satellites, un-

manned aerial vehicles (UAVs), and terrestrial photography. Structure-from-motion (SfM) is widely used across a range of20

disciplines for reconstructing topography using imagery from the aforementioned sources (e.g. James and Robson, 2014;

Cook, 2017; Watson et al., 2017; Lovitt et al., 2018; Bash et al., 2018). Employing SfM, Watson et al. (2017) use multiple

reconstructions of a debris covered glacier to measure seasonal ice cliff retreat from terrestrial photographs, including spatial

variation in rates across individual cliff faces. Using similar methods and UAV imagery, Bash et al. (2018) measured spatially

variable melt rates in the ablation zone of an Arctic glacier over 4 days. This new capacity for measuring change in high25

temporal and spatial detail provides opportunities to examine spatial patterns in ways that were previously not possible.

The methods of surveying that are needed for detailed surface change measurements using SfM are time consuming (Watson

et al., 2017; Bash et al., 2018; Avanzi et al., 2018). These surveys involve multiple site visits, measurement of control points

using differential GPS or total stations, and imagery collection (Bash et al., 2018). Given the effort involved in these data

collection campaigns, it is not feasible at this time to extend these methods to regional-scale glacier change detection. Modelling30

efforts will continue to play an important role in understanding glacier melt in the future and thus it is critical to improve the

models employed.

The aim of this study is to use melt measurements available in high spatial and temporal resolution to assess the performance

of an energy balance model and an enhanced temperature index model across the glacier surface. We do this using previously
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published surface melt data which was measured using UAV surveys in the ablation zone of Fountain Glacier, Nunavut (Bash

et al., 2018).

2 Methods

2.1 Study Area

Fountain Glacier, located on Bylot Island, Nunavut (Figure 1), has been studied in detail since 1991 (e.g. Moorman, 2003;5

Whitehead et al., 2014; Bash et al., 2018). The glacier stretches 16 km from higher elevations in the Byam Martin Mountain

Range to its terminus roughly 10 km inland from the coast. The focus area of this study, in the lower ablation zone, spans a

narrow elevation range (250–400 m) and terminates in a cliff face with two calving fronts. The lower portion of the glacier

faces east, with several supraglacial streams of varying sizes (St. Germain and Moorman, 2016). The largest of these streams

form deeply incised asymmetrical canyons, with a steeper north facing valley wall and a more gently sloping south facing10

valley wall (Figure 1).

During July of 2016 aerial surveys were conducted with a UAV to reconstruct 0.185 km2 of the glacier surface multiple times

(Bash et al., 2018). Bash et al. (2018) measured surface lowering between July 21 and 24 using point cloud differencing across

the study area indicated in Figure 1. Concurrently, an automatic weather station (AWS; Figure 1) recorded surface melt with a

Campbell Scientific SR50 sonic ranger, as well as temperature, incoming and outgoing shortwave radiation, relative humidity,15

wind speed and direction. Bash et al. (2018) assessed the surface lowering measured through point cloud differencing against

17 ablation stakes, as well as the AWS data, and found that the measured surface lowering agreed with other melt measurements

throughout the study area. In this study we assume that point cloud derived surface lowering is equivalent to surface melt. The

uncertainty of this surface lowering was 0.048 m.

Bash et al. (2018) measured an average daily melt rate of 0.060 m day−1 across the study area between July 21-24, 2016.20

Between 2010–2011, Whitehead et al. (2014) measured melt rates of 0.030–0.055 m day−1 across the ablation zone. Bash et al.

(2018) also showed, however, that melt was highly variable across the study area during July 2016, ranging from 0.010–0.110

m day−1. The authors found that these differences in melt were not tied to elevation or aspect of the glacier surface.

2.2 Description of Data

All AWS measurements were taken at 2 min intervals and recorded as hourly averages from July 1 to July 31, 2016 (Figure25

2). The SR50 was installed on a pole drilled into the glacier surface immediately next to the AWS on July 13 and measured

hourly average surface height. The pole holding the SR50 began to tilt due to melt out of the pole during the afternoon of July

27 and was reinstalled in the morning on July 28. The data from that time period was removed from the time series for model

validation.

Models run at high temporal resolution can have significant errors which stem from SR50 readings (Matthews et al., 2015).30

These errors stem from the uncertainty in SR50 readings due to the instrument accuracy (0.01 m), as well as uneven topography
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Figure 1. Location of Fountain Glacier on Bylot Island, Nunavut, in the Canadian Arctic. (A) The automatic weather station (AWS) installed

on a tripod, measuring incoming and outgoing shortwave radiation and temperature. An SR50 measuring surface position was installed on a

separate pole drilled into the glacier (foreground). (B) A 2011 orthomosaic of the lower ablation zone of Fountain Glacier. The boundary of

the study area is shown, the area extends to the 2016 glacier boundary on the north side. The AWS location is also indicated (green triangle).

