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Abstract. Melting of the Greenland Ice Sheet (GrIS) is the largest single contributor to eustatic sea level and 

it is amplified by the growth of pigmented algae on the ice surface that increase solar radiation absorption. 

This biological albedo-reducing effect and its impact upon sea level rise has not previously been quantified. 

Here, we combine field spectroscopy with a radiative transfer model, supervised classification of UAV and 
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satellite remote-sensing data and runoff modelling to calculate biologically-driven ice surface ablation. We 

demonstrate that algal growth led to an additional 4.4 – 6.0 Gt of runoff from  bare ice in the south-western 

sector of the GrIS in summer 2017, representing 10 – 13 % of the total. In localised patches with high-

biomass accumulation, algae accelerated melting by up to 26.15 ± 3.77 % (standard error). 2017 was a high 

albedo year, so we also extended our analysis to the particularly low-albedo 2016 melt season. The runoff 

from the south-western bare-ice zone attributed to algae was much higher in 2016, at 8.8 – 12.2 Gt, although 

the proportion of the total runoff contributed by algae was similar at 9 – 13%. Across a 10,000 km2 area 

around our field site, algae covered similar proportions of the exposed bare ice zone in both years (57.99 % 

in 2016, 58.89 % in 2017), but more of the algal ice was classed as “high-biomass” in 2016 (8.35 %) than 

2017 (2.54 %). This interannual comparison demonstrates a positive feedback where more widespread, 

higher biomass algal blooms are expected to form in high melt years where the winter snowpack retreats 

further, earlier, providing a larger area for bloom development and also enhancing the provision of nutrients 

and liquid water liberated from melting ice. Our analysis confirms the importance of this biological albedo 

feedback and that its omission from predictive models leads to the systematic underestimation of 

Greenland’s future sea level contribution, especially because both the bare-ice zones available for algal 

colonization and the length of the biological growth season are set to expand in the future.

1 Introduction

Mass loss from the Greenland Ice Sheet (GrIS) has increased over the past two decades (Shepherd et al., 

2012; Hanna et al., 2013) and is the largest single contributor to cryospheric sea level rise, adding 37% or 

0.69 mm yr-1 between 2012-2016 (Bamber et al., 2018). This is due to enhanced surface melting (Ngheim et 

al., 2012) that exceeds calving losses at the ice-sheet’s marine-terminating margins (Enderlin et al., 2014; 

van den Broeke et al., 2016). Surface melting is controlled by net solar radiation, which in turn depends upon

the albedo of the ice surface, making albedo a critical factor for modulating ice-sheet mass loss (Box et al., 

2012; Ryan et al. 2018a). The largest shift in albedo occurs when the winter snow retreats to expose bare 

glacier ice. However, there are several linked mechanisms that then change the albedo of the exposed ice and

determine its rate of melting, including meltwater accumulation, ice surface weathering and the accumulation

of light-absorbing particles (LAPs), such as soot (Flanner et al., 2007) and mineral dust (Skiles et al., 2017). 

Photosynthetic algae  also reduce the albedo of the GrIS (Uetake et al., 2010; Yallop et al., 2012; Stibal et al.,

2017; Ryan et al., 2017, 2018b). Despite being identified in the late 1800’s (Nordenskiöld, 1875) their effects

have not yet been quantified, mapped or incorporated into any predictive surface mass balance models 

(Langen et al. 2017; Noel et al., 2016; Fettweis et al. 2017). Hence, biological growth may play an important 

yet under-appreciated role in the melting of the Greenland Ice Sheet and its contributions to sea level rise 

(Benning et al., 2014).
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The snow-free surface of the GrIS has a conspicuous dark stripe along its western margin which expands and

contracts seasonally, covering 4 - 10% of the ablating bare-ice area (Shimada et al., 2016). The extent and 

darkness of this “Dark Zone” may be biologically and/or geologically controlled (Wientjes et al., 2011; 2016;

Tedstone et al., 2017; Stibal et al., 2017). There is a growing literature demonstrating the albedo-reducing 

role played by a community of algae that grow on glacier ice on the eastern (Lutz et al. 2014) and western 

(Uetake et al. 2010; Yallop et al. 2012; Stibal et al. 2017; Tedstone et al. 2017; Williamson et al. 2018) GrIS. 

The algal community on the GrIS is dominated by Mesotaenium berggrenii, and Ancylonema nordenskioldii 

(Yallop et al., 2012; Stibal et al., 2017; Williamson et al., 2018; Lutz et al. 2018; Williamson et al. 2019), 

which are collectively known as “glacier algae” to distinguish them from snow algae and sea-ice-algae. The 

presence of these glacier algae reduces the albedo of the ice surface, mostly due to a brown-purple 

purpurogallin-like pigment (Williamson et al., 2018; Stibal et al., 2017; Remias et al., 2012). 

An equivalent albedo reduction due to algae has also been studied on snow. Worldwide, snow algal 

communities are dominated by unicellular Chlamydomonaceae, the most abundant of which belong to the 

collective taxon Chlamydomonas nivalis (Leya et al. 2004). These algae have been shown to be associated 

with low-albedo snow in Eastern Greenland (Lutz et al. 2014) and to be responsible for 17 % of snowmelt in 

Alaska (Ganey et al. 2017). However, for glacier algae, quantification of the biological albedo reduction, 

radiative forcing and melt acceleration has remained elusive due to the difficulty of separating biological 

from non-biological albedo-reducing processes and a lack of diagnostic biosignatures for remote-sensing. 

For snow, remote detection has been achieved by measuring the “uniquely biological” chlorophyll absorption

feature at 680 nm (Painter et al. 2001), a broader carotenoid absorption feature (Takeuchi et al. 2006),  a 

normalised difference spectral index (Ganey et al. 2017) and a spectral unmixing model (Huovinen et al. 

2018). However, these signature spectra can be ambiguous for glacier algae due to the presence of the 

phenolic pigment with a broad range of absorption across the UV and VIS wavelengths that obscures 

features associated with other pigments in raw reflectance spectra, and is further complicated by the highly 

variable optics of the underlying ice and mixing of algae with other impurities. 

The Dark Zone is of the order 105 km2 in extent and is undergoing long-term expansion (Shimada et al., 

2016; Tedstone et al., 2017). Quantifying the impact of algal colonization on the Dark Zone is therefore 

paramount. Upscaling of unmanned aerial vehicle (UAV) observations made in a small sector of the Dark 

Zone to satellite data has demonstrated that “distributed impurities” including algae exert a primary control 

on the surface albedo, but isolating the biological effect and upscaling to the regional scale has been 

prevented by a lack of spectral resolution and ground validation (Ryan et al., 2018a). Recently, Wang et al. 

(2018) applied the vegetation red-edge (difference in reflectance between 673 and 709 nm) to map glacier 

algae over the south-western GrIS using Sentinel-3 OLCI data at 300 m ground resolution. Neither of these 

previous studies quantified the effect of glacier algae effect on albedo or melt at the regional scale.
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Here, we directly address these issues, resolving a major knowledge gap limiting our ability to forecast ice-

sheet melt rates into the future. First, we use spectroscopy to quantify the effect of glacier algae on albedo 

and radiative forcing in ice. We then use a new radiative transfer model to isolate the effects of individual 

light-absorbing particles on the ice surface for the first time, enabling a comparison between local mineral 

dust and algae and providing the first candidate albedo parameterisation that could enable glacier algae to be 

incorporated into mass balance models. To determine spatial coverage, we apply a supervised-classification 

algorithm (random-forest) to map glacier algae in multispectral UAV and satellite data. Runoff modelling 

informed by our empirical measurements and remote-sensing observations enables us to estimate the 

biological contribution to GrIS runoff for the first time. 

2. Field sites and Methods

2.1 Overview

In this study we present a suite of empirical, theoretical and remote-sensing data to quantify and map algal 

contributions to melting on the south-western GrIS. At our field site we paired spectral reflectance and 

albedo measurements with removal of surface ice samples for biological and mineralogical analyses in order 

to quantify the relationship between cell abundance and broadband and spectral albedo. The imaginary part 

of the refractive index of the local mineral dusts and the purpurogallin-type phenolic compound that 

dominates absorption in the local glacier algae were measured in the laboratory and incorporated into a new 

radiative transfer model. The albedo effects of each impurity were thus examined in isolation and compared. 

