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Abstract. Dry-snow slab avalanches start with the formation of a local failure in a highly porous weak layer underlying a 

cohesive snow slab. If followed by rapid crack propagation within the weak layer and finally a tensile fracture through the slab 10 

appears, a slab avalanche releases. While the basic concepts of avalanche release are relatively well understood, performing 

fracture experiments in the laboratory or in the field can be difficult due to the fragile nature of weak snow layers. Numerical 

simulations are a valuable tool for the study of micromechanical processes that lead to failure in snow. We used a three 

dimensional discrete element method (3D-DEM) to simulate and analyze failure processes in snow. Cohesive and cohesionless 

ballistic deposition allowed us to reproduce porous weak layers and dense cohesive snow slabs, respectively. To analyse the 15 

micromechanical behaviour at the scale of the snowpack (~1 m), the particle size was chosen as a compromise between low 

computational costs and detailed representation of important micromechanical processes. The 3D-DEM snow model allowed 

reproducing the macroscopic behaviour observed during compression and mixed-modes loading of dry snow slab and weak 

snow layer. To be able to reproduce the range of snow behaviour (elastic modulus, strength), relations between DEM 

particle/contact parameters and macroscopic behaviour were established. Numerical load-controlled failure experiments were 20 

performed on small samples and compared to results from load-controlled laboratory tests. Overall, our results show that the 

discrete element method allows to realistically simulate snow failure processes. Furthermore, the presented snow model seems 

appropriate for comprehensively studying how the mechanical properties of slab and weak layer influence crack propagation 

preceding avalanche release. 

1 Introduction 25 

Dry-snow slab avalanches require initiation and propagation of a crack in a weak snow layer buried below cohesive slab layers. 

Crack propagation occurs if the initial zone of damage in the weak layer is larger than the so-called critical crack size. Weak 

layer fracture during crack propagation is generally accompanied by the structural collapse of the weak layer due to the high 

porosity of snow (van Herwijnen et al., 2010). If the crack propagates across a steep slope, a slab avalanche may release 

(McClung, 1979; Schweizer et al., 2003). Our understanding of crack propagation was greatly improved by the introduction 30 
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of the Propagation Saw Test (PST; Gauthier and Jamieson, 2006; Sigrist and Schweizer, 2007; van Herwijnen and Jamieson, 

2005). The PST involves isolating a snow column and initiating a crack by a sawing in a pre-defined weak layer until the 

critical crack length is reached and self-propagation starts. The PST allows analysing the onset and dynamics of crack 

propagation and deriving important mechanical properties using particle tracking velocimetry (van Herwijnen et al., 2016).  

The essential mechanical properties related to the onset of crack propagation are slab elasticity, slab load and tensile strength, 5 

as well as the weak layer strength and specific fracture energy (e.g., Reuter and Schweizer, 2018).  However, no theoretical 

framework exists that describes how these mechanical properties and possibly other ones such as the weak layer failure 

envelope, weak layer elasticity or microstructure relate to the dynamics of crack propagation at the slope scale. Whereas field 

experiments are difficult to perform at this scale, numerical simulations may provide insight into the drivers of propagation 

dynamics. 10 

Johnson and Hopkins (2005) were the first to apply the discrete element method (DEM) to model snow deformation. They 

simulated creep settlement of snow samples, which consisted of a 1000 randomly oriented cylinders of random length with 

hemispherical ends. More recently, DEM was used to model the mechanical behaviour based on the complete 3-D 

microstructure of snow (Hagenmuller et al., 2015). Gaume et al. (2015) developed a discrete element model to simulate crack 

propagation and subsequently derived a new analytical expression for the critical crack length (Gaume et al., 2017b). Their 15 

approach allows generating highly porous samples and was used to perform 2-D simulations of the PST in agreement with 

field experiments. However, the oversimplified shape (triangular structure) and the 2-D character of the weak layer employed 

by Gaume et al. (2015) prevented a detailed analysis of the internal stresses during crack propagation. On the other hand, 

microstructure-based DEM models adequately reproduce the mechanical behaviour (Mede et al., 2018). However, the 

computational costs of these complex 3D-models are too high to generate samples large enough to investigate the dynamics 20 

of crack propagation at the slope scale on a standard personal computer (Intel i7 8 processors 3.4 GHz, RAM 16Go).  

Our aim is to develop a 3-D DEM snow model that adequately takes into account snow microstructure, but is not too costly in 

terms of computational power so that simulations at the slope scale become feasible on a High Performance Computer (HPC). 

To relate DEM parameters to macroscopic snow behaviour we will validate the model by simulating basic load cases. Finally, 

we numerically simulate mixed-mode loading experiments and compare results to those obtained during laboratory 25 

experiments. 

2 Data and methods 

2.1 Formulation of the model 

Discrete element method 
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To simulate the failure behaviour of layered snow samples, we used the discrete element method (DEM). DEM, first introduced 

by Cundall and Strack (1979) is a numerical tool, commonly employed to study granular-like assemblies composed of a large 

number of discrete interacting particles. We used the PFC3D (v5) software developed by Itasca Consulting Group 

(http://www.itascacg.com). 

