
The Cryosphere, 13, 1–16, 2019
https://doi.org/10.5194/tc-13-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Optimization of over-summer snow storage at midlatitudes
and low elevation
Hannah S. Weiss1, Paul R. Bierman1,2, Yves Dubief3, and Scott D. Hamshaw4

1Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA
2Geology Department, University of Vermont, Burlington, VT 05405, USA
3Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA
4Department of Civil & Environmental Engineering, University of Vermont, Burlington, VT 05405, USA

Correspondence: Hannah S. Weiss (hsweiss@uvm.edu)

Received: 15 March 2019 – Discussion started: 11 April 2019
Revised: 17 October 2019 – Accepted: 29 October 2019 – Published:

Abstract. Climate change, including warmer winter temper-
atures, a shortened snowfall season, and more rain-on-snow
events, threatens nordic skiing as a sport. In response, over-
summer snow storage, attempted primarily using woodchips
as a cover material, has been successfully employed as a5

climate change adaptation strategy by high-elevation and/or
high-latitude ski centers in Europe and Canada. Such stor-
age has never been attempted at a site that is both low eleva-
tion and midlatitude, and few studies have quantified storage
losses repeatedly through the summer. Such data, along with10

tests of different cover strategies, are prerequisites to opti-
mizing snow storage strategies. Here, we assess the rate at
which the volume of two woodchip-covered snow piles (each
∼ 200 m3), emplaced during spring 2018 in Craftsbury, Ver-
mont (45◦ N and 360 m a.s.l.), changed. We used these data15

to develop an optimized snow storage strategy. In 2019, we
tested that strategy on a much larger, 9300 m3 pile. In 2018,
we continually logged air-to-snow temperature gradients un-
der different cover layers including rigid foam, open-cell
foam, and woodchips both with and without an underlying20

insulating blanket and an overlying reflective cover. We also
measured ground temperatures to a meter depth adjacent to
the snow piles and used a snow tube to measure snow den-
sity. During both years, we monitored volume change over
the melt season using terrestrial laser scanning every 10–25

14 d from spring to fall. In 2018, snow volume loss ranged
from 0.29 to 2.81 m3 d−1, with the highest rates in midsum-
mer and lowest rates in the fall; mean rates of volumetric
change were 1.24 and 1.50 m3 d−1, 0.55 % to 0.72 % of ini-
tial pile volume per day. Snow density did increase over time,30

but most volume loss was the result of melting. Wet wood-
chips underlain by an insulating blanket and covered with a
reflective sheet were the most effective cover combination
for minimizing melt, likely because the aluminized surface
reflected incoming short-wave radiation while the wet wood- 35

chips provided significant thermal mass, allowing much of
the energy absorbed during the day to be lost by long-wave
emission at night. The importance of the pile surface-area-
to-volume ratio is demonstrated by 4-fold lower rates of vol-
umetric change for the 9300 m3 pile emplaced in 2019; it 40

lost< 0.16 % of its initial volume per day between April and
October, retaining 60 %CE1 of the initial snow volume over
summer. Together, these data demonstrate the feasibility of
over-summer snow storage at midlatitudes and low elevations
and suggest efficient cover strategies. 45

1 Introduction

Earth’s climate is warming (Steffen et al., 2018). This warm-
ing is expressed not only in warmer nights and days but also
in the number of winter rain and thaw events that degrade
snowpacks (Climate Central, 2016TS1 ). The duration, ex- 50

tent, and thickness of both lake ice and snow have decreased
over the past several decades in response to increasing tem-
peratures, especially at high latitudes (Hewitt et al., 2018;
Sanders-DeMott et al., 2018). Winter recreation is particu-
larly vulnerable to such warming. The ski industry has re- 55

sponded by increasing snowmaking as well as attempting to
reduce melt by covering snow using various materials (Scott
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2 H. S. Weiss et al.: Optimization of over-summer snow storage at midlatitudes and low elevation

and McBoyle, 2007; Pickering and Buckley, 2010; Steiger
et al., 2017). Over the past several decades, ski centers have
improved snowmaking strategies and facility operations both
to maintain financial stability and to decrease their output of
greenhouse gases (Koenig and Abegg, 1997; Moen and Fred-5

man, 2007; Tervo, 2008; Kaján and Saarinen, 2013). Recent
research focuses on analyzing and optimizing stages in the
snow production cycle to assist industry efforts (Hanzer et
al., 2014; Spandre et al., 2016; Grünewald and Wolfsperger,
2019).10

Many sites organizing major winter sports events, such as
cross-country or alpine world cup races, have adopted over-
summer snow storage in response to the unpredictability of
snowmaking weather conditions. In areas of high humidity
and warm average fall temperatures, summer snow storage is15

more reliable than expecting weather conditions to be suffi-
ciently cold and dry for making snow at the start of the winter
ski season. For example, the 2014 Olympic Games at Sochi
relied on 750 000 m3 of stored snow (Pestereva, 2014).

Over-summer storage of snow and ice is not a new idea;20

for example, ice houses stored large blocks of lake ice be-
neath sawdust over the summer (Nagnengast, 1999; Rees,
2013). Today, the ski industry uses stored snow to support the
early winter ski season. Modern over-summer snow storage
(sometimes referred to as “snow farming”) begins with the25

creation of snow piles during winter months. Piles are cov-
ered (often with sawdust or woodchips and sometimes geo-
textiles) before the snow is stored over the summer (Skogs-
berg and Lundberg, 2005). In the fall, the pile is uncovered
and snow spread onto trails. Nordic ski centers require less30

snow-covered area to open than downhill ski centers, and so
snow storage on the scale of thousands of cubic meters is
practical and cost-effective, allowing the center to open on
time instead of losing business, which occurs if centers are
unable to make snow and thus must open later. Snow storage35

has been employed predominately at high-elevation and/or
high-latitude ski centers (Fig. 1), many of which benefit from
cool, dry summers that minimize energy transfer to the snow,
increase evaporative cooling, and thus slow snowmelt.