At the same time, we also undertook a sensitivity study with other bulk dust optical properties from previous 

literature to further test the potential role of mineral dusts in darkening the ice surface. Furthermore, by 

combining albedo measurements with incoming irradiance spectra and measurements of local melt rates, we 

estimated the radiative forcing and the proportion of melting that could be attributed to algae in areas of high 

and low algal biomass (Hbio and Lbio). At our field site we made UAV flights with a multispectral camera in 

order to map algal coverage at high spatial resolution. We achieved this by training a random-forest (RF) 

algorithm on our field spectroscopy data to classify the ice surface into discrete categories including Hbio and 

Lbio. This enabled estimates of algal coverage in a 200 x 200m area at our field site. We then retrained our 

classifier for Sentinel-2 satellite imagery and used this to upscale further within the south-western region of 

the GrIS (to a 100 x 100 km Sentinel-2 tile covering our field site and UAV image area). With these 

estimates of algal coverage from our remote-sensing imagery and calculations of the proportion of melting 

attributed to algae from our field data, we were able to estimate runoff attributed to algae using van As et 

al.’s (2017) runoff model. The details of each stage of our methodology are provided in the following 

sections 2.2 – 2.10.

2.2 Field Site
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Experiments were carried out at the Black and Bloom Project field site (67.04 N, 49.07 W, Fig 1), near the 

Institute for Marine and Atmospheric research Utrecht (IMAU) Automatic Weather Station ‘S6’ on the south-

western Greenland Ice Sheet between 10 – 22nd July 2017. We established a 200 x 200 m area for UAV 

mapping (centred on 67° 4’ 40.42” N, 49° 21’ 0.50” W) where only essential access was allowed (e.g. for 

placing ground control points (GCPs) for georectifying our UAV images) and sample removal was 

prohibited. We also delineated an additional adjacent 20 x 200 m area that we referred to as the “sampling 

strip” in which we made spectral reflectance and albedo measurements paired with removal of samples for 

biological and mineralogical analyses, as detailed in the following sections. The sampling strip was 

subdivided into smaller subregions that were then systematically visited each day of our field season. This 

was necessary because ice surface samples were destructively removed for analysis and this method ensured 

that each area visited had not been disturbed by our presence on previous days. Some ancillary directional 

reflectance measurements were also made at the same field site between 15 - 25 th July 2016 and appended to 

our training dataset for supervised classification (Section 2.8).

2.3 Field Spectroscopy

At each site in our sampling strip, albedo was measured using an ASD (Analytical Spectral Devices, 

Colorado) Field-Spec Pro 3 spectroradiometer with ASD cosine collector. The cosine collector was mounted 

horizontally on a 1.5 m crossbar levelled on a tripod with a height between 30 - 50 cm above the ice surface. 

The cosine collector was positioned over a sample surface, connected to the spectroradiometer using an ASD

fibre optic, then the spectroradiometer was controlled remotely from a laptop, meaning the operators could 

move away from the instrument to avoid shading it. Two upwards and two downwards looking 

measurements were made in close succession (~ 2 minutes) to account for any change in atmospheric 

conditions, although the measurements presented were all made during constant conditions of clear skies at 

solar noon ± 2 hours. Each retrieval was the average of > 20 replicates.

Immediately after making the albedo measurements, the cosine collector was replaced with a 10 degree 

collimating lens, enabling a nadir-view hemispheric conical reflectance factor (HCRF) measurement to be 

obtained. For HCRF measurements the upwards looking measurements were replaced with HCRF 

measurements of a flat Spectralon® panel with the spectroradiometer in reflectance mode. This protocol was 

followed for every sample surface with both albedo and directional reflectance measurements taking less 

than 5 minutes. We closely followed the methodology described by Cook et al., (2017b). Albedo is the most 

appropriate measurement for determining the surface energy balance, while the HCRF is closer to the 

measurements made by aerial remote-sensing and less sensitive to stray light reflecting from surfaces other 

than the homogeneous patch directly beneath the sensor. We therefore used the albedo for energy balance 

calculations and the HCRF for remote sensing applications in this study.
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2.4 Biological Measurements

Immediately following the albedo and HCRF measurements, ice from within the viewing area of the 

spectrometer was removed using a sterile blade and scooped into sterile whirlpak bags, melted in the dark 

and immediately fixed with 3% glutaraldehyde. The samples were then returned to the University of Bristol 

and University of Sheffield where microscopic analyses were undertaken. Samples were vortexed thoroughly

before 20 µL was pipetted into a Fuchs-Rosenthal haemocytometer. The haemocytometer was divided into 4 

x 4 image areas. These were used to count a minimum of 300 cells to ensure adequate representation of 

species diversity (where possible – low abundance samples had as few as one cell per haemocytometer). The 

volume of each image area was used to calculate cells per mL. Biovolume was determined by measuring the 

long and short axes of at least ten cells from each species in each sample using the measure tool in the GNU 

Image Manipulation Program (GIMP). The morphology of the cells in the images was used to separate them 

into two species: Mesotaenium bergrenii and Ancylonema nordenskioldii. These dimensions were then used 

to calculate the mean volume of each species in each sample, assuming the cells to be circular cylinders 

(after Hillebrand, 1999 and Williamson et al., 2018). The average volume was multiplied by the number of 

cells for each species and then summed to provide the total biovolume for each sample.

2.5 Mineral and algal optical properties and radiative transfer modelling

A new radiative transfer package, BioSNICAR_GO, was developed for this study and was used to predict the

albedo of snow and ice surfaces with algae and mineral dusts. We made a series of major updates and 

adaptations to the BioSNICAR model presented by Cook et al. (2017b). The package is divided into a bio-

optical scheme wherein the optical properties of light-absorbing impurities and ice crystals can be calculated 

using Mie scattering (for small spherical particles such as black carbon or snow) or geometrical optics (for 

large and/or aspherical particles such as glacier algae, larger mineral dust particles and large ice crystals) and

a two-stream radiative transfer model based on SNICAR (Flanner et al. 2007) which incorporates the 

equations of Toon et al. (1989). A schematic of the model structure is provided in Supp Info 1.

To incorporate glacier algae into BioSNICAR_GO, geometrical optics was employed to determine the single 

scattering optical properties of the glacier algae, since they are large (~103 µm3: making Mie calculations 

impractically computationally expensive) and best approximated as circular cylinders (Hillebrand, 1999; Lee

and Pilon, 2003). Our approach is adapted from the geometric optics parameterisation of van Diedenhoven 

(2014). The inputs to the geometric optics calculations are the cell dimensions and the complex refractive 

index. The imaginary part of the refractive index was calculated using a mixing model based upon Cook et 

al., (2017b) where the absolute mass of each pigment in the algal cells was measured in field samples. The 

absorption spectra for the algal pigments is provided in Fig 2A. We updated Cook et al.’s (2017b) mixing 

model to apply a volume-weighted average of the imaginary part of the refractive index of water and the 
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algal pigments so that the simulated cell looks like water at wavelengths where pigments are non-absorbing. 

We consider this to be more physically realistic than having cells that are completely non-absorbing at 

wavelengths > 0.75 µm, especially since a water fraction (Xw) is used in the calculations to represent the 

non-pigmented cellular components of the total cell volume. This approach also prevents the refractive index

from becoming infinite when the water fraction is zero, removing the constraint 0 < Xw < 1 from the bio-

optical scheme in the original BioSNICAR model. Based upon experimental evidence in Dauchet et al 

(2015) for the model species C. reinhardii, the real part of the refractive index has been updated from 1.5 (in 

Cook et al. 2017b) to 1.4. The absorption coefficients from which the imaginary refractive index is 

calculated are from Dauchet et al (2015) apart from the purpurogallin-type phenol whose optical properties 

were determined empirically (Fig 2A). The calculated optical properties were added to the lookup library for 

BioSNICAR_GO for a range of cell dimensions. For the simulations presented in this study, we included two

classes of glacier algae representing Mesotenium Bergrenii and Ancylonema nordenskioldii with length and 

diameter and also the relative abundance of each species matching the means measured in our microscopy 

described in Section 2.4. In simulations (Supp Info 2) we found that ice albedo was relatively insensitive to 

the dimensions of the cells within a realistic range of lengths and diameters. This low sensitivity to cell 

length and diameter is likely because all of the cells considered here are large from a radiative transfer 

perspective. 