Contact model 5 

We used the parallel-bond contact model (PBM) introduced by Potyondy and Cundall (2004). PBM provides the mechanical 

behavior of a finite-sized piece of cement-like material that connects two particles. The PBM component acts in parallel with 

a classical linear contact model and establishes an elastic interaction between the particles. The mechanical parameters include 

the contact elastic modulus 𝐸𝑢, Poisson's ratio 𝑢 =  0.3, the restitution coefficient 𝑒𝑢 =  0.1, and the friction coefficient 

𝜇𝑢 =  0.2. If particles are bonded, the bond part will act in parallel to the contact part. The bonded part is described by the 10 

bond elastic modulus 𝐸𝑏 , the bond Poisson’s ratio 𝑏 =  0.3 and the bond strength, shear and tensile strength 𝜎𝑠 and 𝜎𝑡.  To 

reduce the number of variables we assume 𝐸𝑢 =  𝐸𝑏 ≜ 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 and 𝜎𝑠 =  𝜎𝑡  ≜  𝜎𝑏𝑜𝑛𝑑
𝑡ℎ .  Figure 1 illustrates the PFC parallel 

bond model (PBM) with the mechanical parameters for the bonded and unbonded state. Four different bond behaviours 

(tension/compression, shear, bending and torsion) are shown Figure 2. More details on the PBM can be found in previous 

studies (Gaume et al., 2015; Gaume et al., 2017a; Gaume et al., 2017b). Once a bond breaks, only particle frictional contact 15 

occurs and no new bonds are created (i.e. no sintering occurs). This assumption is motivated by the fact that the strain rate is 

large and the time scale is seconds during the post-failure phase. 

System generation 

The simulated three-dimensional system consisted of a rigid basal layer (Figure 3, blue particles), the layer studied (weak layer 

or slab layer, green particles), and an ‘actuator’ layer used to apply the load (red particles). The basal layer is composed of a 20 

single layer of particles with a radius of r = 5 mm. The weak layer was created by cohesive ballistic deposition (Löwe et al., 

2007) to reproduce the porous and anisotropic structure of natural weak layers. Doing so, we obtained a porosity of 80% for a 

particle radius of r = 2.5 mm. The layer thickness (3 cm) can be modified by homothetic transformation while keeping the 

same mechanical behaviour. A short weak layer scaling study is provided in the supplementary material. 

We used cohesionless ballistic deposition to generate dense layers (Kadau and Herrmann, 2011) as typically found in snow 25 

slab layers. For these layers we used a particle radius of r = 11  1 mm (uniform distribution). The radius variation was 

introduced to prevent close packing, resulting in a porosity of 45%. Layer density (ρ) was adjusted by changing the particle 

density. The size of the particles is not intended to represent the real snow grains. The particle size was chosen as a trade-off 

between an acceptable computation time (min to day) and avoiding particle size effects in the numerical experiments. At the 

defined particles scale (larger than the snow grains) the ice properties (e.g. strength, elastic modulus, Poisson’s ratio) cannot 30 

be used directly. Therefore, the particle scale can be considered as a mesoscale between the macroscopic scale (sample scale) 
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and the microscale (individual snow grains). Hence, we adjusted the particle density to represent the macroscopic snow 

densities in accordance with the macroscopic sample porosity.  

To characterize the mechanical behaviour of these two types of snow-like layers (weak layer or slab layer), unconfined load-

controlled tests were performed and compared to experimental results. We also performed confined compression tests, but 

found no difference in behaviour compared to the unconfined tests due to the porosity of 80% (shown in the supplementary 5 

material). To simulate the tests, we added an 'actuator' layer generated by cohesionless ballistic deposition, composed of 

particles of radius r = 10 mm on top of the studied layer (Figure 3, red particles). This layer is defined as a rigid clump with 

initially low density. A clump is a rigid collection of 𝑛 rigid particles that form one DEM element. The volume is defined by 

the particle positions and radius. The mass properties are defined by the clump density and clump volume. Clumps can translate 

and rotate but cannot deform. Clump motion obeys the equations of motion induced by the definition of mass properties, 10 

loading conditions and velocity conditions.  

The samples were generated in a box; the box walls were then removed to create unconfined test conditions. To avoid a packing 

effect at the sidewalls, samples were generated 10 particle radius larger and cutout before the simulation. In order to model 

macroscopic mechanical behaviour of the studied layers, we tuned the particle elastic modulus and the bond strength. A large 

range of particle elastic modulus and bond strength were tested to characterize the relation between particle parameters and 15 

macroscopic behaviour. In some materials, strength and elastic modulus are related, while in other materials these properties 

are independent. For snow, it remains unclear whether the two properties are related. Our goal was to independently control 

both parameters in order to have a precise control on the macroscopic elastic modulus and macroscopic strength of the snow. 

