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Abstract. Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered

with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss

through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine

seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine terminating glacier in Svalbard, with

repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar5

scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude

are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals

from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which

we estimate for Kronebreen to be about 18-30%, slightly below the subaerially exposed area of the glacier front. We further

develop a model calibrated for the permanent seismic station KBS at about 15 km distance from the glacier front, where 15-10

60% of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between

2007 and 2017, we find a 5-30% contribution of calving ice blocks to frontal ablation which emphasizes the importance of

underwater melting (roughly 150–350 m a−1). This study shows the feasibility to seismically monitor not only frontal ablation

rates but also its dynamic ice loss contribution continuously and at high temporal resolution.

1 Introduction15

Glaciers are an important contributor to eustatic sea level rise in a warming climate (Gardner et al., 2013; Huss and Hock,

2015), with dynamic discharge one of the largest uncertainties in future predictions (Vaughan et al., 2013). Frontal ablation

at marine-terminating glaciers comprises ice loss through subaerial and submarine melting and iceberg calving. Submarine

melting strongly promotes calving through thermal undercutting (Bartholomaus et al., 2013; Luckman et al., 2015; Vallot

et al., 2018; How et al., 2019). To monitor and better understand the dynamic ice loss contribution, field records of calving can20

be obtained visually through human observation and time-lapse imagery (e.g., O’Neel et al., 2003; Chapuis et al., 2010; How
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et al., 2019), as well as through terrestrial remote sensing such as ground-based radar and lidar surveys. Calving events are also

successfully detected from passive indirect techniques such as seismic (Ekström et al., 2003; Amundson et al., 2008; O’Neel

et al., 2010; Walter et al., 2012; Bartholomaus et al., 2012; Köhler et al., 2015) and hydroacoustic monitoring (Glowacki et al.,

2015).5

Seismic and hydroacoustic methods have the advantage to produce continuous calving records with high temporal resolution

and limited logistical effort. Furthermore, they are independent of visibility conditions in contrast to optical methods. However,

inferring ice volumes from those signals using physical models is challenging (Podolskiy and Walter, 2016; Aster and Win-

berry, 2017). For example, it requires different approaches dependent on the calving style, i.e., for glacial earthquake signals

from tabular iceberg calving such as observed in Greenland (e.g., Murray et al., 2015) or for seismic calving signals gener-10

ated during iceberg impact on the sea surface (Bartholomaus et al., 2012). The only successful approach so far is calibrating

seismic records to directly inferred calving sizes using empirical models valid for a particular glacier and recording site for

the latter type of calving. For example, Bartholomaus et al. (2015) developed an empirical model to estimate iceberg volumes

from individual seismic calving signals at Yahtse glacier, Alaska based upon visually perceived iceberg sizes (quantified on an

integer scale). Köhler et al. (2016) calibrated an empirical model of dynamic ice loss using frontal glacier ablation measured15

through timeseries of repeat satellite images, allowing reconstruction of frontal ablation directly from seismic calving signals

with weekly resolution and going back decades. In this approach, a constant ratio between frontal melting and calving was

implicitly included, an assumption that requires validation through independent dynamic ice loss measurements.

In this study, we measure dynamic ice loss at Kronebreen (Svalbard) using seismic data recorded at three locations and

precise ice volume measured from repeat lidar scanning for calibration, instead of visually perceived calving size empirically20

scaled to ice volume (Bartholomaus et al., 2012). In addition, we use for the first time a hydroacoustic record for calibration

in addition to seismic data. Our method relies on time-lapse camera images to prepare the calibration data set. Finally, we

compare our results with independently measured frontal ablation rates at Kronebreen to assess the potential to quantify the

contribution of frontal melting.

2 Study site and calving records25

Kronebreen is a grounded tidewater glacier in the northwestern part of the Arctic archipelago of Svalbard (78.88◦N, 12.55◦E)

about 15 km East of the research settlement of Ny Ålesund. Mass loss is dominated by frontal ablation (Nuth et al., 2012;

Luckman et al., 2015) making it an ideal candidate to further understand the processes of calving and frontal ablation. The

glacier is currently experiencing an accelerated, rapid retreat with more than 1 km since 2012 (Schellenberger et al., 2015;

Köhler et al., 2016; Deschamps-Berger et al., 2019) with considerable future implications for the fjord ecosystem (Torsvik30

et al., 2019). At the end of August 2016 a multi-disciplinary field campaign was carried out to measure the calving front of

Kronebreen continuously over a two-week period with simultaneous acquisitions from time-lapse cameras, a lidar scanner,

terrestrial radar interferometry, passive seismic, and hydroacoustic arrays (Nuth et al, in preparation).
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2.1 Seismic data

Between 24 August and 2 September 2016, a temporary seismic network was deployed in the vicinity of the marine terminus

of Kronebreen (Fig. 1c, Köhler et al., 2019). Eleven 4.5 Hz three-component geophones connected to Omnirecs DATA-CUBE

data loggers operating with a sampling frequency of 100 Hz were arranged as two small-aperture arrays to the North (KRBN,5

four stations) and South (KRBS, seven stations) of the calving front of Kronebreen. The inter-station spacings of both arrays

were between 120 and 780 m. During installation shallow holes were dug in the ground to accommodate the geophones.

Instruments were covered with soil and the data loggers were placed at the surface. Each DATA-CUBE used two internal 1.5 V

batteries as power supply which were exchanged once during the survey. We also used the continuous, long-time record of

the permanent broadband Kings Bay station (KBS) in Ny-Ålesund at 15 km distance from Kronebreen which operated with a

sampling frequency of 40 Hz.5

2.2 Hydroacoustic data

The field experiment included measurements of the underwater acoustic soundscape close to the terminus of Kronebreen.

Three underwater acoustic recorders were deployed at about 45 m water depth with the hydrophones placed 10 m above the sea

bottom. The acoustic data were collected from 26 August to 3 September 2016. We used autonomous recorders (SM2, Wildlife

Acoustics, US) with a hydrophone recording bandwidth of 8 Hz to 150 kHz and sensitivities of -166 ± 1 dB re 1 V/µ Pa in the10

band from 100 Hz to 15 kHz. A 35 kg weight resting on the sea bottom and a small sub-surface buoy above the instrument were

used to maintain the vertical alignment. The buoy was connected to the upper part of the recorder with a thin, 2 m long rope.

