
Dear Dr. Farinotti and Reviewers, 
 
Thank you for your feedback on this manuscript. We have attempted to address all the points 
brought up in the reviews, this has resulted in several major changes to the modelling 
contained in the paper and thus the results and presentation. The following major changes 
were made: 
 

1. As per the suggestion of Shawn Marshall and reviewer #1 we have changed the way the 
ETI model is distributed across the study area. Specifically, the residual temperature 
(representing melt processes other than shortwave radiation) is now kept constant 
across the grid. This is effectively the same as distributing the temperature based on 
equations 10 & 11 (described on P9). This has not substantially changed the results, but 
did resolve issues with poorly modelled melt on south aspects. 

2. We have added an energy balance model and run four model formulations (both point 
and distributed models) for the month of July 2016 to compare the performance of the 
models against one another, and also against AWS data. 

3. As per the suggestion of reviewer #2, we have revisited the methods for deriving albedo 
from orthoimages. Values are now scaled by fixing the value of the AWS cell to be the 
average measured between July 21-24, rather than assigning the average of July 13-31 
as the upper end. This means that albedo in the AWS grid cell is constant throughout 
the model runs. We have tried to better explain our methods in text, and have also 
addressed the slight darkening between July 21 and 23. 

4. During our revision of the models we discovered an indexing problem in the solar 
radiation model. Correcting this problem has dramatically improved the radiation values 
in the model. 

5. The vast number of data points in UAV datasets make teasing out relationships difficult. 
We are constantly trying to improve the way we address this and have adopted a new 
strategy using robust statistical measures to calculate correlations. We acknowledge 
that both reviewers suggested adding figures showing the relationships between model 
error and aspect, slope, and water flow. The number of data points we are dealing with 
(>18 million) makes these type of figures unintelligible, so we have chosen to leave 
them out. Instead we have added a table of correlation statistics and a discussion of the 
difficulty of using traditional statistical measures in this study. 

 
Below are our responses to the specific comments of the reviewers. Page and line numbers in 
our response refer to the track changes version of the document. 
 
Thank you, 
Eleanor Bash 
  



Reviewer 1 comments: 
 
(Page)1-(Line)1: While I think that all the necessary information is here, the first 5-6 sentences 
should be reworked to improve the flow from short, individual sentences. It currently reads like 
bullet points. 
Done. P2-L1-7 
2-8: Rework the sentence to reflect citations relevant to TI, ETI and EB, separately. 
Done. P2-L16-17 
2-12: Check sentence continuity. 
Done. P2-L20 
2-25: Typo 
Done. P2-L35 
2-35: NU? I assume Nunavut. Perhaps write out in full for the few instances for the benefit of 
the reader.  
Done throughout. 
3-10: Include the size of your study area: 0.185km2  
Done. P3-L22 
3-12: AWS melt I assume refers to a sonic depth gauge? Specify what you mean here. . . It is 
measured quantities that you refer to??  
Clarified. P3-L25 
3-17: Try to keep consistent with units. . . Here you move from metres when talking about error 
to cm for melt rates. These values are also surely in a water equivalent? This was a concern of 
mine when reading the manuscript as I was unsure if you are comparing UAV differencing (Z 
difference in m./cm.) and modelled melt (m w.e. /cm w.e.).  
Units have been changed to be consistent throughout. 
3-25: You describe your methodology for pole tilt of the SDG, but the dates of your ETI model 
(at both point and distributed) extend beyond the UAV measured differences with no real 
justification for why. . . perhaps I’ve missed something here or it hasn’t been explained.  
Clarified. P4-L8 
3-30: “30” what??  
Clarified. P5-L4 
3-31: I’d like to see some reasoning for the selection of your chosen methodology for dealing 
with SDG data averages and gaps. Why the specified interval? Does it affect your results?  
More description of methods has been added. P5-L4-11 
4-4: Whilst this work is published in Bash et al. (2018) and doesn’t all need to be repeated, I 
would like to see a few of the core details and justifications for methodologies of the SfM 
model construction. . . For example, why M3C2, and not 2.5d differencing was considered. A 
short reminder here would be useful.  
Detail added. P5-L18-19 
4-7: Is interpolation justified here? With what method? Why were their gaps in your DSM?  
Detail added. P5-L20-21 
6-7: So Iabs is SWnet? Perhaps change this terminology to be clear and consistent with the 
literature.  
Changed throughout. 



6-8: What are your derived TF and SRF values?! This is important to mention somewhere. Are 
your values believable? How do they compare to the other TI, ETI models (as you compare to in 
your discussion)?  
A table of values has been added as well as a brief discussion of their relationship to other 
studies. P8-L27-P9-L2 
6-9: I need some justification for modelling over these dates, and not just the DSM differencing 
period (3 days).  
Clarified. P9-L4-6 
6-11: Have some tests of the 0C threshold been performed? This threshold can be rather 
variable. I believe that optimising this threshold could be beneficial. This holds then to my 
major comment regarding the model. I believe the data and locality of the AWS makes it highly 
desirable to perform an energy balance approach for the pointscale, if not for both point and 
distributed models, to aid process understanding and support the application of your ETI 
approach. The authors have a lot of valuable data with which to calibrate/validate their model 
at the distributed scale (such as stakes and surface information from the UAV) with which to 
provide the best possible ETI model. Propagating the model error then with the DSM error can 
provide a strengthened analysis of how, in the best case scenario, the ETI succeeds/fails to 
capture important information about glacier mass loss.  
Consideration of the implications of the threshold has been added. P8-L24-28 
6-12: To distribute model variables. . . reword here.  
This has changed substantially due to new model descriptions. 
6-13: Although I agree that differences will likely be small, I think it valuable to distribute your 
temperatures in your model domain, as it may still vary enough to influence your 0C 
assumptions for melt onset. This also draws in to the limits of the residual approach you adopt, 
as mentioned in the open discussions by Professor Marshall. I think a simple environmental 
lapse rate would suffice for the small elevation range you describe.  
See major revision comment 1. 
6-15: This is modelled using the surface topography taken from the first DSM right? Specify that 
here.  
Clarified. P7-L10 
6-16: Another interesting and important aspect to test would be the effect of cell resolution. A 
0.1 m resolution is incredible and interesting to test what models can and cannot do, but is not 
realistic for any level of glacier-scale or regional modelling. I think it relevant to have some level 
of testing, and discussion regarding this. For example, the ETI fails to capture the variability 
seen in the DSMs, but is this consistent at 1 m, 10 m, 30 m?  
As per our previous response, we agree this would be a valuable analysis, but feel it would 
detract from the overall goal of the paper. 
6-18: Provide minimum solar angles.  
Done. P7-L15 
6-26: Check sentence continuity.  
Rewritten. P7-L26-28 
6-27: Your figure 2 implies that you have a net radiometer (or rather both up-facing and down-
facing pyranometers) to derive your albedo at the point-scale. How does this compare to your 
albedo map derived from your RGB histogram stretch from 0.55 upward? What are the ranges 



of albedo derived? Also, the values seem largely different between 3 days when looking at 
figure 3. It looks as though the whole domain darkened by 0.05-0.1. Perhaps this was some 
effect of the cloud filtering you performed (according to Bash et al., 2018)?  
A more detailed discussion of the albedo has been added. P8-L6-11 
7-1: Still need some reasoning for your model period selection.  
Clarified. P9-L14-16 
7-10: Measured melt from the DSM? Again is this a Z-difference or ablation? Are you truly 
comparing the two here? I’m sure your model does not calculate vertical lowering, but melt (in 
w.e. units). Are you converting your DSM differences with density values of ice?? What values? 
Measured or assumed?  
For consistency with SR50 measurements and M3C2 differences, the ETI model output is in m 
of surface lowering (since it is based on a statistical relationship with the SR50 measurement). 
The EB output is in m ice equivalent (not water). We have made the units more explicit in text. 
7-11: Again, please provide some justification for NMAD and ME over other metrics.  
A deeper discussion of statistics has been included. P9-Section 2.4 
7-18: The model was run to quantify surface water production? Or just a ‘watershed’ analysis? 
Perhaps add a map of this to Figure 3?  
Clarified. A map of this density and the linear potential accumulation features has been added 
in a new figure (Figure 6) P10-L15-21 
8-9: The lower variability of the modelled values are not surprising, given that the model has 
two variables to consider for a system that is far more complex.  
Agreed, however, the EB model shows the same patterns. 
10-2: Figure 5A4-D4 does not show the correlation, but area of water features. I also fail to see 
how the errors of the AWS and distributed models are linked here. Perhaps include a 
correlation figure somewhere.  
We have updated the final figure, which we hope makes it more useful to see the relationship 
between high error and W20m.  
10-21: What uncertainties? Model uncertainties are not considered against your model-DSM 
comparisons. Your model error is simply the difference with the observed values.  
We have expanded our discussion of uncertainty on P12-L2-10 
10-22: Check citation format.  
This sentence was removed. 
10-27: what do you mean by muted?  
Rewritten. P14-L7 
10-32: Again, interested to see the effect of model resolution on your results as it would be 
very relevant for future work.  
11-5: And Horizontal motion?  
Added. P14-L20 
11-12: Again to see another figure with some correlations would be nice.  
11-17: Could this be a result of measurement uncertainty? Lighting from the processing of the 
SfM images? The processing of clouds and histogram stretching applied in your former paper? 
Although predominantly south facing, roughness may play a role here, which is of course not 
considered by ETI models.  
After adjusting the model, this relationship has become negligible. 



11-21: Have you considered any uncertainty due to SfM model construction for steep sided relic 
stream features that you mention? Did you obtain any oblique images? Is there anything worth 
noting about that here?  
The streams within the study area are less than 1m deep. The larger deeply incised canyons are 
outside the study area. 
12-16: Interesting that Figure 2 doesn’t show such a dampened cycle. Please see suggestions 
for Figure 2. What about Wind speed? (again plot in Figure 2). . . A temperature factor will 
under-represent the contribution from turbulent fluxes if your glacier terminus is heavily 
affected by strong katabatic winds. Again, anything worth noting here?  
This paragraph has been removed as suggested by reviewer 2. 
13-3: The conclusion reads a bit like a discussion in places. 
We have updated the conclusion with this in mind. 
13-5: ETI ‘model’. The albedo sentence feels a little out of place and should be reformulated 
into the previous sentence.  
Done. P16-24 
13-24: Add citations here.  
This sentence was removed.  
13-26: More pronounced compared to which studies?  
See above. 
[Figures]  
Figure 2: Perhaps use colour here to aid the visual differences between measured and modelled 
point-based melt (or surface lowering??). For panel C. What do you mean by distributed 
variables? Surely the values are the same, as you are comparing the melt/surface lowering at 
the AWS? The variables require no distribution and surely are the same as panel B? Why not 
compare the measured and modelling SWin on the same panel to give confidence to the reader 
that your modelled radiation, based upon surface topography, is valid? Also, I would suggest 
converting units to Wm-2, for consistency with much of the literature, and to compare with 
other studies. As suggested in the specific comments above, I think it would be valuable to 
demonstrate the full EB data, including wind speed (and direction if there is anything 
interesting to say about katabatic winds and its directional consistency) as well as relative 
humidity and LW if available. Equally, showing the sub-period of the UAV DSM acquisitions is 
key!  
Figure 2 has been updated to include color, and the other inputs of the energy balance model. 
Figure 4: Your model error is Modelled minus Measured? So your negative values are under-
estimation? Please clarify your convention. Transparent areas don’t show where the model 
performs poorly, but rather where modelled-measured differences are within the error range 
of the measurements. What about model error estimates here? These should be propagated. 
We have clarified our convention in text  



Reviewer 2 comments: 
 