For mineral dusts, we took measured values for surface dust composition and particle size distribution (PSD)

obtained at our field site from McCutcheon et al. (in prep: hereafter, McC). We then used complex refractive 

indices for the appropriate minerals obtained from the existing literature, mixed them using the Maxwell-

Garnett dielectric mixing approximation according to the measured mass fractions (after converting to 

volumetric fractions using the mineral densities), generated the single scattering optical properties using a 

Mie scattering code and applied a weighted average using the PSD to obtain the bulk optical properties for 

the dust. Since the mineralogy of the dust varied between sites we generated three dust “scenarios”: In the 

low-absorption scenario (LO-DUST) all the minerals were set to the the minimum volume-fraction measured

across all of McC’s samples except for quartz, which comprised the remainder; in the high-absorption 

scenario (HI-DUST) all the minerals were set to their maximum measured volume-fraction apart from quartz

which comprised the remainder; and a mean scenario (MN_DUST) where all the minerals were present with 

their volume-fractions equal to the mean across all of the field samples. The mineralogy of each of these 

scenarios are described in Table 1. Refractive indices were not available for all of the individual minerals 

present in McC’s analysis, so we represented the feldspar minerals using the refractive index for andesite 

(Pollack et al. 1973), all pyroxenes with the refractive index for enstatite (Jäger et al., 2003), and in the 

absence of a refractive index for amphibole phases we used the refractive index for the similarly green 

mineral olivine (OCDB, 2002). Refractive indices for all other minerals were available (Rothman et al., 

1998; Roush et al., 1991; Pollack et al., 1973; Egan and Hilgeman, 1983; Nitsche and Fritz, 2004).
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The ice optical properties in BioSNICAR_GO were also calculated using a parameterisation of geometric 

optics adapted from van Diedenhoven et al. (2014). A geometrical optics approach to generating ice optical 

properties was chosen because it enables arbitrarily large ice grains with a hexagonal columnar shape to be 

simulated, in order to better estimate the albedo of glacier ice where grains are large and aspherical. While 

the real ice surface is composed of irregularly shaped and sized grains, this approach enabled us to simulate 

our field spectra much more accurately and circumvented the requirements that individual grains be small 

and spherical in the case of the Lorenz-Mie approach. The optical properties of the ice grains were modelled 

using refractive indices from Warren and Brandt (2008). The radiative transfer model is a two-stream model 

described in full in Cook et al. (2017b) and Flanner et al. (2007). For the radiative transfer modelling 

presented in this study, the following model parameters were used: Diffuse illumination, ice crystal side-

length and diameter per vertical layer = 3, 4, 5, 8, 10 mm, layer thicknesses = 0.1, 1, 1, 1, 1 cm, underlying 

surface albedo = 0.15, layer densities = 500, 500, 600, 600, 600 kg m-3. These ice physical properties were 

chosen to reduce the absolute error between the simulated albedo for ice without any impurities (‘clean ice’) 

and our mean field-measured clean-ice spectrum.

To realistically simulate measured dust and algal mass loadings on the ice surface, we took measured values 

for Hbio field samples. For mineral dusts we took the mean and maximum mineral mass mixing ratios from 

McC. They measured 394 ± 194  μgLAP/mLice of which ~95% was inorganic, giving mean and maximum 

mineral dust loadings of 373 and 567 μgLAP/mLice. Assuming 1 mL of ice to weigh 0.917 g, this gives mean 

and maximum mass-mixing ratios of 342 and 519 μgdust/gice. For glacier algae we calculated mass-mixing 

ratios by taking the mean cell volume across all cells in our microscope images, converting to per-cell-mass 

using a constant cell density (0.87 g cm-3: Hu, 2014) and multiplying by our mean and maximum Hbio cell 

abundance. This gave mean and maximum mass-mixing ratios of 349 and 646 μgalgae/gice. We also varied the 

mass mixing ratios over a range of hypothetical values to study the sensitivity of ice surface albedo to dust 

and glacier algae. Glacier algae and each of the mineral dusts (LO_ICE, HI_ICE, MN_ICE,) were added 

individually the upper 0.1 cm layer in mixing ratios of 10, 100, 500, 1000 μgLAP/gice , plus the mean and 

maximum measured mass-mixing ratios for dust and algae, to quantify their effects on the surface albedo. 

We also ran a sensitivity study where we repeated the simulations with two other dust types, sourced from 

previous literature, with contrasting mineralogies to our field site.

2.6 Empirical measurement of mineral dust reflectance

For two samples of local mineral dusts obtained from Hbio sites, we chemically removed the organic matter 

and measured the PSD using scanning electron microscopy (full details in Supp Info 3). The chemical 

cleaning method avoided the artificial “reddening” of the mineral dust sample associated with removing 

organic matter by ignition. We then arranged the mineral dust samples into an optically thick layer on a 

microscope slide and pressed them tightly against the open aperture of a Thorlabs IS200-4 2” integrating 
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sphere to measure their reflectance. The other apertures were covered with SM05CP2C caps and the sample 

reflectance was measured using the same ASD Field Spec Pro 3 as was used for field measurements.

2.7 Radiative forcing and biological melt acceleration

The biological radiative forcing was calculated by first differencing the albedo for algal surfaces and the 

albedo for clean ice surfaces measured at our field site. This gives the difference in albedo between the clean 

and algal ice surfaces, αdiff. The product of each αdiff and the incoming irradiance, I*, provided the 

instantaneous power density (PDalg) absorbed by the algae. We assume that photosynthetic processes utilise 

5% of this absorbed energy – at the upper end of a realistic range for photosynthetic microalgae 

(Blankenship et al. 2011; Masojidek et al. 2013). The remainder of PDalg is conducted into the surrounding 

ice, giving the instantaneous radiative forcing due to algae (IRFalg). Since these cells are coloured by the 

purple purpurogallin pigment, we assume the reflective radiative forcing to be negligible, as demonstrated by

Dial et al. (2018). IRFalg was calculated at hourly intervals using incoming irradiance simulated for our field 

site using the PVSystems solar irradiance program (https://pvlighthouse.com.au) at 1 nm spectral resolution, 

following Dial et al. (2018). The radiative forcing was assumed to be constant between each one hour 

timestep, meaning the radiative forcing over one hour (HRFalg) could be calculated by multiplying IRFalg by 

3600 s h-1, assuming that instantaneous radiative forcing is equal to radiative forcing per second. Daily 

radiative forcing due to algae (RFalg) was then calculated as the sum of HRFalg between 0000 and 2300. 

To calculate the algal contribution to melting (Malg), IRFalg was multiplied by 104 to convert the radiative 

forcing from units of W m-2 to W cm-2 and then divided by the latent heat of fusion for melting ice (334 J g-1) 

and integrated over the entire day as described above. This provided a value for the amount of melting 

caused by the presence of algae per day assuming the cold content of the ice to be depleted. We calculated 

uncertainty by running these calculations for every possible combination of our measured algal and clean ice 

spectra and calculating the mean, standard error and standard deviation of the pooled results.

 We corroborated these estimates using a point surface energy balance model (Brock and Arnold et al. 2000; 

Tedstone, 2019a). This model predicts melting in millimeters of water equivalent given local meteorological 

data and information about the ice surface albedo and roughness. We ran this model with the albedo set equal

to the broadband albedo for each clean ice (CI), heavy biomass (Hbio) and light biomass (Lbio) spectrum in our

field measurements. The hourly meteorological data for 21st July 2017 used to force the model was from a 

Delta-T GP1 automatic weather station (https://www.delta-t.co.uk/product/ws-gp1/) positioned at our field 

site. The difference in predicted melt between the algal surfaces and the clean ice surfaces provided the melt 

attributed to the presence of algae. As for the radiative forcing calculations, the uncertainty was calculated by

running the energy balance model for every possible combination of algal and clean ice spectra and 

calculating the mean, standard error and standard deviation of the pooled results.

285

290

295

300

305

310

315

320

https://pvlighthouse.com.au/


2.8 UAV and Sentinel-2 remote-sensing

Having quantified algal melt acceleration in localised patches using the methods described in 2.2 – 2.6, we 

then used a multispectral camera mounted to a UAV to quantify algal coverage across a 200 x 200 m area at 

our field site. This sample area was kept pristine throughout the study period to minimise artefacts of our 

presence appearing in the UAV imagery. Inside the sampling area we placed fifteen 10 x 10 cm Ground 

Control points (GCPs) whose precise location was measured using a Trimble differential GPS. At these 

markers we also made ground spectral measurements using an ASD-Field Spec Pro 3 immediately after each 

flight. The UAV itself was a Steadidrone Mavrik-M quadcopter onto which we integrated a MicaSense Red-

Edge multispectral camera. The camera is sensitive in 5 discrete bands with center wavelengths 475, 560, 

668, 717 and 840 nm, with bandwidths 20, 20, 10, 10, 40 nm respectively. The horizontal field of view was 

47.2° and the focal length 5.4 mm. The camera was remotely triggered through the autopilot which was 

programmed along with the flight coordinates in the open-source software Mission Planner 

(http://ardupilot.org/planner/). Images were acquired at approximately 2 cm ground resolution with 60% 

overlap and 40% sidelap. The flights were less than 20 minutes long and at an altitude of 30 m above the ice 

surface.