All the components were connected with non-metallic ropes to avoid noise due to moving parts. We sampled continuously

(duty cycle of 100%) with a sampling frequency of 192 kHz and a resolution of 16 bits. No pre-amplification or filtering was

applied during the recordings except for the automatic anti-aliasing filter. The recording unit was recovered using an acoustic15

releaser. The locations of hydrophones ACB and ACC are shown in Fig. 1c.

2.3 Time-lapse camera image data

A time-lapse camera was installed on a tripod at the top of a moraine cone at 8 m a.s.l. (see Fig. 1c). The Harbotronics set

consisted of a sealed box, an intervalometer, a camera (see Table A1) and an external 12 V 30 A battery. The camera was set to

take a picture every 2 seconds, but the frequency varied due to a combination of factors related to the camera, SD card, shutter20

speed, battery, and temperature. The lens and focus were taped to the lowest focal length (i.e. 18 mm) in order to cover the

largest part of the glacier front. The aperture was fixed to a value of 8.0 whereas the ISO and shutter speed were automatically

adjusted to adapt to the ambient luminosity. The time-lapse camera was visited every one or two days to replace the SD card

and correct for any clock-drift.

The time-lapse images are preprocessed and then used to identify calving events. For visual inspection, we extract the25

corresponding images within one minute around each calving event detected in the seismic record to generate an animated

image sequence. Only a few percent of all events visible in the time-lapse images represent submarine calving, similar to
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(c) Seismic calving events: Spatial distribution
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Figure 1. Calving event time series and location. (a) Hourly counts of calving events automatically detected on time-lapse camera images.

Grey areas indicate image gaps. (b) Hourly counts of seismic detections simultaneously at KRBN and KRBS (black) and at KBS (gray). Blue

line shows relative variations in seismic background noise level (N) with respect to maximum level (Nmax) in recording period. (c) Triangles

show locations of time-lapse camera (black), Lidar scanner (black), seismic (white), and hydroacoustic (gray) instruments at the calving front

of Kronebreen. Black points are seismic calving event locations. White error bars show an estimate of the typical location uncertainty. White

curve is histogram of time-lapse camera event counts projected on a line (dashed) parallel to the terminus. Dashed box is used to classify

located seismic signals as calving events. Insets to the right show Arctic archipelago of Svalbard (upper) and a closeup map of Kongsfjorden

area (lower) with location of permanent broadband seismometer KBS in Ny-Ålesund.

observations at other glaciers in Svalbard (How et al., 2019). In addition, an autonomous calving event detector is implemented

to compare the time series of seismicity and directly observed calving (see Fig. 1a). A detailed description of the image

processing and the calving detection algorithm can be found in the Appendix (Fig. A1, Table A1).30

2.4 Repeat lidar scanning

Volumes of individual and aggregated calving events were calculated by differencing Digital Surface Models (DSMs) obtained

from repeat lidar scanning of the glacier terminus. The glacier front and surroundings were surveyed with a long-range terres-
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trial laser scanner Riegl VZ-6000 on 23–25, 27, 30, and 31 August, and 1–3 September. On 24, 25, 27, 30, and 31 August, and

1 September, a series of frequently repeated (5–30 minutes interval) lidar surveys of the ice front, restricted to the southern half

of the terminus, were made. Lidar Pulse Repetition Rate (PRR) was always set to 50 kHz and horizontal and vertical angular

resolution was typically set to ∼ 0.004◦. The lidar signal reflected from the northern part of the terminus was too weak to5

provide a reliable DSM due to large distance and, additionally, it was partially occluded from view by the protruding portion

of the ice cliff near the centerline.

Resulting point clouds were preprocessed in Riegl RiSCAN-PRO software. Geocoding was made with a Multi Station

Adjustment (MSA) plugin using ice-free areas of lidar scans of acquired from two auxiliary scan positions: one located near

KRBN array and second to the west of the main camp. Lidar positions were measured with static observations of differential10

GPS (Leica GS14) using NYA1 as a reference station. Subsequently, all the point clouds were aligned to a common reference

frame using an iterative closest point (ICP) algorithm. Multiple cloud alignment yielded mean global positioning error of 8 cm.

Each resulting point cloud was cropped to the ice cliff face by manual removal of the points related to the floating icebergs and

boats. Point clouds were processed with Cloud Compare software in which horizontal mismatches between sequential point

clouds was removed using the M3C2 plugin (Lague et al., 2013). Results were projected to a new gridded point cloud with15

a fixed spatial resolution of 10 cm. Then, it was separated into two classes based on the sign of the distance change between

sequential point clouds: ice terminus was classified as affected by calving when the change was positive, i.e. the distance from

lidar scanner to the ice front increased due to calving; where the sign was negative, ice front advanced. Sub-clouds classified as

affected by calving were segmented to particular calving events with the method of Awrangjeb (2016) that employs maximum

point-to-point distance in the input data to classify boundary edges. Calving event scars have low reflectance in near infrared20

part of spectrum used by lidar and this causes a decrease in point cloud density. Therefore, total volume of a calving event was

calculated as a product of calving scar area and average calving event depth. Owing to short time between subsequent lidar

acquisitions (<1 hour), ice advection was neglected as front advance during such time difference is much lower (1–6 cm) than

calving event depth (meters). For inter-daily point cloud differencing, front advance related to ice advection that takes place

between measurements cannot be neglected. Hence, in such case the approach of Pętlicki and Kinnard (2016) was used, where25

point cloud differences in adjacent areas not affected by calving (ice advection) is added to the displacement caused by calving.

3 Detection, location, and validation of calving signals

Seismic arrays allow detecting weak seismic signals and suppressing uncorrelated noise by beamforming (Schweitzer et al.,

2012). Frequency-Wavenumber (FK) analysis for example allows measuring the direction towards the signal source (back-

azimuth) through maximizing the stacked, travel-time corrected spectral amplitudes, the so called absolute beampower. Array30

analysis is in particular useful for calving events at Kronebreen, since these signals do not exhibit clear P and S wave onsets

required for travel-time-based epicenter inversion (Köhler et al., 2015).