Here, we examine the feasibility of snow storage in the40

northern United States at a midlatitude, low-elevation (45◦ N
and 360 m a.s.l.) site with a humid, temperate climate, in-
cluding warm summer temperatures and high relative hu-
midity which limits evaporative cooling (Fig. 1). Out of the
28 known snow storage locations, our study location has the45

highest average June–July–August temperature (24 ◦C) and
highest solar-radiation levels (Worldclim – Global Climate
Data, http://worldclim.org/version2, last access: 14 Septem-
ber 2019)TS2 TS3 . In this paper, we report data on the rate
of volumetric change of snow stored over the summer and50

consider those data in the context of both ground temper-
ature and meteorological data that together help define the
energy flux, which is responsible for melt into and out of
the snow piles. The goals of this research are to (1) deter-
mine the rate of volumetric change of small experimental55

snow piles, (2) suggest an optimized snow storage strategy
based on those data, and (3) test the optimized strategy on a
larger snow pile sufficient for ski area opening. Our data fill
a research gap in measurements of volumetric change during
snow storage and provide a novel case study for snow storage 60

at low-elevation and midlatitude sites.

2 Background

Although the physics of snowmelt has been considered ex-
tensively (Dunne and Leopold, 1978; Horne and Kavaas,
1997; Jin et al., 1999), there has been limited application 65

of physical and energy transfer knowledge to the prob-
lem of over-summer snow storage (Grünewald et al., 2018).
Snowmelt occurs when the snowpack absorbs enough energy
to raise snow temperature to the melting point (0 ◦C) and then
absorbs additional energy to enable the phase change from 70

solid to liquid water (0.334 MJ kg−1). The snowpack gains
energy from incoming short- and long-wave radiation, sensi-
ble and latent heat transfer from condensation of atmospheric
water vapor and cooling and refreezing of rainwater, conduc-
tion from the underlying ground, and advective heat transfer 75

from wind (Dunne and Leopold, 1978). Loss of energy from
the snowpack occurs through convective and conductive heat
transfer to the air, evaporative cooling, and long-wave emis-
sion to the atmosphere.

Both regional and local climatic factors influence the en- 80

ergy balance of snow. Short-wave radiational gain is related
to latitude (highest near the Equator and least near the poles),
elevation, time of year (greatest in summer and least in win-
ter), snow pile surface albedo, slope and aspect, and cloud
and tree canopy cover. Long-wave radiation balance depends 85

on atmospheric emissivity, cloudiness, vegetation cover, and
temperature of the snow pile surface. Rain falling on the
snowpack transfers heat. Conductive heat transfer from the
ground depends on soil thermal conductivity and tempera-
ture (Kane et al., 2000; Abu-Hamdeh, 2003). Snowmelt typ- 90

ically varies on a diurnal cycle, with melt increasing after
sunrise, peaking in the afternoon, and decreasing after sunset
(Granger and Male, 1978). Once surface melt occurs, wa-
ter either refreezes if it percolates into a sub-freezing snow-
pack, flows through an isothermal (0 ◦C) snowpack and then 95

infiltrates into the ground below, or flows along the ground
surface below the pile, depending on the soil infiltration rate
(Schneebeli, 1995; Ashcraft and Long, 2005).

Recent research at nordic ski centers in Davos, Switzer-
land, and Martell, Italy (Grünewald et al., 2018), has ap- 100

plied snowmelt physics to optimize over-summer snow stor-
age at high-elevation (∼ 1600 m) and midlatitude (∼ 46◦ N)
sites. The Davos location has an average summer relative hu-
midity of 79 %. Each nordic center built piles of machine-
made snow and covered them with 40 cm of wet sawdust 105

and woodchips; researchers then used utilized terrestrial laser
scanning to measure the initial (spring) and final (fall) vol-
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Figure 1. Locations of known over-summer snow storage sites (both currently active and inactive). (a) Conical projection shows known
locations of over-summer snow storage at nordic ski centers. The Craftsbury Outdoor Center is highlighted with a blue arrow, which is
labeled COC. The relative elevations of ski centers are displayed as a color gradient, marked in the legend. (b) Scatterplot of same locations
as shown in (a). The Craftsbury Outdoor Center (no. 3) is large yellow dot (COC). It has the lowest combination of elevation and latitude of
any snow storage yet attempted.

umes of the two piles. These snow piles retained 74 % and
63 % of their volume over the summer. Using a physically
based model, Grünewald et al. (2018) suggested that the
most effective cover, in relation to work and cost, was a
40 cm thick layer of mixed wet sawdust and woodchips,5

which reduced energy input into the pile by a factor of 12
(1504 MJ m−2 without woodchips as opposed to 128 MJ m−2

with woodchips). Deeper cover layers can save more snow,
but costs are higher. During the day, solar radiation caused
evaporation from surface woodchips while capillary flow10

continually supplied moisture from the melting snow to the
surface. The wet woodchips and sawdust also provided ther-

mal mass, slowing the transfer of energy from the surface to
the snow beneath.

Lintzén and Knutsson (2018) reviewed current knowledge 15

of snow storage and experience from areas in Scandinavia
and reported new results from an experiment in northern
Sweden, analyzing melt loss of stored snow. They report that
the most common snow storage method employs a breathable
surface layer over an insulating material. From field obser- 20

vations at multiple nordic ski centers, they have found that
the choice and age of covering affects the melt rate; older
woodchips were less effective at reducing melt than fresh
chips. Lintzén and Knutsson also determined that woodchips

www.the-cryosphere.net/13/1/2019/ The Cryosphere, 13, 1–16, 2019
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were a more effective cover than bark. They measured snow
volumes three times over the summer and found that higher
relative humidity increased the melt rate. They also investi-
gated the geometry of snow piles and determined that shap-
ing piles, in a way that maximized the ratio of volume to sur-5

face area, minimized melt loss; however, steeper snow pile
sides caused sliding and failure of cover materials (Lintzén
and Knutsson, 2018).

Data related to snow storage for the purpose of summer
cooling to improve energy efficiency and comfort supple-10

ments those gathered from ski centers. In central Sweden,
the Sundsvall Hospital conserves snow over the summer for
air conditioning with a 140 m×60 m storage area (holding
60 000 m3 snow) underlain by watertight asphalt (Nordell
and Skogsberg, 2000). After covering with 20 cm of wood-15

chips, the majority of natural snowmelt resulted from heat
transfer from air (83 %), while heat transfer from groundwa-
ter drove 13 % of melt and heat from rain accounted for 4 %
of melt. Similar work was done by Kumar et al. (2016) and
Morofsky (1982) in Canada and by Hamada et al. (2010) in20

Japan.