Load-controlled test  

Load-controlled simulations were performed by increasing linearly the actuator layer density. To avoid a sample size effect 20 

(see below), 30 cm  30 cm samples were generated. Our DEM model does not take into account viscous effects or sintering 

of snow, therefore the results do not depend on the loading rate (not shown). We chose a high loading rate of 20 kPa s-1 simply 

to reduce the simulation time but we verified that the loading rate did not affect the results. By changing the angle of gravity 

(𝜓 in  Figure 3), mixed-mode loading was simulated. Failure was defined as the point of maximum shear or normal stress 

during the two first phases (linear elastic and softening phases). Table 1 summarizes the particle mechanical properties used 25 

for simulations and their corresponding macroscopic values. 

Time step 

The length of the time step was determined as function of the particle properties according to 

∆𝒕 ≈  r√
𝝆

𝑬 
          (1)   
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where ρ and 𝑟 are the smallest particle density and radius, respectively, and 𝐸 is the largest bond or particle elastic modulus. 

Choosing the time step in this manner ensures the stability of the DEM model (Gaume et al., 2015). 

Stress and strain  

The average stress and strain were calculated at the interface between the rigid base layer and the studied layer (Figure 3, violet 

arrow). Normal stress 𝜎𝑧  was computed as 𝜎𝑧 = 𝐹𝑧/𝐴 and shear stress as 𝜎𝑥 = 𝐹𝑥/𝐴. Here  𝐹𝑥   and 𝐹𝑧  are the sum of the 5 

contact forces acting on the basal layer in the tangential and normal direction, respectively, and 𝐴 is the total area of the basal 

layer over which the stresses were determined. We define the engineering strains as normal strain: 𝜀𝑧=
uz

D
  and shear strain: 𝛾𝑥 =

𝑢x

𝐷
 with the displacement of the actuator 𝑢 in the z- and x-directions and the thickness 𝐷 of the studied layer. The macroscopic 

strength (𝜎𝑡ℎ) was defined as the maximum stress before catastrophic failure. The macroscopic elastic modulus (𝐸) was defined 

on the normal stress-strain curve as the derivative of the stress between 0 and 70% of the stress peak. 10 

Fabric tensor 

If the particle arrangement during layer creation is not isotropic, the mechanical quantities of the layer show directional 

dependency. For any heterogeneous, anisotropic material (e.g. bones, concrete, snow), the fabric tensor characterizes the 

geometric arrangement of the porous material microstructure. The fabric tensor, referred to here as the contact tensor 𝐶, is the 

volume average of the tensor product of the contact unit normal vectors 𝑛̅. The 2𝑛𝑑 order contact tensor coefficients are defined 15 

in Ken-Ichi (1984) as: 

Cij=
1

N
 ∑ ni

α nj
αN

α = 1         (2) 

where 𝑁 is the total number of particle contacts, and 𝑛𝑖
𝛼 are the normalized projections of the contact with respect to the 𝑥i 

Cartesian coordinate (Shertzer et al., 2011). The contact tensor 𝐶 was used to estimate the physical properties of the simulated 

sample.  20 

2.2 Laboratory experiments 

For model validation, we used data of cold laboratory experiments obtained with a loading apparatus described in Capelli et 

al. (2018). They performed load-controlled failure experiments on artificially created, layered snow samples, consisting of a 

weak layer of depth hoar crystals between harder layers of fine-grained snow. The load applied on the samples was increased 

linearly until the sample failed. For more information on the experiments see Capelli et al. (2018). We selected three 25 

experiments (Table 2) for validating the numerical simulations. For the validation we focused on the normal strain, since for 

the experimental shear strain data (measure of the horizontal displacement) the signal-to-noise ratio was too low. Furthermore, 

due to the method used to load the snow samples, data from the force sensor after failure contained experimental artefacts. To 

select the model parameters 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ ,we used the elastic modulus computed as the derivative of the normal stress-
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strain curve and the strength values from the experiments (Table 2), as well as the relations for strength and modulus derived 

below. Digital image analysis of the experiments had revealed that the deformation was concentrated in the weak layer (Capelli 

et al., 2018). We therefore simulated the weak layer with a rigid actuator layer on the top. 

3 Results  

This section first presents the structural properties of the two generated layers. The two generated layers were analysed based 5 

on an unconfined compression test. Then, the link between macroscopic behaviour and particle properties is described. Finally, 

the model setup for the weak layer is validated by comparing numerical mixed-modes loading simulations to experimental 

data.  

3.1 Structural properties of generated samples 

For the sample used to generate the slab, the coefficients of the contact tensor 𝐶 were (Eq. 2):  10 

𝑪𝒔𝒍𝒂𝒃 = [
𝟎. 𝟑𝟐 𝟎 𝟎

𝟎 𝟎. 𝟑𝟐 𝟎
𝟎 𝟎 𝟎. 𝟑𝟓

]         (3)  

This shows that the slab samples are nearly isotropic, which is in line with results reported for snow types typically found in 

snow slab layers (Gerling et al., 2017; Srivastava et al., 2016). 