We compute a time series of absolute FK beampowers in 1 s long time windows with 50% overlap for each array between

1 and 3 Hz, the predominant frequency band of seismic calving signals at Kronebreen (Köhler et al., 2015). Subsequently,

5

The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-75
Manuscript under review for journal The Cryosphere
Discussion started: 25 April 2019
c© Author(s) 2019. CC BY 4.0 License.



−2000
−1000

0
1000
2000

n
m

 s
−

1

0 10 20 30 40 50 60 70

Time (s)

−2000
−1000

0
1000
2000

n
m

 s
−

1

0 10 20 30 40 50 60 70

Time (s)

KRBN2

−2000
−1000

0
1000
2000

n
m

 s
−

1

−2000
−1000

0
1000
2000

n
m

 s
−

1

KRBS3

−2000
−1000

0
1000
2000

n
m

 s
−

1

−2000
−1000

0
1000
2000

n
m

 s
−

1

D

−200

0

200

n
m

 s
−

1

−200

0

200

n
m

 s
−

1

KBS

−800
−400

0
400
800

n
m

 s
−

1

2016−08−27T09:57:03

−800
−400

0
400
800

n
m

 s
−

1

2016−08−27T09:57:03

ACB

−800
−400

0
400
800

n
m

 s
−

1

0 5 10 15 20 25 30

Time (s)

−800
−400

0
400
800

n
m

 s
−

1

0 5 10 15 20 25 30

Time (s)

KRBN2

Ad = log(∑DurE(t))

−800
−400

0
400
800

n
m

 s
−

1

−800
−400

0
400
800

n
m

 s
−

1

KRBS3

−100
−50

0
50

100

n
m

 s
−

1

−100
−50

0
50

100

n
m

 s
−

1

KBS

A = log(max(E(t))

−400
−200

0
200
400

n
m

 s
−

1

2016−08−30T11:44:22

−400
−200

0
200
400

n
m

 s
−

1

2016−08−30T11:44:22

ACB

Figure 2. Examples of hydroacoustic (ACB) and seismic (KBS, KRBN2, KRBS3) signals of two calving events. Waveforms are bandpass-

filtered between 2 and 12 Hz are shown in grey. Black curves are signal envelopes (E(t)) used to compute the event features: signal duration

(D), logarithm of envelope amplitude integrated over event duration (Ad), and logarithm of maximum envelope amplitude (A).

a short-term over long-term average (STA/LTA) trigger (Withers et al., 1998) is applied independently to both beampower

time series (STA=2 s, LTA=20 s, threshold=6). An event is declared if the STA/LTA threshold is exceeded on both arrays.

The STA/LTA parameters are found through visual evaluation of selected seismogram time windows. The detections are then

located using the spatial mapping by multi-array beamforming method (SMAB, in supplementary information in Köhler et al.,5

2016). The SMAB method assumes a straight ray path from the source to each array stations, a condition we find not to be

sufficiently fulfilled, most likely due to 2D propagation effects along the ice–ocean–land interfaces. We therefore empirically

correct for the azimuthal bias observed at each array during SMAB processing (see Appendix and Fig. B1 for details).

A relatively large location uncertainty is expected given the long wavelength of seismic calving signals (λ = 400–1000 m),

limiting the spatial resolution of array beamforming to not less than 100–250 m (λ/4 criterion). Furthermore, seismic propaga-10

tion effects not explained by the azimuthal correction can contribute to the overall location uncertainty. A conservative estimate

of the average uncertainty is 320 m (longitude) and 260 m (latitude) (Fig. 1c) which are the medians of the difference between

individual SMAB locations (longitude / latitude coordinates) and directly observed calving location from the time-lapse im-

agery (see scatter plot Fig. B1c). For further processing, we select all events with normalized SMAB beampower >0.5 and

with source locations inside a box around the terminus of Kronebreen (box dimension: 12.54◦E < lon < 12.68◦E, 78.848◦N15

< lat < 78.8926◦N, see Fig. 1c). Comparison with time-lapse images shows that a few calving events are detected as two or

more separated seismic signals. Therefore, consecutive signals in our catalog are merged in a post-processing step if seismic

locations are less than 400 m away from each other along the calving front and the detection time difference is less than 10 s.
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The seismic record of the permanent station KBS has been previously used to generate a catalog of calving events between

2001 and 2015 (Köhler et al., 2016). For this study, we updated this catalog by processing data of recent years (2016–2017)

using the same detection method. The calving event classifier for KBS was retrained using seismic signals from 2016 confirmed

to originate at Kronebreen using our temporary seismic deployment and the time-lapse images. KBS detections during the field

experiment are shown in Fig. 1b (gray histogram).5

In total 1,460 seismic calving event signals are simultaneously detected on array KRBN and KRBS within the measurement

period. As expected, the detection rate is affected by the seismic background noise level, i.e., less events are being detected

during windy time periods when for example ocean waves generate more ambient vibrations (Fig. 1b). The majority of seismic

detections are visually confirmed on time-lapse camera images. Visual inspection of time-lapse images for all events on 30

August reveals that only 4% of all seismic detections located within the camera-covered range of the terminus cannot be10

visually confirmed (false positives). Most non-confirmed signals (16% of the total number of detections) originate from outside

the camera range at the southern end of the terminus, or are concealed from the observer as a result of the front geometry. We

also assess the possibility of missed calving events (false negatives) using the catalog of events independently obtained from

time-lapse camera images (see Appendix and Fig. 1a). Only 7% of all events caught on camera cannot be matched with a

simultaneous seismic detection on both arrays. However, weak seismic signals can be identified on one of both arrays for many15

of those events. Since we require detection on both arrays for a more accurate location, we do not include these events in

further processing. Days of high seismic noise level (25 and 28 August) account for more than 50% of these false negatives.

Depending on the noise level, between 10 and 45% of all calving signals observed on the arrays at Kronebreen are detected at

the permanent station KBS, consistent with an earlier experiment conducted in 2013 (Köhler et al., 2016).