1) There are several instances where the authors draw upon the methodologies of other studies 
to guide their ETI model development. However, what is often lacking is a simple description of 
the approach used in the cited study, and a statement explaining why this methodology was 
chosen by the authors. Examples of cited works that would benefit from deeper explanation 
include: Goswami et al. (2000); Bugler (1977); Rippin et al. (2015); Höhle and Höhle (2009)  
We have added further detail to the methods used from these references P7, P10 
2) A brief statement should be made early in the paper indicating whether reported melt values 
(m) are in ice equivalent or water equivalent (i.e. have you converted your surface elevation 
change observations to melt equivalent, or vice versa).  
We have indicated the measurement units on P6-4, P8-L15 
3) The determination of albedo is somewhat concerning, or at least the section describing the 
determination of albedo requires more detail and justification for the reader. It would be my 
impression that the scaling of surface albedo needs to be done twice, once for each 
orthoimage, with scaling being conducted using the albedo measured at the AWS at the time of 
the survey as validation for that cell. An off-ice site (rock or debris) could be used as a location 
of assumed constant albedo of ∼0.1. Instead, it is unclear why the authors would use the AWS-
derived average albedo (rather than maximum) as the upper limit for their albedo threshold 
across the area of interest on both survey days. Hopefully revisiting the albedo calculations 
might also help explain the surface darkening noticed by another commenter on the discussions 
page! Plotting the progression of surface albedo at the AWS over the study period could help 
confirm whether this darkening is real.  
See comment above addressing changes to the albedo parameterization 
4) A more detailed error analysis, and clearer reporting of errors and uncertainty, would 
significantly strengthen this work. Currently “model error” is used to describe the residual 
values between modelled (ETI_dist) and “measured” (see note below) melt at each cell. 
However, each of the parameters included in the model should have an associated (or at the 
very least estimated) uncertainty, as will the DSM models and calculated melt from DSM 
differencing.  
We have expanded our discussion of the uncertainty. P10-L2 
- To help with this, and to strengthen your argument for correlation between model errors and 
specific parameters, it could be worthwhile to include a figure with four plots that show model 
error vs. 1) aspect (with a full range from 0-360◦ ), 2) slope, 3) albedo, and 4) density of water 
features, by extracting these cell values over the entire region.  
5) On a semantics note, the differencing of DSM models to determine melt is not a melt 
“measurement” but rather it is a calculation, or estimate (considering that the DSMs have their 
own model uncertainties). It is fair to treat the DSM melt estimates as a measurement for the 
sake of ETI model validation, but the authors should briefly acknowledge this and be clear 
about the source and magnitude uncertainties associated with this “measurement.”  
We have included more detail about the work of Bash et al. 2018. And explicitly acknowledged 
the assumption that melt and surface lowering are equivalent. P3-L29 



6) One notable gap is an acknowledgement of, or discussion about, how parameters like aspect 
and slope are incorporated, or fail to be incorporated, into ETI_dist through the estimation of 
distributed radiation using the Goswami et al. (2000) approach. There is a good opportunity 
here to explore the sensitivity of ETI_dist to slope and aspect!  
 
Specific/minor comments:  
 
P1-L19: . . .14% of the world’s glacier ice. . . ← specify if this is area or volume  
Done. P2-L1 
P2-L13: Available measurements. . . The wording of this sentence is awkward, rewrite or 
combine with previous sentence to help with clarity.  
Rewritten. P2-L20 
P2-L25: . . .in high temporal and spatial detail. . . (replace great)  
Done. P3-L1 
P3-L13-16: Regarding ablation stakes, I am curious why you did not also use these 17 ablation 
stake observations as validation for ETI_dist, in the same way you use the AWS as a point 
observation. Perhaps you did not have stake measurements on the days of the UAV survey. . . 
However, I am perplexed by the reporting of an RMSE for the stake observations, perhaps you 
mean the RMSE of the modelled melt (from DSM differencing) at the stake locations? It is 
important to be clear that your DSM differencing is not communicated “measured” melt, but 
rather modeled, or estimated, melt using the geodetic method.  
We have tried to clarify the source of this reported uncertainty. P3-L26-29 
P3-L23: Suggest including the manufacturers name for the SR50.  
Done. P3-L25 
P3-L31-32: Please provide some justification for why a 5-hour rolling average was chosen, and 
how samples qualified as being “significantly different” from the population.  
We have added further description of this processing. P6-L1-11 
P4-L3-4: When referring to resolutions (0.10 m, 0.02 m) specify whether these are horizontal 
resolution (your cell size) or vertical resolution; also be specific with the reported uncertainty – 
which is presumably vertical uncertainty? +/-?  
Done. P6-L15-17 
P6-L13: “. . .temperature was assumed to remain constant across the area.” Out of curiosity, do 
you have a rough idea of what the temperature gradients are in this area? A quick correlation 
analysis between model error and surface elevations from your last DSM would be a simple 
way to verify that this assumption is reasonable.  
The model now allows temperature to vary, see major revision comment 1. 
P6-L15: What do you mean by “modify”? I would suggest giving much more attention to 
describing how the slope and aspect correction is applied in ETI_dist, particularly given the 
correlation of your error to aspect later on (see general comment #7)!  
P6-L19-30: This is the section where it would be helpful to have some more detail from the 
previous studies you draw upon build your model and conduct corrections. This section really 
describes the heart of your model, and any additional detail you can provide will help readers 
understand the reasoning for your model design and why it performs the way it does. I might 
even suggest creating a simple flow-chart that illustrates the model inputs and their sources.  



We have not included a flow chart, but have tried to expand on the description of both models. 
P6-L27: Is there a reason your reported range in albedo goes from high to low? (Rather than 
“0.1-0.55”?)  
New text here. P8-L29 
P7-L12: As noted in the general comments, a brief explanation of the Höhle and Höhle paper’s 
approach would be helpful – I am personally curious why the median is used instead of the 
mean!  
A fuller description of the reasoning behind our choice of statistics has been added. P9-10 
P7-L19: Why was 1500 cells chosen as the threshold for number of cells contributing to a water 
flow feature, and can you express this value in the area equivalent (e.g. square meters)?  
Added. P10-L19 
P8-L8: Uncertainties should be included the modelled and measured values reported here.  
Added. P11-L14-17 
P9-L4: Be clear what this correlation value is (Pearson correlation coefficient) or by using r = 
0.34. Putting the correlation value at the end of this sentence seems awkward, maybe try 
rewording?  
This section has changed. P12-13 
P9-L7: Similar to above, correct to include “. . . much lower (r < 0.1, and p > ___). . .”  
See above. 
P10-L1: Suggest observation rather than “experience” P10-L3: “-0.048 m”; also reword for 
clarity and include r =.  
Done. P14-L13 
P10-L15: “. . .deviation of 0.00083 m h-1, which is similar to other. . .”  
This has been rewritten. P13-L25 
P10-L20: Be specific, which year?  
Rewritten for clarity. P14-L1 
P10-L32: Specify, horizontal or vertical resolution  
Done. P14-L12 
P11-L4: “offsets”  
Done. P14-L16 
P11-L12: “Correlation between aspect. . .” This sentence feels out of place in a description of 
work by Bash et al. (2018), perhaps try rewording or open this paragraph with this sentence or 
something similar. E.g. “The correlation (r = X) between aspect and model error . . .”  
This paragraph has been removed. 
P11-L18: Tighten up wording, e.g. “Bash et al. (2018) measured higher melt rates in active 
supraglacial streams than on the surrounding ice.” 
Changed. P14-L31 
P11-L23: “. . . between the density of linear. . .”  
Rewritten. P15-L1 
P12-L9-16: It is unclear what this paragraph contributes to the paper here, rather it seems to 
interrupt a discussion of water flow features and their impact on melt. Perhaps add more 
context, otherwise remove.  
This has been removed. 
P12-L20: “. . .have a greater relative importance.”  



This has been removed.  
P12-L31: What do you mean by “simplifications”?  
Clarified. P16-L15 
P13-L5: Can you be specific about how you actually build upon the work of Rippin et al. (2015) 
to estimate albedo? Is this by introducing a scaling approach?  
Reworded. P16-L24-25 
P13-L10: Unclear what this first sentence is saying regarding “other implementations”  
Clarified. P16-L29 
P13-L19: It is not clear how Stevens et al. (2018) and the development of weather crusts relates 
to this study. Either take more time to explain the relevance (in the discussion section) or 
remove from conclusions.  
More explanation has been added in the discussion. 
 
Figure comments 
 Figure 2. Extending the E and F y-axis down to zero would help your arguments in the text. 
Check consistency with bold-type for your graph subsets and parenthesis e.g. A) vs (B), and 
correct formatting of Iin in the 2nd last line. Can you also explain the gap at the beginning of 
(F)?  
Figure is substantially changed. 
Figure 4. Recommend including the study dates – “. . . across the study area between July 21 
(hh:mm) and July 23 (hh:mm).” 
Done. 
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Abstract. Enhanced temperature index (ETI) models
::::::
Models

:
of glacier surface melt are commonly used in studies of glacier

mass balance and runoff, however, with limited data available most models are validated based on ablation stakes and data from

automatic weather stations (AWS). The technological advances of unmanned aerial vehicles (UAVs) and structure-from-motion

(SfM), have made it possible to measure glacier surface melt in detail over larger portions of a glacier. In this study, we use

melt measured using SfM processing of UAV imagery to assess the performance of an ETI
:::::
energy

:::::::
balance

::::
(EB)

::::
and

::::::::
enhanced5

::::::::::
temperature

:::::
index

:::::
(ETI) melt model in two-dimensions. Imagery collected over a portion of the ablation zone of Fountain

Glacier, NU
:::::::
Nunavut, on July 21, 23, and 24, 2016 was previously used to determine distributed surface melt. Incoming

:::
An

::::
AWS

:::
on

:::
the

::::::
glacier

::::::::
provides

::::
some

:::::::::
measured

:::::
inputs

:::
for

::::
both

:::::::
models,

::
as
:::::

well
::
as

::
an

:::::::::
additional

:::::
check

:::
on

:::::
model

::::::::::::
performance.

::::::::
Modelled

::::::::
incoming solar radiation and temperature measured at the AWS, along with albedo derived from UAV imagery, are

:::
also

:
used as inputs for the model which was

::::
both

::::::
models

:::::
which

:::::
were used to estimate melt from July 21-24, 2016. Modelled10

melt agrees
:::
Both

:::::::
models

::::
agree

:
with melt measured at the AWS within±0.022 m

::::::
(±0.018

::
m
:::
for

::::
EB). Across the study area the

median model error(-0.044 m), calculated as the difference between measured and modelled melt,
:::::::
modelled

::::
and

::::::::
measured

::::
melt

:::::::::::
(EB=−0.064

:::
m,

::::::::::::
ETI=−0.050

:::
m), is within the uncertainty of the measurements. A strong link was found between the model

error and glacier surface aspect with higher errors linked to south aspects. The highest errors were also linked
:::
The

:::::
errors

::
in

::::
both

::::::
models

::::
were

:::::::
strongly

:::::::::
correlated

:
to the density of water flow features on the glacier surface. The relation between water flow15

and model error suggests that energy from surface water flow is contributing significantly to surface melt on Fountain Glacier.

Deep surface streams with highly asymmetrical banks are observed on Fountain Glacier, but the processes leading to their

formation are missing in the model assessed here. The failure of the model to capture flow-induced melt and to under-estimate

melt on south aspectswould lead to significant underestimation of surface melt should the model be used to project future

change.20
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1 Introduction

The Canadian Arctic Archipelago holds approximately 14% of the world’s
::::
area

::
of

:
glacier ice outside the major ice sheets

(Gardner et al., 2011). Rates
:::
and

::::
rates

:
of glacier melt in the Canadian Arctic

:::::
region

:
have increased since the late 1990s

(Noël et al., 2018; Lenaerts et al., 2013; Gardner et al., 2012)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gardner et al., 2011; Noël et al., 2018; Lenaerts et al., 2013; Gardner et al., 2012)

. Fisher et al. (2012) show that recent melt rates on Canadian Arctic ice caps are the highest in 4000 years. Collectively,
:
,
:::::
while5

:::::::::::::::::
Gardner et al. (2012)

:::::
found

::::
that glaciers of the southern Canadian Arctic Archipelago contributed over 16% of 2003-2010

sea-level rise(Gardner et al., 2012). Future projections indicate the glaciers from across Arctic Canada will continue to be the

largest mountain glacier contributors to sea-level rise through the end of this century (Radić and Hock, 2011). Given the im-

portance of Canadian Arctic glaciers to global sea-level rise and the rapid change in melt rates observed in recent years, it is

critical to better understand the processes contributing to melt rates on these glaciers.10

Direct measurements of melt rates on Arctic glaciers are scarce, only five glaciers from the Canadian Arctic have current data

available online (WGMS, 2018). Where in situ data is collected, it is often based on ablation stake networks and data from au-

tomatic weather stations (AWS) (e.g. Bash et al., 2018; WGMS, 2018)
::::::::::::::::::::::::::::::::::::
(AWS; e.g. Bash et al., 2018; WGMS, 2018). These in

situ measurements must be extrapolated to provide estimates of melt at other locations on a glacier, or at other glaciers where no

measurements exist. Several kinds of models are commonly used to extrapolate glacier surface melt measurements, including15

temperature index (TI)
::::::::::::::::::::::
(TI; e.g. Hock, 1999, 2005), enhanced temperature index (ETI)

:::::::::::::::::::::::::::::::::::::::::::::::::
(ETI; e.g. Irvine-Fynn et al., 2014; Bash and Marshall, 2014)

, and energy balance
:::::::::::::::::::::::::::::::::::::::::::::::::
(EB; e.g. MacDougall and Flowers, 2011; Shaw et al., 2016). The TI or ETI models are often preferred

for regional scale models, because of their lower computational needs and the ease with which input variables can be estimated.