For the weak layer samples, 5 in total, the contact tensor was: 

𝑪𝒘𝒆𝒂𝒌 𝒍𝒂𝒚𝒆𝒓 = [
𝟎. 𝟐𝟕 𝟎 𝟎

𝟎 𝟎. 𝟐𝟕 𝟎
𝟎 𝟎 𝟎. 𝟒𝟔

]        (4) 15 

It shows transverse isotropic symmetry that is again in line with data from snow samples representative for weak layers (i.e. 

layers of depth hoar, surface hoar or facets), which also show transverse isotropy (Gerling et al., 2017; Shertzer, 2011; Shertzer 

et al., 2011; Srivastava et al., 2016).  

3.2 Characterization of macroscopic properties 

Slab layer 20 

To establish a relationship between the macroscopic elastic modulus and the particle elastic modulus, we performed 100 

simulations (with ten different values of 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and ten different values of 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ ) in pure compression to relate macroscopic 

and particle parameters. The macroscopic elastic modulus increased linearly with 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 : 

𝑬𝒔𝒍𝒂𝒃 𝒎𝒂𝒄𝒓𝒐 =  𝜷𝟎 + 𝜷𝟏 𝑬𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆          (5) 
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with the coefficients 𝛽0 = 1.5 × 105  Pa and  𝛽1 = 0.526  (dashed line in Figure 4a; 𝑅2 = 0.981). 

The macroscopic strength also increased linearly with bond strength 

𝝈𝒔𝒍𝒂𝒃 𝒎𝒂𝒄𝒓𝒐
𝒕𝒉 = 𝜸𝟎 + 𝜸𝟏 𝝈𝒃𝒐𝒏𝒅 

𝒕𝒉             (6) 

with the coefficients 𝛾0 = −318 Pa and  𝛾1 = 0.982 (dashed line in Figure 4b; 𝑅2 = 0.999). 

Weak layer 5 

For the weak layer we performed 81 simulations (with nine different values of 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and nine different values of 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ ) in 

pure compression to relate macroscopic and particle parameters. The macroscopic elastic modulus increased linearly with 

𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 : 

𝑬𝒘𝒍 𝒎𝒂𝒄𝒓𝒐 =  𝜷𝟎 + 𝜷𝟏 𝑬𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆        (7) 

with coefficients 𝛽0 = 7.3 × 104 Pa and  𝛽1 = 0.014  (Figure 5a; 𝑅2 = 0.985). 10 

The macroscopic strength also increased linearly with bond strength 

  𝝈𝒘𝒍 𝒎𝒂𝒄𝒓𝒐
𝒕𝒉 = 𝜸𝟎 + 𝜸𝟏 𝝈𝒃𝒐𝒏𝒅

𝒕𝒉           (8) 

with coefficients 𝛾0 = 76.7 Pa and  𝛾1 = 0.016 (Figure 5b; 𝑅2 = 0.998). 

Hence, based on equations (7) and (8), any values of the macroscopic quantities 𝜎𝑤𝑙 𝑚𝑎𝑐𝑟𝑜
𝑡ℎ  and 𝐸𝑤𝑙 𝑚𝑎𝑐𝑟𝑜  can be obtained by 

tuning 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ . 15 

3.3 Mechanical behaviour of layers  

Slab layer 

To investigate the mechanical behaviour of the slab layer, we performed load-controlled tension tests. Two phases can be 

distinguished: linear elastic deformation followed by sample fracture. During the linear elastic deformation, no bond damage 

appears and the stress linearly increase up to 𝜀 = 0.0025 (Figure 6). At failure, the stress dropped rapidly and bond damage 20 

drastically increased with increasing strain.  

Weak layer 

The large-deformation, unconfined load-controlled compression tests of weak layer samples revealed four different phases 

(grey dashed-dotted lines in Figure 7). First, there was a linear elastic phase without bond breaking (a.1), non-linearity appears 

right before the stress peak induced by some damage prior to failure; in good agreement with the quasi-brittle behaviour of 25 

weak snow layers (Figure 8). When the macroscopic strength was reached, the normal stress dropped sharply during the 
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softening phase as bond damage increased drastically (a.2). During the brittle crushing phase, the sample density as well as 

the proportion of broken bonds (𝑃𝑏𝑟𝑜𝑘𝑒𝑛 𝑏𝑜𝑛𝑑) steadily increased (a.3). Finally, the densification phase (a.4) was reached when 

the stress prominently increased again as the particles were closely packed. 

By varying the particle modulus 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and the bond strength 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ  the micromechanical behaviour in terms of bond 

breaking and acceleration (a) of the actuator layer was also investigated more closely up to the start of the brittle crushing 5 

phase (Figure 9). Before reaching the macroscopic strength, the normal stress increased linearly with increasing strain while 

the number of broken bonds and the acceleration were low. The strain at failure depended on both 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ . During 

the softening the stress sharply dropped while both the number of broken bonds and the acceleration increased. Both 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  

and 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ  controlled the amount of stress drop as well as the rate of increase of 𝑃𝑏𝑟𝑜𝑘𝑒𝑛 𝑏𝑜𝑛𝑑 and a. During the brittle crushing 

phase, both strength and acceleration did not change while Bondbreaking increased, independent of the values of 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and 10 

𝜎𝑏𝑜𝑛𝑑
𝑡ℎ .  