4 Model development, calibration, and results20

To find a relation between seismic calving signals and measured ice volumes, we compute the following features for each

detection after bandpass-filtering between 1.5 and 5 Hz (Bartholomaus et al., 2015; Köhler et al., 2016): signal duration (D),

logarithm of envelope amplitude integrated over event duration (Ad), and logarithm of maximum envelope amplitude (A). After

testing all sensor records, we decided to use a single station of each array exhibiting the best signal-to-noise ratio (KRBN2,

KRBS3). Furthermore, we use the seismic detection times to extract the corresponding calving signals from the record of25

the hydrophone located closest to the calving front (ACB, Fig. 1c) and compute the same features as for the seismic signals.

Although hydroacoustic data provide a much broader frequency range, we find the computation of features below 15 Hz to be

most robust for calibration to ice volumes. The reasons are underwater noise level being in general higher and calving-related

signals tending to be less well-defined and localized in time at higher frequencies. We find that hydroacoustic calving signals

often consist of multiple arrivals and weak signals emitted in the aftermath of the ice–water impact, possible caused by ice30

avalanches at the terminus, ice breakup at the calved ice block, and air bubble noise from melting freshly calved ice (Urick,

1971; Tegowski et al., 2014; Pettit et al., 2015). Figure 2 presents signals of two typical calving events on KRBN2, KRBS3,

ACB, and KBS with signal envelopes shown as black curves.

7

The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-75
Manuscript under review for journal The Cryosphere
Discussion started: 25 April 2019
c© Author(s) 2019. CC BY 4.0 License.



1e+02

1e+03

1e+04

1e+05

1e+06

O
b

s
e

rv
e

d
 V

o
lu

m
e

 (
m

³)

1e+02 1e+03 1e+04 1e+05

Modelled Volume (m³)

(a) Hydro−Acoustic

1e+02

1e+03

1e+04

1e+05

1e+06

O
b

s
e

rv
e

d
 V

o
lu

m
e

 (
m

³)

1e+02 1e+03 1e+04 1e+05

Modelled Volume (m³)

(a) Hydro−Acoustic

1.7Ad−12.7 d=24.7

0.10D+3.8 d=26.0

d0=83.5

1e+02 1e+03 1e+04 1e+05

Modelled Volume (m³)

(b) Seismic KRBN2

1e+02 1e+03 1e+04 1e+05

Modelled Volume (m³)

(b) Seismic KRBN2

0.13D+4.8 d=41.2

1.4Ad−8.9 d=48.6

d0=92.3

1e+02 1e+03 1e+04 1e+05

Modelled Volume (m³)

(c) Seismic KRBS3

1e+02 1e+03 1e+04 1e+05

Modelled Volume (m³)

(c) Seismic KRBS3

0.06D+7.0 d=47.6

1.0Ad−5.8 d=38.3

d0=80.5

1e+02 1e+03 1e+04 1e+05

Modelled Volume (m³)

(d) Seismic KBS

1e+02 1e+03 1e+04 1e+05

Modelled Volume (m³)

(d) Seismic KBS

0.09D+4.9 d=11.8

1.2Ad−2.4 d=6.8

d0=24.1

2.0Ad−0.5A−14.6

d=23.7

d0=83.5

0.04D+1.0Ad−6.0

d=21.7

2.9Ad−2.1A−16.1

d=31.4

d0=92.3

0.09D+0.5Ad−1.0

d=37.1

1.6Ad−0.9A−7.1

d=33.2

d0=80.5

0.02D+0.8Ad−3.3

d=37.4

1.8Ad−1.5A−4.7

d=6.2

d0=24.1

−0.03D+1.6Ad−4.1

d=6.4

Figure 3. GLMs relating waveform properties to calving volume (lidar scanning) of individual events. Models are calibrated for different sta-

tions and combination of calving signal features (D: signal duration, Ad: amplitude integrated over event duration, A: maximum amplitude).

Model coefficients, deviance (d), and Null deviance (d0) of each model are stated. Red symbols show selected models.

From repeated lidar scans with 30 minute intervals at daytime on 24, 25, 27, 30, and 31 August, and 1 September, we obtain

100 individual calving volumes. Three sources of uncertainty exist when matching these volumes with the corresponding

seismic and hydroacoustic calving signals: (1) The lack of exact timing in the lidar catalog, i.e., we only know that the event

occurred within the scanning interval, (2) the assumption that a volume measured at a particular location corresponded to

a single event, not to multiple events spread out within the scanning interval, and (3) the seismic location uncertainty. In5

other words, we have accurate timing but uncertain locations in case of seismic observations, and uncertain timing but precise

locations for events in the lidar catalog. The time-lapse camera images are thus used to manually identify as many high-

confidence matches between the seismic and the lidar catalog as possible. For each seismic calving event, the corresponding

camera image series are inspected, and the location of the calving event at the terminus is visually identified. We then select

all events from the lidar catalog during the scanning interval including the seismic signal at this location. Doing so, we take10

into account the location of the laser scan focus at the seismic detection time. Lack of continuous images due to camera failure

on 27 and 31 August, and 1 September reduces the number of usable lidar volumes to 88, from which we are only able to

unambiguously match 35 events. Unsuccessful matching is mostly due to events that occurred outside the camera range at the

southernmost part of the terminus or due to the presence of too many candidates for matching. In a few cases, several isolated

volumes with close proximity to each other correspond to a single calving event, i.e., to a single seismic signal. These volumes15

are merged accordingly. Furthermore, several calving events can occur at the same location during the scanning interval. In

this case, we merge the corresponding seismic signals and treat them as a single event. This merging is done iteratively. We

first calibrate signal properties to ice volumes excluding those signals and then re-calibrate our regression model using signal

features merged according to the preliminary model (see below for more details). The final number of calving events available

for calibration is 27 for the seismic and 22 for the hydroacoustic data. Since only the largest calving events are observed at20

15 km distance, this number reduces to 12 events for the KBS record.
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Following the approach of Bartholomaus et al. (2015), we use Generalized Linear Models (GLMs, McCullagh and Nelder,

1989) and test different combinations of features computed from the seismic or hydroacoustic calving signals to find an em-

pirical relation to estimate the lidar calving volumes. The linear combination of predictor variables (seismic or hydroacoustic

features) is related to the response variable (calving volume V ) through a logarithmic link function. As in Bartholomaus et al.5

(2015) and Köhler et al. (2016) we employ the Gamma distribution to model the response variable. The GLMs have the form:

log(V ) = c1 ·Si + c2 ·Sj + c0, (1)

where c0,1,2 are the time-invariant model coefficients and Si/Sj are chosen from the features D, Ad, and A computed from the

hydroacoustic (ACB) and seismic calving signals (KRBN2, KRBS3, and KBS). Merging k multiple signal features for a single

volume measurement as mentioned above is done by computing:

Smerged = (log
(∑

k

exp(c1 ·Sk + c0)
)
− c0)/c1, (2)

where c0 and c1 are obtained from a preliminary model trained using a single predictor variable (the feature to be merged)10

and without using the to-be-merged calving signals. Subsequently, the GLM is re-estimated including merged signals.