::::::
Energy

:::::::
balance

::::::
models

::::::
require

:::::
more

:::::
inputs

::::
and

::
as

:
a
:::::
result

:::
are

::::::::
preferred

:::
for

::
in

:::::
depth

::::::
studies

::
of

:::::::::
individual

:::::::
glaciers.

Validating model results is also difficult due to the lack of data available on Arctic glaciers
::::
Lack

:::
of

::::
data

::
for

::::::
Arctic

:::::::
glaciers20

:::
also

::::::
makes

::
it

:::::::
difficult

::
to

:::::::
validate

:::::
model

::::::
results. Datasets are often split into training and validation periods to assess model

performance. Available
:
,
::::::::
however,

::::
these

:
measurements represent only a few locations on the glacier surface , however (Mair

et al., 2003; Wake and Marshall, 2015; Matthews et al., 2015). Where outlet streams are measured, studies use total stream

discharge and aggregated surface melt to validate results (e.g. Pellicciotti et al., 2005; Bash and Marshall, 2014). Validation

with total melt provides insight into the average performance of these models over an entire glacier, but neither this method or25

the validation based on point data provide insight into model performance across a glacier surface.

Technological advances have allowed for increasingly detailed change detection from imagery obtained by satellites, un-

manned aerial vehicles (UAVs), and terrestrial photography. Structure-from-motion (SfM) is widely used across a range of

disciplines for reconstructing topography using imagery from the aforementioned sources (e.g. James and Robson, 2014;

Cook, 2017; Watson et al., 2017; Lovitt et al., 2018; Bash et al., 2018). Employing SfM, Watson et al. (2017) use multiple30

reconstructions of a debris covered glacier to measure seasonal ice cliff retreat from terrestrial photographs, including spatial

variation in rates across individual cliff faces. Using similar methods and UAV imagery, Bash et al. (2018) measure
::::::::
measured

spatially variable melt rates in the ablation zone of an Arctic glacier over 3
:
4 days. This new capacity for measuring change
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in great
:::
high

:
temporal and spatial detail provides opportunities to examine spatial patterns in ways that were previously not

possible.

The methods of surveying that are needed for detailed surface change measurements using SfM are time consuming (Watson

et al., 2017; Bash et al., 2018; Avanzi et al., 2018). These surveys involve multiple site visits, measurement of control points

using differential GPS or total stations, and imagery collection (Bash et al., 2018). Given the effort involved in these data5

collection campaigns, it is not feasible at this time to extend these methods to regional-scale glacier change detection. Modelling

efforts will continue to play an important role in understanding glacier melt in the future and thus it is critical to improve the

models employed.

The aim of this study is to use melt measurements available in high spatial and temporal resolution to assess the performance

of an ETI model
:::::
energy

:::::::
balance

:::::
model

::::
and

::
an

::::::::
enhanced

::::::::::
temperature

:::::
index

::::::
model across the glacier surface. We do this using10

previously published surface melt data which was measured using UAV surveys in the ablation zone of Fountain Glacier, NU

:::::::
Nunavut (Bash et al., 2018).

2 Methods

2.1 Study Area

Fountain Glacier, located on Bylot Island, NU
:::::::
Nunavut

:
(Figure 1), has been studied in detail since 1991 (e.g. Moorman, 2003;15

Whitehead et al., 2014; Bash et al., 2018). The glacier stretches 16 km from higher elevations in the Byam Martin Mountain

Range to its terminus roughly 10 km inland from the coast. The focus area of this study, in the lower ablation zone, spans a

narrow elevation range (250–400 m) and terminates in a cliff face with two calving fronts. The lower portion of the glacier

faces east, with several supraglacial streams of varying sizes (St. Germain and Moorman, 2016). The largest of these streams

form deeply incised asymmetrical canyons, with a steeper north facing valley wall and a more gently sloping south facing20

valley wall (Figure 1).

During July of 2016 aerial surveys were conducted with a UAV to reconstruct the
::::
0.185

::::
km2

::
of

:::
the

::::::
glacier

:
surface multiple

times (Bash et al., 2018). Bash et al. (2018) measured surface lowering between July 21 and 24 using point cloud differencing

across the study area indicated in Figure 1. Concurrently, an automatic weather station (AWS; Figure 1) was recording surface

melt
:::::::
recorded

:::::::
surface

::::
melt

::::
with

::
a
::::::::
Campbell

:::::::::
Scientific

:::::
SR50

:::::
sonic

::::::
ranger, as well as temperature, incoming and outgoing25

shortwave radiation, relative humidity, wind speed and direction. Bash et al. (2018) assessed the surface lowering
::::::::
measured

::::::
through

:::::
point

:::::
cloud

:::::::::::
differencing against 17 ablation stakes, as well as the AWS data, and found that the surface lowering

measured through point cloud differencing agreed with
:::::::
measured

:::::::
surface

::::::::
lowering

::::::
agreed

::::
with

:::::
other

:
melt measurements

throughout the study area.
::
In

:::
this

:::::
study

:::
we

::::::
assume

::::
that

:::::
point

::::
cloud

:::::::
derived

::::::
surface

::::::::
lowering

::
is

::::::::
equivalent

::
to

:::::::
surface

::::
melt.

::::
The

:::::::::
uncertainty

::
of

::::
this The root mean square error (RMSE) of the measured surface lowering was 0.048 m.30

Bash et al. (2018) measured an average daily melt rate of 6.0 cm
::::
0.060

::
m

:
day−1 across the study area between July 21-24,

2016. Average melt rates of 3.0–5.5 cm
::::::::::
0.030–0.055

::
m
:
day−1 were found by Whitehead et al. (2014) in summer 2010–2011.

::::::::::
2010–2011. Bash et al. (2018) also showed, however, that melt was highly variable across the study area during that time
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Figure 1. Location of Fountain Glacier on Bylot Island, NU
::::::
Nunavut, in the Canadian Arctic. (A) The automatic weather station (AWS)

installed on a tripod, measuring incoming and outgoing shortwave radiation and temperature. An SR50 measuring surface position was

installed on a separate pole drilled into the glacier (foreground). (B) A 2011 orthomosaic of the lower ablation zone of Fountain Glacier. The

boundary of the study area is shown, the area extends to the 2016 glacier boundary on the north side. The AWS location is also indicated

(green triangle). Two canyons formed by stream incision are indicated by red arrows. (C) An aerial view of the largest incised canyon on

Fountain Glacier. The photo is taken facing east and the steep north facing canyon walls can be seen in contrast to the more gently sloping

south facing walls.

ranging from 1.0–11.0 cm
::::::::::
0.010–0.110

::
m
:
day−1. The authors found that these differences in melt were not tied to elevation or

aspect of the glacier surface.

2.2 Description of Data

All AWS measurements were taken at 2 min intervals and recorded as hourly averages from July 13 to August 2, 2016 (Figure

2A, 2D, 2E). An
::::
2016

::::::
(Figure

:::
2).

::::
The SR50 sonic ranger was installed on a pole drilled into the glacier surface immediately5

next to the AWS and measured hourly average surface position for the same time period. The pole holding the SR50 began to

tilt due to melt out of the pole during the afternoon of July 27 and was reinstalled in the morning on July 28. The data from

that time period was removed from the time series
::
for

:::::
model

:::::::::
validation(Figure 2).
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Models run at high temporal resolution can have significant errors which stem from SR50 readings (Matthews et al., 2015).

These errors stem from the uncertainty in SR50 readings due to the instrument accuracy (0.01 m), as well as uneven topography

underneath the instrument. In addition to hourly surface position
:
, the SR50 records a standard deviation of all measurements

in the hourly average (typically 30
:::::::::::
measurements). SR50 values where the standard deviation was greater than 0.01 m were

removedand then
:
,
:::::::
expected

::::::
hourly

::::
melt

::::
rates

:::
are

:::::
lower

::::
than

:::
the

:::::::::
instrument

::::::::
accuracy

:::
and

::::::::
standard

::::::::
deviations

::::::
greater

::::
than

::::
that5

::
are

::::::::
assumed

::
to

::
be

::::::
related

::
to
::::::
noise.

::::
After

::::::::
removing

:::::
those

::::::
points,

:
a 5 hr rolling average was calculated .

:
to

:::::::
smooth

::
the

::::
data

::::
and

::
fill

::
in

::::::::
removed

::::::
values.

:::
The

::
5

::
hr

:::::::
window

:::
was

::::
used

::
to
::::::
assure

:::
that

:::
all

:::::::
windows

::::
had

:::::::
multiple

::::::::::::
measurements

::
to

:::::::
average,

::::
after

:::::
some

:::::::::::
measurements

::::
had

::::
been

::::::::
removed. SR50 values which differed significantly from others in the 5 hr window were also removed

:::::::
(defined

::
as

::::
more

::::
than

:::
the

::::::::
standard

:::::::
deviation

:::
of

:::::
hourly

::::::
change

:::
in

::
the

::
5
::
hr

::::::::
window),

:::::
under

:::
an

:::::::::
assumption

::::
that

:
it
::::
was

:::::::::
physically

:::::::
unlikely

::
for

::::
melt

:::::
rates

:
to
:::::::
change

::::::::::
dramatically

::::
over

::::
short

:::::::
periods. Melt was then calculated in 12 hr periods (0:00 – 12:00) using10

the remaining values.

Processing of UAV imagery was done in Agisoft Photoscan and is described in detail by Bash et al. (2018).
::::
High

::::::::
accuracy

::::::
settings

::::
were

::::
used

::
to
:::::
retain

:::::
detail

::
in

:::
the

::::
final

:::::
point

:::::
cloud. During processing, point clouds of the glacier surface at mid-day were

produced for July 21 and 24, 2016. The point clouds were used to create orthomosaics and digital surface models (DSM
:::::
DSMs)

for each day with
:::::::::
horizontal resolutions of 0.10 m.15

The multiscale model to model cloud comparison algorithm (M3C2) was used to calculate melt across the study area at 0.02

m
::::::::
horizontal

:
resolution (Lague et al., 2013; Bash et al., 2018), with

::::::
vertical

:
uncertainty of 0.048 m based on the RMSE of

surface lowering compared to ablation stakes.
:::
The

::::::
M3C2

::::::::
algorithm

:::::::::
calculates

::::::
change

::::::
normal

::
to
:::
the

:::::
local

:::::::
surface,

:::::
which

::::
was

:::::::
desirable

:::
for

:::::::::
measuring

:::::::
detailed

:::::::
change

::
at

::::
such

::::
fine

:::::::::
resolution.

:::::
After

::::::::::
differencing

:::
the

:::::
point

::::::
clouds

:::::
were

::::::
filtered

::
to

:::::::
remove

::::
large

:::::::
outliers

:::
and

:::::::::
differences

:::::::::
calculated

:::::
from

:::::
fewer

::::
than

:
5
::::::
points,

::
as

:::::::::
suggested

::
by

::::::::::::::::
Lague et al. (2013)

:
.
::::
This

:::::::
filtering

:::::::
resulted20

::
in

::::::
variable

:::::::
density

::
of

:::::
points

::
in

:::
the

::::
final

:::::
point

:::::
cloud.

:
To align with DSMs and orthomsaics of the study area, for this study melt

data was gridded to 0.10 m resolution. Melt measurements were averaged within each grid cell and empty cells were filled

using bilinear interpolation.

2.3 Model Formulation

2.3.1
::::::
Energy

:::::::
Balance

::::::
Model25

::
An

::::
EB

::::::
model

::::::::
accounts

:::
for

:::
all

::::::
energy

::::::
inputs

:::
and

:::::::
outputs

::
at
::::

the
::::::
glacier

::::::
surface

:::
to

:::::::
estimate

:::::::
energy

::::::::
available

:::
for

::::
melt

:::
or

:::::::
freezing.

:::
As

:
a
::::::::::::
representation

::
of

:::::::
surface

::::::
energy

::::::::
exchange,

:::::
these

::::::
models

:::
are

:::::
often

:::::::
assumed

::
to

:::
be

:::
the

:::
best

:::::::::
estimators

::
of

:::::::
surface

::::
melt

:::::::::::
(Hock, 2005)

:
.
:::
We

:::::::
employ

:::
an

::::::
energy

:::::::
balance

::::::
model

::::::::
described

:::
by

::::::::::::::::::::::::::
Ebrahimi and Marshall (2016)

:
as

::
a
:::::
check

:::
on

:::::
both

::::::::::
SfM-derived

::::::
change

::::
and

:::
the

:::
ETI

::::::
model

::::::::
described

::::::
below.