Two canyons formed by stream incision are indicated by red arrows. (C) An aerial view of the largest incised canyon on Fountain Glacier.

The photo is taken facing east and the steep north facing canyon walls can be seen in contrast to the more gently sloping south facing walls.

underneath the instrument. In addition to hourly surface height, the SR50 records a standard deviation of all measurements in

the hourly average (typically 30 measurements). SR50 values where the standard deviation was greater than 0.01 m were

removed, expected hourly melt rates are lower than the instrument accuracy and standard deviations greater than that are

assumed to be related to noise. After removing those points, a 5 hr rolling average was calculated to smooth the data and fill

in removed values. The 5 hr window was used to assure that all windows had multiple measurements to average, after some5

measurements had been removed. SR50 values which differed significantly from others in the 5 hr window were also removed

(defined as more than the standard deviation of hourly change in the 5 hr window), under an assumption that it was physically

unlikely for melt rates to change dramatically over short periods. Melt was then calculated in 12 hr periods (0:00 – 12:00) using

the remaining values.
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Processing of UAV imagery was done in Agisoft Photoscan and is described in detail by Bash et al. (2018). High accuracy

settings were used to retain detail in the final point cloud. During processing, point clouds of the glacier surface at mid-day

were produced for July 21 and 24, 2016. The point clouds were used to create orthomosaics and digital surface models (DSMs)

for each day with horizontal resolutions of 0.10 m.

The multiscale model to model cloud comparison algorithm (M3C2) was used to calculate melt across the study area at 0.025

m horizontal resolution (Lague et al., 2013; Bash et al., 2018), with vertical uncertainty of 0.048 m based on the RMSE of

surface lowering compared to ablation stakes. The M3C2 algorithm calculates change normal to the local surface, which was

desirable for measuring detailed change at such fine resolution. After differencing the point clouds were filtered to remove

large outliers and differences calculated from fewer than 5 points, as suggested by Lague et al. (2013). This filtering resulted

in variable density of points in the final point cloud. To align with DSMs and orthomsaics of the study area, for this study melt10

data was gridded to 0.10 m resolution. Melt measurements were averaged within each grid cell and empty cells were filled

using bilinear interpolation.

2.3 Model Formulation

2.3.1 Energy Balance Model

An EB model accounts for all energy inputs and outputs at the glacier surface to estimate energy available for melt or freezing.15

As a representation of surface energy exchange, these models are often assumed to be the best estimators of surface melt (Hock,

2005). We employ an energy balance model described by Ebrahimi and Marshall (2016) as a check on both SfM-derived change

and the ETI model described below.

QN =Q↓SW −Q
↑
SW +Q↓L−Q

↑
L +QH +QE (1)

whereQN is the net energy flux at the surface andQ↓SW ,Q↑SW ,Q↓L,Q↑L,QH ,QE represent incoming and outgoing shortwave20

radiation, incoming and outgoing longwave radiation, sensible and latent heat flux, respectively. The energy fluxes are all

calculated in MJ m−2 hr−1 for consistency with AWS measurements and energy fluxes are positive when they contribute

energy to the glacier surface. When QN > 0 melt (M̂ ; m ice) is calculated by:

M̂ =
QN

ρiceLf
(2)

where ρice is the density of glacier ice, assumed to be 900 kg m3 (e.g. Arnold et al., 2006; Cuffey and Paterson, 2010;25

Fitzpatrick et al., 2017) and Lf is the latent heat of fusion. Longwave radiation (QL) is parameterized based on the absolute

temperature (T) and emissivity (ε):

QL = εδT 4 (3)
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where δ is the Stefan-Boltzmann constant. For Q↑L, the calculation is straightforward if the surface is assumed to be melting

(273.15 K), the surface emissivity is then 1.0. The atmospheric emissivity (εa) must be estimated in order to obtain Q↓L. Here

we use a parameterization from Ebrahimi and Marshall (2015) based on vapour pressure (ev), and relative humidity (H), which

was found to be robust when transferred directly without local training.

εa = 0.445 + 0.0055H + 0.0052ev (4)5

The sensible and latent heat fluxes are calculated by equations 5 and 7, respectively.

QH = ρacpk
2v

[
Tpa−Tps

ln(z/z0)ln(z/z0H)

]
(5)

where ρa is the air density, calculated from the near surface air temperature and average air pressure at the AWS (Paws=969),

cp is the heat capacity of air, v is the measured wind speed, and k = 0.4 is von Karman’s constant. The potential temperature

is calculated for the near surface air (Tpa) and ice surface by(Tps):10

Tp = T
Pref

Paws

R/cp

(6)

where Pref is a reference pressure (1000 mb), R= 288.5 and the surface is assumed to be at the melting point.