Figure 3 shows the results for 16 models using a single (c2=0) or two predictor variables (see also Fig. C1). The GLM

performance is evaluated using the deviance, the common quality-of-fit statistic for GLMs (McCullagh and Nelder, 1989). The

Null deviance d0 stated in Fig. 3 is the statistic for regression using a single model parameter c0. In addition, the significance

of model coefficients c1 and c2 to be non-zero is assessed using a T-test with 90% confidence. Finally, we perform a cross-15

validation test where we divide the data set randomly into 80% training and 20% validation data. This is repeated 500 times,

and the mean of all RMS errors is computed.

Using deviance, cross-validation RMS errors, and T-test, we identify one or two best-performing models for each station

(highlighted in red in Fig. 3). The results show that Ad alone or in combination with A tends to perform best for all stations. In

case of the seismic data, combining Ad and A results in better models than using a single variable, with model coefficient c220

for A always being negative. An intuitive explanation for this result is that A removes the effect of short-time amplitude spikes

in the calving signal from the quantity Ad. These spikes might be caused by secondary processes during calving that are not

directly related to the impact of the total ice volume into the water (e.g., ice projectiles, effects of the geometry of ice block,

etc.).

Scatter between observed and predicted event volumes could be related to different factors affecting seismic and acoustics25

signals properties. i.e., source effects, such as the type of calving, shape of ice block, and/or manner of impact, as well as wave

propagation effects depending on the travel path from different locations at the calving front to the receiver. We find that model

performance does not improve significantly after including proxies for these effects. For example, multiplying Ad and A with

the square root of the source distance to account for geometrical spreading (assuming surface waves), modeling the potential

energy of the calved ice block instead of the ice volume to take into account fall height, or including the seismic/acoustic noise30
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level as an additional predictor variable since it can affect the measured length of a calving signal, does not improve the model

fit.

5 Model validation with cumulative ice loss from lidar scans

Our results clearly show the existence of an empirical relation between calving signals properties and logarithm of ice volumes

approximated by a linear trend. To validate our empirical models calibrated with individual, successfully matched calving

events (i.e., a subset of all lidar ice volumes), we employ the cumulative subaerial ice loss measured from lidar scanning within

different time periods as a test data set. The sum of volumes over all scans during daytime on individual days as well as volumes5

obtained from the inter-daily scans are used.

First, we apply the best empirical models of each station obtained from the full calibration data (Fig. 3) to estimate the

cumulative calving volume using all calving signals observed during the measurement period from 24 August until 2 September

(white symbols in Fig. 4). In a second step, in order to estimate its uncertainty, we randomly select 80% of the calibration data

set to determine a new GLM Mcv . Then, the cumulative calving volume Vcv of all observed calving events is computed using10

Mcv . This is repeated 100 times. Figure 4 shows the resulting histograms plots for Vcv for all sensors. The distribution gives an

impression about the uncertainty of the estimated total ice loss. Since the hydroacoustic recording period is shorter, we repeat

this processing for the seismic data within the corresponding time period (gray histograms). Assuming a normal distribution

for Vcv , the means and standard deviations are computed for each station to quantity the uncertainty of the total calving volume

estimate (Table 1).15

Using all seismic calving observations at KRBN and KRBS during the field experiment, the total ice volume lays consistently

for both models between 2·106 and 6·106 m3 (Fig. 4, Table 1). Furthermore, Vcv values from the hydroacoustic data are in

agreement with seismic data in the corresponding time period (Fig. 4). The volumes obtained from KBS lays between 0.5·106

and 1.5·106 m3, suggesting that calving observed seismically at a distance of 15 km only accounts for about 25% of the ice loss

estimated close to the glacier. For comparison, the ice loss at Kronebreen measured with Lidar scanning between 24 August20

and 3 September is 2.7·106 m3. Since parts of the calving front were not scanned, the actual volume is expected to be higher,

which is consistent with the higher values obtained from our GLMs. Figure 5 shows a comparison between modeled and

observed cumulative volumes for different lidar scanning intervals taking into account only seismic/hydroacoustic signals that

occurred inside the actually scanned region (see also Table 1). There is a good correspondence with respect to the magnitude

of obtained volumes. However, especially for inter-daily time intervals, our models tend to overestimate the ice loss, which

reflects the general model uncertainty. As expected, ice volumes are underestimated at KBS since only a fraction of calving

signals is observed at larger distance.
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Figure 4. Modeled distribution of cumulative ice volumes between 24 August and 2 September using best GLMs in Figure 3 that are trained

with 80% (randomly selected) of the calibration data in 100 runs (black histograms). White symbol is volume obtained with model calibrated

with full data set. Grey histograms correspond to hydroacoustic recording period (from 26 August). Vertical lines indicate means (dashed)

and standard deviation (dotted) obtained from the volume distribution.
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Figure 5. Modeled vs. observed cumulative volume for different lidar scanning intervals and stations in 2016 calibrating period.