We applied radiometric calibration and geometric distortion correction procedures to acquired imagery 

following MicaSense procedures (Micasense 2019). We then converted from radiance to reflectance using 

time-dependent regression between images of the MicaSense Calibrated Reflectance Panel acquired before 

and after each flight (i.e. a regression line was computed between the reflectance of the white reference panel

at the start and end of the flight and used to quantify the change in irradiance during the flight). Finally, the 

individual reflectance-corrected images were mosaiced using AgiSoft PhotoScan following procedures 

developed by the United States Geological Survey (USGS, 2017), yielding a multi-spectral ortho-mosaic 

with 5 cm ground resolution, georectified to our GCPs. There was generally close agreement between the 

ground, UAV and satellite-derived albedo although there are some differences that we believe to be the result

of different radiometric calibration techniques for satellite, UAV and ground measurements and the differing 

degrees of spatial integration have been examined in detail in Tedstone et al. (in review).

To upscale further, we used multispectral data from the Copernicus Sentinel-2 satellite. We selected the 100 x

100 km tile covering our field site (T22WEV) on the closest cloud-free day to our UAV flight on 21st July. 

The L1C product was downloaded from SentinelHub (Sinergise, Slovenia). The L1C product was processed 

to L2A using the European Space Agency (ESA) Sen2Cor processor, including atmopsheric correction and 

reprojection to 20 m resolution.

2.9 Supervised Classification Algorithms and albedo mapping
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To map and quantify spatial coverage of algae over the ice-sheet surface we employed a supervised 

classification scheme. A RF classifier was trained on the field spectra collected on the ice surface (see section

2.3) and then applied to multispectral images gathered by the UAV and Sentinel-2. We also included spectra 

obtained at the same field site in July 2016 to our training set, giving a total of 231 labelled spectra. A 

schematic of the classification workflow is provided in Supp Info 4. Our HCRF measurements were first 

reduced to reflectance values at five key wavelengths coincident with the centre wavelengths measured by 

the MicaSense Red-Edge camera mounted to the UAV (blue: 0.475, green: 0.560, red: 0.668, red-edge: 

0.717, NIR: 0.840 μm) yielding reflectance at each wavelength as a feature vector for the classifier (in this 

case the spectral response function of the camera was not accounted for). The classification labels were the 

surface type as determined by visual inspection: SN (snow), CI (clean ice), CC (cryoconite), WAT (water), 

Lbio (low biomass algae) and Hbio (high biomass algae). For the algal surface classes our visual assessment 

was corroborated by microscopy as described in section 2.2. This data set was then shuffled and split into a 

training set (80%) and a test set (20%). The training set was used to train three individual supervised 

classification algorithms: Naive Bayes, K-nearest neighbours (KNN) and support vector machine (SVM). 

For the SVM, the parameters C and gamma were tuned using grid search cross validation. Two ensemble 

classifiers were also trained: a voting classifier that combined the predictions of each of the three individual 

classifiers, and a RF algorithm. The performance of each classifier was measured using precision, accuracy, 

recall and F1 score and also by plotting the confusion matrix and normalised confusion matrix for each 

classifier. In all cases the RF outperformed the other classifiers according to all available metrics (Supp Info 

5). The performance of the RF classifier was finally measured on the test set, demonstrating the algorithm’s 

ability to generalise to unseen data outside of the training set. Overfitting is not usually associated with the 

RF classifier, and the strong performance on both our training and test sets  confirms that the model 

generalizes well. For these reasons, we used the RF algorithm to classify our multispectral UAV and 

Sentinel-2 images. Training the classifier using data from field spectroscopy ensures the quality of each 

labelled datapoint in the training set, since our sampling areas were homogeneous and surface samples 

analysed in the laboratory, circumventing issues of spatial heterogeneity and uncertainty in labelling that 

could lead to ambiguity for direct labelling of aerial images. Comparisons between the directional reflectance

spectra gathered using the ASD field spectrometer and those measured using the UAV and Sentinel-2 are 

provided in Fig 3. Simultaneously to the surface classification, we calculated the albedo in each UAV pixel 

using the narrowband to broadband coversion of Knap et al. (1999) applied to the reflectance at each of the 

five bands.

This protocol was repeated for Sentinel-2 imagery. Additional bands are available for use as feature vectors 

in the case of Sentinel-2. Directional reflectance data gathered using the ASD field spectrometer was reduced

to only those nine wavelengths coincident with the centre wavelengths measured by Sentinel-2 at 20m 

ground resolution (0.480, 0.560, 0.665, 0.705, 0.740, 0.788, 0.865, 1.610 2.190 μm). Training on reduced 
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hyperspectral data has several advantages over training directly on aerial multispectral data: first, the method

is sensor-agnostic because the classifier can be retrained with a different selection of wavelengths for other 

upscaling platforms, enhancing the reuseability of the field measurements; second, we have confidence in 

our labels because each sample has been laboratory analysed to confirm its composition, reducing label 

ambiguity; finally, the limited field of view of the field spectrometer reduces error arising from mixing of 

spectra from heterogeneous ice surfaces. Sentinel-2 imagery was masked using the MeASUREs Greenland 

Ice Mapping Project ice mask (https://nsidc.org/data/nsidc-0714) to eliminate non-ice areas. Pixels with 

more than 30% probability of being obscured by cloud were masked using the Sentinel-2 L2A cloud product 

generated by the Sen2Cor processor.  For the calculation of albedo in each pixel, the additional bands 

available in the Sentinel-2 images enabled the application of Liang et al.’s (2001) narrowband to broadband 

conversion.

2.10 Comparing 2016 and 2017 

In 2017, the GrIS Dark Zone had relatively small spatial extent, high albedo and short duration in  

comparison to the other years in the MODIS record, particularly since 2007, whereas the Dark Zone was 

especially dark, widespread and prolonged in 2016 (Fig 4; Tedstone at al. 2017). We therefore conducted a 

comparison between the algal coverage on the same dates in 2016 and 2017. First, we examined variations in

the extent and duration of the Dark Zone along with snow depths and snow clearing dates for the south 

western ablation zone using MODIS, extending the time series of Tedstone et al. (2017). Bare ice was 

mapped by applying a threshold reflectance value (R < 0.60 at 0.841-0.871 μm) to the MOD09GA Daily 

Land Surface Reflectance Collecton 6 product. Within the bare-ice area, dark ice was mapped using a lower 

reflectance threshold (R < 0.45 at 0.62 – 0.67 μm). The area of interest was the “common area” defined by 

Tedstone et al. (2017) bounded within the latitudinal range 65 – 70º N, and is equal to that used by Wang et 

al. (2018). To measure the annual dark ice extent (in km2) we counted the pixels that were dark for at least 5 

days each year. The annual duration was defined at each pixel as the percentage of daily cloud-free 

observations made in each JJA period which were classified as dark. The timing of bare ice appearance was 

calculated from MODIS using a rolling window approach on each pixel (see Tedstone et al. 2017). The mean

snow depths were extracted from outputs from the regional climate model MAR v3.8 (Fettweis et al. 2016) 

run at 7.5 km resolution forced by ECMWF ERA-Interim reanalysis data (Dee et al. 2011). These data 

enabled a comparison of the extent and timing of dark ice in 2016 and 2017.

To examine algal coverage in each year we identified the Sentinel-2 tile covering our field site (22WEV) on 

the closest cloud-free date to the UAV flight day (21st July) in each year. These were 26th July 2017 and 25th 

July 2016. Since we were interested in the bare-ice zone, snow covered pixels were omitted from the 

calculations.
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2.11 Runoff Modelling

Runoff at the regional scale was calculated using van As et al.’s (2017) SMB model forced with local 

automatic weather station and MODIS albedo observations (van As et al., 2012; 2017). The model 

interpolates meteorological and radiative measurements from three PROMICE automatic weather stations on

the K-Transect (KAN_L, KAN_M and KAN_U) and bins them into 100 m elevation bands (0 to 2,000 m 

a.s.l.). Surface albedo is from MODIS Terra MOD10A1 albedo and is averaged into the same 100 m 

elevation bins. For every one-hour time step, the model iteratively solves the surface energy balance for the 

surface temperature. If energy components cannot be balanced due to the 0 C surface temperature limit, a 

surplus energy sink for melting of snow or ice is included. If surface temperature is greater than the melting 

point, the surplus energy is used for melting of snow or ice. When calculating turbulent heat fluxes, 

aerodynamic surface roughness for momentum was set to 0.02 and 1 mm for snow and ice, respectively 

(after van As et al. 2005; 2012; Smeets and Van den Broeke, 2008). We extrapolate modelled runoff across 

the south-western GrIS (65 – 70 ° N) by deriving the areas of each elevation bin using the Greenland Ice 

Mapping Project (GIMP) DEM (Howat et al., 2014). Total summer runoff from bare ice was calculated by 

summing runoff in elevation bins that had mean daily albedo of less than 0.60. Total summer runoff from 

dark ice only was calculated in the same way but using a 0.39 threshold. In van As et al.’s (2017) study they 

compared the performance of the model with independent observations and found errors to be negligible in 

the bare-ice zone.