QE = ρaLvk
2v

[
qa− qs

ln(z/z0)ln(z/z0E)

]
(7)

where Lv is the latent heat of vaporization, qa is the specific humidity, based on T and H , and qs is the specific humidity

calculated from the saturation vapor pressure at the melting surface. z0, z0H , and z0E are the roughness length scales for15

turbulent exchange of momentum, heat, and moisture. The height of all AWS measurements is z = 1.5 m and z0 = 0.005 m,

was used as a tuning parameter at the AWS. Both equation 5 and 7 neglect a correction for atmospheric stability, which has been

shown in previous studies to provide better results for these parameters (Hock and Holmgren, 2005; Ebrahimi and Marshall,

2016)

A 1-D formulation of this model (EBaws) runs using measured inputs from the AWS. A distributed version was also devel-20

oped (EBdist) using modelled incoming radiation at the AWS location and albedo derived from the UAV imagery to determine

SWnet (both described below, Figure 2A, B, 3). Near surface air temperature across the study area was modelled using the

uncorrelated AWS temperature and modelled radiation (Section 2.3.2). Measured values from the AWS are used for all other

variables in equations 3 - 7.

Distributed incoming radiation was modelled by modifying the hourly measured incoming radiation at the AWS by the25

slope (S) and aspect (A) of each grid cell in the July 21 DSM (Figure 3C). The terrain correction was based on Goswami et al.

(2000).

SWin =Q↓SW ∗ cosψ ∗ cos(ω−A) ∗ sinS ∗ cosS (8)
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where ψ is the solar altitude and ω the solar azimuth. This correction alone causes radiation to drop to zero overnight, which

is not realistic during Arctic summers. Although direct radiation may drop to zero at some cells when sun angles are low

overnight (solar elevation dips to 3.6◦), diffuse radiation is at measurable levels (Figure 2E). A diffuse correction (SWdiff ;

based on Bugler (1977)) was added to incoming radiation after correction for incidence angle to estimate the total incoming

radiation (Figure 2F).5

SWdiff = 16ψ0.5− 0.4ψ (9)

Lower peak radiation in the model (Figure 2B) is due to a slight difference in slope and aspect between the radiometer

(which was level) and the grid cell of the DSM containing the AWS (slope = 5◦, aspect = 177◦). Estimated radiation at each

cell was then multiplied by (1−α) to estimate SWnet at each cell.

Albedo was estimated across the study area using the orthomosaics from July 21 and July 23. Each orthomosaic contains the10

digital number recorded by the camera in the red, green, and blue (RGB) channels. The digital number cannot be directly used

to calculate surface reflectance without conversion equations proprietary to the camera manufacturer. However, several studies

have used other approaches to derive surface reflectance from digital numbers (Corripio, 2004; Rippin et al., 2015; Ryan et al.,

2017). Rippin et al. (2015) use the sum of RGB digital number values as a proxy for albedo, similar to the approach we employ

here.15

Values for RGB channels were averaged and the total range scaled to match the value at the AWS location (Figure 3). Scaling

in this way allows the values to be directly input into models, as opposed to providing a proxy for albedo as was done in Rippin

et al. (2015). The average measured albedo value for the study period (0.31; July 21-24, 2016) was used to fix the rescaled

value for both July 21 and July 23 at the AWS location. The lower end of the range was based on albedo values of cryoconite

holes reported by Ryan et al. (0.1; 2017), an assumption was made that cryoconite holes would have similar albedo to debris20

on the glacier surface. The scaling of RGB values was used to create two gridded albedo products that could be directly input

into the melt model (Figure 3). July 21 albedo was used as a model input up to 12:00 July 23, while the July 23 albedo was

used from 12:00 July 23 onward.

Mean albedo over the grid was 0.35 for July 21 and 0.33 for July 23, the median difference between the two was 0.020

(Figure 3). Albedo measured at the AWS on July 21 and July 23 at 12:00 (the time of image acquisition) was 0.315 and 0.309.25

The more pronounced difference in the gridded albedo likely reflects darker imagery in the July 23 mosaic, in addition to a true

lowering of the surface albedo over the time period. To test the importance of this lower albedo value, total absorbed radiation

at the AWS for July 2016 was adjusted to reflect a lower albedo, beyond what was measured at the AWS. This lowering of

0.014 could produce approximately 0.028 m additional melt over the course of the month.