The stress at the end of the softening phase was characterized by the softening ratio  𝑅 =
𝜎̂𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝜎𝑤𝑙 𝑚𝑎𝑐𝑟𝑜
𝑡ℎ  

 with 𝜎𝑤𝑙 𝑚𝑎𝑐𝑟𝑜
𝑡ℎ  the 

macroscopic strength and 𝜎̂𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  the mean residual stress during the brittle crushing phase. The test with the highest 

softening ratio (Figure 9 solid light blue line: 𝑅 = 0.45 ) showed the lowest damage and the lowest acceleration. In contrast, 

the lowest softening ratio (Figure 9 dark blue dashed line: 𝑅 = 0.21) corresponded to the largest proportion of broken bonds 15 

and the largest acceleration. Concerning the two other tests, they exhibited the same residual stress but different softening 

ratios. We observed that the softening ratio followed a non-linear relation with 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ . 

Similar to the behaviour under compression, the mechanical response in shear exhibited different phases: an elastic phase, 

softening and simultaneously normal brittle crushing and shear displacement and finally shear displacement only (grey dashed-

dotted lines in Figure 10). Also the damage dynamics were similar as in pure compression (Figure 10b). No critical bond 20 

breaking was observed during the linear elastic phase followed by catastrophic damage after failure. Subsequently, the damage 

further increased during the brittle crushing. The normal strain increased during the brittle crushing phase and did not change 

thereafter. The normal deformation was closely related to the proportion of broken bonds, similar to behavior in the pure 

compression. Shear and normal accelerations reached their maximum at the end of the softening phase (Figure 10c) as observed 

in pure compression (Figure 7). During the brittle crushing phase, the normal acceleration decreased due to the creation of new 25 

contacts that decelerate the actuator layer. The tangential acceleration did not change much during the shear displacement 

phase.  

Weak layer failure envelope 

Unconfined load-controlled tests with nine loading angles were performed to create the failure envelope. Figure 11 compiles 

the values of macroscopic strength for different loading angles resulting in a failure envelope including tension (negative 30 



9 

 

normal stress), pure shear, pure compression as well as mixed-mode loading states. To investigate the influence of sample size, 

we performed a sensitivity analysis by varying the sample size from 0.1 m  0.1 m to 1 m  0.6 m and the random deposition 

(generation of different ball positions for the ballistic deposition). Apart from the smallest sample, all samples had very similar 

failure envelopes, which were fitted with 2nd order polynomial with coefficients 𝛽0
𝐹𝐸 = −7.66 × 102 Pa,  𝛽1

𝐹𝐸 = −0.25, 

𝛽2
𝐹𝐸 = 1.97 × 10−4 (dash-doted black line in Figure 11, 𝑅2 = 0.97): 5 

𝝉𝒕𝒉 =   𝜷𝟐
𝑭𝑬𝝈𝒕𝒉𝟐

+  𝜷𝟏
𝑭𝑬𝝈𝒕𝒉 + 𝜷𝟎

𝑭𝑬         (9) 

For a sample length of 0.3 m or larger, no effect of sample size on the failure envelope was observed. The sample heterogeneity 

induced by different types of random deposition did not influence the failure envelope either. Given the expression for the 

macroscopic strength (Eq. 9) where σth  represents the normal strength and τth the shear strength, the failure envelope is 

directly related to 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ . 10 

As the macroscopic strength 𝜎𝑤𝑙 
𝑡ℎ  is related to 𝜎𝑏𝑜𝑛𝑑

𝑡ℎ  (Eq. 8), the failure envelope can be scaled by using the scaling factor 

(
σwl

th

σwl ref
th ) : 

𝝉𝒕𝒉 = ( 𝜷𝟐
𝑭𝑬𝝈𝒕𝒉𝟐

+ 𝜷𝟏
𝑭𝑬𝝈𝒕𝒉 + 𝜷𝟎

𝑭𝑬)  
𝝈𝒘𝒍

𝒕𝒉

𝝈𝒘𝒍 𝒓𝒆𝒇
𝒕𝒉 ,     (10) 

with 𝜎𝑤𝑙 𝑟𝑒𝑓
𝑡ℎ = 2650 Pa, which corresponds to the maximum strength in pure compression (Figure 11). Equation (10) allows 

deriving the failure envelope for any value of the bond strength 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ  (green dash-dotted lines in Figure 12). 15 

3.4 Comparison with experimental data  

To validate the behaviour of our simulated weak layer samples, we used data from laboratory experiments performed by 

Capelli et al. (2018) (Table 2). For each of the three experiments with different loading angles the simulated total stress (𝜎𝑡𝑜𝑡 =

√𝜎2 +  𝜏2) as function of normal strain (ɛ) was in good agreement with the experimental results (Figure 13). 