To determine the algal contribution to runoff, we used Equation 1:

Ralg = Rtot * ((MHbio * CHbio) + (MLbio * CLbio)) (Eq.1)

where Ralg = Runoff due to algae, Rtot = the total runoff from the bare-ice zone calculated using our runoff 

model, MHbio and MLbio = mean percentage of total melt attributed to algae in Hbio and Lbio areas as calculated 

by our energy balance modelling described in section 2.6, CHbio and CLbio= the proportion of Ctot comprised of 

Hbio and Lbio areas in our UAV or Sentinel-2 images. As discussed later, the Sentinel-2 algal coverage 

estimate is conservative because it often fails to resolve Hbio surfaces and therefore provides a lower bound 

on the runoff attributed to algae. An upper bound was therefore also calculated by assuming the spatial 

coverage derived from our UAV remote-sensing – which can accurately distinguish Lbio and Hbio - surfaces is 

representative of the south-western Dark Zone. We were thereby able to estimate upper and lower limits for 

the runoff attributed to algal growth on the south western ablation zone.

3. Results and Discussion

3.1 Algae reduce ice albedo
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The ice surfaces we studied were divided into four classes depending upon the algal abundance measured in 

the melted ice samples: High algal abundance (Hbio), Low algal abundance (Lbio), Clean Ice (CI) and Snow 

(SN). The algal abundance (cells/mL) in each class was as follows: Hbio = 2.9 x 104 ± 2.01 x 104, Lbio = 4.73 x

103 ± 2.57 x 103, CI = 625 ± 381, SN = 0 ± 0 (1 SD). These cell abundances were significantly different 

between the classes (one-way ANOVA, F = 10.21, p = 3 x 10-5) which Bonferroni-corrected t-tests indicated 

to be due to variance between all four groups. The dominant species of algae were Mesotaenium bergrennii 

and Ancylonema nordenskioldii (Fig 2D), confirming observations made by Stibal et al. (2017) and 

Williamson et al. (2018) in the same region. Their long, thin and approximately cylindrical morphology has 

been shown to be near-optimal for light absorption (Kirk, 1976). The albedo of the ice surface also varied 

significantly between the surface classes (one-way ANOVA for broadband albedo: F= 7.9, p = 2.8 x 10-4), 

again with Bonferroni-corrected t-tests showing variance between all four groups (Supp Info 6 A,B). Greater 

algal abundance was associated with lower albedo, with the albedo reduction concentrated in the visible 

wavelengths (Fig 2B) where both solar energy receipt and algal absorption peak (Cook et al., 2017b; 

Williamson et al., 2018), diminishing towards longer near infra-red (NIR: > 0.70 μm) wavelengths where ice 

absorption, represented by the effective grain size, is most likely to cause albedo differences (Warren, 1982). 

A strong inverse correlation (Pearson’s R = 0.75, p = 2.74 x 10-9) was observed between the natural logarithm

of algal cell abundance (cells mL-1) in the surface ice samples and broadband albedo (Fig 2C). The linear 

regression coefficient of determination between the albedo and the natural logarithm of cell abundance was 

0.57. It is unsurprising that the cell abundance does not account for all variation in albedo because there are 

also albedo-reducing effects related to the physical structure of the ice and presence of melt water (as 

demonstrated for snow by, for example, Warren, 1982). An inverse relationship was also observed between 

broadband albedo and biovolume (calculated as the sum of the products of the mean measured cell volumes 

and the cell counts for each algal species) but the coefficient of determination was lower (r2 = 0.42). This 

may well be the result of larger cells having a smaller effect on albedo than more numerous, smaller cells for 

a given total volume. The relationship between absorption and scattering coefficients and cell size may also 

not be straightforward for algal cells due to an increasingly important contribution to the cell optical 

properties from internal heterogeneity, organelles, cell walls and the pigment packaging effect in larger cells 

(Morel and Bricaud, 1981; Haardt and Maske, 1987).

The albedo of Hbio and Lbio surfaces is depressed in the visible wavelengths (0.40 - 0.70 μm, Fig 2B), creating

a ‘red-edge’ spectrum commonly used in other environments as a marker for photosynthetic pigments 

(Seager et al., 2005) and for mapping algae over the GrIS by Wang et al. (2018). Chlorophyll-a has a specific

absorption feature at 0.68 μm which is hard to discern in the raw spectra, but clear in the derivative spectra 

(Fig 5A) for Hbio and Lbio but not CI and SN. This feature has previously been described as “uniquely 

biological” (Painter et al., 2001) and supports the hypothesis that the albedo reduction observed in these 

samples is primarily due to algae. Our measurements therefore strongly indicate a biological role in reducing 
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the albedo of the GrIS surface; however to test that the lower broadband and spectral albedo observed on 

algal surfaces is primarily due to the presence of algal cells, it was also necessary to compare the albedo-

reducing effects of the algae to that of local mineral dust.

3.2 Algae have greater impact on albedo than mineral dust

Radiative transfer simulations demonstrated that, at measured mass-mixing ratios, mineral dusts have only a 

very small (<0.003) albedo reducing effect at our field site on the south-western GrIS, whereas glacier algae 

reduce the ice albedo by up to 0.06, not accounting for indirect albedo-reducing feedbacks. The effect of 

adding the mean measured mass-mixing ratio of MN-DUST to the clean ice was a very small albedo 

reduction of 0.002 (Table 2; Fig 5B). In contrast, adding the mean measured mass-mixing ratio of glacier 

algae reduced the albedo by 0.03, preferentially in the short visible wavelengths similarly to our field-

measured reflectance spectra (Table 2; Fig 5B). This effect was greater when the mass mixing ratio was 

increased to the maximum measured values (646 μgalgae/gice and 519 μgdust/gice) which caused an albedo 

reduction of 0.06 for glacier algae and 0.003 for MN-DUST. Changing the proportions of the minerals in our 

simulated local dusts had a very small effect on the albedo reduction. At the mean measured mass-mixing 

ratio, HI-DUST reduced the albedo by just 0.0023 while LO-DUST reduced the albedo by 0.0016. Even with

a mass-mixing ratio of 1000 μgdust/gice, the albedo reduction due to local mineral dusts was only 0.006, 0.004 

and 0.005 for the HI-DUST, LO-DUST and MN-DUST, compared to 0.08 for glacier algae. 

Across all our simulations, the broadband albedo-reducing power of glacier algae exceeded that of the local 

mineral dusts, often by several orders of magnitude. At field-measured mass-mixing ratios for heavily-laden 

Hbio surfaces, mineral dusts cannot account for the broadband albedo reduction observed in the field. This is 

consistent with the local mineralogy being dominated by weakly-absorbing minerals with small grain sizes 

as measured in our field sample (Fig 5C, Fig 6; Table 2). In Supp Info 7 we demonstrate that these 

conclusions are robust to different dust types including those with typically Saharan optical properties and 

dusts with varying hematite concentrations. The radiative-transfer simulations do not account for feedbacks 

related to grain size/shape, near-surface meltwater accumulation and the presence of other light absorbing 

particles such as humic substances that might modify the spectral reflectance and exacerbate the biological 

albedo-reduction. Furthermore, the albedo-lowering effects of both the glacier algae and mineral dusts is 

reduced by the low albedo of the underlying ice. In simulations using smaller diameter, higher albedo snow 

grains (whose optical properties were estimated using Mie theory) the albedo reduction caused by 1000 

μgdust/gice of MN-DUST increased to 0.009, 0.010 and 0.012 for grains of diameter 1500, 1000 and 500μm 

respectively.