2.3.2 Enhanced Temperature Index Model30

This study assesses the performance of an enhanced temperature index model because these models are commonly used for

regional scale estimations of glacier melt. The model we use is formulated after Bash and Marshall (2014), which uses absorbed

radiation (SWnet; MJ hr−1) and temperature (◦C) in a linear regression model to estimate melt (M̂ ; m). The formulation of the
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Table 1. Model coefficients obtained using linear regression modelling for July 14 – 20, 2016. Units of TF are mh−1◦C−1, and RF are

mh−1MJ−1

TF RF

This study 0.00019 0.0015

Irvine-Fynn et al. (2014) maximum 0.00068 0.0017

Irvine-Fynn et al. (2014) minimum 0.0002 -0.0014

Pellicciotti et al. (2005) 0.00005 0.0026

model is unique in that it controls for correlation between independent variables which can make model results unstable when

not addressed. The uncorrelated temperature (Tresidual) is calculated by:

TSW = η+βSWnet (10)

Tresidual = T −TSW (11)

where η and β are coefficients fit using a linear regression. Tresidual is then used in the following equation to determine melt5

in meters of surface lowering consistent with SR50 and UAV measurements:

M̂ =

 TF ·Tresidual +RF ·SWnet : T > TT

0 : T ≤ TT
(12)

where SWnet can be calculated by the difference between incoming and outgoing radiation, or by multiplying incoming

radiation by (1−α), where α is the surface albedo. The coefficients TF and RF were fit using a linear regression. Threshold

temperatures (TT ) ranging from 1◦- 2◦C have been used in previous studies (Hock, 1999; Pellicciotti et al., 2005; Gabbi et al.,10

2014; Irvine-Fynn et al., 2014; Matthews et al., 2015). Here we use TT = 0◦C. Although we have not performed any testing

of this threshold, it is unlikely that it would affect model outcomes in this study as the air temperature rarely fell below 2◦C

during the month of July 2016, and never during the period where distributed melt information is available.

Cumulative positive Tresidual and SWnet were calculated for 12 hr periods beginning July 14 at 12:00. Data from July 14 –

July 20 was used as a training period to determine the model coefficients (η, β, TF, RF) using a multiple linear regression. The15

fitted model coefficients are shown in Table 1. Model coefficients compare well to those reported by Irvine-Fynn et al. (2014),

a study which also modelled an Arctic glacier, although they report a wide range of values for RF depending on the training

period.

A 1-D formulation of the model was run at the AWS site (ETIaws) using measured SWnet and near surface air temperature.

A distributed model (ETIdist) was developed by estimating model variables across the study area at each grid cell. Given the20
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relatively small size of the study area, Tresidual was assumed to remain constant across the area, calculated by equations 10

and 11 with modelled incoming radiation and measured temperature at the AWS site. Equations 10 and 11 can be used to

back-calculate temperature when Tresidual and SWnet are known, this allowed modelled temperature to vary across the grid.

SWnet was calculated from modelled distributed radiation and albedo, described above.

2.4 Model Performance5

The four models (EBaws, ETIaws, EBdist, ETIdist) were run for the period 0:00 July 1–24:00 July 31, 2016, allowing for

comparison between models over a longer time period than when melt measurements were available. Outputs from 0:00 July

14–24:00 July 31 were compared directly to melt measured with the SR50. To compare EBdist and ETIdist estimates, melt

values were extracted from the grid cell containing the AWS. All models were assessed using the mean and standard deviation

(σ) of the residuals (M̂ −M ).10

Total melt estimates for July 21–24 from both distributed models were compared to the gridded melt measurements across

the study area for the same period. Model error was calculated at each grid cell in the study area, negative values indicate

underestimation and positive values indicate overestimation of the model as compared to the UAV-derived data (M̂ −M ). The

median model error (ME) and normalized median absolute deviation (NMAD) were used to describe the model error following

Höhle and Höhle (2009). Höhle and Höhle (2009) suggest using these metrics to describe errors when the error distributions15

are non-normal, which is typical for the large datasets produced with SfM (Montgomery and Runger, 2007). In the case of

non-normal distributions, standard descriptive statistics (based on data means and standard deviations) are disproportionately

influenced by outliers, which the ME and NMAD are not (Maronna et al., 2006). The median and range of measured and

modelled melt were also calculated for comparison.

In addition to model performance, the model error across the study area was used to investigate factors influencing model20

performance. We examined model errors in relationship to surface characteristics which are known to influence the energy

available for melt (Hock, 2005). The Pearson correlation coefficient is often used to assess variable relationships:

R=

n∑
i=1

(xi− x̄)(yi− ȳ)

σxσy
(13)

where x̄ and ȳ are the variable means, σx and σy are the variable standard deviations. As noted above however, in the case that

the mean and standard deviation are poor descriptors of a population, an alternative measure of relationship is necessary using25

robust estimators for the location and variance (Shevlyakov and Smirnov, 2011). Based on Shevlyakov and Smirnov (2011),

we use the median correlation coefficient to assess the relationship between model error and potential explanatory variables.