3 Methods and setting

3.1 Study location

We conducted our experiment at the Craftsbury Outdoor
Center (COC), a sustainability-focused, full-year recreation25

venue located in northeastern Vermont at 360 m a.s.l. (Fig. 1),
an area with warm, humid summers and cold, dry winters.
The COC maintains 105 km of groomed nordic ski trails and
hosts national and international races several times each win-
ter. Average maximum monthly air temperature at St. Johns-30

bury, Vermont (closest National Oceanic and Atmospheric
Administration – NOAA – station to the COC about 30 km
southeast; at 215 m a.s.l.), between 1895 and 2018 ranges
between 3.6 ◦C (January) and 29 ◦C (July), mean tempera-
ture ranges from −8.3 ◦C (January) to 20.7 ◦C (July), and35

minimum air temperature ranges between −34 ◦C (Decem-
ber) and 15 ◦C (July, Climate Summary for Saint Johnsbury,
VT, https://www.fairbanksmuseum.org/eye-on-the-sky/
summaries-for-st-js-climate/normals-and-extremes,
last access: 6 February 2019)TS4 . Soils in the area40

are very rocky, silty loam, sandy loam, and loam
developed on glacial till (Web Soil Survey, https:
//websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx,
last access: 20 October 2018)TS5 . Average summer pre-
cipitation is ∼ 300 mm (NOAA, 2019). The most common45

land-cover types are forest and woodlands (USGS, https:
//mrdata.usgs.gov/geology/state/fips-unit.php?code=f50019,
last access: 15 October 2018)TS6 .

3.2 Initial snow pile experiments

On 30 March 2018, two snow piles were emplaced at the 50

COC using PistenBully snow groomers at two separate sites
(Fig. 2). Site 1 is adjacent to the COC’s main campus build-
ings in direct sunlight, with minimal wind protection. Site 2
is 1 km north of Site 1, within a cleared depression in the
forest which also in direct sunlight but more protected from 55

wind than Site 1. At the time of emplacement, the snow was
transformed and had a density of> 500 kg m−3 (see Sect. 3.5
for snow density measurement methods). At Site 1, 225 m3

of machine-made snow was banked against a north-facing
slope. At Site 2, 210 m3 of natural snow was shaped into a 60

symmetrical, rounded pile. The two piles were draped with
thin sheets of clear plastic. The plastic sheets, about 0.15 mm
thick, were impermeable and emplaced to prevent woodchips
from mixing with the snow. The piles were then covered with
an irregular layer of woodchips averaging 20±10 cm (1 SD) 65

on 21 April 2018; chip thickness ranged from a minimum of
6 cm to a maximum of 40 cm (Fig. 3). In early July, about
50 m3 of snow were removed from the pile at Site 1 by COC
personnel, the plastic was removed, and the remaining snow
was covered again with woodchips and left for continued 70

monitoring.

3.3 Weather stations

Weather stations adjacent to each pile and 3–4 m above
the ground surface (Davis Vantage Pro2) collected air
temperature, humidity, precipitation, solar-radiation, wind 75

speed and direction, and barometric-pressure data. The
weather stations record data at 15 min intervals and trans-
fer them to the Web, where they are publicly acces-
sible (https://wunderground.com/personal-weather-station/
dashboard?ID=KVTCRAFT2#history, last access: 23 Octo- 80

ber 2019). Local soil temperature was measured with temper-
ature sensors installed at four depths within the soil (5, 20,
50, and 100 or 105 cm below the surface) adjacent to each
snow pile. Two HOBO Onset data loggers recorded temper-
atures at four depths at 20 min intervals between June 2017 85

and October 2018.

3.4 Terrestrial-laser-scanning field methods and
processing

CE2During spring and summer, the shape and volume of the
piles were measured every 10–14 d using a terrestrial laser 90

scanner (RIEGL VZ-1000). Terrestrial laser scanning (TLS)
is an accurate method for obtaining digital surface models
(DSMs) of various terrain types, including snow surfaces
(Prokop et al., 2008; Molina et al., 2014). Six to ten per-
manent tie points around each pile were established during 95

the initial survey by fastening reflective 5 cm disks to stable
surfaces such as large trees and buildings. The first survey
was done prior to snow pile placement in order to establish
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Figure 2. Snow storage at Craftsbury Outdoor Center. (a) Aerial view of the Craftsbury Outdoor Center (COC) in Vermont, from http:
//maps.vcgi.vermont.gov (8 February 2019). Both study site locations shown by number. (b) Site 1 (225 m3), covered in woodchips on
21 April 2018, with trees and solar panels for scale. (c) Site 2 (209 m3) when installed. Site 1 received 24 m3 of woodchips, and Site 2
received 42 m3 of woodchips. Person for scale. (d) Site 2 in April 2019; 9300 m3 of snow, eventually covered with 650 m3 of woodchips.
(e) Site 2 in July 2019, the snow pile overlain by a reflective geofabric. Trees for scale.

ground surface topography. Tie-point locations were deter-
mined and fixed relative to the scanner GPS position dur-
ing the initial scan. Each survey consisted of three or four
scans per site (depending on available vantage points), which
were combined in the RiSCAN Pro software version 2.6.25

(RIEGL Laser Measurement Systems GmbH: RiScan Pro,
2011). Scan registration was done in RiSCAN using a combi-
nation of tie-point registration (finding corresponding points)

and the multi-station adjustment routine using plane patches
and tie objects. Similar studies of monitoring bare and cov- 10

ered snow surfaces with TLS have applied this technique
(Prokop et al., 2008; Grünewald et al., 2018; Grünewald and
Wolfsperger, 2019). Scans were collected at a horizontal and
vertical angular resolution of 0.08◦. Scans were collected
from distances less than 100 m, resulting in average point 15

spacing over the pile < 1 cm.

www.the-cryosphere.net/13/1/2019/ The Cryosphere, 13, 1–16, 2019
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To calculate snow pile volumes and volumetric change
over time (between scans), point clouds of each pile were
processed into DSMs. Processing the workflow involved
cropping the point cloud to the area of interest in RiSCAN
Pro and exporting cropped point clouds into LAS format,5

projected into Vermont State Plane NAD83 coordinates.
Point clouds were converted to a 10 cm resolution DSM
using the min-Z filter and QT Modeler software (version
8.0.7.2) and adaptive triangulation to fill in small data gaps.
Volume calculations and differences in volume between se-10

quential surveys were calculated in QT Modeler using these
DSMs.