4 Discussion  20 

We used 3-D discrete element modelling to study the mechanical behavior of simplified snow samples generated by different 

ballistic deposition techniques. Cohesive ballistic deposition produced transversally isotropic weak layers with high porosity 

(80%). Cohesionless ballistic deposition produced isotropic slab layers of lower porosity (45%), in general agreement with 

key properties of natural snow samples (Shertzer, 2011). The DEM particles do not represent real snow grains, to keep the 

computational costs reasonable (i.e. ~10 min on a standard personal computer for a sample of 50 cm  50 cm in size, 25 
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corresponding approximately to 26,500 particles). By varying the DEM particle parameters 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ  the 

macroscopic properties can be modified to fit different types of snow.  

First, tension tests were simulated to study the behaviour of dense slab layers. The results evidenced an almost perfectly brittle 

behaviour in good agreement with the tensile behaviour reported by Hagenmuller et al. (2014) and by Sigrist (2006). 

The mechanical behaviour we observed for our weak layer samples, in particular the four phases (Figure 7) during a load-5 

controlled compression test, were very similar to those reported by Mede et al. (2018) who simulated snow behaviour with 

microstructure-based snow samples. More generally, Gibson and Ashby (1997) also described these four distinct phases for 

elastic-brittle foam samples. 

The unconfined load-controlled tests under mixed-mode loading conditions showed shear behaviour in good agreement with 

previously reported results (Mede et al., 2018; Mulak and Gaume, 2019; Reiweger et al., 2015).  10 

The obtained failure envelopes were qualitatively in good agreement with the Mohr-Coulomb-Cap (MCC) model proposed by 

Reiweger et al. (2015) and with the ellipsoid (cam clay) model proposed by Gaume et al. (2018) and Mede at al. (2018). The 

model qualitatively reproduced the snow failure envelopes found in other numerical studies (Mede et al., 2018; Mulak and 

Gaume, 2019). In our case, the failure envelope is directly linked to  𝜎𝑏𝑜𝑛𝑑
𝑡ℎ , since any failure envelope can be expressed as a 

function of  𝜎𝑏𝑜𝑛𝑑
𝑡ℎ . Weak layer failure behaviour was not affected by the heterogeneity induced by different types of random 15 

ball deposition and by the sample size if the sample size was larger than 0.3 m  0.3 m. This size is typically found in field 

tests (PST, ECT; Bair et al., 2014; Reuter et al., 2015; van Herwijnen et al., 2016) and laboratory experiments (Capelli et al., 

2018).  

Based on these purely numerical investigations, the particle and contact parameters were selected to reproduce the results of 

cold laboratory experiments with real snow samples (Figure 13). The numerical results were qualitatively in good agreement 20 

for the three loading angles. However, the comparison to the experimental results is hindered by the lack of adequate 

experimental data. Due to vibrations in the actuator plate, the experimental shear strain data could not be used. Hence, there 

are no experimental data to validate the post-failure behavior. Still, as shown above, the post-failure behavior was in agreement 

with results of other numerical studies (e.g., Mede et al., 2018). 

We showed that the onset of failure corresponded to a strong increase in the number of broken bonds and in actuator layer 25 

acceleration. The maximum acceleration was reached towards the end of the softening phase. In fracture mechanics, the zone 

where softening occurs is generally referred to as the fracture process zone (FPZ) (Bazant and Planas, 1998). Hence, our 

findings suggest that slab acceleration may be used to accurately track the crack tip location in the weak layer during crack 

propagation experiments. 
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Introducing the softening ratio (𝑅) showed that the stress decrease in softening only depends on particle modulus 𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and 

bond strength 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ , which allows estimating the maximum acceleration of the actuator layer and the damage dynamics. In 

the present formulation of our model, the softening ratio is fixed for a given pair of parameters (𝐸𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  and 𝜎𝑏𝑜𝑛𝑑
𝑡ℎ ). 

To limit the number of model parameters we made two assumptions: the contact and the bond elastic modulus are equal and 

the bond cohesive and tensile strength are equal. The choice of weak layer creation technique (cohesive ballistic deposition) 5 

caused unique structural anisotropy that was reflected in the mechanical behaviour and added a limitation on the post-failure 

behavior and the shape of the failure envelope. Investigating the influence of microstructure by modifying the porosity or the 

coordination number as the sticky hard sphere (Gaume et al., 2017a) and/or modifying the assumption on contact/bond elastic 

modulus would allow us to generate a larger range of stress decrease during the softening phase.  

Furthermore, in the future, the influence of the ratio between the bond tensile strength and the bond cohesive strength, and/or 10 

the weak layer microstructure on the yield surface might be explored.  