QN =Q↓SW −Q
↑
SW +Q↓L−Q

↑
L +QH +QE

:::::::::::::::::::::::::::::::::::::
(1)30
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:::::
where

:::
QN::

is
:::
the

:::
net

::::::
energy

:::
flux

::
at
:::
the

::::::
surface

::::
and

:::::
Q↓SW ,

::::::
Q↑SW ,

:::
Q↓L,

::::
Q↑L,

::::
QH ,

:::
QE::::::::

represent
::::::::
incoming

::::
and

:::::::
outgoing

:::::::::
shortwave

::::::::
radiation,

::::::::
incoming

::::
and

:::::::
outgoing

:::::::::
longwave

::::::::
radiation,

:::::::
sensible

::::
and

:::::
latent

::::
heat

:::::
flux,

::::::::::
respectively.

::::
The

::::::
energy

::::::
fluxes

:::
are

:::
all

::::::::
calculated

::
in

:::
MJ

:::
for

::::::::::
consistency

::::
with

:::::
AWS

::::::::::::
measurements

::::
and

::::::
energy

:::::
fluxes

:::
are

:::::::
positive

:::::
when

::::
they

:::::::::
contribute

::::::
energy

::
to

:::
the

:::::
glacier

:::::::
surface.

:::::
When

::::::::
QN > 0

::::
melt

:::
(M̂ ;

:::
m

:::
ice)

::
is

::::::::
calculated

::::
by:

M̂ =
QN

ρiceLf
::::::::::

(2)5

:::::
where

:::
ρice::

is
:::
the

::::::
density

::
of

::::::
glacier

:::
ice,

:::::::
assumed

::
to
:::
be

:::
900

::
kg

:::
m3

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Arnold et al., 2006; Cuffey and Paterson, 2010; Fitzpatrick et al., 2017)

:::
and

:::
Lf::

is
:::
the

:::::
latent

::::
heat

:::
of

::::::
fusion.

:::::::::
Longwave

::::::::
radiation

:::::
(QL)

::
is

::::::::::::
parameterized

:::::
based

:::
on

:::
the

::::::::
absolute

::::::::::
temperature

:::
(T)

::::
and

::::::::
emissivity

:::
(ε):

:

QL = εδT 4

:::::::::
(3)

:::::
where

:
δ
::

is
:::
the

::::::::::::::::
Stefan-Boltzmann

:::::::
constant.

::::
For

::::
Q↑L,

:::
the

:::::::::
calculation

::
is

:::::::::::::
straightforward

::
if

:::
the

::::::
surface

::
is

:::::::
assumed

:::
to

::
be

:::::::
melting10

::::::
(273.15

:::
K),

:::
the

:::::::
surface

::::::::
emissivity

::
is

::::
then

::::
1.0.

:::
The

:::::::::::
atmospheric

::::::::
emissivity

::::
(εa)

::::
must

:::
be

::::::::
estimated

::
in

:::::
order

::
to

::::::
obtain

:::
Q↓L.

:::::
Here

::
we

:::
use

::
a
::::::::::::::
parameterization

::::
from

:::::::::::::::::::::::::
Ebrahimi and Marshall (2015)

:::::
based

::
on

::::::
vapour

:::::::
pressure

::::
(ev),

:::
and

:::::::
relative

:::::::
humidity

::::
(H),

::::::
which

:::
was

:::::
found

::
to

:::
be

:::::
robust

:::::
when

:::::::::
transferred

:::::::
directly

::::::
without

:::::
local

:::::::
training.

εa = 0.445 + 0.0055H + 0.0052ev
::::::::::::::::::::::::::::

(4)

:::
The

:::::::
sensible

:::
and

:::::
latent

::::
heat

:::::
fluxes

:::
are

:::::::::
calculated

:::
by

::::::::
equations

:
5
::::
and

::
7,

::::::::::
respectively.15

QH = ρacpk
2v

[
Tpa−Tps

ln(z/z0)ln(z/z0H)

]
:::::::::::::::::::::::::::::::

(5)

:::::
where

::
ρa::

is
:::
the

:::
air

:::::::
density,

::::::::
calculated

:::::
from

:::
the

:::
near

:::::::
surface

::
air

::::::::::
temperature

::::
and

:::::::
average

::
air

:::::::
pressure

::
at
:::
the

:::::
AWS

:::::::::::
(Paws=969),

::
cp ::

is
:::
the

::::
heat

:::::::
capacity

::
of

:::
air,

::
v

::
is

:::
the

::::::::
measured

::::
wind

::::::
speed,

:::
and

:::::::
k = 0.4

::
is

:::
von

:::::::::
Karman’s

:::::::
constant.

::::
The

::::::::
potential

::::::::::
temperature

:
is
:::::::::
calculated

:::
for

:::
the

::::
near

::::::
surface

:::
air

::::
(Tpa)

::::
and

:::
ice

::::::
surface

:::::::
by(Tps):

Tp = T
Pref

Paws

R/cp

::::::::::::::

(6)20

:::::
where

::::
Pref::

is
:
a
::::::::
reference

::::::::
pressure

:::::
(1000

::::
mb),

:::::::::
R= 288.5

:::
and

:::
the

:::::::
surface

:
is
::::::::
assumed

::
to

::
be

::
at

:::
the

:::::::
melting

:::::
point.

QE = ρaLvk
2v

[
qa− qs

ln(z/z0)ln(z/z0E)

]
:::::::::::::::::::::::::::::::

(7)

:::::
where

:::
Lv::

is
:::
the

:::::
latent

::::
heat

:::
of

:::::::::::
vaporization,

::
qa::

is
:::
the

:::::::
specific

::::::::
humidity,

::::::
based

::
on

::
T
::::
and

:::
H ,

:::
and

:::
qs::

is
:::
the

:::::::
specific

::::::::
humidity

::::::::
calculated

:::::
from

:::
the

:::::::::
saturation

:::::
vapor

:::::::
pressure

::
at
:::

the
:::::::

melting
:::::::

surface.
:::
z0,

:::::
z0H ,

:::
and

::::
z0E:::

are
::::

the
::::::::
roughness

::::::
length

::::::
scales

:::
for
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:::::::
turbulent

::::::::
exchange

:::
of

::::::::::
momentum,

::::
heat,

::::
and

::::::::
moisture.

:::
The

::::::
height

::
of

:::
all

:::::
AWS

::::::::::::
measurements

::
is

::::::
z = 1.5

::
m

::::
and

:::::::::
z0 = 0.005

:::
m,

:::
was

::::
used

::
as

::
a

:::::
tuning

::::::::
parameter

::
at
:::
the

:::::
AWS.

:::::
Both

:::::::
equation

:
5
::::
and

:
7
::::::
neglect

::
a

::::::::
correction

:::
for

::::::::::
atmospheric

:::::::
stability,

:::::
which

::::
has

::::
been

:::::
shown

::
in

:::::::
previous

::::::
studies

::
to

:::::::
provide

:::::
better

:::::
results

:::
for

::::
these

::::::::::
parameters

:::::::::::::::::::::::::::::::::::::::::::::::
(Hock and Holmgren, 2005; Ebrahimi and Marshall, 2016)

:
.

:
A
::::

1-D
:::::::::::

formulation
::
of

::::
this

::::::
model

:::::::
(EBaws)

:::::
runs

:::::
using

::::::::
measured

::::::
inputs

:::::
from

:::
the

:::::
AWS.

:::
A

:::::::::
distributed

:::::::
version

::::
was

::::
also5

::::::::
developed

::::::::
(EBdist) :::::

using
::::::::
modelled

::::::::
incoming

::::::::
radiation

::
at

:::
the

:::::
AWS

:::::::
location

::::
and

::::::
albedo

:::::::
derived

::::
from

:::
the

:::::
UAV

:::::::
imagery

:::
to

::::::::
determine

::::::
SWnet:::::

(both
::::::::
described

::::::
below,

::::::
Figures

::::
2A,

::
B,

:::
3).

:::::
Near

::::::
surface

:::
air

::::::::::
temperature

:::::
across

:::
the

:::::
study

::::
area

::::
was

::::::::
modelled

::::
using

:::
the

:::::::::::
uncorrelated

:::::
AWS

::::::::::
temperature

::::
and

::::::::
modelled

::::::::
radiation

:::::::
(Section

::::::
2.3.2).

:::::::::
Measured

::::::
values

::::
from

:::
the

:::::
AWS

:::
are

:::::
used

::
for

:::
all

:::::
other

::::::::
variables

::
in

::::::::
equations

::
3

:
-
::
7.

:
Distributed incoming radiation was calculated

:::::::
modelled

:
by modifying the hourly

measured incoming radiation at the AWS by the slope
::
(S)

::::
and

:::::
aspect

::::
(A) of each grid cell

::
in

:::
the

::::
July

::
21

:::::
DSM

:
(Figure 3C).10

The terrain correction was based on Goswami et al. (2000).

SWin =Q↓SW ∗ cosψ ∗ cos(ω−A) ∗ sinS ∗ cosS
::::::::::::::::::::::::::::::::::::::::

(8)

:::::
where

::
ψ

::
is

:::
the

::::
solar

:::::::
altitude

:::
and

::
ω

:::
the

:::::
solar

:::::::
azimuth.

:
This correction alone causes radiation to drop to zero overnight, which

is not realistic during Arctic summers. Although direct radiation may drop to zero at some cells when sun angles are low

overnight
:::::
(solar

::::::::
elevation

::::
dips

::
to

:::
3.6◦), diffuse radiation is at measurable levels (Figure 2E). A diffuse correction was made15

::::::::
(SWdiff ; based on Bugler (1977)to

:
)
:::
was

::::::
added

::
to

::::::::
incoming

:::::::
radiation

::::
after

:::::::::
correction

:::
for

::::::::
incidence

:::::
angle

::
to estimate the total

incoming radiation (Figure 2F).

SWdiff = 16ψ0.5− 0.4ψ
::::::::::::::::::::

(9)

Lower peak radiation in the model
::::::
(Figure

::::
2B)

:
is due to a slight difference in slope and aspect between the radiometer

(which is
:::
was level) and the grid cell of the DSM containing the AWS

:::::
(slope

::
=

:
5◦

:
,
:::::
aspect

::
=
:::
177◦

:
). Estimated radiation at each20

cell was then multiplied by (1−α) to estimate Iabs :::::
SWnet at each cell.

Albedo was estimated across the study area using the orthomosaics from July 21 and July 23. Each orthomosaic contains the

digital number recorded by the camera in the red, green, and blue (RGB) channels. The digital number cannot be directly used

to calculate surface reflectance without conversion equations proprietary to the camera manufacturer. However, several studies

have used other means to convert digital numbers to surface reflectance (Corripio, 2004; Rippin et al., 2015; Ryan et al., 2017)25

, we employed an approach similar to that of Rippin et al. (2015)
:::::::::
approaches

::
to

:::::
derive

::::::
surface

:::::::::
reflectance

:::::
from

:::::
digital

::::::::
numbers

::::::::::::::::::::::::::::::::::::::::::::
(Corripio, 2004; Rippin et al., 2015; Ryan et al., 2017).

:::::::::::::::::
Rippin et al. (2015)

:::
use

:::
the

::::
sum

::
of

:::::
RGB

::::::
digital

:::::::
number

::::::
values

::
as

::
a

:::::
proxy

::
for

:::::::
albedo,

::::::
similar

::
to

:::
the

::::::::
approach

:::
we

::::::
employ

::::
here.

Values for RGB channels were averaged and the total range scaled to a range of 0.55-0.1
:::::
match

:::
the

::::
value

::
at
:::
the

:::::
AWS

:::::::
location

(Figure 3). The upper end of the range was determined by the average surface albedo measured at the AWS during the study30

period , while the lower end
::::::
Scaling

::
in

:::
this

::::
way

::::::
allows

:::
the

::::::
values

::
to

::
be

:::::::
directly

:::::
input

::::
into

:::::::
models,

::
as

:::::::
opposed

::
to

:::::::::
providing

:
a
:::::
proxy

:::
for

::::::
albedo

::
as
::::

was
:::::
done

::
in

::::::::::::::::
Rippin et al. (2015)

:
.
::::
The

::::::
average

:::::::::
measured

::::::
albedo

:::::
value

:::
for

:::
the

:::::
study

:::::
period

::::::
(0.31;

::::
July

:::::
21-24,

:::::
2016)

::::
was

::::
used

::
to

:::
fix

:::
the

:::::::
rescaled

:::::
value

:::
for

::::
both

::::
July

::
21

::::
and

::::
July

::
23

::
at

:::
the

:::::
AWS

:::::::
location.