3.5 Density

Snow density was measured using a Rickly Federal Snow
Sampling Tube. The snow tube was weighed, pushed into15

the snow, removed, and weighed again. The weight of the
tube was subtracted from the combined weight of the snow
and tube, and density was calculated by dividing the mass
of snow by its volume (length of snow within the tube mul-
tiplied by the area of the opening; ∼ 13 cm2). Density was20

collected three times (in March, May, and July) at the top
surface of pile 1 during 2018. In 2019, density was collected
once at the top of the pile in February.

3.6 Cover experiments

Cover experiments were performed at both sites in June and25

July 2018. At Site 1, two 5 cm thick, impermeable, rigid foam
boards (R = 3.9 per 2.5 cm; value expressing resistance to
conductive heat flow) were stacked and compared to a 20 cm,
uniform, porous layer of woodchips both with and without
a reflective cover (aluminized space blanket). At Site 2, we30

covered snow with a double-layered, 2.5 cm thick insulating
concrete curing blanket (R = 3.3 per 2.5 cm) and overlaid
the blanket with either open-cell, permeable foam (R = 3.5
per 2.5 cm) or a uniform, porous layer of woodchips (20 cm
thickness), both with a reflective cover. For both foam exper-35

iments, woodchips and plastic sheeting were removed from
the test area. For woodchip experiments, plastic sheeting was
removed from the test area. Individual cover experiments
were conducted in areas of 1 m2 each, with thermosensors
placed in the center of each quadrat at varying depths be-40

tween layers (Table 2; Fig. 4).

3.7 Power spectral density function

We computed the power spectral density (PSD) function to
determine relative effectiveness of the different covers. The
temperature signal is first decomposed in a series of waves of45

well-defined frequencies:

T (t)=
1
N

∑N−1
k=0

T̂k exp(i2πfkt) , (1)

Figure 3. Woodchip thickness distribution maps of pile 1 (a) and
pile 2 (b), with red indicating areas of high thickness and blue indi-
cating areas of low thickness. Panel (c) represents the chip thickness
histogram for pile 1, and (d) is chip thickness histogram for pile 2.
Negative thickness values likely represent snow settling between
bare-snow survey and survey after woodchip emplacement.

where T̂k is the Fourier mode at frequency fk = k/21T ,
1/1T is the sampling frequency of temperature acquisition,
and N is the number of samples in the time series. The 50

Fourier mode contains both amplitude and phase information
for each wave. The PSD is the power of the signal,

PSD(T )=
1t

N

∑N−1
k=0

∣∣∣T̂k∣∣∣2, (2)

which is the sum of the contributions of each wave to the
power (or variance) of the signal. Typically plotted on a log– 55

log plot, the norm of the Fourier modes as a function of fre-
quencies is a powerful tool for detecting dominant frequen-
cies (Welch, 1967). In the summer, the dominant oscillation
in temperature is diurnal; thus, using PSD, we can judge the
effectiveness of cover materials by their ability to damp the 60

diurnal temperature signal and relevant harmonics. We com-
puted the PSD for all temperature records in selected cover
experiments (Fig. 4b, e, f).

3.8 Validating cover method, summer 2019

Based on data collected during summer 2018, the COC chose 65

Site 2 (Fig. 2) as their snow storage site for 2019. Cost and
ease of installation mandated a two-layer cover system –
a ∼ 30 cm thick layer of woodchips capped with a reflec-
tive, permeable covering. No plastic was placed between the
woodchips and the underlying snow. The 2019 snow pile 70

filled a drained, oblong pond basin and was gently sloped.
During February, machine-made snow was blown into the
pile using fanless snowmaking wands. Snow density at and
just after emplacement was high, ranging between 500 and
600 kg m−3. In March, the snow pile was shaped and fur- 75

The Cryosphere, 13, 1–16, 2019 www.the-cryosphere.net/13/1/2019/
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Table 1. Weather parameters measured between June 2017 and October 2018 at the Craftsbury Outdoor Center, Craftsbury, VT.

Air temperature Relative humidity Precipitation Solar radiation
(◦C) (%) (mm d−1) (W m −2)

Minimum −28 14 0 0
Maximum 33 93 22 1144
Mean 9 79 0.1 109
Standard deviation 12 15 0.4 205

Table 2. Properties of the 2018 covering experiments.

Plot reference Site Snow-interface Middle layer Top layer
Fig. 4 number∗ layer

(a) 1 None 20 cm layer of woodchips None
(b) 1 None 20 cm layer of woodchips Reflective covering
(c) 1 None Two stacked rigid foam boards None
(d) 1 None Two stacked rigid foam boards Reflective covering
(e) 2 Concrete curing blanket 20 cm layer of woodchips Reflective covering
(f) 2 Concrete curing blanket 20 cm layer of open-cell foam Reflective covering

∗ The experiment at Site 1 occurred in June 2018, while the experiment at Site 2 occurred in July 2018.

ther compacted with PistenBully groomers and excavators;
at that time, TLS showed that the pile had a volume of about
9300 m3 without woodchips. During the next 6 weeks, the
snow pile was allowed to compact and grow denser. In late
April, most of the pile was covered in woodchips. By the end5

of May, additional woodchips were obtained and snow pile
covering was completed (total woodchip volume ∼ 650 m3).
Using the exposed surface area of the pile without wood-
chips (2300 m2) and the volume of woodchips, we calculate
that the average woodchip thickness was 28 cm. By the end10

of June, the snow pile was covered in a white, 75 % reflec-
tive, breathable Beltech 2911 geofabric, secured by ropes and
rocks to prevent wind disruption. Between March and Octo-
ber, the pile was repeatedly scanned using TLS; data were
processed using methods described in Sect. 3.4.15

4 Results

4.1 Meteorological data and ground temperature data

Climate at the COC is strongly seasonal – such seasonality is
clear in the meteorological data collected between June 2017
and October 2018 (Fig. 5). Between June 2017 and October20

2018, air temperature varied between −28.2 and 33 ◦C
(mean annual temperature of 6 ◦C). Precipitation fell at
a maximum rate of 22 mm d−1 (mean of 0.06 mm d−1),
and relative humidity ranged between 14 % and 93 %
(mean of 78± 15 %). Solar radiation had a 24 h average of25

109 W m −2 and maximum of 1144 W m−2 (Table 1)CE3 .
Air temperature and solar radiation followed similar trends
over the 16 months, decreasing during winter months

and increasing during summer months. Precipitation did
not follow any significant pattern, and relative humidity 30

remained high (NOAA classifies above 65 % as high,
and relative humidity remained above this level for the
summer), varying more during summer than winter months.
Average summer temperature in 2018 (June, July, and
August 2018; 22.4 ◦C) was ranked by NOAA as “Much 35

above the average of 20.7 ◦C”; in 2019, average summer
temperature ranked “above average” (21 ◦C). Both years
had near-average precipitation (National Oceanic and
Atmospheric Administration Forecast Office, Burlington
VT, 2018; Craftsbury Outdoor Center KVTCRAFT2, 40

https://www.wunderground.com/personal-weather-station/
dashboard?ID=KVTCRAFT2#history, last access: 12
December 2018)TS7 .