The developed simulation tool does not take into account snow sintering processes, as we limited the study to fast loading 

rates. In the context of a dry-snow slab avalanche formation, this means that we can only study artificially induced cracks due 

to skiers or explosives. In future, we plan to extend the work to larger systems with the objective of studying the 

micromechanics of the dynamics of crack propagation. Using the presented tool to model a PST already showed some 15 

promising preliminary results (Bobillier et al., 2018). 

5 Conclusions  

Understanding the failure behaviour of slab and weak layer independently and characterize the influence of the main 

parameters is a prerequisite for studying the dynamics of crack propagation leading to the release of a dry-snow slab avalanche.   

We developed a mesoscale (between snow grain and slope scale) simulation tool based on 3-D discrete element simulations 20 

to generate snow layers of varying properties and investigate micromechanical processes at play during snow failure. Two 

types of snow layers were generated by ballistic deposition technique: (1) a uniform snow slab and (2) a porous transversally 

isotropic weak snow layer. These two types of snow layers are the two main components of dry-snow slab avalanches. The 

layers were characterized by a linear relation between particle/contact parameters and macroscopic properties. By deliberately 

making the choice of not representing the real snow microstructure, the computational time decreases and allows creating 25 

relatively large systems. 

We found an elastic-brittle mechanical behaviour for slab layers in tension. The weak layer behaviour under mixed-mode 

loading included four distinct phases of deformation (elastic, softening, simultaneous brittle crushing and shear displacement 

and finally shear displacement) as recently reported in the literature. The weak layer failure envelope, derived from a series of 
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mixed-mode loading simulations under different loading angles, was in good agreement with previous experimental and 

numerical results. The closed-form failure envelope can be tuned by adjusting the bond strength parameter.  

Analysing weak layer features such as the proportion of broken bonds, normal acceleration and softening ratio showed some 

of the limitations induced by our assumptions on particle parameters and the uniqueness of the microstructure generation. Still, 

the validation results suggest that the presented simulation tool can reproduce the main behaviour of weak layers under mixed-5 

mode loading conditions – even though we strongly simplified the microstructure to limit the computational costs.  

In the future, we intend to increase the system size and simulate a propagation saw test and explore the dynamics of crack 

propagation that eventually leads to dry-snow slab avalanche release.  
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Table 1: Mechanical properties used for simulation. 

 

Table 2: Characteristics of the three cold laboratory experiments used for model validation.  

Mechanical property Macroscopic Particles 

Weak layer density (kg m-3) 110 550 

Slab layer density (kg m-3) 250 455 

Slab porosity 45% - 

Weak layer porosity 80% - 

Slab elastic modulus 0.7 – 5.5 MPa 1 – 10.5 MPa 

Weak layer elastic modulus 0.5 – 7 MPa 40 – 480 MPa 

Slab strength 5 – 18 kPa 6 – 19 kPa 

Weak layer strength 1 – 9 kPa 70 – 560 kPa 

Characteristics 

 

Experiment 

1 2 3 

Base layer density (kg m-3) 392 271 289.5 

Weak layer density (kg m-3) 174 170 170 

Slab layer density (kg m-3) 399 212 293 

Base layer main type of grain Faceted crystals  Faceted crystals  Faceted crystals 

Weak layer main type of grain Depth hoar Depth hoar Depth hoar 

Slab layer main type of grain Faceted crystals  Faceted crystals  Faceted crystals 

Base layer, size of grain (mm) 0.7-1.5-2 1-2 1-1.5 

Weak layer, size of grain (mm) 2-4 2-4 3-4 

Slab layer, size of grain (mm) 0.7-1.5 1-2 1-1.5 

Failure stress (kPa) 10.5 3.2 8.3 
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Failure strain 0.0019 0.00243 0.00198 

Loading rate stress (Pa s-1) 168 168 168 

Loading angle (°) 0 15 35 
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Figure 1: Representation of the PFC parallel bond model (PBM) used in the simulations. a) Normal mechanical parameter bond 

and unbonded, where 𝑬𝒃 represents the bond elastic modulus, 𝝈𝒕  the tensile strength, 𝑬𝒖 the contact elastic modulus and 𝒆𝒖 the 

restitution coefficient. b) Shear mechanical parameter bond and unbonded, where 𝑬𝒃 represents the bond elastic modulus, 𝝈𝒔  the 

shear strength, 𝑬𝒖 the contact elastic modulus, 𝒃 the bond Poisson’s ratio and 𝝁𝒖 the friction coefficient. 5 
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Figure 2: Representation of the bonded behavior of PBM used in the simulations. (a) Bond normal force 𝑵𝒃 as a function of the 

normal interpenetration 𝜹𝒏 scaled by the bond radius 𝒓𝒃. (b) Bond shear force  ‖𝑺𝒃‖as a function of tangential interpenetration 𝜹𝒔  

scaled by the bond radius 𝒓𝒃. (c) Bond-bending moment ‖𝑴𝒃,𝟏‖ as a function of bending rotation 𝜽𝟏 scaled by the bond radius  𝒓𝒃. 