Rr =

n∑
i=1

1

n
(xi−med(x))(yi−med(y))

NMADxNMADy
(14)
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In the case of large samples such as we have here (n>18 million), p-values are not a suitable measure for correlation signif-

icance (Maronna et al., 2006), instead we evaluate the strength of the correlation based on its value. Robust correlations were

computed between model error and terrain variables (slope and aspect), albedo, and an estimate of surface water flow.

Water flow direction and potential upstream catchment were quantified using the Hydrology Toolset in ArcGIS 10. Assuming

that water is produced at every grid cell, flow paths were calculated from the July 21 DSM based on potential upstream5

accumulation. Cells with more than 1500 upstream cells were converted to a set of linear features and the number of these

features within 20 m of each grid cell was calculated (W20m). The 1500 cell threshold represents 15 m2 of upstream drainage

area, and was chosen based on the assumption that 15 m2 is likely to provide enough melt water to start flow. The resulting

layer provided a representation of areas with significant surface water flow, including streams and thin sheet flows.

3 Results10

3.1 Inter-model comparison at AWS

The four models were compared at the AWS site for July 1-31, 2016. All four models capture daily patterns of melt, with lower

melt totals on average in the second half of the month, which is consistent with lower solar radiation recorded at the AWS

(Figures 4A and 2B). The distributed models both consistently estimate lower melt totals than their point model counterparts,

with differences more pronounced when melt values are high. This is most likely related to the lower shortwave radiation in15

the distributed model, which is in total 17% less than measured for study period (Figure 2B). The EB models produce lower

melt estimates than the ETI models when solar radiation is low. During periods of high incoming solar radiation, EBaws and

ETIaws produce similar melt.

The total melt estimated during the month of July was lower in the two distributed models, EBdist = 1.223 m and ETIdist =

1.394 m, compared to the point models, EBaws = 1.436 m and ETIaws = 1.508 m. The EB models estimate less melt for the20

month than the ETI counterparts.

3.2 Model performance at AWS site

Model estimates from July 14-31, 2016 were compared to melt measured at the AWS site with the SR50. Total melt at the SR50

during the study period was 0.186±0.03 m, while the imagery-derived measurement for the same period was 0.274±0.048 m.

After tuning z0, the mean residual of 12-hr model estimates at the AWS was 0.000 m for EBaws and -0.003 m for EBdist. The25

fitted ETIaws also had a mean residual of 0.000 m, while that of ETIdist was -0.001 m. Three of the four models underestimate

melt at the site, ETIaws over estimates melt by 0.016 m (Table 2; Figure 4B). Both distributed models produce lower melt

estimates than their point model counterparts. The largest underestimate was from EBdist. The variability of modelled melt is

notably lower than measured melt in all cases.
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Table 2. Descriptive statistics for measured melt, modelled melt, and model residuals at the AWS site, July 14-31, 2016. All values were

calculated based on 12-hr melt estimates and are reported in meters.

Measured EBaws ETIaws EBdist ETIdist

Mean 0.022 0.022 0.023 0.019 0.021

σ 0.010 0.008 0.006 0.006 0.006

Total Residual -0.030 -0.126 0.016 -0.029

Mean Residual 0.000 0.000 -0.003 -0.001

Residual σ 0.009 0.011 0.009 0.010

3.3 Model performance over the study area

Across the study area median measured melt was 0.184±0.048 m, the NMAD was 0.026 m (Figure 5B). Median melt across

the area was lower in both EBdist and ETIdist, as was the variability (Figure 5A,C). The total range of measured melt was

0.305 m, while the range of EBdist = 0.123 and ETIdist = 0.083.5

The ME and NMAD of EBdist =−0.064± 0.022, while that of ETIdist =−0.050± 0.023. The ME of ETIdist is similar

magnitude to the measurement uncertainty (0.048 m), indicating general agreement with measurements. When areas of error

above the measurement uncertainty are highlighted (Figure 5D,E), ETIdist shows clustered patterns representing 53% of the

total study area. Errors greater than twice the uncertainty (0.096 m) account for 5% of the study area. EBdist errors greater

than 0.048 m cover 79% of the study area, while those greater than 0.096 m cover 11%.10

Model uncertainty can be derived from a number of metrics, including variability in the model residuals, represented by

the NMAD or standard deviation. Based on assessment at the AWS site, uncertainty in 12-hr estimates from EBdist and

ETIdist are 2σ = 0.018 m and 0.022 m, respectively. Bash and Marshall (2014) use validation at an AWS and incorporate

uncertainties related to modelling input variables to estimate an uncertainty of 15%. In this study, we also have the benefit of

examining distributed results across the study area through comparison with UAV derived melt. The variability of the distributed15

models is characterized by the NMAD, taking 2∗NMAD = 0.028 m for EBdist and 2∗NMAD = 0.044 m for ETIdist, these

uncertainties are 4-6% of total estimated melt. Combined with the uncertainty in the measured surface change (0.048 m), a

total uncertainty in the model errors can be derived (
√

2 ∗NMAD2 + 0.0482), EBdist = 0.056 m, ETIdist = 0.065. In either

case, the errors which are strongly correlated with W20m are higher than the combined uncertainty of measurement and model,

particularly for ETIdist.20

3.4 Relationship to surface characteristics

Moderate correlation was found between model error and albedo, aspect, and slope for both EBdist and ETIdist (Table 3).