Ground temperature from all four depths at both locations
followed similar trends. The shallowest sensor (5 cm below 45

the surface) recorded the greatest variance over time (SD=
7.4 ◦C for Site 1). Ground temperature variations decreased
in amplitude as soil depth increased; at 1 m in depth, the at-
mospheric temperature signal was damped (SD = 3.9 ◦C for
Site 1). Ground temperatures for all depths showed consis- 50

tent warming from installation (11 June 2017) through late
August 2017 and then decreased through February 2018. The
shallowest sensor revealed slight warming after February,
while the deeper sensors remained stable until May 2018.
During May, warming increased more noticeably for all four 55

sensors. Ground temperature depth trends inverted during
both May and November. During the winter, the coldest tem-
peratures were at the surface; during summer, the coldest
temperatures were at depth. Figure 5 displays data from sen-
sors adjacent to pile 1 – data were collected at both sites 60
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8 H. S. Weiss et al.: Optimization of over-summer snow storage at midlatitudes and low elevation

Figure 4. Cover experiments and resulting temperature records. (a) Site 1 – woodchips. (b) Site 1 – woodchips overlain by reflective cover.
(c) Site 1 – foam. (d) Site 1 – foam overlain by reflective cover. (e) Site 2 – woodchips underlain by concrete curing blanket and overlain by
reflective cover. (f) Site 2 – open-cell foam underlain by concrete curing blanket and overlain by reflective cover.

but are missing from Site 2 between 12 December 2017 and
21 April 2018.

4.2 Snow volume and density

Snow in both 2018 piles lasted until mid-September; how-
ever, snow volume decreased consistently throughout the5

summer (Figs. 6 and 7). Comparing the laser-scan survey
completed just after woodchip emplacement with the ini-
tial bare snow survey showed that the layer of chips ranged

in depth from 6 to 40 cm, with an average of 19± 11 cm
for pile 1 and 21± 11 cm (1 SD) for pile 2 (Fig. 3). After 10

the addition of woodchips, snow volume in both piles de-
creased following similar trends (Fig. 7); initial decreases
in volume were partly related to compaction and increases
in snow density, as snow density was ∼ 500 kg m−3 at em-
placement, 600 kg m−3 in May, and 700 kg m−3 in July. Rel- 15

ative to newly fallen snow (100–200 kg m−3), the snow in
these piles was closer in density to ice (900 kg m−3). These
measurements are supported by qualitative observations of
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H. S. Weiss et al.: Optimization of over-summer snow storage at midlatitudes and low elevation 9

Figure 5. Meteorological conditions and soil temperature between 11 June 2017 and 16 October 2018. Weather conditions were collected
by a Davis weather station at the Craftsbury Outdoor Center near Site 2. (a) Air temperature (grey), collected at 30 min intervals plotted
with ground temperatures. Ground temperatures were collected at 20 min intervals adjacent to Site 1 by four HOBO Onset data loggers
at depths below the ground surface of 5 cm (blue), 10 cm (orange), 50 cm (green), and 105 cm (red). Ground temperature record ends on
2 September 2018. (b) Relative humidity (%). (c) Precipitation (mm d−1). (d) Solar radiation (W m−2).

changes in snow crystal morphology over the summer (in-
creased rounding), increasing size (up to 5 mm by July),CE4

wetness (higher liquid water content), and clarity (from white
to clear by summer’s end). Continued volume loss over the
summer was predominately the result of melt. Average rates5

of volume change for both piles were relatively similar (1.24
and 1.50 m3 d−1), representing 0.55 % to 0.72 % of initial
pile volume per day. Maximum loss rates, recorded in July,
reached 1.98 and 2.81 m3 d−1 (Fig. 7.) As summer shifted

into fall, the loss rate decreased (Fig. 7). Minimum rates of 10

change for both piles occurred in September and were 0.29
and 0.88 m3 d−1.

As the piles decreased in volume over the summer,
crevasses formed along the edge of the plastic sheeting,
which exposed the snow to direct sunlight and thus increased 15

rates of volumetric change (Fig. 6). On pile 1, a crevice
formed from east to west where the pile began to slope down-
ward (Fig. 6b). Slope failure was a potential catalyst for the

www.the-cryosphere.net/13/1/2019/ The Cryosphere, 13, 1–16, 2019



10 H. S. Weiss et al.: Optimization of over-summer snow storage at midlatitudes and low elevation

Figure 6. Snow pile topographic change over time in 2018. (a) Oblique view of digital surface model (1 m contours) of 2018 snow pile at
Site 1 with cross sections A–A′ and B–B ′ (21 April 2018). (b) Profiles for each terrestrial-laser-scan survey (21 April to 9 September 2018;
n= 13) along section A–A′. (c) Profiles for each survey along section B–B ′. On 3 July 2018, 30 m3 of snow was removed CE5 from the
pile at Site 1. (d) Oblique view of digital surface model (1 m contours) of 2018 snow pile at Site 2 with cross sections C–C′ and D–D′

(21 April 2018). (e) Profiles for each terrestrial-laser-scan survey (21 April to 9 September 2018; n= 12) along section C–C′. (f) Profiles
for each survey along section D–D′. Each scan represented by a line in panels (b), (c), (e), and (f) as indicated in key.

formation of crevices. We did not observe meltwater around
either of the piles, suggesting that melt occurred at a rate
which allowed for infiltration into the rocky sandy loam soil
below. The woodchips deeper in the cover remained cold and
wet throughout the summer, while the woodchips on the sur-5

face were consistently dry in the absence of rainfall.