Measurement Obtained from seismic/hydroacoustic records with empirical models

Interval Lidar KRBN KRBS ACB KBS FA

25 Aug daytime 41.19 58.58 43.92 - 23.96 -

27 Aug daytime 52.78 88.66 97.72 78.72 27.50 -

30 Aug daytime 1.64 6.41 11.90 3.56 1.84 -

31 Aug daytime 4.89 2.03 4.74 0.47 0.72 -

1 Sep daytime 139.87 101.36 117.22 93.88 27.01 -

24-25 Aug 178.42 309.61 284.24 - 56.39 -

25-27 Aug 265.76 307.01 338.60 118.17 1 66.46 -

27-30 Aug 285.03 665.77 640.05 737.20 146.58 -

30-31 Aug 381.29 872.13 528.40 750.04 220.39 -

31 Aug - 1 Sep 245.75 460.57 336.69 402.75 104.41 -

24 Aug - 2 Sep 2 2,737.12 4,500±800 3,700±400 2,800±400 1 950±140 18,000±2,000

2016 - - - - 28,000±5,000 640,000±80,000

Table 1. Cumulative dynamic ice loss modeled and measured (Lidar) for different time intervals in units of 103 m3. Only calving signals

originated in the scanned range of terminus are used. FA: Frontal ablation (including submarine calving and melt) obtained from Köhler et al.

(2016). 1 Acoustic data available from 26 Aug. 2 Lidar volume until 3 Sep and using all calving signals (entire front).

6 Comparing dynamic ice loss and total frontal ablation

In Fig. 6 we compare cumulative weekly dynamic ice loss obtained from our models with the total frontal ablation (which5

includes frontal melting) measured directly with satellite remote sensing data between 2007 and 2013 as well as modeled from

the seismic KBS record between 2007 and 2017 (Köhler et al., 2016). A pronounced increase in modeled calving ice loss after

2013 is apparent, coinciding with the recent accelerated retreat of Kronebreen (Deschamps-Berger et al., 2019). Our results

show an increase of dynamic ice loss rates, and also suggest longer calving seasons in recent years. The annual frontal ablation

had values typically between 200 and 500·106 m3 within the past 15 years (Köhler et al., 2016; Schellenberger et al., 2015).10
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Figure 6. Comparison of frontal ablation rates at Kronebreen directly measured with satellite remote sensing between 2007 and 2013 (dark

red) and modeled in Köhler et al. (2016) from seismic KBS data with weekly resolution (red). Scaled dynamic ice loss rates modeled in this

study from KBS record and taking into account an average dynamic ice loss detection rate of 25% at KBS are shown in black with gray area

indicating uncertainty (two times standard deviation estimated in 2016 calibration period, Table 1). Green curve is percentage of total frontal

ablation not explained by modeled dynamic ice loss. Right panels shows box plot for calving season (2%, 25%, 98%, and 75% quantiles)

using difference (FA-4·V) instead of percentage.

Dynamic ice loss modeled from KBS data in this study for the same time period shows as expected much lower rates (Fig.

6). As shown in the previous section, only a fraction of all subaerial calving events is observed at KBS due to significant

seismic amplitude attenuation at 15 km distance. The percentage of detected events varies over time since noise level and

possibly also the relative contribution of small vs. large calving events may change. Within our calibration period the variation

of completeness causes the modeled ice loss to vary between 15 and 58% of the measured values (see Table 1). Assuming an15

ice loss detection rate of 25%, comparison between ice loss modeled in this study and frontal ablation estimated in Köhler

et al. (2016) suggests that between 70 and 95% of the frontal ablation does not occur through the physical process of iceberg

calving (green curve in Fig. 6).

For the time period of our experiment between 24 August and 2 September, the approach of Köhler et al. (2016) yields

an ice loss of about 18·106 m3. Since about two-thirds of the grounded vertical terminus area of Kronebreen are submarine20

(Lindbäck et al., 2018) and assuming that submarine ice loss occurs mainly through melting as suggested by our visual calving

observations at Kronebreen and How et al. (2019), the corresponding dynamic ice loss would be 6·106 m3 which is just

slightly above the values estimated from the KRBN and KRBS records in this study, i.e., the contribution of calving to frontal

ablation would be 18-30% (Table 1). For the entire year of 2016, the approach of Köhler et al. (2016) yields an ice loss of

about 640±80·106 m3. Taking again into account varying seismic catalog completeness at KBS resulting in underestimation25

of calving volumes (15 - 58% of true ice loss) and assuming that only subaerial ice loss contributes (about 33%), we would

expect to obtained with our model for KBS between 5 and 20% of the actual frontal ablation, i.e., values within a range of 30 to

130·106 m3. In fact, we obtain 28±5·106 m3 in this study. Being located at the lower bound of the expected range is consistent

with the contribution of dynamic ice loss to frontal ablation estimated above and might be related to a lower calving catalog

completeness during the fall, when calving usually continues with high activity, but frequent storms increase the amplitudes30
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of ambient seismic noise in the Kongsfjord area. Furthermore, the model of Köhler et al. (2016) was calibrated for the time

period 2007–2013 which could result in a higher uncertainty or a bias in 2016.

7 Discussion

A major novelty of our approach, estimating iceberg volume directly from seismic or hydroacoustic calving signals, is that

a source of uncertainty in the empirical model is removed. Instead of qualitatively estimating the relation between visually

perceived calving sizes in the field and the actual volume as previous studies did, we use precise lidar scanning of the calving

front for calibration. Our results clearly show that this approach works. The choice of the regression method (GLM) and calving

signal features is similar and builds upon to the method presented by Bartholomaus et al. (2015). We confirm that the length5

of the signal represents the ice volume better than the maximum amplitude (Qamar, 1988; O’Neel et al., 2007b; Bartholomaus

et al., 2015; Köhler et al., 2016). However, in contrast to previous studies, we find that empirical models using the integrated

amplitude perform better than using the signal duration only. The difference of our approach compared to estimating frontal

ablation from seismic calving records in Köhler et al. (2016) is a higher temporal resolution and the focus only on dynamic

ice loss through modeling volumes of individual calving events. Therefore, our models do not use a time-normalized sum of10

seismic signal properties and the catalog incompleteness in specified time periods as predictor variables as done in Köhler et al.

(2016).

7.1 Applicability and opportunities of seismic calving quantification

By calibrating a model for the permanent seismic station KBS in the vicinity of Kronebreen, our method allows a unique

quantitative long-term monitoring of calving which is necessary to predict how glaciers will respond in a warming climate.15

Given that calibration experiments have been carried out, this approach can be applied to other similar situations worldwide

where permanent seismic stations have been installed in the vicinity of a tidewater glacier. In our case, small and moderate-

sized calving events are not detected and the long-time event catalog might be contaminated by calving signals from other

glaciers in the region because KBS is located at 15 km distance and using a single station limits location accuracy. However,

our results for the short-time record show that our calving quantification approach benefits from instruments deployed closer20

to the terminus and/or small-scale seismic arrays that allow better location and detection of weak calving signals.