Through field observation, we were able to note a visual relationship between surface water features and high error during

analysis (Figure 6A, C). This association was confirmed through correlation with W20m, Rr = 0.470 for EBdist and Rr =

0.462 for ETIdist.
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Table 3. Robust correlation statistics (Rr) for surface characteristics and distributed models. Strong correlations are highlighted in bold.

EBdist ETIdist

Albedo -0.207 -0.208

Aspect 0.177 0.178

Slope 0.204 0.197

W20m 0.470 0.462

Although most of the errors are negative, positive errors (i.e. overestimation) were also found. These are primarily associated

with boulders and other large stationary objects on the glacier surface.

4 Discussion

Model results at the AWS indicate that both tuned point models perform very well. Performance of the distributed models5

is poorer, with EBdist performing worse than ETIdist, despite the physical basis of the energy balance model. This is likely

due to a combination of factors, including limited data inputs available, and need for further refinement of energy exchange

parameterizations. Previous work has shown that energy balance model performance is sensitive to variations in roughness

length, wind speed, and albedo (Hock and Holmgren, 2005; MacDougall and Flowers, 2011). Of these components, roughness

length is the only EB model input used here that is not measured. An analysis of the model sensitivity to z0 revealed a 10%10

decrease in total estimated melt (July 1-31) for z0 = 0.001 m, compared to the reference run with the tuned z0. Similarly,

z0 = 0.01 m resulted in a 7% increase in estimated melt. The deviation from the reference model run was caused by a 33%

decrease and 22% increase in both QH and QE . Despite this sensitivity, z0 = 0.005 provided the best fit for the training data.

Variability in both EB and ETI models is linked to solar radiation cycles. In addition to diurnal cycles in SWin due to zenith

angle variaitons, topography blocks direct solar radiation for a time during the night and causes stronger diurnal variation in15

SWin. The strength of the signal from the diurnal cycle is much greater in the melt produced by EB models than the ETI

models (Figure 4A). As noted above, on clear sky days with relatively low temperatures, the EB and ETI models produce

similar results (July 1-3). Under the opposite conditions, low SWin and high temperatures (e.g. July 14-15, 28-29), the EB and

ETI models produce the most dissimilar results. This is due to the relationship between temperature and radiation in the ETI

model, where at low temperatures and high SWin, Tresidual is very small and melt is driven primarily by radiation. At high20

temperatures and low SWin, Tresidual is relatively larger and drives melt. In contrast, melt in the EB model is always primarily

driven by solar radiation. Examining 12-hr averages of SWnet, LWnet, and Qh+QE in the EB model outputs, there is a strong

correlation between SWnet and available melt energy (R= 0.90). The correlation between melt energy and LWnet, as well as

Qh +QE , is much lower (R= 0.25 and R=−0.19, respectively).

This contrast between the EB and ETI models, and the local tuning of the ETI model, allows ETIdist to better estimate melt25

recorded at the AWS. For comparison to other studies, σ residual from ETIdist was converted to an hourly rate (ETIdist =
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0.0005 m h−1), which is similar to other ETI models in the literature (Pellicciotti et al., 2005; Irvine-Fynn et al., 2014; Bash

and Marshall, 2014). Irvine-Fynn et al. (2014) report a standard error of 0.00018 – 0.00053 m h−1, the range in error stems

from model runs with different training datasets. Hourly ETI model error reported by Pellicciotti et al. (2005) is as high as

0.0055 m water equivalent h−1, compared to an energy balance model as reference data. Bash and Marshall (2014) report a5

standard error of 0.00031 m h−1, when the ETI model is transferred in time. Overall these results at the AWS indicate that,

in the absence of additional validation data, it would be reasonable to employ this model to estimate melt across the glacier

surface.

Hock (1999) found that when TF is calculated based on melt and temperature records, it is highly variable. The inclusion

of shortwave radiation in ETI models is an attempt to account for this variability. The low variability seen in the results of10

both ETIaws and ETIdist when compared to AWS measurements is an indication of potential problems in the ETI models.