4.3 Cover experiments

Thermal buffering is a function of air temperature, long-
wave emissions, and turbulent fluxes. We chose temperature
at the snow–cover interface to indicate cover efficiency be-10

cause all experiments were subjected to similar external con-
ditions and because we have continuous data series of tem-
perature in, above, and below the cover during each of the
experiments. Two experiments preformed on 1 m2 plots on
each snow pile revealed that different combinations of cover15

materials resulted in a variety of cover efficiencies (Fig. 4).
Each experiment lasted between about 1 and 3 weeks and
took place in June and July, respectively. We assessed cover
efficiency by determining which material combination main-
tained the lowest and steadiest temperature at the snow–cover20

interface and which most effectively damped the diurnal tem-
perature signal (detected using PSD analysis). On the rigid
foam, open-celled foam, and woodchip plots, the highest
temperature was measured in the air above the surface (max
of 41.2 ◦C; Fig. 4f). During the first experiment, air tempera-25

tures above the reflective blanket were higher than above the
non-reflective surface. When all plots were covered with a re-
flective blanket, all air temperatures above the pile were sim-
ilar; however, temperatures at lower depths, and under differ-
ent cover materials (woodchips and open-cell foam), varied30

significantly. The lowest and most stable temperatures at the

snow–cover interface resulted when the stored snow was cov-
ered directly with an insulating concrete curing blanket, then
with 20 cm of wet woodchips, and finally with a reflective
sheet. 35

4.4 Power spectral density

PSD analysis provides insight into the dynamics of heat
transfer in the snow piles. Figure 8 shows the log–log plot
of temperature power spectral densities for three different
cover experiments. It is important to realize that (i) each 40

line represents the PSD at specific distance from the snow
surface, (ii) that the integral under each line is equal to the
standard deviation of the signal, or the energy of the signal
fluctuations, and (iii) that the horizontal axis is frequency,
thereby breaking down the total energy of the temperature 45

signals into the individual contributions of each frequency
involved in the PSD. Furthermore, the frequency is normal-
ized by the frequency of 1 d or diurnal frequency fdiurnal =

1/(24× 3600). Consequently, the horizontal coordinates 1,
2, and 4 are the diurnal (1 per 24 h), half-diurnal (1 per 12 h), 50

and quarter-diurnal (1 per 6 h) frequencies, with 2 and 4 be-
ing harmonics of the diurnal frequency. These frequencies
are highlighted by the peaks in the PSD of temperature out-
side of the pile (the air T sensor at 46 cm). The PSD values
at these frequencies are much higher than the values at sur- 55

rounding frequencies, indicating that their contribution to the
total energy of the signal, and therefore to the dynamics of
heat transfer, is significant.

Detection of diurnal temperature swings and their harmon-
ics in temperature records collected at different depths in 60

the cover materials with various relative strengths is critical
to understanding how cover materials minimize heat trans-
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H. S. Weiss et al.: Optimization of over-summer snow storage at midlatitudes and low elevation 11

Figure 7. Volume change over time for snow piles at sites 1 and
2 measured by terrestrial laser scanning. (a) Volume of snow piles
from placement in March 2018 until September 2018. Addition of
woodchips in April and removal of snow in July at pile 1 shown by
black arrows. Volumes are total, including woodchips. (b) Change
in volume per unit time between surveys. The rate of volume loss
increases midsummer for both piles. Site 1 received about 24 m3

of woodchips, while Site 2 received about 42 m3 of woodchips –
this difference is due to pile geometry and the resulting difference
in surface area. Site 1 snow was banked against the side of a hill,
while the Site 2 pile was a hemisphere in the middle of an open de-
pression. (c) Volumes of snow pile (2019) beginning in March and
ending in October. Addition of woodchips throughout May and ad-
dition of white tarp are indicated by black arrows. Volumes include
woodchip volume. (d) Change in volume per unit time between sur-
veys.

fer. In the foam cover experiment (Fig. 8c), the diurnal fre-
quency and its harmonics are detectable in all layers; how-
ever, the three-layer system (insulating blanket, wet wood-
chips, and reflective cover; Fig. 8b) fully damps all oscilla-
tions, as shown by the flatness of the PSD below the cover 5

(0 cm; snow T sensor; thick blue line). In the absence of an
insulating blanket, the two-material cover system (reflective
cover and woodchips) is slightly less efficient at damping the
diurnal oscillation (Fig. 8a). In the case of foam, the dynam-
ics of heat transfer at the surface, or cyclic events that drive 10

fluctuations of temperature, are directly and efficiently trans-
mitted to the snow surface. Such a response can be modeled
as quasi-steady heat transfer conduction, which is not sur-
prising for an inorganic dry material.

Woodchips profoundly affect the dynamics of heat trans- 15

fer, and in the most dramatic case (Fig. 8b), the snow sur-
face temperature appears to be insensitive to the diurnal and
harmonic frequencies of atmospheric temperature. This in-
dicates that the system can no longer be modeled under
quasi-steady-state conduction but requires at least the time- 20

and depth-dependent heat transfer equations with a damp-
ing mechanism. The damping might be storage and release
of heat through convection and/or the phase change of wa-
ter from liquid to vapor and back within the woodchip layer.
Overall, relative cover material effectiveness can be ranked 25

in Fig. 8 as most efficient (Fig. 8b), efficient (Fig. 8a), and
least efficient (Fig. 8c).

4.5 Summer 2019

The 9300 m3 snow pile emplaced in 2019 lost volume at an
average rate of 15 m3 d−1 (min of 5 m3 d−1 in early July and 30

max of 25 m3 d−1 between April and May, when the snow
pile was compacting and being covered by woodchips). Be-
tween the initial TLS survey in March and the last survey in
October, the pile lost 2388 m3 CE6 of snow, a 40 % volume
loss (not including woodchips). The average percentage loss 35

per day was 0.16 % of the initial volume. In comparison to
the 2018 snow piles, the pile lost volume more uniformly; no
crevices formed and no slumping occurred (Fig. 9), although
the surface did become rougher by October, and we noted
more surface lowering near dark-colored rocks and logs em- 40

placed to hold down the white, reflective covering. Volume
loss between 11 May and 25 August (the most intensive melt
season) was similar in all four quadrants of the pile, each of
which experienced an average of 0.9 m lowering. More low-
ering occurred on the pile boundaries, specifically along the 45

western margin, as shown clearly by the blue and purple col-
ors in Fig. 9a.