::::
The

:::::
lower

::::
end

::
of

:::
the

:::::
range

7



was based on albedo values of cryoconite holes reported by Ryan et al. (2017). An
::::::::::::::::::
Ryan et al. (0.1; 2017),

::
an

:
assumption was

made that cryoconite holes would have similar albedo to debris on the glacier surface. The scaling of RGB values was used to

create a gridded albedo product
:::
two

:::::::
gridded

::::::
albedo

:::::::
products

:
that could be directly input into the melt model

::::::
(Figure

::
3). July

21 albedo was used as a model input for
::
up

::
to
:

12:00 July 21 – 12:00 July 23, while the July 23 albedo was used from 12:00

July 23 onward.5

:::::
Mean

::::::
albedo

::::
over

:::
the

::::
grid

:::
was

:::::
0.35

:::
for

::::
July

::
21

::::
and

::::
0.33

:::
for

::::
July

:::
23,

:::
the

:::::::
median

:::::::::
difference

:::::::
between

:::
the

::::
two

::::
was

:::::
0.020

::::::
(Figure

:::
3).

::::::
Albedo

::::::::
measured

::
at

:::
the

:::::
AWS

::
on

::::
July

:::
21

:::
and

::::
July

::
23

::
at

:::::
12:00

::::
(the

::::
time

::
of

:::::
image

::::::::::
acquisition)

::::
was

:::::
0.315

:::
and

::::::
0.309.

:::
The

:::::
more

::::::::::
pronounced

::::::::
difference

::
in

:::
the

:::::::
gridded

:::::
albedo

:::::
likely

:::::::
reflects

:::::
darker

:::::::
imagery

::
in

:::
the

::::
July

::
23

:::::::
mosaic,

::
in

:::::::
addition

::
to

:
a
::::
true

:::::::
lowering

::
of

:::
the

::::::
surface

::::::
albedo

::::
over

:::
the

::::
time

::::::
period.

:::
To

:::
test

:::
the

::::::::::
importance

::
of

:::
this

:::::
lower

::::::
albedo

:::::
value,

::::
total

::::::::
absorbed

::::::::
radiation

:
at
::::

the
::::
AWS

:::
for

::::
July

:::::
2016

::::
was

:::::::
adjusted

::
to

::::::
reflect

:
a
:::::
lower

:::::::
albedo,

::::::
beyond

:::::
what

::::
was

::::::::
measured

::
at

:::
the

::::::
AWS.

::::
This

:::::::
lowering

:::
of10

:::::
0.014

::::
could

:::::::
produce

::::::::::::
approximately

:::::
0.028

::
m
:::::::::
additional

::::
melt

::::
over

:::
the

::::::
course

::
of

:::
the

::::::
month.

2.3.2
:::::::::
Enhanced

:::::::::::
Temperature

::::::
Index

::::::
Model

This study assesses the performance of an enhanced temperature index model because these models are commonly used for

regional scale estimations of glacier melt. The model we use is formulated after Bash and Marshall (2014), which uses absorbed

radiation (SWnet; MJ hr−1) and temperature (◦C) in a linear regression model to estimate melt (M̂ ; m ice). The formulation15

of the model is unique in that it controls for correlation between independent variables which can make model results unstable

when not addressed. The uncorrelated temperature (Tresidual) is calculated by:

TSW = η+βSWnet (10)

Tresidual = T −TSW (11)

where η and β are coefficients fit using a linear regression. Tresidual is then used in the following equation to determine melt20

in meters of surface lowering consistent with SR50 and UAV measurements:

M̂ =

 TF ·Tresidual +RF ·SWnet : T > TT

0 : T ≤ TT
(12)

where SWnet can be calculated by the difference between incoming and outgoing radiation, or by multiplying incoming ra-

diation by (1−α), where α is the surface albedo.
:::
The

::::::::::
coefficients

:::
TF

::::
and

::::
RF

::::
were

::
fit

:::::
using

::
a

:::::
linear

:::::::::
regression.

:::::::::
Threshold

::::::::::
temperatures

::::
(TT )

:::::::
ranging

::::
from

:::
1◦-

::::
2◦C

::::
have

::::
been

::::
used

::
in

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hock, 1999; Pellicciotti et al., 2005; Gabbi et al., 2014; Irvine-Fynn et al., 2014; Matthews et al., 2015)25

:
.
::::
Here

:::
we

:::
use

:::::::::
TT = 0◦C.

::::::::
Although

:::
we

::::
have

:::
not

:::::::::
performed

:::
any

::::::
testing

::
of

:::
this

:::::::::
threshold,

:
it
::
is

:::::::
unlikely

:::
that

::
it

:::::
would

:::::
affect

::::::
model

::::::::
outcomes

::
in

:::
this

:::::
study

::
as

:::
the

:::
air

::::::::::
temperature

:::::
rarely

:::
fell

:::::
below

::::
2◦C

::::::
during

:::
the

:::::
month

::
of

::::
July

:::::
2016,

::::
and

::::
never

::::::
during

:::
the

::::::
period

:::::
where

:::::::::
distributed

::::
melt

::::::::::
information

::
is

::::::::
available.
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Table 1.
::::
Model

:::::::::
coefficients

:::::::
obtained

::::
using

:::::
linear

::::::::
regression

::::::::
modelling

:::
for

:::
July

:::
14

:
–
:::
20,

::::
2016.

:::::
Units

::
of

:::
TF

:::
are

:::::
mh−1◦

:::
C−1,

::::
and

:::
RF

:::
are

:::::::::
mh−1MJ−1

:::
TF

::
RF

:

:::
This

:::::
study

::::::
0.00019

: :::::
0.0015

:

::::::::::::::::::
Irvine-Fynn et al. (2014)

::::::::
maximum

::::::
0.00068

: :::::
0.0017

:

::::::::::::::::::
Irvine-Fynn et al. (2014)

:::::::
minimum

: :::::
0.0002

::::::
-0.0014

::::::::::::::::::
Pellicciotti et al. (2005)

::::::
0.00005

: :::::
0.0026

:

Cumulative positive Tresidual and SWnet were calculated for 12 hr periods beginning July 14 at 12:00. Data from July 14

– July 20 was used as a training period to determine the model coefficients (η, β, TF, RF) using a multiple linear regression.

The model will estimate no melt if actual air temperature falls below zero, but temperatures remained above zero through

the study period.
::::
The

::::
fitted

::::::
model

::::::::::
coefficients

:::
are

::::::
shown

::
in

:::::
Table

::
1.

::::::
Model

::::::::::
coefficients

:::::::
compare

:::::
well

::
to

:::::
those

:::::::
reported

:::
by

::::::::::::::::::::
Irvine-Fynn et al. (2014),

::
a
:::::
study

:::::
which

::::
also

::::::::
modelled

::
an

::::::
Arctic

::::::
glacier,

::::::::
although

::::
they

:::::
report

::
a
::::
wide

:::::
range

:::
of

:::::
values

:::
for

::::
RF5

::::::::
depending

:::
on

:::
the

::::::
training

:::::::
period.

:
A
::::
1-D

::::::::::
formulation

::
of

:::
the

::::::
model

:::
was

:::
run

::
at
:::
the

:::::
AWS

:::
site

::::::::
(ETIaws)

:::::
using

::::::::
measured

::::::
SWnet:::

and
::::
near

:::::::
surface

::
air

:::::::::::
temperature.

:
A
::::::::::

distributed
:::::
model

::::::::
(ETIdist)::::

was
::::::::
developed

:::
by

:::::::::
estimating

:::::
model

::::::::
variables

::::::
across

:::
the

::::
study

::::
area

::
at
:::::
each

:::
grid

::::
cell.

::::::
Given

:::
the

:::::::
relatively

:::::
small

::::
size

::
of

:::
the

:::::
study

:::::
area,

::::::::
Tresidual :::

was
::::::::

assumed
::
to

::::::
remain

:::::::
constant

::::::
across

:::
the

:::::
area,

::::::::
calculated

:::
by

::::::::
equations

:::
10

:::
and

:::
11

::::
with

::::::::
modelled

::::::::
incoming

::::::::
radiation

::::
and

::::::::
measured

::::::::::
temperature

::
at
:::

the
:::::

AWS
::::

site.
:::::::::

Equations
:::
10

:::
and

:::
11

::::
can

::
be

::::
used

:::
to10

::::::::::::
back-calculate

::::::::::
temperature

:::::
when

:::::::
Tresidual::::

and
::::::
SWnet:::

are
::::::
known,

::::
this

:::::::
allowed

::::::::
modelled

::::::::::
temperature

::
to

::::
vary

:::::
across

:::
the

:::::
grid.

:::::
SWnet::::

was
:::::::::
calculated

::::
from

::::::::
modelled

:::::::::
distributed

::::::::
radiation

:::
and

::::::
albedo,

::::::::
described

::::::
above.

:

2.4 Model Performance

:::
The

::::
four

:::::::
models

:::::::
(EBaws,

:::::::
ETIaws,

:::::::
EBdist,:::::::

ETIdist):::::
were

:::
run

:::
for

:::
the

::::::
period

::::
0:00

::::
July

::::::::
1–24:00

::::
July

:::
31,

:::::
2016,

::::::::
allowing

:::
for

:::::::::
comparison

::::::::
between

::::::
models

::::
over

:
a
::::::
longer

::::
time

::::::
period

::::
than

:::::
when

::::
melt

::::::::::::
measurements

::::
were

::::::::
available.

:::::::
Outputs

:::::
from

::::
0:00

::::
July15

::::::::
14–24:00

::::
July

::
31

:::::
were

::::::::
compared

:::::::
directly

::
to

::::
melt

:::::::::
measured

::::
with

:::
the

::::::
SR50.

::
To

::::::::
compare

::::::
EBdist:::

and
:::::::
ETIdist:::::::::

estimates,
::::
melt

:::::
values

::::
were

::::::::
extracted

:::::
from

:::
the

:::
grid

::::
cell

:::::::::
containing

::
the

::::::
AWS.

:::
All

::::::
models

::::
were

::::::::
assessed

::::
using

:::
the

:::::
mean

::::
and

:::::::
standard

::::::::
deviation

:::
(σ)

::
of

:::
the

:::::::
residuals

:::::::::
(M̂ −M ).

Melt
::::
Total

::::
melt

:
estimates for July 21–24 from ETIdist ::::

both
:::::::::
distributed

:::::::
models were compared to measured melt

:::
the

::::::
gridded

::::
melt

:::::::::::::
measurements across the study area for the same period. Model error was calculated at each grid cell in the20

study area
:
,
:::::::
negative

::::::
values

:::::::
indicate

::::::::::::::
underestimation

:::
and

:::::::
positive

::::::
values

:::::::
indicate

:::::::::::::
overestimation

::
of

:::
the

::::::
model

::
as

:::::::::
compared

::
to

:::
the

:::::::::::
UAV-derived

:::
data

:::::::::
(M̂ −M ). The median model error (ME) and normalized median absolute deviation (NMAD) were

used to describe the model error following Höhle and Höhle (2009).
::::::::::::::::::::
Höhle and Höhle (2009)

::::::
suggest

:::::
using

:::::
these

:::::::
metrics

::
to

:::::::
describe

:::::
errors

:::::
when

::::
the

::::
error

:::::::::::
distributions

:::
are

:::::::::::
non-normal,

:::::
which

:::
is

::::::
typical

:::
for

:::
the

:::::
large

:::::::
datasets

::::::::
produced

::::
with

:::::
SfM

:::::::::::::::::::::::::::
(Montgomery and Runger, 2007).

::
In

:::
the

::::
case

::
of

::::::::::
non-normal

:::::::::::
distributions,

:::::::
standard

::::::::::
descriptive

:::::::
statistics

::::::
(based

::
on

::::
data

::::::
means25
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:::
and

:::::::
standard

:::::::::
deviations)

:::
are

:::::::::::::::
disproportionately

:::::::::
influenced

::
by

:::::::
outliers,

::::::
which

::
the

::::
ME

:::
and

:::::::
NMAD

::
are

:::
not

:::::::::::::::::::
(Maronna et al., 2006)

:
. The median and range of measured and modelled melt were also calculated for comparison.

In addition to model performance, the model error across the study area was used to investigate factors influencing model

performance. We examined model errors in relationship to surface characteristics which are known to influence the energy

available for melt (Hock, 2005). Correlations
:::
The

:::::::
Pearson

:::::::::
correlation

:::::::::
coefficient

::
is

:::::
often

::::
used

::
to

:::::
assess

:::::::
variable

:::::::::::
relationships:

:
5

R=

n∑
i=1

(xi− x̄)(yi− ȳ)

σxσy
::::::::::::::::::::

(13)

:::::
where

::̄
x

:::
and

:̄
y
:::
are

:::
the

:::::::
variable

::::::
means,

:::
σx:::

and
:::
σy :::

are
:::
the

::::::
variable

::::::::
standard

:::::::::
deviations.