Similar variability was noted in other studies (Hock, 1999; Bash and Marshall, 2014). However, Hock (1999), Pellicciotti

et al. (2005), and Irvine-Fynn et al. (2014), all cite R2 values of 0.60, 0.86, and 0.80 when comparing total modelled melt

to measured discharge. These previous results show that although the ETI models capture total melt, melt rates at individual

points are captured less effectively. Similarly, we found across the study area that median modelled and measured melt agreed,15

but model results showed variability an order of magnitude lower than measurements (Figure 5B, C). The availability of melt

measurements at 10 cm horizontal resolution shed light on the areas where modelled and measured melt were (or were not) in

agreement, which has not been shown before. These measurements also allowed us to examine possible explanations for the

model errors, including the aspect and surface water flow.

It is worth noting that surface lowering measured through point cloud differencing is not always equivalent to surface melt.20

Vertical ice motion in the ablation zone offsets melt in measurements of surface change. However, in the case of Fountain

Glacier Whitehead et al. (2014) estimate surface uplift to be 0.2 m over the course of the ablation season, or 0.002 m d−1.

Given the magnitude of measured surface elevation change over the 3 day period and the correspondence of those measurements

to melt measured at ablation stakes, we assume that vertical uplift is a negligible contribution and the point cloud differences

represent surface melt. Additionally, each point cloud was independently georeferenced each day, removing complications25

from horizontal flow.

Bash et al. (2018) measured higher melt rates in active supraglacial streams than on surrounding ice. This higher rate of

melt leads to streams downcutting into the glacier surface over time, as long as melt water routing paths remain constant. Bash

et al. (2018) also noted the difference in melt rate between an active stream and the nearby channel which the stream formerly

occupied. During preliminary analysis of distributed model results, we observed the occurrence of high model errors in areas30

with visual evidence of surface water flow including thin sheet flow and streams. Further investigation revealed correlation

between model errors and the density of linear flow features (designated through DSM analysis and representing streams as

well as thin sheet flow). The northern portion of the study area has predominantly north aspect, which exhibits high density in

W20m, but low model error. This pattern may result from lower melt on the north aspect, leading to less water production and

flow than what is suggested by inferred flow paths in W20m. The relation between model underestimation and surface water35

features suggests the water flowing on the glacier surface is contributing a measurable amount to surface melt. This is consistent
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with observed patterns of downcutting streams and higher melt in active stream channels, but also shows the importance of

water in areas with thin sheet flow over the glacier surface.

Stevens et al. (2018) note the role of kinetic energy in development of surface weathering crusts and the complexity of

near-surface glacier hydrology which is only recently coming to light. Temperatures measured in a supraglacial stream on5

Fountain Glacier in 2014 ranged from 0-0.1◦C (St. Germain and Moorman, 2016). These temperatures alone are not sufficient

to explain the magnitude of model errors in the vicinity of water features, suggesting that other forms of energy transfer are

playing an important role. Idealized crevasse bottom incision equations presented by Fountain and Walder (1998) are driven

by discharge rates, suggesting a role in flow related incision for both heat advection as well as energy transfer from kinetic

and potential energy. Irvine-Fynn et al. (2011) note that the relative importance of frictional heat contributing to incision rates10

in non-temperate glaciers remains unresolved. The results of this study suggest that further investigation into energy transfer

(heat, kinetic, potential, frictional) and albedo effects from flowing water on non-temperate glaciers is necessary.

The coincidence of high model error with water feature density was noted in areas with thin sheet flow, in addition to the

locations of supraglacial streams. The contribution of melt energy to the glacier surface from less concentrated water flow

found here has not been examined in previous studies, and these results add new insight to the emerging picture of complex15

surface hydrology on non-temperate glaciers, as suggested by Stevens et al. (2018). The results of this study suggest that

on Fountain Glacier the relative importance of energy flux from water flow is high enough to cause significant errors in the

distributed model.

We believe that the relative importance of factors other than solar radiation which are driving melt on Fountain Glacier will

have cumulative effects if ETIdist or EBdist were employed for long term modelling. Although this study looks at a short20

time frame of only 3 days, weather conditions during the study are similar to those found throughout the ablation season on

Fountain Glacier and are likely to be representative of average conditions throughout the season. The high melt rates measured

in areas of surface water flow, which are absent in both distributed models, are enough to change the terrain characteristics of

the glacier over time (as seen in the formation of deeply incised canyons on Fountain Glacier). The changes in terrain feed back

into melt dynamics related to slope and aspect, the inability of both models to capture the highest melt rates will slow these25

feedback mechanisms compared to observed evolution of the glacier surface (St Germain and Moorman, 2019). St Germain

and Moorman (2019) show that migration of small surface streams on Fountain Glacier on annual timescales slows or prevents

development of deeply incised streams. Similarly, the migration of thin sheet flow over the course of a season is likely to

prevent deep heterogeneity across the glacier surface due to this type of water flow. However, the additional melt caused by

this type of flow remains unaccounted for in modelling results.30

The availability of high resolution melt measurements now allows for analysis of model performance that is not possible with

other methods of measuring melt (i.e. ablation stakes or satellite measurements). Building on previous studies of distributed

energy balance models, high resolution distributed melt data may be used to develop simplifications for glaciers similar to

Fountain Glacier, which are more appropriate than primarily radiation driven models. Deeply incised canyons such as those

found on Fountain Glacier have been noted on 83 other glaciers across the Arctic, including 10 on Bylot Island (St. Germain,35

2019). Other studies of glacier terrain characteristics have found that gradual shifts in glacier aspect due to differential melt
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have important impacts on total glacier mass balance (Arnold et al., 1996, 2006). This reinforces the importance of developing

a model which captures melt driven by both radiation and water flow.