Frontal ablation can be directly measured through satellite remote sensing or obtained from seismic records with empirical

models and weekly resolution (Köhler et al., 2016). Combining these observations with dynamic ice loss estimates as presented

in this study offers the potential to investigate the contribution of frontal melting to total frontal ablation. For example, we can

compute an estimate for ice loss through melting from our modeled dynamic ice loss and frontal ablation at Kronebreen by25

taking into account the (constant assumed) seismic catalog incompleteness at station KBS (Fig. 6). The magnitude and temporal

variability of this non-dynamic ice loss, however, is affected not only by variation of frontal melt, but also by changing catalog

completeness, i.e., more weak signals remain undetected if background noise increases, which in theory can also include

changing contribution of undetected submarine calving. Hence, variations in the computed contribution of the frontal melting
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proxy have to be interpreted with caution. Using the method to asses to calving catalog incompleteness at KBS suggested by30

Köhler et al. (2016) would in theory allow distinguishing between variations in calving and variations in noise. This would

be a major step forward in better understanding processes at ice–ocean interfaces. Deploying instrument arrays close to the

glacier terminus, as done during our experiment in 2016, but for long-term monitoring makes seismic/hydroacoustic catalog

completeness less an issue. Nevertheless, apart from limited capability to asses its temporal variability, we are able to give an

estimate for the average contribution of dynamic ice loss to frontal ablation at Kronebreen of 5-30% (Fig. 6, right panel). This

implies and confirms recent studies that water temperature is the main driver of frontal ablation through underwater melting and

thermal undercutting which in consequence controls subaerial calving (Bartholomaus et al., 2013; Luckman et al., 2015; Vallot

et al., 2018; How et al., 2019). Using the cross-sectional submarine area (2.3 and 2.9 km2 in 2009 and 2014, respectively), our

residual frontal melting component of Kronebreen would imply a retreat rate of 150–350 m a−1 due to these processes alone.5

This is reasonable given the front position behavior and horizontal velocity measured over the past decade (Schellenberger

et al., 2015; Luckman et al., 2015).

We calibrate our models with subaerial calving events. It is well-known that also submarine calving generates underwater

acoustic and weak seismic signals. Glowacki et al. (2015) showed that hydroacoustic calving signals at Hansbreen, southern

Svalbard, allow distinguishing submarine and subaerial calving events based on spectral characteristics. However, at Krone-10

breen we found it difficult to distinguish the seismic calving signals from subaerial and submarine calving. Seismic signals

from submarine events are in general weaker, but are often indistinguishable from weak subaerial calving events or occur si-

multaneously with those. Hence, calving at the submarine part of the terminus is partially included in our modeled ice volumes,

but could be underestimated if we assume the corresponding low-amplitude signals to be subaerial. This is similar to the effect

of increasing seismic background noise level which results in an apparent shorter duration of the calving signal. However, we15

observe only a few percent of all calving events to be submarine in the time-lapse images, and therefore have good evidence

that our ice loss estimates are not significantly affected. This is supported by recent observations made by How et al. (2019) at

Tunabreen, a tidewater glacier in central Svalbard, where 97% of all calving events occurred subaerially, even though 60–70%

of the terminus is below sea level, similar to Kronebreen.

7.2 Potential model extensions20

Being limited by a low number of calibration data, seismic and lidar records acquired over a longer time period will offer

the potential to further improve our empirical models by reducing prediction uncertainty. Since we encountered challenges

related to matching lidar volumes and calving signals when calving within the scanning interval occurs frequently, we will

scan multiple smaller areas in future field experiments to unambiguously relate more calving events and their signals. This was

already tested during the last days of our experiment using a single scanner and a repetition rate up to 5 min. However, the25

measurement period was not long enough to capture a sufficiently high number of calving events. Another possible solution

is to derive ice volume from a multiview structure-from-motion photogrammetry with a multiple time-lapse camera array

(Mallalieu et al., 2017). This method allows for higher temporal resolution and is much more economic than lidar scanning,

however, it requires a favorable geometry setup that is hard to meet for tidewater glaciers. Another approach which we tested
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and which provides more calibration data is to measure calving areas from time-lapse images extracted at the seismic detection30

times and then scale to volumes using an empirical relation between camera-measured areas and lidar volumes. However,

similar to the method using visually quantified calving volumes, two empirical models have to be combined which results in a

larger prediction uncertainty.

Our calving volume estimates of individual events include uncertainty since the calibration data set is limited and not

all parameters affecting the calving signals can be modeled yet in the regression. The interaction between ice and water

during calving is complex, and it is therefore not surprising that signal features have limited predictor ability for the volume.

Ultimately, physical models such as proposed by Bartholomaus et al. (2012) or numerical modeling of the ice–water impact

would be required to better understand seismic/hydroacoustic signal generation. Furthermore, our empirical models are valid

for a particular calving style mainly observed in Svalbard, Alaska, and South America where most seismic calving signals5

are generated by the impact of the iceberg in the fjord (Bartholomaus et al., 2012). In contrast, the glacier mass loss through

calving in Greenland and Antarctica is dominated by the breakup of large tabular icebergs representing a different type of

seismic source mechanism (Murray et al., 2015). Determination of calving sizes from those seismic calving signals (glacier

earthquakes) may therefore require a different or more generalized approach.