The small direct albedo-reducing effect from local minerals on the ice surface is seemingly in contrast to 

some previous studies such as Wientjes et al. (2010; 2011) and Bøggild (2010); however, we highlight that 
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neither of the Wientjes et al. (2010; 2011) studies directly measured the surface albedo or any optical 

properties of the mineral dusts retrieved from their GrIS sampling sites and only inferred mineralogical 

darkening from low spectral resolution MODIS data and the presence of a “wavy pattern” observed across 

the dark zone. We argue that while this may be indicative of geological outcropping onto the ablation zone, it

does not necessarily follow that these minerals are responsible for surface darkening. In support of this, 

Wientjes et al. (2011) found strongly scattering and weakly absorbing quartz to be the dominant mineral in 

surface ice and speculated that biota may be having a darkening effect. Bøggild et al. (2010) found mineral 

dust to be an albedo reducer in Kronprinz Christian’s Land (80N, 24W) but this area is geologically and 

climatologically distinct from our field site, and their transect only spanned ~8 km from the ice-sheet margin,

being an area prone to local dust deposition. Overall, our study is consistent with previous studies that have 

identified the local bare-ice mineral dust is hematite-poor and rich in weakly absorbing quartz and feldspar 

minerals (e.g. Tedesco et al. 2013). Tedesco et al. (2013) reported their dusts being “redder” than algae. 

However, their minerals were sourced from cryoconite, not the ice surface, where glacier algae are scarce 

and the biota is dominated by a rich consortium of other microbes that lack the characteristic pigmentation of

glacier algae. Furthermore, Tedesco et al. (2013) reported an average of only 0.3% geothite in their 

Greenland cryoconite samples. This may have been present as hematite prior to their sample processing 

which involved heating the samples to 500 - 1000°C. This heating treatment likely oxidised Fe-bearing 

mineral phases, thereby artificially introducing the observed “reddening”.. 

While these radiative transfer simulations indicate that mineral dust is unlikely to be directly causing the 

albedo decline on the GrIS, they may still influence the ice albedo indirectly by acting as substrates for the 

formation of low-albedo microbial-mineral aggregates known as cryoconite granules, which are often found 

in quasi-cylindrical melt holes or scattered over ice surfaces (Wharton et al. 1985; Cook et al. 2015a) or by 

providing a nutrient source stimulating algal growth (Stibal et al. 2017). This is especially true because there 

is evidence in the previous literature that the dust present on the GrIS bare-ice surface are likely derived from

a local source with no contribution from Asian dusts or volcanic ash (Wientjes et al. 2011) and that red 

minerals such as hematite, geothite and ilminite are present only in very low concentrations (Wientjes et al. 

2011; Tedesco et al. 2013; Sanna and Romeo, 2018) that would have a negligible effect on the ice albedo. 

Therefore, we have demonstrated using empirical measurements and radiative transfer modelling that glacier

algae are potent albedo reducers on the south-west Greenland Ice Sheet and mineral dusts are not. These 

findings are consistent with several previous studies (Stibal et al. 2017; Yallop et al. 2012) that found mineral

dust to be insignificant for explaining albedo variations in the same region. 

3.3 Indirect effects of algae
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Algae predominantly reduce the ice albedo in the visible wavelengths (0.40 – 0.70 μm), whereas variations 

in the NIR result mainly from changes to ice grain radii and the presence of liquid water (Warren, 1982; 

Green et al., 2002). Variations in the NIR albedo between the surface classes therefore suggest that the lower 

albedo of algal surfaces is not explained entirely by enhanced absorption due to algae, but also by the 

smoother, wetter ice surface with fewer opportunities for high-angle scattering of photons (Jonsell et al. 

2003), compared to the well-drained and porous CI surfaces. The spatial and temporal development of the 

weathering crust is therefore an important control on ice albedo (Muller and Keeler, 1969; Jonsell et al. 

2003). Algal growth is stimulated by melt, which can be enhanced by algal growth (Yallop et al., 2012; 

Ganey et al., 2017; Stibal et al., 2017; Cook et al., 2017a,b; Dial et al., 2018) - an example of a 

biocryomorphic process where biota alter the physical, chemical and hydrological conditions of the ice 

surface with beneficial consequences to the biota (Cook et al. 2015b). 

3.4 Algae enhance radiative forcing and melt

Having determined that glacier algae reduce the ice surface albedo, we took an empirical approach to 

quantifying their impact upon energy balance following Ganey et al. (2017), which includes both direct 

albedo effects (enhanced absorption of shortwave solar radiation by the algal cells) and the indirect effects 

explained above. Integrated over the entire day, this indicated a daily mean biological radiative forcing of 

116 W m-2 and 65 W m-2 for Hbio  and Lbio surfaces respectively, similar to RFs for Alaskan snow algae 

calculated by Ganey et al (2017). We used the biological radiative forcing integrated over the entire day and 

the latent heat of fusion for ice (334 J cm-3) to estimate 1.35 ± 0.01 (S.E) cm w.e. of melting due to algae in 

Hbio areas on 21st July. For Lbio sites, biological melting on 21st July 2017 was 1.01 ± 0.01 (S.E) cm w.e. 

We corroborated this estimate using a point surface energy balance model (Brock and Arnold et al. 2000). 

The melt attributed to the presence of algae predicted by the energy balance modelling method was similar to

that predicted using the radiative forcing method, with 1.37 ± 0.48 (S.E) cm w.e. attributed to Hbio and 0.95 ± 

0.41 (S.E) cm w.e. attributed to Lbio. Expressing the melt attributed to algae as a proportion of the total 

melting in the algal sites gives 26.15 ± 3.77 % (S.E) of the local melting attributed to algae in the Hbio 

surfaces and 21.62 ± 5.07 % (S.E) for Lbio surfaces. 

3.5 Algae are widespread across the south-western ablation zone

Our analyses demonstrate that algae have a dramatic darkening effect on the ice surface, leading to increased 

melting. However, the importance of this effect depends upon the spatial extent of the algal blooms over 

thousands of kilometers. To determine spatial coverage at our field site we aclassified multispectral images 

acquired from a UAV flown over a 200 x 200 m area. The classified UAV image indicated that 78.5% of the 

area was covered by algal blooms of which 61.1% was Lbio and 17.4% was Hbio (Table 3; Fig 7). The high 
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ground resolution of the imagery enabled a qualitative assessment of the algorithm performance by visual 

comparison between the classifier and the raw imagery (following Ryan et al. 2018a). The algorithm 

produced qualitatively realistic bloom shapes, correctly placed water in channels and individual cryoconite 

holes in their correct positions. The confusion matrix indicates that occasional misclassifications are 

generally between water and cryoconite (Supp Info 8). This is unsurprising since both cryoconite and water 

have relatively flat spectral shapes with few spectral features and cryoconite is often found beneath pools of 

surface water. We also point out that our cryoconite spectral reflectance measurements were made with 

cryoconite filling the entire field of view of the spectrometer, so best represent large cryoconite holes or 

dispersed cryoconite rather than surfaces peppered with many small holes. There was also some ambiguity 

between thin, wet snow and bare glacier ice, as these surfaces are spectrally similar. Nevertheless, these 

misclassifications affect a small area of the pixel and do not affect our estimate of algal bloom coverage. 

We also classified Sentinel-2 satellite data (Fig 7). The confusion matrices (Supp Info 8) indicate similar 

misclassification types and frequencies to the UAV model. The predicted algal coverage was 58.87%. Hbio 

surfaces were much less common than Lbio (Hbio = 2.53 % , Lbio = 56.54%, Table 3). The spatial coverage by 

algae was different in the Sentinel and UAV datasets especially for Hbio, likely because a) the Sentinel-2 

imagery includes ice that is outside of the Dark Zone, raising the overall reflectivity, and b) even in the UAV 

image, which was retrieved from within the Dark Zone, Hbio surfaces comprise just 17% of the ice surface 

and have a patchy distribution. The lowest albedo surfaces – cryoconite and water – cover a small fraction (<

3%) of the total area in both UAV and Sentinel-2 images (Table 4), although we note that many individual 

cryoconite holes will not be detected as they are smaller than the spatial resolution of either Sentinel-2 or the 

UAV. The spatial coverage reported here from our multispectral UAV imagery is consistent with a k-nearest 

neighbours classification scheme applied to RGB (Red, Green, Blue) imagery from a fixed wing UAV flight 

over the Kangerlussuaq region by Ryan et al. (2018a). They found up to 85% of the ice surface to be 

composed of ‘ice containing uniformly distributed impurities’ in the same region of the Dark Zone in July 

2014, which our observations confirm were dominated by algae. They also found < 2% of the ice surface to 

be cryoconite covered and water coverage was < 5% (except for a supraglacial lake in their imaged area). 