:::
As

:::::
noted

:::::
above

:::::::
however,

::
in
:::
the

::::
case

::::
that

::
the

:::::
mean

::::
and

:::::::
standard

::::::::
deviation

:::
are

::::
poor

:::::::::
descriptors

::
of

::
a
:::::::::
population,

:::
an

:::::::::
alternative

:::::::
measure

::
of

::::::::::
relationship

::
is

::::::::
necessary

:::::
using

:::::
robust

:::::::::
estimators

:::
for

:::
the

:::::::
location

::::
and

:::::::
variance

:::::::::::::::::::::::::::
(Shevlyakov and Smirnov, 2011).

::::::
Based

:::
on

::::::::::::::::::::::::::
Shevlyakov and Smirnov (2011)

:
,

::
we

:::
use

:::
the

:::::::
median

:::::::::
correlation

:::::::::
coefficient

::
to

:::::
assess

:::
the

::::::::::
relationship

:::::::
between

::::::
model

::::
error

::::
and

:::::::
potential

::::::::::
explanatory

::::::::
variables.

:
10

Rr =

n∑
i=1

1

n
(xi−med(x))(yi−med(y))

NMADxNMADy
:::::::::::::::::::::::::::::::::

(14)

::
In

:::
the

::::
case

:::
of

::::
large

::::::::
samples

::::
such

:::
as

:::
we

::::
have

::::
here

::::::
(n>18

::::::::
million),

:::::::
p-values

::::
are

:::
not

::
a

:::::::
suitable

:::::::
measure

:::
for

::::::::::
correlation

::::::::::
significance

::::::::::::::::::
(Maronna et al., 2006)

:
,
::::::
instead

:::
we

:::::::
evaluate

:::
the

:::::::
strength

::
of

:::
the

:::::::::
correlation

:::::
based

:::
on

::
its

::::::
value.

::::::
Robust

::::::::::
correlations

were computed between model error and terrain variables (slope and aspect), albedo, and an estimate of surface water flow.

Water flow was
::::::::
direction

:::
and

::::::::
potential

::::::::
upstream

:::::::::
catchment

::::
were

:
quantified using the Hydrology Toolset in ArcGIS 10.15

Assuming that water is produced at every grid cell, flow paths were calculated from the
:::
July

:::
21

:
DSM based on up-slope

:::::::
potential

::::::::
upstream accumulation. Cells with more than 1500 upstream cells were converted to a set of linear features and the

number of these features within 20 m of each grid cell was calculated (W20m). The 20 mradius was chosen to represent surface

flowfeatures observed in the field
::::
1500

::::
cell

::::::::
threshold

::::::::
represents

:::
15

:::
m2

:::
of

:::::::
upstream

::::::::
drainage

::::
area,

::::
and

::::
was

::::::
chosen

:::::
based

:::
on

::
the

::::::::::
assumption

::::
that

::
15

:::
m2

::
is

:::::
likely

::
to

::::::
provide

:::::::
enough

::::
melt

:::::
water

::
to

::::
start

::::
flow. The resulting layer provided a representation of20

areas with significant surface water flow, including streams and thin sheet flows.

3 Results

3.1
::::::::::
Inter-model

::::::::::
comparison

::
at

:::::
AWS

:::
The

::::
four

::::::
models

::::
were

:::::::::
compared

::
at

:::
the

::::
AWS

:::
site

:::
for

::::
July

:::::
1-31,

:::::
2016.

:::
All

:::
four

:::::::
models

::::::
capture

::::
daily

:::::::
patterns

::
of

:::::
melt,

::::
with

:::::
lower

::::
melt

:::::
totals

::
on

:::::::
average

::
in

:::
the

:::::::
second

:::
half

:::
of

:::
the

::::::
month,

::::::
which

::
is

::::::::
consistent

::::
with

::::::
lower

::::
solar

::::::::
radiation

::::::::
recorded

::
at

:::
the

:::::
AWS25

:::::::
(Figures

:::
4A

:::
and

::::
2B).

::::
The

:::::::::
distributed

::::::
models

::::
both

::::::::::
consistently

:::::::
estimate

::::::
lower

::::
melt

::::
totals

::::
than

:::::
their

::::
point

::::::
model

:::::::::::
counterparts,

::::
with

:::::::::
differences

:::::
more

::::::::::
pronounced

:::::
when

::::
melt

:::::
values

:::
are

:::::
high.

::::
This

::
is
:::::
most

:::::
likely

::::::
related

::
to

:::
the

:::::
lower

:::::::::
shortwave

::::::::
radiation

::
in
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Table 2.
::::::::
Descriptive

:::::::
statistics

::
for

::::::::
measured

::::
melt,

:::::::
modelled

:::::
melt,

:::
and

:::::
model

:::::::
residuals

::
at

::
the

:::::
AWS

:::
site,

::::
July

:::::
14-31,

:::::
2016.

:::
All

:::::
values

::::
were

:::::::
calculated

:::::
based

::
on

::::
12-hr

::::
melt

:::::::
estimates

:::
and

:::
are

::::::
reported

::
in
::::::
meters.

:::::::
Measured

: :::::
EBaws: ::::::

ETIaws :::::
EBdist: ::::::

ETIdist

::::
Mean

: ::::
0.022

::::
0.022

::::
0.023

::::
0.019

::::
0.021

:
σ
: ::::

0.010
::::
0.008

::::
0.006

::::
0.006

::::
0.006

::::
Total

:::::::
Residual

:::::
-0.016

::::
-0.002

: :::::
-0.064

:::::
-0.031

::::
Mean

:::::::
Residual

::::
0.000

::::
0.000

:::::
-0.003

:::::
-0.001

::::::
Residual

::
σ
: ::::

0.009
::::
0.011

::::
0.009

::::
0.010

::
the

::::::::::
distributed

:::::
model

:::::::
(Figure

::::
2B).

:::
The

:::
EB

:::::::
models

:::::::
produce

:::::
lower

::::
melt

::::::::
estimates

::::
than

:::
the

::::
ETI

::::::
models

:::::
when

::::
solar

::::::::
radiation

::
is

:::
low.

::::::
During

:::::::
periods

::
of

::::
high

::::::::
incoming

:::::
solar

::::::::
radiation,

::::::
EBaws :::

and
:::::::
ETIaws ::::::

produce
:::::::
similar

::::
melt.

:

:::
The

::::
total

::::
melt

::::::::
estimated

::::::
during

::
the

::::::
month

::
of

::::
July

:::
was

:::::
lower

::
in

:::
the

:::
two

:::::::::
distributed

:::::::
models,

:::::::::::::
EBdist = 1.223

:
m
::::
and

:::::::::::::
ETIdist = 1.394

::
m,

::::
with

:::::::
standard

::::::::
deviation

::
of

:::::
0.010

::
m

:
,
:::
and

:::::
RMS

::
of

:::::
0.010

::
m.

:::::::::::
Performance

::
of

::::
ETI

:::dist:::
was

:::::::
similar,

::::
with

:
a
::::::::
compared

::
to

:::
the

:::::
point

::::::
models,

:::::::::::::
EBaws = 1.436

::
m

::::
and

:::::::::::::
ETIaws = 1.508

:::
m.

:::
The

:::
EB

:::::::
models

:::::::
estimate

:::
less

::::
melt

:::
for

:::
the

:::::
month

::::
than

:::
the

::::
ETI

:::::::::::
counterparts.5

3.2
:::::

Model
:::::::::::
performance

:::
at

::::
AWS

::::
site

:::::
Model

::::::::
estimates

:::::
from

::::
July

::::::
14-31,

::::
2016

:::::
were

:::::::::
compared

::
to

::::
melt

::::::::
measured

:::
at

:::
the

:::::
AWS

:::
site

::::
with

:::
the

::::::
SR50.

:::::
After

::::::
tuning

:::
z0,

::
the

:::::
mean

:::::::
residual

:::
of

:::::
12-hr

::::
melt

::::::::
estimates

::
at

:::
the

:::::
AWS

::::
was

:::::
0.000

::
m

:::
for

::::::
EBaws::::

and
::::::
-0.003

::
m

:::
for

:::::::
EBdist. :::

The
:::::
fitted

:::::::
ETIaws

:::
also

::::
had

:
a
:::::
mean

:::::::
residual

::
of

:::::
0.000

:::
m,

:::::
while

:::
that

::
of

:::::::
ETIdist:::

was
::::::
-0.001

:::
m.

:::
All

::::
four

::::::
models

::::::::::::
underestimate

::::
melt

::
at

:::
the

::::
site,

::::
with10

::
the

::::::::::
distributed

::::::
models

:::::::::::::
underestimating

:::::
more

::::
than

:::
the

:::::
point

::::::
models

:::::
(Table

:::
2;

:::::
Figure

::::
4B).

::::
The

::::::
largest

::::::::::::
underestimate

:::
was

:::::
from

::::::
EBdist.::::

The
::::::::
variability

::
of

::::::::
modelled

::::
melt

::
is
:::::::
notably

:::::
lower

::::
than

::::::::
measured

::::
melt

::
in

::
all

::::::
cases.

3.3
:::::

Model
:::::::::::
performance

:::::
over

:::
the

:::::
study

::::
area

Across the study area median measured melt was 0.184±0.048 m, the NMAD was 0.026 m (Figure 5B). Median melt across

the area was lower in both EBdist and ETIdist, as was the variability (Figure 5A,C). The total range of measured melt was15

0.305 m, while the range of EBdist = 0.123 and ETIdist = 0.083.

The ME is lower than
::
and

:::::::
NMAD

::
of

::::::::::::::::::::::
EBdist =−0.064± 0.022,

:::::
while

:::
that

::
of

::::::::::::::::::::::
ETIdist =−0.050± 0.023.

::::
The

:::
ME

::
of

:::::::
ETIdist

:
is
:::::::
similar

:::::::::
magnitude

::
to the measurement uncertainty (0.048 m), indicating general agreement with measurements. When ar-

eas of error above the measurement uncertainty are highlighted (Figure 5D,E), ETIdist shows clustered patterns representing

45
::
53% of the total study area. Errors greater than twice the uncertainty (0.096 m) account for 5% of the study area.

::::::
EBdist20

:::::
errors

::::::
greater

::::
than

:::::
0.048

::
m

:::::
cover

::::
79%

::
of

:::
the

:::::
study

::::
area,

:::::
while

:::::
those

::::::
greater

::::
than

:::::
0.096

::
m

:::::
cover

::::
11%.

:

Model uncertainty can be derived from a number of metrics, including the results of ETIAWS and ETIdist. Using statistical

measures, model uncertainty is often quantified by the variability in the errors
:::::
model

:::::::::
residuals, represented by the RMS
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Table 3.
::::::
Robust

::::::::
correlation

::::::
statistics

::::
(Rr)

:::
for

::::::
surface

::::::::::
characteristics

:::
and

::::::::
distributed

:::::::
models.

:::::
Strong

:::::::::
correlations

::
are

:::::::::
highlighted

::
in

::::
bold.

:::::
EBdist: ::::::

ETIdist

:::::
Albedo

: :::::
-0.207

:::::
-0.208

:::::
Aspect

: ::::
0.177

::::
0.178

::::
Slope

: ::::
0.204

::::
0.197

:::::
W20m ::::

0.470
::::
0.462

(0.011 m) and NMAD (0.026 m). However, in this case the 95th quantile of the errors (0.095 m ) suggests this would be an

underestimate
::::::
NMAD

:::
or

:::::::
standard

::::::::
deviation.

::::::
Based

::
on

::::::::::
assessment

:
at
:::
the

:::::
AWS

::::
site,

::::::::::
uncertainty

::
in

::::
12-hr

::::::::
estimates

:::::
from

::::::
EBdist

:::
and

::::::
ETIdist:::

are
:::
2σ

::
=

:::::
0.018

::
m

:::
and

:::::
0.022

:::
m,

::::::::::
respectively. Bash and Marshall (2014) use validation at an AWS and incorporate

uncertainties related to modelling input variables to estimate an uncertainty of 15%. In
:::
this

::::::
study,

::
we

::::
also

:::::
have

:::
the

::::::
benefit

::
of

::::::::
examining

:::::::::
distributed

::::::
results

:::::
across

:::
the

:::::
study

::::
area

::::::
through

::::::::::
comparison

::::
with

::::
UAV

::::::
derived

:::::
melt.

:::
The

:::::::::
variability

::
of

:::
the

:::::::::
distributed5

::::::
models

::
is

:::::::::::
characterized

::
by

:::
the

:::::::
NMAD,

:::::
taking

::::::::::::::::::
2 ∗NMAD = 0.028

::
m

::
for

::::::
EBdist:::

and
::::::::::::::::::
2 ∗NMAD = 0.044

::
m

::
for

:::::::
ETIdist,:::::

these

::::::::::
uncertainties

:::
are

:::::
4-6%

:::
of

::::
total

::::::::
estimated

:::::
melt.