5 Discussion

Data we collected allow us to (1) determine the volumetric
change rate of small snow piles stored over summer with dif- 50
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12 H. S. Weiss et al.: Optimization of over-summer snow storage at midlatitudes and low elevation

Figure 8. Power spectral density of temperature records from three
different cover experiments (Fig. 4b, e, and f). PSD normalizes fre-
quency to 24 h = 100 and displays the magnitude of each tempera-
ture oscillation frequency for each sensor per experiment (depth in
centimeters measured above sensor at the snow – 0 cm). (a) Experi-
ment with woodchips and reflective cover (Fig. 4b). (b) Experiment
with a concrete curing blanket, woodchips, and a reflective cover
(Fig. 4e). (c) Experiment with concrete curing blanket, open-cell
foam, and a reflective cover (Fig. 4f). The lack of detectable signal
(flat blue line) at snow level (0 cm) in (b) demonstrates that three-
layer configuration with woodchips best damps the diurnal temper-
ature signal. Colors correspond to colors from Fig. 4.

ferent coverings, (2) suggest an optimal snow preservation
strategy for low-elevation, midlatitude sites based on these
data, and (3) test this optimized snow storage strategy at
scale.

5.1 Experimental snow pile melt rate 5

The survival of small (200 m3) snow piles through the
warmer-than-average summer of 2018 and the results of both
repeated TLS surveys and continuous in situ thermal data
collected during a variety of different snow cover experi-
ments suggest ways of optimizing over-summer snow stor- 10

age at low elevations and midlatitudes. The 2018 snow piles
experienced nonuniform cover and nonideal geometry and
developed crevices that exposed snow to direct sunlight, all
of which increased the rate of snowmelt and thus volume
loss. Field observations and TLS surveys demonstrated that 15

the thickness of woodchips covering the snow was not uni-
form and became less uniform over time as melt changed the
pile shape (Fig. 3). Woodchip depth changed over the sum-
mer as crevices, which grew over time, exposed bare snow to
direct sunlight, which led to rapid and nonuniform pile melt- 20

ing (Fig. 6). Crevices formed along boundaries of the large
plastic sheets, which were emplaced to prevent woodchips
from mixing with the snow. Openings in the woodchip cover
also resulted from snow slumping within the pile – both piles
had steep sides, and the DSMs revealed snow moving downs- 25

lope (Fig. 6). Lintzén and Knutsson (2018) reference similar
snow pile and cover failure due to steep pile-side geometry.

Snow pile size impacts the rate of volumetric change sig-
nificantly. The two test piles were small, only a few per-
cent of the volume of snow typically stored over summer 30

by Nordic ski areas. For example, in Davos, Switzerland,
and Martell, Italy, test piles were about 6000 and 6300 m3

(Grünewald et al., 2018). The Nordkette nordic ski operation
in Innsbruck, Austria, stores∼ 13 000 m3 of snow, and Öster-
sund, Sweden, stores 20 000 to 50 000 m3 piles. Small piles 35

have a larger surface-area-to-volume ratio (SA /V ), which
allows more effective heat transfer through radiation, con-
duction, and latent heat transfer. A simple comparison of two
hemispheres, one containing 200 m3 of snow and the other
containing 9000 m3 of snow, indicates that SA /V changes 40

from 0.66 to 0.23 between the smaller and larger pile. As
larger piles have a SA /V ratio that is 3 times lower in com-
parison to smaller piles, there is comparatively less snow near
the surface thermal boundary, which decreases heat transfer
per unit snow volume and thus the melt rate as a percentage 45

of pile volume.

5.2 Optimal approach for over-summer snow
preservation at midlatitude and low-elevation sites

The 2018 survival of snow through the summer in small piles
with only simple woodchip, foam, and reflective coverings 50

suggested that larger piles, using an optimized cover strategy,

The Cryosphere, 13, 1–16, 2019 www.the-cryosphere.net/13/1/2019/
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Figure 9. Volume change of 2019 snow pile. (a) Spatial variability of elevation change 2019 snow pile between 11 May and 25 August 2019.
Cross sections A–A′ and B–B ′ are marked in black. (b) Profile for each terrestrial-laser-scan survey (3 March to 13 October 2019; n= 12).
(c) Profile for each terrestrial-laser-scan survey (2 March to 13 October 2019; n= 12). Each scan represented by a colored line in panels (b)
and (c).

will allow for practical over-summer snow storage at midlat-
itude (< 45◦ N) and low-elevation (< 350 m a.s.l.) locations.
Our results are encouraging given the relative warmth of the
2018 summer season, the simple and spatially inconsistent
nature of our cover material (20± 10 cm of woodchips), and5

the small size of the test piles (∼ 200 m3). Previous snow
storage studies found success with woody covers as well
but in different geographic settings. Grünewald et al. (2018)
suggested that a 40 cm layer of sawdust sufficiently opti-
mized snow retention in Davos, Switzerland, and Martell,10

Italy. Skogsberg and Nordell (2001) reported that woodchips
reduced snowmelt by 20 %–30 % at the Sundsvall Hospi-
tal in Sweden. Lintzén and Knutsson (2018) built snowmelt
models and ran field tests in northern Scandinavia, revealing
that thick layers of woody materials successfully minimized15

snowmelt. In practice, financial constraints often control the
choice of cover strategies. For example, the thicker the layer
of woodchips, the better protected the pile will be and the less
over-summer melt will occur. However, using more chips in-
creases cost (Grünewald et al., 2018).20

The experimental data (Fig. 4) show that the magnitude of
daily temperature oscillations at the snow surface below the
covering (blue line in all panels) is highly dependent upon
the cover strategy. For example, in Fig. 4c, the temperature
within the rigid foam board increases above air temperature25

(purple line increasing above the yellow line). Due to the
rigidity of the foam boards and the nonuniform melting of
the pile, the foam shifted and exposed snow to direct solar
radiation, allowing warm air to move between the snow and
the foam. Such failure of the cover system allowed tempera-30

tures at the snow interface to rise significantly above 0 ◦C.
The three-layer cover (insulating blanket, wet woodchips,
and reflective cover) minimizes heat transfer into the stored
snow, as evidenced by the lack of diurnal temperature oscil-
lations at the snow surface during this and only this experi- 35

ment (Fig. 4e). The comparison between foam and saturated
woodchips PSDs (Fig. 8) shows the dramatic effect on the
heat transfer from the atmosphere to the snow caused by the
high heat capacity and thus thermal inertia of wet woodchips.
The damping of diurnal temperature peaks by the three-layer 40

cover system suggests that it will be the most effective for
preserving snow over the summer.