5 Conclusions

We present the first study using high resolution measurements derived from SfM and UAV imagery to assess performance of5

distributed energy balance and enhanced temperature index models, additionally we present a new method of deriving albedo

from the UAV imagery that can be used directly in the grid-based model. The model developed in this study was compared

directly to AWS measurements and to distributed measurements on a cell by cell basis. The availability of high resolution data

revealed patterns in model performance that could not be found with other traditional methods of measuring glacier melt (i.e.

ablation stakes or satellite measurements).10

The ETIdist exhibits similar performance at the AWS to other studies implementing ETI models. In the absence of high

resolution distributed data, this model might be applied with confidence across the glacier surface. The bulk performance

of the model across the study area is also similar to distributed melt measurements, with a ME similar to the measurement

uncertainty. However, the range in melt from both models is an order of magnitude lower than that seen in distributed melt

measurements. The lower range in modelled melt combined with spatial patterns found in model error, allowed for investigation15

of sources of model error.

Significant correlation between surface water flow and model error highlighted the important role of water flow in melt

dynamics on Fountain Glacier. Energy transfer from water flow in supraglacial streams is known to cause stream incision

and was previously noted by Bash et al. (2018) on Fountain Glacier. The role of thin sheet flow on the glacier surface has

not been studied previously, although Stevens et al. (2018) investigate near-surface hydrology and the role of kinetic energy20

in weather crust development. Our results corroborate the important role of kinetic energy in surface hydrology and suggest

that on Fountain Glacier energy transfer from water flow is a significant driver of melt. Further investigation is necessary to

determine the most important contributors of additional energy to the glacier surface from water flow.

Given the importance of water flow in the development of deep canyons on Fountain Glacier, a model which accounts for

water related energy inputs is necessary to effectively capture long term surface evolution on the glacier. A model which better25

reflects the drivers of melt on Fountain Glacier, and potentially similar glaciers across the Arctic, will provide insight into

changing melt dynamics in these environments. In future work we hope to extend the time series of melt measurements from

UAV imagery and use the distributed dataset to derive a new melt model which captures the melt drivers highlighted in this

study.
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Figure 2. Hourly averaged melt model input variables, measured at the AWS for the period July 1-31, 2016. Variables include near surface

air temperature (A), incoming (SWin) and outgoing (SWout) shortwave radiation (B), albedo (C), wind speed (D), and relative humidity (E).

Inputs which are estimated for distributed models are shown in red, incoming shortwave radiation (A), and albedo (B). The albedo derived

from UAV imagery is scaled using the average value at the AWS for July 21-24, so it remains constant throughout the model. The dates of

the UAV study are shown in grey.
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Figure 3. Albedo was derived from UAV imagery using an average values from RGB bands and scaling the lower and upper bounds to match

the albedo of bare rocks (based on Ryan et al. (2017)) and the average albedo measured on Fountain Glacier during the study period. (A)

July 21 albedo values. (B) Juy 23 albedo values. (C) A hillshade model of the study area based on the DSM from July 21.

Figure 4. (A) Modelled 12-hr melt values at the AWS site, July 1-31, 2016. (B) Cumulative measured and modelled melt at the AWS, July

14-31, 2016. SR50 measurements were only available for the second half of July, a gap exists in the record due to melt out of the pole holding

the SR50. Melt was extrapolated during this time for better visual comparison, extrapolation was based on average melt rates for the day

prior to and following the gap. The dates of the UAV study are shown in grey.
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Figure 5. Distribution of measured and modelled melt across the study area between July 21 (12:00) and July 24 (12:00). (A) Melt estimated

using EBdist applied across the study area. (B) Melt measured through differencing surfaces reconstructed from UAV imagery. (C) Melt

estimated using ETIdist applied across the study area. (D-E) Model error, calculated by the difference between modelled and measured melt.

Cells with an absolute value lower than the measurement uncertainty (0.048 m) are transparent to emphasize areas where the model residuals

are high.
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Figure 6. Model error with magnitude greater than 0.048 m underlain by flow path features with potential upstream accumulation greater

than 15m2 for (A) EBdist, and (B) ETIdist. Density of flow accumulation features within a 20 m radius of each cell (C).
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