:::::::::
Combined

::::
with

:::
the

::::::::::
uncertainty

::
in

:::
the

::::::::
measured

:::::::
surface

::::::
change

::::::
(0.048

:::
m),

::
a

::::
total

:::::::::
uncertainty

::
in

:::
the

::::::
model

:::::
errors

:::
can

:::
be

::::::
derived

:::::::::::::::::::::::
(
√

2 ∗NMAD2 + 0.0482),
:::::::::::::
EBdist = 0.056

::
m,

::::::::::::::
ETIdist = 0.065.

:::
In either

case, the errors which are strongly correlated with surface aspect and W20m are higher than the combined uncertainty of

measurement and model. These combined errors may range from 0.049–0.11 m. ,
::::::::::
particularly

:::
for

:::::::
ETIdist.10

3.4
::::::::::

Relationship
::
to

:::::::
surface

:::::::::::::
characteristics

::::::::
Moderate

:::::::::
correlation

::::
was

::::::
found

:::::::
between

:::::::
albedo,

::::::
aspect,

::::
and

:::::
slope

:::
for

::::
both

::::::
EBdist::::

and
:::::::
ETIdist::::::

(Table
:::
3).

:::::::
Through

:::::
field

:::::::::
observationThrough field experience, we were able to note a visual relationship between surface water features and high

error during analysis (Figure 6A, C). This association was confirmed through correlation with W20m, Rr = 0.470 for EBdist

and Rr = 0.462 for ETIdist.A significant correlation (p<0.05) was found between model error and aspect, 0.34. Cells with15

south aspects had a mean error of -0.067 m, while those with north aspects had a mean error of -0.032 m. The relationship is

visually apparent throughout the study area as well (Figure ??A2-D2, A3-D3), and is particularly notable along east-flowing

supraglacial streams (Figure ??B2-3, D2-3). Statistically significant correlations were found with slope and albedo, but correlation

values were much lower (<0.1), and thus were not investigated further.

Four example locations showing model error, surface aspect, and density of water features. Extents of example locations20

(A–D) are shown in the inset map. Panels show the orthomosaic (1), model error (2), aspect (3), and water feature density

overlain by water features (4). The strong relationship between surface aspect and model error can be seen in all four locations.

In A2 model error is low, despite high stream feature density, due to predominantly north aspect. While in B1-3, C1-3, and

D1-3 areas of high error are associated with predominantly south aspects and high density of water features. In B2-3 and D2-3

west-east flowing streams have high errors on south aspect banks, and generally lower or minimal error on north facing banks.25

Areas of positive model error (A2) are found where large boulders are present on the glacier surface.
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Although most of the errors are negative, positive errors
:::
(i.e.

:::::::::::::
overestimation) were also found. These are primarily associated

with boulders and other large stationary objects on the glacier surface.

4 Discussion

:::::
Model

::::::
results

::
at

:::
the

:::::
AWS

:::::::
indicate

:::
that

:::::
both

:::::
tuned

::::
point

:::::::
models

:::::::
perform

::::
very

::::
well.

:::::::::::
Performance

::
of

:::
the

:::::::::
distributed

:::::::
models

::
is

::::::
poorer,

::::
with

:::::
EBdist::::::::::

performing
:::::
worse

::::
than

:::::::
ETIdist,::::::

despite
:::
the

:::::::
physical

::::
basis

::
of
:::
the

::::::
energy

:::::::
balance

::::::
model.

::::
This

:
is
:::::
likely

::::
due

::
to5

:
a
::::::::::
combination

:::
of

::::::
factors,

::::::::
including

::::::
limited

::::
data

::::::
inputs

:::::::
availableThe ETI models derived using data from the AWS performed

well during the validation period of July 21–August 2, 2016. Both ETI AWS and ETIdist simulated melt at the location of

the AWS to within 0.000±0.010 m per 12 hr period
:
,
:::
and

:::::
need

:::
for

::::::
further

:::::::::
refinement

::
of

::::::
energy

::::::::
exchange

::::::::::::::::
parameterizations.

:::::::
Previous

:::::
work

:::
has

::::::
shown

:::
that

::::::
energy

:::::::
balance

::::::
model

::::::::::
performance

::
is
::::::::
sensitive

::
to

::::::::
variations

:::
in

::::::::
roughness

::::::
length,

:::::
wind

::::::
speed,

:::
and

::::::
albedo

::::::::::::::::::::::::::::::::::::::::::::::::::
(Hock and Holmgren, 2005; MacDougall and Flowers, 2011) .

:::
Of

:::::
these

::::::::::
components,

:::::::::
roughness

::::::
length

::
is

:::
the

::::
only10

:::
EB

:::::
model

:::::
input

::::
used

::::
here

::::
that

::
is

:::
not

:::::::::
measured.

:::
An

:::::::
analysis

::
of

::::
the

:::::
model

:::::::::
sensitivity

::
to

:::
z0 :::::::

revealed
:
a
:::::

10%
:::::::
decrease

:::
in

::::
total

::::::::
estimated

::::
melt

::::
(July

:::::
1-31)

:::
for

:::::::::
z0 = 0.001

:::
m,

::::::::
compared

::
to

:::
the

::::::::
reference

:::
run

::::
with

:::
the

:::::
tuned

:::
z0.

::::::::
Similarly,

:::::::::
z0 = 0.01

::
m

:::::::
resulted

::
in

:
a
::::
7%

:::::::
increase

::
in

:::::::::
estimated

::::
melt.

::::
The

::::::::
deviation

:::::
from

:::
the

::::::::
reference

::::::
model

:::
run

::::
was

::::::
caused

:::
by

::
a
::::
33%

::::::::
decrease

:::
and

:::::
22%

:::::::
increase

::
in

::::
both

:::
QH::::

and
::::
QE .

::::::
Despite

::::
this

:::::::::
sensitivity,

:::::::::
z0 = 0.005

::::::::
provided

::
the

::::
best

::
fit

:::
for

:::
the

:::::::
training

::::
data.

::::::::
Variability

:::
in

::::
both

:::
EB

:::
and

::::
ETI

::::::
models

::
is

::::::
linked

::
to

::::
solar

::::::::
radiation

::::::
cycles.

:::::::
Despite

:::
the

::::::
latitude

::
of

:::
the

:::::
study

::::
site,

::::::::::
topography15

:::::
blocks

::::::
direct

::::
solar

::::::::
radiation

:::
for

::
a

::::
time

::::::
during

:::
the

:::::
night

::::
and

:::::
causes

::::::
strong

:::::::
diurnal

:::::::
variation

:::
in

::::::
SWin.

:::
The

::::::::
strength

::
of

::::
that

:::::::
variation

::
is

:::::
much

::::::
greater

::
in

:::
the

:::
EB

::::::
models

::::
than

:::
the

::::
ETI

::::::
models

::::::
(Figure

::::
4A).

:::
As

:::::
noted

::::::
above,

::
on

::::
clear

::::
sky

::::
days

::::
with

::::::::
relatively

:::
low

:::::::::::
temperatures,

:::
the

:::
EB

:::
and

::::
ETI

::::::
models

:::::::
produce

::::::
similar

::::::
results

::::
(July

::::
1-3).

::::::
Under

:::
the

:::::::
opposite

:::::::::
conditions,

:::
low

:::::
SWin::::

and
::::
high

::::::::::
temperatures

::::
(e.g.

::::
July

::::::
14-15,

::::::
28-29),

:::
the

:::
EB

:::
and

:::
ETI

:::::::
models

::::::
produce

:::
the

:::::
most

::::::::
dissimilar

::::::
results.

::::
This

::
is

:::
due

::
to

:::
the

::::::::::
relationship

:::::::
between

::::::::::
temperature

:::
and

::::::::
radiation

::
in

:::
the

::::
ETI

::::::
model,

:::::
where

::
at
::::

low
:::::::::::
temperatures

:::
and

:::::
high

:::::
SWin,

::::::::
Tresidual::

is
::::
very

:::::
small

::::
and20

::::
melt

::
is

:::::
driven

::::::::
primarily

:::
by

::::::::
radiation.

:::
At

::::
high

:::::::::::
temperatures

::::
and

:::
low

::::::
SWin,

::::::::
Tresidual::

is
::::::::
relatively

::::::
larger

:::
and

::::::
drives

::::
melt.

:::
In

:::::::
contrast,

::::
melt

::
in

:::
the

:::
EB

:::::
model

::
is
::::::
always

::::::::
primarily

::::::
driven

::
by

:::::
solar

::::::::
radiation.

:::::::::
Examining

:::::
12-hr

:::::::
averages

::
of
:::::::
SWnet,::::::

LWnet,::::
and

::::::::
Qh +QE ::

in
:::
the

:::
EB

::::::
model

:::::::
outputs,

:::::
there

::
is

:
a
::::::
strong

:::::::::
correlation

:::::::
between

::::::
SWnet::::

and
::::::::
available

::::
melt

::::::
energy

::::::::::
(R= 0.90).

::::
The

:::::::::
correlation

:::::::
between

::::
melt

::::::
energy

:::
and

:::::::
LWnet, ::

as
::::
well

::
as

:::::::::
Qh +QE ,

:
is
:::::
much

:::::
lower

:::::::::
(R= 0.25

::::
and

::::::::::
R=−0.19,

:::::::::::
respectively).

::::
This

::::::
contrast

::::::::
between

::
the

::::
EB

:::
and

::::
ETI

::::::
models,

::::
and

:::
the

::::
local

::::::
tuning

::
of

:::
the

:::
ETI

::::::
model,

::::::
allows

::::::
ETIdist::

to
::::::
better

:::::::
estimate

::::
melt25

:::::::
recorded

::
at

:::
the

:::::
AWS.

:
For comparison to other studies, this

:
σ
:::::::

residual
:::::
from

::::::
ETIdist:was converted to a standard deviation of

0.00083
::
an

::::::
hourly

:::
rate

::::::::::::::::
(ETIdist = 0.0005 m h−1. This performance

:
),

:::::
which

:
is similar to other ETI models in the literature

(Pellicciotti et al., 2005; Irvine-Fynn et al., 2014; Bash and Marshall, 2014). Irvine-Fynn et al. (2014) report a standard error

of 0.00018 – 0.00053 m h−1, the range in error stems from model runs with different training datasets. Hourly ETI model

error reported by Pellicciotti et al. (2005) is as high as 0.0055 m water equivalent h−1, compared to an energy balance model30

as reference data. Bash and Marshall (2014) report a standard error of 0.00031 m h−1, when the model is validated against

data from a different year. While our results show a higher standard deviation, it is important to note that the uncertainties

associated with modelling input data are likely to outweigh the discrepancies between this and other studies, as noted by
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Bash and Marshall (2014); Pellicciotti et al. (2005).
:::
ETI

:::::
model

::
is

:::::::::
transferred

::
in

:::::
time. Overall these results at the AWS indicate

that, in the absence of additional validation data, it would be reasonable to employ this model to estimate melt across the glacier

surface.

Hock (1999) found that when TF is calculated based on melt and temperature records, it is highly variable. The inclusion of

shortwave radiation in ETI models is an attempt to account for this variability. The low variability seen in the results of both5

ETIAWS :::aws and ETIdist when compared to AWS measurements is an indication of potential problems in the ETI models.

Similar muted model estimations were
::::::::
variability

::::
was noted in other studies (Hock, 1999; Bash and Marshall, 2014). However,

Hock (1999), Pellicciotti et al. (2005), and Irvine-Fynn et al. (2014), all cite R2 values of 0.60, 0.86, and 0.80 when comparing

total modelled melt to measured discharge. These previous results show that although the ETI models capture total melt, melt

rates at individual points are captured less effectively. Similarly, we found across the study area that median modelled and10

measured melt agreed, but model results showed variability an order of magnitude lower than measurements (Figure 5A, B
::
B,

:
C). The availability of melt measurements at 10 cm

::::::::
horizontal

:
resolution shed light on the areas where modelled and measured

melt were (or were not) in agreement, which has not been shown before. These measurements also allowed us to examine

possible explanations for the model errors, including the aspect and surface water flow.

It is worth noting that surface lowering measured through point cloud differencing is not always equivalent to surface melt.15

Vertical ice motion in the ablation zone offset
::::::
offsets melt in measurements of surface change. However, in the case of Fountain

Glacier Whitehead et al. (2014) estimate surface uplift to be 0.2 m over the course of the ablation season, or 0.002 m d−1. Given

the magnitude of measured surface elevation change over the 3 day period and the correspondence of those measurements to

melt measured at ablation stakes, we assume that vertical uplift is a negligible contribution and the point cloud differences

represent surface melt.
:::::::::::
Additionally,

::::
each

:::::
point

:::::
cloud

::::
was

::::::::::::
independently

::::::::::::
georeferenced

::::
each

::::
day,

:::::::::
removing

::::::::::::
complications20

::::
from

::::::::
horizontal

:::::
flow.