Although the relevant heat transfer mechanisms remain
uncertain, Fig. 8 demonstrates the effectiveness of the three-
layer cover approach to buffering heat transfer from the envi- 45

ronment to the snow. Deducing specific heat transfer mech-
anisms will require different and more complex measure-
ments, as heat transfer is dependent on not only air temper-
ature but also surface temperature, long-wave radiation, and
turbulent fluxes. Perhaps evaporation of water from the wet 50

woodchips absorbs thermal energy during the day which is
released as the latent heat of condensation at night when the
reflective blanket cools – effectively increasing the thermal
mass of the woodchip layer. Depending on weather condi-
tions, which influence long-wave radiation through cloudi- 55

ness and turbulent fluxes through wind, the heat transfer may
be directed toward the snow pile (warm nights) or radiated to
the atmosphere (cold nights). In any case, the large thermal
mass of wet woodchips, in concert with an underlying layer
(the concrete curing blanket), and rejection of short-wave in- 60
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14 H. S. Weiss et al.: Optimization of over-summer snow storage at midlatitudes and low elevation

cident radiation from sunlight by the reflective cover, appears
more important than the insulating capability (R value) of the
cover material in damping daily temperature fluctuations at
the snow surface.

5.3 Summer 2019, testing the optimized snow storage5

strategy at scale

Field data, TLS, and thermal observations from the 2018 ex-
periments allowed for a full-scale test of our optimized snow
storage strategy in 2019. Optimization began by further ex-
cavating the storage area so that the resulting pile would10

sit within a pit and have gently sloping sides to reduce the
chance of mass movements and crevassing on the pile mar-
gins. Snowmaking was tuned so that the density of the snow
emplaced was already high; this minimized settling after cov-
ering. The snow was then compacted by repeated passes of15

large excavators and PistenBully groomers. Letting the snow
settle and transform before covering also reduced the chance
of mass movements which, in 2018, compromised pile and
cover integrity. Results from the 2018 cover material ex-
periments (most effective was a reflective cover, woodchips,20

and a concrete curing blanket) informed the 2019 covering
method (Fig. 8). Rather than use metallized cover material,
which was expensive, fragile, and impermeable, we used a
high-albedo (0.75), white, permeable geofabric that allowed
rain to infiltrate, thus mitigating regulatory concerns related25

to a large impermeable area. Concrete curing blankets were
not used in 2019 due to cost and logistical complications of
emplacement.

The 2019 pile, using an optimized strategy, confirmed the
viability of snow storage at the COC. The most rapid vol-30

ume losses in 2019 were in the midsummer; while they were
higher in absolute terms than those in 2018 because the pile
was 45 times larger, they CE7were more than 3 times lower
in percentage terms. Most melt was focused along the west-
ern boundary, perhaps because the snow here was thin or not35

as thickly covered by woodchips or because western sun ex-
posure occurs late in the day when the air temperatures are
warmer; there is likely less net radiative cooling along the
western side of the pile, as there is a steep, forested slope im-
mediately adjacent to the snow storage area. Compared with40

the average percentage loss per day of the 2018 piles (0.64 %
per day), the 2019 snow pile average percentage loss per day
was 0.16 %. We suspect that the difference in volume loss re-
flects primarily the surface-area-to-volume ratio of the 2019
snow pile, which is about 3 times less than the small piles45

tested in 2018. A 3-fold change in the SA /V ratio compared
with a 4-fold reduction in the percentage volumetric change
rate suggests the impact of an improved cover strategy. The
complete covering of the 2019 pile with a reflective geofabric
likely slowed melt by rejecting short-wave radiation as well50

as protecting the snow even if the woodchips shifted. TLS
imagery from 2019 demonstrates that gentle side slopes of
the pile prevented any large mass movements of snow, indi-

cating that pile shape and snow pre-consolidation are impor-
tant (Fig. 9). 55

TLS data show that from April until mid-October, more
than 60 % by volume of the snow initially placed in the
April 2019 pile remained. Considering the snow density data
gathered from the 2018 piles, which increased from 500 to
700 kg m−3 over the summer, some of this volume loss could 60

be accounted for by compaction rather than melting. This
suggestion is supported by the lack of surface water drain-
ing from the 2019 pile, which is underlain by relatively im-
permeable rock and clay-rich glacial till. With fall tempera-
tures and the sun angle dropping, incident solar radiation as 65

well as convective and conductive heat transfer are dimin-
ished greatly from midsummer values. This means that the
COC will have > 5000 m3 of snow to spread in November
for early-season skiing. Covering 5 m wide trails 50 cm deep
will allow at least 2 km of skiing at opening and will provide 70

a base so that any natural snow that does fall will be retained.

6 Conclusions

Data presented here show that snow storage at midlatitudes
and low elevations is a practical climate change adaptation
that can extend the nordic ski season and the sport’s viabil- 75

ity as the climate continues to warm. Using 14 terrestrial-
laser-scan surveys between March and September 2018, we
determined rates of volumetric change of two 200 m3 snow
piles covered in woodchips. Average volume loss rates were
1.24 and 1.50 m3 d−1, with the highest rates of volumetric 80

change in July and the lowest rates of volumetric change in
September. A three-layer cover approach was most effective:
a concrete curing blanket, a 20 cm layer of woodchips, and
a reflective covering. This cover approach reduces solar gain
and buffers the effect of > 30 ◦C summer daytime temper- 85

atures and high (> 78 %) relative humidity on stored snow.
Using data collected during summer 2018, we tested our ex-
perimental results in summer of 2019 by creating a 9300 m3

snow pile. Due to cost and logistical issues, we covered the
pile using a two-layer approach – 650 m3 of woodchips and 90

white, permeable geofabric. The average volume loss rate be-
tween March and October was 15 m3 d−1 (or 0.16 % of the
initial volume per day). About 5600 m3 CE8 of snow remained
as the melt season ended in mid-October. This quantity of
snow is sufficient for the COC to open their 2019 season and 95

represents > 60 % retention of snow by volume, comparable
to storage losses at other storage sites (at higher elevation
and latitude). Future research could analyze financial and en-
vironmental feasibility of snow storage at different global lo-
cations and focus on heat transfer mechanisms of different 100

cover materials. Research could also explore other climate
change adaptation strategies for nordic ski centers that mini-
mize carbon emissions and maximize operational success.
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