This analysis demonstrates that algae are a major component of the ice surface. The larger spatial coverage 

of algae observed in UAV images compared to Sentinel-2 images likely results from spatial integration 

occurring at the coarser spatial resolution associated with Sentinel-2 data, where pixels are likely to be 

classified as CI unless the majority of the pixel is algae-covered. Smaller Hbio patches are rarely detected 

presumably because they are unlikely to cover the majority of a 20 m pixel. The higher detection limit for 

algae with decreasing ground resolution makes our estimate of spatial coverage from Sentinel-2 

conservative. We highlight that this will have a much larger effect on studies aiming to quantify cell 

abundance using Sentinel-3 where the ground resolution is 300 m.

3.6 Algae reduce the ice albedo across the south-western ablation zone
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There was a significant difference between the albedos of each surface class in all four datasets, consistent 

with the findings from our ground spectroscopy (Table 4). The albedo of each surface class is approximately 

consistent between the datasets, despite the variation in spatial coverage, giving confidence in the accuracy 

of our remote-sensing albedo retrievals and the classification algorithm. In the expansive areas where algae 

are present (Fig 7) the ice albedo is on average 0.13 lower for Lbio and 0.25 lower for Hbio compared to clean 

ice (Table 4). This, combined with our ground-based spectroscopy, radiative forcing calculations, radiative 

transfer and energy balance modelling, provides robust evidence in support of algae having a significant 

melt-accelerating effect on the GrIS. We cannot yet explicitly separate mineral and biological effects, but our

theoretical and empirical analyses indicate that: a) local mineral dust cannot explain the observed albedo 

reduction, b) low-albedo areas had significantly elevated algal cell numbers relative to clean ice, c) uniquely 

biological features were detectable in the spectra and derivative spectra for the lower albedo sites, and d) 

radiative transfer models incorporating algal cells with realistic pigment profiles demonstrate the mechanism 

of albedo reduction. These observations confirm that supervised classification of Hbio and Lbio surfaces is 

indeed detecting surfaces with high algal loading and can be used to estimate algal bloom extent. Again, we 

point out that this estimate is conservative because there is certain to be glacier algae present in low numbers 

in some of the areas that are classified as clean, and Hbio patches are often smaller than the ground resolution 

of Sentinel-2, raising their detection limit (Tedstone et al., in review). Furthermore, these calculations 

consider the total albedo-reducing effect, inclusive of ice structure and meltwater feedbacks, not only the 

direct light-absorbing effects of the algal biomass.

3.7 Algae cause enhanced GrIS runoff

We ran a surface mass balance (SMB) model forced with local automatic weather station and MODIS albedo

observations (van As et al., 2012) to estimate 45.5 Gt runoff from all bare ice and 33.8 Gt from dark ice in 

2017. We used the mean spatial coverage determined using our remote-sensing in each year and our radiative

forcing calculations that attributed 21.62 ± 5.07 (standard error) % of melting to algae in Lbio sites and 26.15 

± 3.77 (standard error) % in Hbio sites to generate estimates for the GrIS runoff caused by algal growth. We 

have provided upper and lower estimates based on our two remote-sensing datasets, because while our UAV 

is able to accurately map Hbio and Lbio surfaces, we cannot be certain that the spatial coverage derived from 

the 200 x 200 m area is representative of the south-western Dark Zone. At the same time, our Sentinel-2 

remote-sensing underestimates algal coverage because it includes ice outside of the dark zone and Hbio 

patches are often too small to be resolved at 20 m pixel resolution (Tedstone et al. in review). Therefore, we 

used the spatial coverage determined by our Sentinel-2 classification as a lower bound, and spatial coverage 

determined by our UAV classification as an upper bound on our estimate of total runoff attributed to the 

presence of algae.
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We found that in 2017 between 4.4 – 6.0 Gt of ice loss could be attributed to the growth of algae, 

representing 10 - 13 % of the total runoff from the south-western GrIS, with the lower estimate generated 

using algal coverage from Sentinel-2 and the upper estimate generated using spatial coverage at our field site

from our UAV. When the calculations were restricted to the Dark Zone only (i.e. excluding areas in the 

ablation zone not classified as “dark”) algal contributions to total runoff were  up to 18 %. These calculations

confirm that algal growth is an important factor in the contribution of the GrIS to global sea level rise. This 

contribution will increase if biologically-darkened areas expand or a greater proportion of the ice is covered 

by high biomass blooms under warmer climates. These observations therefore indicate that the omission of 

biological growth is leading current models to underestimate future GrIS contributions to sea level rise.

3.8 Interannual variability and potential positive feedback 

MODIS data (Fig 4) indicates that 2017 was a particularly high albedo year when the Dark Zone was 

especially small and bright, whereas 2016 was a particularly low-albedo year where the dark zone was wider 

and darker than most years (Fig 4 A,B and Tedstone et al. 2017). Previous field evidence (Williamson et al., 

2018) demonstrates that the ice was darkened by high concentrations of algae in 2016. In our Sentinel-2 

remote-sensing tile (22WEV) the bare-ice zone was wider in 2016 (6758 km2) than in 2017 (6205 km2), and 

a larger area was covered with algae  (on 25th July 2016, 3919 km2 was covered by algae compared to 3653 

km2 on 28th July 2017). While the proportional total algal coverage was similar between the two years (57.99 

% in 2016, 58.87 % in 2017), the proportion of the algal ice that was classified Hbio was much higher in 2016

(8.35 %) compared to 2017 (2.54 %). The mean albedos and their standard deviations were very similar for 

each ice surface class in both years (Table 4). The runoff from the south-western GrIS bare ice (albedo < 0.6)

was 94.1 Gt in 2016, of which 67.6 was from dark ice (albedo < 0.39). We estimate that 8.8 – 12.2 Gt of this 

runoff was attributable to the growth of algae, representing 9 – 13 % of the total runoff from bare-ice sectors.

The absolute values for runoff are therefore much higher but the proportion of the bare-ice total attributed to 

algae was approximately the same between the two years.

The snow line retreated further, earlier in 2016 compared to 2017, creating a wider bare-ice zone that existed 

for longer and was not transiently covered by summer snowfall events, whereas in 2017 a smaller bare-ice 

area was exposed later and was covered by 5 - 10 cm of snow several times during the summer (Fig 4 C, D). 

The more prolonged exposure of a larger bare-ice zone in 2016 enabled Lbio surfaces to extend to higher 

elevations and biomass to accumulate to greater mass concentrations at lower elevations in summer 2016, 

explaining the greater Hbio coverage. This indicates that the intensity of the algal bloom is a function of 

exposure time, as postulated by Tedstone et al. (2017) and Williamson et al. (2018). More prolonged 

exposure of larger ablation areas under a warming climate (Stroeve et al. 2013; Shimada et al. 2016; Tedesco

et al. 2016; Tedstone et al. 2017) are likely to be prone to more spatially expansive, darker algal blooms that 

enhance melt rates, leading to a potential positive feedback that is not currently accounted for in surface 

mass balance models whereby earlier exposure of bare ice leads to enhanced algal coverage, which will be 
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able to accumulate higher biomass, and accelerate melting. Melting, in turn stimulates algal growth by 

liberating nutrients and liquid water.  