(d) Torsion moment  ‖𝑴𝒃,𝟐‖as a function of twist rotation 𝜽𝟐 scaled by the bond radius  𝒓𝒃. 5 
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Figure 3: A) Coordinate system and diagram of the setup consisting of the basal layer (blue), the tested layer, in this case a weak 

layer, (green) and the actuator layer (red). The violet arrow points to the interface between basal and tested layer where the stress 

is measured. B) slice of a generated system consisting of a slab layer (large red particles) and a porous weak layer (small green 

particles). A zoom of the weak layer is shown in the circle. The lines represent bonds between particles. Applied gravity is defined 5 
on the right where 𝝍 is the loading angle. 

 

Figure 4: (a) Slab macroscopic elastic modulus as a function of particles elastic modulus. The blue dots correspond to the mean of 

ten simulations with different values of  𝝈𝒃𝒐𝒏𝒅
𝒕𝒉 . (b) Slab macroscopic strength as a function of slab particles strength obtained with 

unconfined load-controlled compression simulations. The blue dots correspond to the mean of ten simulations with different values 10 
of 𝑬𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆 . 
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Figure 5: (a) Weak layer macroscopic elastic modulus as a function of particles elastic modulus. The blue dots correspond to the 

mean of nine simulations with different values of  𝝈𝒃𝒐𝒏𝒅
𝒕𝒉 . (b) Weak layer macroscopic strength as a function of slab particles strength 

obtained with unconfined load-controlled compression simulations. The blue dots correspond to the mean of nine simulations with 

different values of 𝑬𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆 . 5 

 

Figure 6: Slab layer behavior under load-controlled tension test. The blue line shows the normal stress, the violet line corresponds 

to the bond breaking ratio are shown as functions of the normal strain.  
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Figure 7: Weak layer behavior under load-controlled compression test (𝑬𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆 = 𝟑𝟎𝑴𝑷𝒂 and 𝝈𝒃𝒐𝒏𝒅
𝒕𝒉 = 𝟓𝟎𝟎𝒌𝑷𝒂). The blue line 

shows the normal stress during the four phases of weak layer failure. It includes the linear elastic phase (a.1), softening (a.2), brittle 

crushing (a.3), densification (a.4). The violet line corresponds to the proportion of broken bonds. 
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Figure 8: Weak layer behaviour close to failure under load-controlled compression (𝑬𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆 = 30 MPa and 𝝈𝒃𝒐𝒏𝒅
𝒕𝒉 = 500 kPa. The 

blue line shows the normal stress during the two first phases of weak layer failure. It includes the elastic (a.1) and the softening phase 

(a.2). The violet line corresponds to the proportion of broken bonds. 

 5 
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Figure 9: Weak layer behavior under load-controlled compression for four combinations of Eparticle (solid lines) and 𝝈𝒃𝒐𝒏𝒅
𝒕𝒉  (same 

color, dashed-dotted lines). (a) Normal stress vs. normal strain. (b) Percentage of broken bonds (damage). (c) Acceleration of the 

actuator layer. The orange dashed-dotted line represents the approximate beginning of the brittle crushing phase. The grey dotted 

line represents the beginning of the softening phase defined by the strength (grey dot). 5 
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Figure 10: Weak layer behavior in load-controlled mixed-mode testing at 35° from the horizontal (𝑬𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆 = 𝟑𝟎𝑴𝑷𝒂 and 𝝈𝒃𝒐𝒏𝒅
𝒕𝒉 =

𝟓𝟎𝟎𝒌𝑷𝒂). (a) Shear stress, (b) bond damage (violet) and normal strain (orange, right scale), and (c) normal and tangential  

accelerations are shown as function of the shear strain. 
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Figure 11: Failure envelopes for different sample sizes, and types of random particle deposition. The blue lines correspond to 

different sample sizes from 0.3 m  0.3 m to 0.6 m  1 m. The pink line corresponds to a sample size of 0.1 m  0.1 m. The orange 

lines correspond to a sample size of 0.3 m  0.3 m generated with different random depositions. The black dash-dotted line 

corresponds to a 2nd order polynomial fit of all data apart from those obtained with the sample size of 0.1 m  0.1 m. 5 
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Figure 12: Failure envelopes for different values of bond strength 𝝈𝒃𝒐𝒏𝒅
𝒕𝒉  and fit only based on equation (10). The blue lines 

correspond to the data shown in Figure 11 and the black dash-dotted line to the corresponding fit (Eq. 8). The orange lines 

correspond to failure envelopes with different values of bond strength 𝝈𝒃𝒐𝒏𝒅
𝒕𝒉 . The green dash-dotted line corresponds to the 

corresponding fit defined in equation (10) which do not depend on orange line data.  5 
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Figure 13: Total stress as function of normal strain for three simulations and the corresponding experimental results. (a) for a 

loading angle of 0°, (b) 15° and (c) 35°. The orange lines shows the raw stress data, the blue lines are the smoothed stress using a 

Kalman filter (Capelli et al., 2018) and the black lines are the simulation results. 
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