Our models are calibrated for a particular glacier, terminus environment, and seismic/hydroacoustic sensor setup. Hence,10

application to seismic data acquired at a different glacier requires carrying out a new calibration experiment. A potential

solution to make empirical models adaptable for different glaciers is to introduce site-specific predictor variables such as

source distance, noise level, calving front geometry, water depth, and other seismic wave propagation properties (site and path

effects). This approach requires a larger number of calibration data points to prevent overfitting in the regression as well as

field campaigns at several glaciers carried out over longer recording periods than 1–2 weeks at each individual site.15

8 Conclusions

Measuring glacier mass loss through calving continuously and with high temporal resolution is challenging. Seismic and hy-

droacoustic data recorded at the front of marine-terminating glaciers allow detection of calving signals with second-precision,

but require calibration to actual ice volumes. We successfully developed empirical models relating calving signals to volumes

at Kronebreen, a fast-flowing tidewater glacier in Northwest Svalbard, based on calving volumes from 10 days of repeat lidar20

scanning in August and September 2016. In addition to seismic data recorded at three different locations including a perma-

nent station with a more than two decades-long record, we used for the first time a hydroacoustic record. For all records, the

amplitude integrated over the calving signals in combination with the maximum amplitude allowed us to model the volumes of

individual calving events. While seismic arrays are needed for calving event detection and location, underwater acoustic signals

measured on a single sensor showed similar quality and predictor capability for ice volumes as their seismic counterparts and25

could therefore be used as an complementary record to asses model uncertainty. Reducing seismic calving model uncertainty

will benefit from extended calibration data sets at multiple glaciers with shorter lidar scanning intervals and longer recording

periods, which better take into account event- and site-dependent variables, and allow improving the matching process between
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lidar and seismic calving observations. Application of our model showed that the cumulative ice loss estimated from seismic

and hydroacoustic data is consistent with measured ice loss in different lidar scanning intervals as well as with frontal ablation30

rates measured with satellite remote sensing.

Our method offers a promising approach to not only continuously measure calving ice loss with high temporal resolution,

but also to indirectly measure frontal glacier melting by evaluating the contribution of dynamic ice loss to the frontal ablation.

For the permanent station KBS we model between 15 and 60% of the dynamic ice loss observed close to the calving front

since only a fraction of all calving event are detected at 15 km distance depending on seismic noise level. Taking this catalog

incompleteness into account allows for long-term monitoring of calving ice loss at Kronebreen. Comparison with total frontal5

ablation showed that dynamic ice loss contributed with 5-30% between 2007 and 2017. This implies a large component of

frontal ablation is melting at the calving face, which we can estimate for Kronebreen in the same period to be roughly 150–

350 m a−1. Future work should consider analysis of higher temporal resolution variability of these estimates which will further

unravel the controls on frontal ablation and will be beneficial for realistically modeling ice loss at marine terminating glaciers

in relation to both atmospheric and oceanic forcings.10

Data availability. Data of station KBS are freely available through IRIS (Albuquerque Seismological Laboratory (ASL)/USGS, 1988). The

seismic record of the temporary network stations will become freely accessible through the Geophysical Instrument Pool Potsdam (GIPP)

after 1 October 2020 (Köhler et al., 2019).
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Appendix A: Time-lapse camera image processing

The time-lapse images are first gathered per hour and corrected for lens distortion. The correction is based on the barrel15

method that follows the equation R= r
(
a · r3 + b · r2 + c · r+ d

)
where R and r are the distances of the pixels from the

centre of the original and corrected image, respectively (ImageMagick, Helmut Dersch). The parameters a, b, and c depend on

the camera and lense type and are obtained from the opensource database Lensfun (Table A1). The parameter d is a scaling

factor that is greater than 1 and compensates the cropping caused by the correction. The images are then rotated to have the

waterline horizontal, and applied a crop to only keep the front of the glacier. The parameters for the rotation and crop are20

manually identified and done every time the camera has moved significantly, usually after each maintenance. To compensate

for rapid change in brightness due to environmental conditions or camera settings, we compute a histogram equalisation for

each colour channel separately. This method linearises the cumulative distribution function of the pixel bins and enhance the

contrast of the image. This luminosity correction performs better than stretching pixel values to their maximum range (e.g.

normalisation). The RGB image is then converted into a grayscale image Y based on a standard Luma compression so that5

Y = 0.298839·R+0.586811·G+0.114350·B. The constants are chosen to enhance spatial sensitivity of human vision. Other

conversions may be used to enhance colours (i.e. blues), but were not tested here.

The calving detector is developed based on visual characteristics of calving. As the ice breaks off and hit the water, it

causes a rapid jet of water and a long-term change in albedo and roughness of the glacier front. The detector aims to identify

these temporal variations in pixel brightness that occurs along the glacier and above the waterline. The method consists of5

stacking over time a line of pixel above the front waterline, computing the second derivative in time, apply a low-pass filter and

detect events using a threshold value (Fig. A1). The time and location of each calving is retrieved and manually verified using

reprocessed gifs of the calving front at these defined time and coordinates.
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Figure A1. Workflow for detecting calving events in the time-lapse image data.
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Table A1. Camera details and lense distortion parameters

Camera Canon EOS Canon EOS

Model REBEL T3 1200D

Sensor mm 22.2 x 14.7 22.3 x 14.9

Image size px 4272 x 2848 5184 x 3456

Pixel Mpx 12.2 18.1

JPG size MB 2.5 6

Lense Canon EF-S 18- Canon EF-S 18-

55mm f/3.5-5.6 IS II 55mm f/3.5-5.6 III

Focal length 18 18

a 0.02504 0.00029

Distortion b -0.06883 -0.00065

parameters c 0.01502 -0.04054

d 1.15 1.15
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Figure B1. Latitude of calving events located from seismic signals vs. latitude of visually observed on time-lapse camera images. (a)

No correction. (b) Back-azimuth of calving signals observed on both seismic arrays vs. visually observed. Grey line is results of a linear

regression. (c) Same as in (a) but applying an empirical correction based on the regression in (b) correcting for observed back-azimuth bias.

Appendix B: Seismic back-azimuth correction

For seismic signals originating at Kronebreen a discrepancy is observed between back-azimuths measured with FK analysis10

(Bazseis) and real back-azimuths Bazreal of calving events visually observed on the time-lapse camera images (Fig. B1b).

For correction, a linear dependency of the form Bazreal = a ·Bazseis + b is assumed. The coefficients a and b are obtained by

linear regression using all seismic calving signals confirmed on time-lapse camera images.
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Figure C1. Best performing GLMs for KRBN2 and ACB. Symbols show calibration data. Solid line is fitted model. Dashed line show

deviations of ±20%, 50% and 70% for a given volume.

Appendix C: Model calibration

Fig. C1 shows a different visualization of two calibrated models shown in Fig. 3.
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