The eastern orientation of Fountain Glacier results in primarily east draining supraglacial streams with north and south

facing banks (Figure ??B, D). Bash et al. (2018) noted clear differences in measured melt on north and south facing stream

banks, which was not seen in ETIdist results. These differences in melt on opposite banks lead to the asymmetrical shape of

canyons found on Fountain Glacier. Correlation between aspect and ETIdist error was significant. South facing grid cells had an25

average error nearly twice that of north facing cells, with less variability in that error. Much of the study area is east and south

facing, Figures ??B and ??D show east-west oriented streams with higher error on south facing banks. The northern portion of

the study area slopes northward and overall has lower error (Figure 5C, Figure ??A). Close agreement between ETIAWS and

ETIdist at the AWS, indicates the relation between model error and aspect is unlikely to be an artefact of radiation modelling.

The explanation for the correlation remains unclear.30

Bash et al. (2018) measured melt rates within
:::::
higher

::::
melt

:::::
rates

::
in

:
active supraglacial streams higher than rates of melt

on the ice surrounding those streams
:::
than

:::
on

::::::::::
surrounding

:::
ice. This higher rate of melt leads to streams downcutting into the

glacier surface over time, as long as melt water routing paths remain constant. Bash et al. (2018) also noted the difference in

melt rate between an active stream and the nearby channel which the stream formerly occupied. During preliminary analysis

of ETIdist ::::::::
distributed

::::::
model results, we noted

:::::::
observed the occurrence of high model errors in areas with visual evidence of35
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surface water flow including thin sheet flow and streams. Further investigation revealed correlation between
:::::
model

:::::
errors

::::
and

::
the

:
density of linear flow features (designated through DSM analysis and representing streams as well as thin sheet flow)and

model errors less than -0.048 m, with a slightly more pronounced correlation on south facing aspects. Figure ??A is an example

of an area with
:
.
::::
The

:::::::
northern

::::::
portion

::
of

:::
the

:::::
study

::::
area

:::
has predominantly north aspect, which exhibits high density of surface

water features
::
in

:::::
W20m, but low model error.

::::
This

::::::
pattern

:::
may

:::::
result

:::::
from

:::::
lower

::::
melt

::
on

:::
the

:::::
north

::::::
aspect,

::::::
leading

::
to

::::
less

:::::
water5

:::::::::
production

:::
and

::::
flow

::::
than

::::
what

::
is
:::::::::
suggested

::
by

:::::::
inferred

::::
flow

:::::
paths

::
in

::::::
W20m. The relation between model underestimation and

surface water features suggests the water flowing on the glacier surface is contributing a measurable amount to surface melt.

This is consistent with observed patterns of down-cutting
::::::::::
downcutting streams and higher melt in active stream channels, but

also shows the importance of water in areas with thin sheet flow over the glacier surface.

Stevens et al. (2018) note the role of kinetic energy in development of surface weathering crusts and the complexity of10

near-surface glacier hydrology which is only recently coming to light. Temperatures measured in a supraglacial stream on

Fountain Glacier in 2014 ranged from 0-0.1◦C (St. Germain and Moorman, 2016). These temperatures alone are not sufficient

to explain the magnitude of model errors in the vicinity of water features, suggesting that other forms of energy transfer are

playing an important role. Idealized crevasse bottom incision equations presented by Fountain and Walder (1998) are driven

by discharge rates, suggesting a role in flow related incision for both heat advection as well as energy transfer from kinetic15

and potential energy. Irvine-Fynn et al. (2011) note that the relative importance of frictional heat contributing to incision rates

in non-temperate glaciers remains unresolved.
:::
The

::::::
results

::
of

:::
this

:::::
study

:::::::
suggest

::::
that

::::::
further

::::::::::
investigation

::::
into

::::::
energy

:::::::
transfer

::::
(heat,

:::::::
kinetic,

::::::::
potential,

::::::::
frictional)

:::::
from

::::::
flowing

:::::
water

:::
on

::::::::::::
non-temperate

:::::::
glaciers

:
is
:::::::::
necessary.

The correlation
:::::::::
coincidence

:
of high model error with water feature density was significant

:::::
noted in areas with thin sheet flow,

in addition to the locations of supraglacial streams. The contribution of melt energy to the glacier surface from less concentrated20

water flow found here has not been examined in previous studies, and these results add new insight to the emerging picture of

complex surface hydrology on non-temperate glaciers
:
,
::
as

:::::::::
suggested

::
by

:::::::
Stevens

::
et

::
al.

::::::
(2018). The relatively lower correlation

of model errors with water features on north aspects may be due to lower melt water production on north aspects, which leads

to lower volumes of water flowing on north aspects of the glacier surface.

Daily melt rates on Fountain Glacier have been measured at 0.06-0.11 m d−1 (Whitehead et al., 2014; Bash et al., 2018)25

. Similar melt rates have been measured on other glaciers in the Arctic (e.g. Arnold et al., 2006; ?), as well as mid-latitude

glaciers (e.g. Bash and Marshall, 2014; Fitzpatrick et al., 2017). The ETI models are based on an assumption that solar radiation

is the dominant component of glacier surface energy balance (Hock, 2005). Temperature then serves as a proxy for the

remaining energy balance terms. Low solar elevations in Arctic summers result in total incoming radiation that is lower than

that found at mid-latitude glaciers (Bash and Marshall, 2014; Fitzpatrick et al., 2017; Arnold et al., 2006; Bash et al., 2018).30

Although solar elevation varies over the course of the day in Arctic summer, 24 hours of daylight dampens diurnal variability

in solar radiation as compared to mid-latitudes.

The results of this study suggest that on Fountain Glacier the relative importance of energy flux from water flow is high

enough to cause significant errors in the distributed model. On Arctic glaciers, where overall melt rates are similar to mid-latitude

glaciers, but solar radiation is relatively stable through the day, other energy contributions to the glacier surface may have more35
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relative importance. This has been noted in other studies (e.g. Hock and Holmgren, 2005), but ETI models continue to be

employed for modelling glacier melt regardless of geographic context.

We believe that the relative importance of factors other than solar radiation which are driving melt on Fountain Glacier will

have cumulative effects if ETIdist::
or

::::::
EBdist were employed for long term modelling. Although this study looks at a short time

frame of only 3 days, weather conditions during the study are similar to those found throughout the ablation season on Fountain5

Glacier and are likely to be representative of average conditions throughout the season. The high melt rates measured on south

aspects and in areas of surface water flow, which are absent in the model
:::
both

::::::::::
distributed

::::::
models, are enough to change the

terrain characteristics of the glacier over time
:::
(as

::::
seen

::
in

:::
the

:::::::::
formation

::
of

::::::
deeply

::::::
incised

:::::::
canyons

:::
on

:::::::
Fountain

::::::::
Glacier). The

changes in terrain feed back into melt dynamics related to slope and aspect. The inability of ETIdist to capture higher melt seen

on south aspects will fail to reproduce this canyon development
:
,
:::
the

:::::::
inability

::
of

::::
both

::::::
models

:::
to

::::::
capture

:::
the

::::::
highest

::::
melt

:::::
rates10

:::
will

::::
slow

:::::
these

::::::::
feedback

::::::::::
mechanisms

::::::::
compared

::
to

::::::::
observed

::::::::
evolution

::
of

:::
the

::::::
glacier

::::::
surface

::::::::::::::::::::::::::::
(St Germain and Moorman, 2019)

.

The availability of high resolution melt measurements now allows for analysis of model performance that is not possible with

other methods of measuring melt (i.e. ablation stakes or satellite measurements). Building on previous studies of distributed

energy balance models, high resolution distributed melt data may be used to develop more appropriate simplifications for15

glaciers similar to Fountain Glacier. Asymmetrical ,
:::::
which

:::
are

:::::
more

:::::::::
appropriate

::::
than

::::::::
primarily

:::::::
radiation

::::::
driven

:::::::
models.

::::::
Deeply

::::::
incised canyons such as those found on Fountain Glacier have been noted on 83 other glaciers across the Arctic, including 10

on Bylot Island (St. Germain, 2019). Other studies of glacier terrain characteristics have found that gradual shifts in glacier

aspect due to differential melt have important impacts on total glacier mass balance (Arnold et al., 1996, 2006). This reinforces

the importance of developing a model which captures melt driven by both radiation and water flow.20

5 Conclusions

We present the first study using high resolution measurements derived from SfM and UAV imagery to assess performance of

a distributed ETI. In addition we build on the methods of Rippin et al. (2015) for estimating glacier surface albedo to derive a

gridded albedo
::::::::
distributed

::::::
energy

:::::::
balance

:::
and

::::::::
enhanced

::::::::::
temperature

:::::
index

:::::::
models,

::::::::::
additionally

:::
we

:::::::
present

:
a
::::
new

::::::
method

:::
of

:::::::
deriving

:::::
albedo

:
from the UAV imagery that can be used directly in ETIdist::

the
:::::::::
grid-based

::::::
model. The model developed in this25

study was compared directly to AWS measurements and to distributed measurements on a cell by cell basis. The availability

of high resolution data revealed patterns in model performance that could not be found with other traditional methods of

measuring glacier melt (i.e. ablation stakes or satellite measurements).

The ETIdist exhibits similar performance at the AWS to other implementations of
::::::
studies

:::::::::::
implementing

:
ETI models. In the

absence of high resolution distributed data, this model might be applied with confidence across the glacier surface. The bulk30

performance of the model across the study
::::
area is also similar to distributed melt measurements, with a median error lower

than
:::
ME

::::::
similar

::
to

:
the measurement uncertainty. However, the range in modelled melt

:::
melt

:::::
from

::::
both

::::::
models

:
is an order of
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magnitude lower than that seen in distributed melt measurements. The lower range in modelled melt combined with spatial

patterns found in model error, allowed for investigation of sources of model error.

Significant correlation between surface water flow and model error highlighted the important role of water flow in melt

dynamics on Fountain Glacier. Energy transfer from water flow in supraglacial streams is known to cause stream incision and

was previously noted by Bash et al. (2018) on Fountain Glacier. The role of thin sheet flow on the glacier surface has not5

been studied previously, although Stevens et al. (2018) investigate near-surface hydrology and the role of kinetic energy in

weather crust development. Our results corroborate the important role of kinetic energy in surface hydrology and suggest that

on Fountain Glacier energy transfer from water flow is a significant driver of melt.

Given the importance of water flow in the development of
::::
deep canyons on Fountain Glacierand the absence of factors

contributing to canyon formation in the ETI model, a model which accounts for water related energy inputs is necessary10

to effectively capture long term surface evolution on the glacier. Other work has shown the influence of changes in surface

slope and aspect on overall glacier mass balance, the relation found in this study between model error and aspect indicates

the influence of aspect may be even more pronounced on Fountain Glacier. A model which better reflects the drivers of melt

on Fountain Glacier, and potentially similar glaciers across the Arctic, will provide insight into changing melt dynamics in

these environments. In future work we hope to extend the time series of melt measurements from UAV imagery and use the15

distributed dataset to derive a new melt model which captures the melt drivers highlighted in this study.
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Figure 2. Hourly averaged melt model input variables, measured at the AWS for the period July 1-31, 2016. Variables include near surface

air temperature (A), incoming (SWin) and outgoing(SWout) shortwave radiation (B), albedo (C), wind speed (D), and relative humidity (E).

Inputs which are estimated for distributed models are shown in red, incoming shortwave radiation (A), and albedo (B). The albedo derived

from UAV imagery is scaled using the average value at the AWS for July 21-24, so it remains constant throughout the model. The dates of

the UAV study are shown in grey.
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Figure 3. Albedo was derived from UAV imagery using an average values from RGB bands and scaling the lower and upper bounds to match

the albedo of bare rocks (based on REF
:::::::::::::
Ryan et al. (2017)) and the average albedo measured on Fountain Glacier during the study period.

(A) July 21 albedo values. (B) Juy 23 albedo values. (C) A hillshade model of the study area based on the DSM from July 21.
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Figure 5. Distribution of measured and modelled melt across the study area between July 21 (12:00) and July 24 (12:00). (A) Melt estimated

using EBdist applied across the study area. (B) Melt measured through differencing surfaces reconstructed from UAV imagery. (C) Melt

estimated using ETIdist applied across the study area. (D-E) Model error, calculated by the difference between modelled and measured melt.

Cells with an absolute value lower than the measurement uncertainty (0.048 m) are transparent to emphasize areas where the model residuals

are high.
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