4. Conclusions

Our measurements and modelling demonstrate that the growth of algae on the GrIS accelerates the rate of 

melting and increases the GrIS contribution to global sea level rise. Field spectra show a dramatic depression

of the surface albedo in the visible wavelengths for surfaces contaminated by algae. Derivative analysis of 

the same spectra show uniquely biological absorption features and an inverse relationship was observed 

between biomass and surface albedo. We employ a novel radiative transfer model to show that this albedo 

decline cannot be attributed to local mineral dusts. Radiative forcing calculations and an energy balance 

model predict that melting of glacier ice can be accelerated by 21.62 ± 5.07 (SE) % for Lbio surfaces and 

26.15 ± 3.77 (SE) % for Hbio surfaces. We demonstrate that the growth of algae occurs over a large 

proportion of the ablating area of the south western GrIS by identifying algal blooms in remote-sensing data 

from a UAV and Sentinel 2, finding 78.5 % of the surface within a  200 x 200 m sample area at our field site 

to be algae covered. Using Sentinel-2 we detected algae covering 57.99 % of the Kangerlussuaq region in 

2017 and 58.87 % of the same region in 2016. The spatial resolution of the sensor makes these conservative 

estimates, especially for Hbio surfaces. Runoff modelling informed by our field measurements and remote-

sensing estimate between 4.4 and 6.0 Gt of runoff from the south western ablation zone could be attributed to

the growth of algae in summer 2017, representing 10- 13% of the total. Because 2017 was a particularly high

albedo year for the south western GrIS, we also ran our analysis for the particularly low-albedo 2016 melt 

season. In 2016 a wider bare-ice zone was exposed for longer, and there was a concomitant increase in the 

extent of the algal bloom, more of which was classified as Hbio (high biomass). The percentage algal 

contribution to south western GrIS runoff was approximately the same as in 2017 (9 – 13 %) but the absolute

volume was much higher (8.8 – 12.2 Gt). This interannual comparison indicates the existence of a feedback 

because in years where snow retreats further, earlier, there is a larger and more prolonged area for algal 

bloom development where melting is enhanced, stimulating further algal growth. This study therefore 

demonstrates that algae are important albedo-reducers and cause a melt-enhancing feedback across the south-

western GrIS. The omission of these critical biological albedo feedbacks from predictive models of GrIS 

runoff is leading to underestimation of future ice mass loss and contribution to global sea level rise. This is 

particularly significant because larger ablation zones and longer growth seasons are expected in a future 

warmer climate.

5 Data Availability

Codes and datasets used in this study are available at the following doi’s: 

BioSNICAR_GO code and data: 10.5281/zenodo.3564517

Ice Surface Classification codes: 10.5281/zenodo.3564529 
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Spectra Processing codes: 10.5281/zenodo.2598219 

Field and associated data: 10.5281/zenodo.3564501
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Fig 1: A) Map of Greenland showing the bounding box of the Sentinel-2 tile containing our field site (red
box) and the latitudinal extent of our runoff modelling (red line). The area in the red box is presented in

detail in B) with our field site marked with a yellow dot. 
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Fig 2 A) mass absorption coefficients of the major algal pigments including the purpurogallin-type phenol;
B) Measured spectral albedos for each surface type (Hbio = heavy biomass loading, Lbio = light biomass
loading, CI = clean ice, SN = snow), C) plot showing the natural logarithm of cell abundance against

broadband albedo; D) microscope image showing examples of both algal species and mineral fragments
from a melted Hbio sample.1140
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Fig 3: Inter-sensor comparisons. A) – E) Each UAV band reflectance plotted against ASD reflectance in
uncorrected (blue) and corrected (red) form. The correction was applied to account for a systenmatic offset

shown in the header for each plot. F) Mean reflectance and +/- 1 standard deviation error bars at each
spectral band for each surface class for the ASD field spectrometer and the UAV-mounted multispectral

camera. G) Mean reflectance and +/- 1 standard deviation error bars at each spectral band for each surface
class for the ASD field spectrometer and Sentinel-2.

A B C

D E

F

G

1.0

0.6

0.2

0.6

0.4

0.8

0.6

0.0

0.8

0.6

0.4

0.0

0.2

R
ef

le
ct

an
ce

R
ef

le
ct

an
ce

B1 B2 B3 B4 B5

B9B8B7B6B5B4B3B2B1
Band ID

Band ID

1160



Figure 4: (A,B) Dark ice duration on the south-west GrIS in summers 2016 and 2017, expressed as a
percentage of the total daily cloud-free observations made during June-July-August (JJA). Each year is

labelled with dark ice extent. In each year, pixels that are dark for fewer than 5 days are not shown. (C,D)
Average snow depth modelled by MAR (blue) and cumulative dark ice extent observed by MODIS (red)
(Tedstone et al., 2017) during April to August. Vertical bars (grey) denote median date of snow clearing

derived from MODIS; horizontal bars denote the interquartile range of the day of year of bare ice
appearance. Tick marks denote the start of each month.
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Figure 5:  A) First and second derivative spectra for each surface class; B) BioSNICAR_GO modelled
spectral albedo for clean ice (blue) and ice with each of the simulated local dusts and algae in their measured
mass mixing ratios in the upper 1 mm; C) Reflectance for an optically-thick layer of two samples of the local

mineral dust.
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Figure 6: Particle size diameter for our local mineral dust sample (inset i shows magnification of 0-4 µm
range)
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Fig 7: A) Classified map of the area shown in C for 2016. B) Broadband albedo map of the area shown in C
for 2016. C) RGB “true colour” image showing the Sentinel 2 tile covering our field site in the

Kangerlussuaq area. D) Classified map of the area shown in C for 2017. E) Broadband albedo map of the
area shown in C for 2017. F) Classified map of a 200 x 200 m area at the field site marked in C imaged using

a UAV mounted multispectral camera. G) Broadband albedo map of a 200 x 200 m area at the field site
marked in C imaged using a UAV mounted multispectral camera. Panels A, B, C, D, E all use UTM Zone 22
projection and have pixel resolution of 20 m. The scale bare beneath panel B is common to panels A,B,D,E

and the scale bar beneath panel F is common to panels F and G.
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Fraction of total (% by volume)

Scenario Quartz Andesite Olivine Enstatite Kaolinite Illite Muscovite

HI-DUST 3.42 67.12 10.53 8.42 3.36 1.70 5.46

LO_DUST 45.39 50.67 3.31 0.64 0 0 0

MN_DUST 24.19 61.03 6.95 3.90 1.37 0.19 2.37

Table 1: Composition of each mineral dust “scenario” in percent of total by volume.
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Albedo change for various light absorbing impurity mass mixing ratios

Hypothetical mass mixing ratios (μgLAP/gice) Measured mass mixing ratios (μgLAP/gice)

10 100 500 800 1000 342 349 519 646

Glacier algae -0.0010 -0.0110 -0.0460 -0.0670 -0.0800 -0.030 -0.040 -0.0487 -0.056

HI-DUST -0.0001 -0.0006 -0.0030 -0.0048 -0.0060 -0.0021 -0.0023 -0.0033 -0.0039

LO-DUST -0.0001 -0.0004 -0.0021 -0.0034 -0.0042 -0.0015 -0.0016 -0.0023 -0.0028

MN-DUST <0.0001 <0.0001 -0.0020 -0.0043 -0.005 -0.001 -0.002 -0.0029 -0.0035

Table 2: Albedo change relative to clean ice caused by the addition of each LAP to the upper 1 mm of ice in a

range of mass mixing ratios from 10 to 1000 μgLAP/gice.
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WAT CC CI Lbio Hbio SN

UAV 0.31 (0.017) 
n = 160448

0.09 (0.031) 
n = 154070

0.53 (0.026)
n =  2735603

0.44 (0.055)
n = 12098635

0.25 (0.039)
n = 3447152

0.74 (0.025)
n = 63647

S2 2016 0.08 (0.044)
n = 52060

0.13 (0.035)
n = 272419

0.46 (0.042)
n = 6771763

0.32 (0.046)
n = 8388680

0.23 (0.028)
n = 1410095

0.60 (0.05)
n = 9924

S2 2017 0.08 (0.039)
n = 174791

0.11 (0.034)
n = 258520

0.46 (0.075)
n = 5947314

0.31 (0.042)
n = 8740186

0.22 (0.026)
n = 2270206

0.76 (0.058)
n = 16333853

ASD Field 
Spec

N/a N/a 0.50 (0.02)
n = 22

0.36 (0.07)
n = 28

0.24 (0.03)
n = 22

0.56 (0.10)
n = 5

Table 3: A) summary of the albedo for each surface class as predicted from our classified UAV image, 
Sentinel-2 image for 2016 (S2 2016) and 2017 (S2 2017) and as measured using field spectroscopy (ASD 
Field Spec) at our field site in 2017 (we do not have cosine-collector albedo measurements for water or 
cryoconite surfaces). The reported values are the mean, the standard deviation in brackets and the number of 
observations.
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UAV Image Sentinel 2 (2016) Sentinel 2 (2017)

Total Image Area (km2) 0.04 10,000 10,000

Total Algae (%) 78.5 57.99 58.87

Hbio (%) 17.4 8.35 2.54

Lbio (%) 61.08 49.65 56.33

Cryoconite (%) 0.82 1.61 1.67

Clean Ice (%) 13.81 40.08 38.34

Water (%) 0.78 0.31 1.13

Snow (%) 6.09 n/a n/a

Table 4: percentage of each image covered by each surface type as predicted by our trained RF algorithm. 
Snow was removed from the calculation in the Sentinel-2 images to enable quantification of surface 
coverage in the bare-ice zone, i.e. below the snow line, only.

Figure 1: The logo of Copernicus Publications.
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