
Dear Editor, dear reviewers, 

Many thanks for the very positive comments on the revised version of the manuscript. You 
will find below my point by point response to the remaining comments. 

 
 
Anonymous Referee #2 
 
I am very pleased with the updated version of the manuscripts and I suggest to accept the 
paper subject to technical corrections that I list below: 
 
p. 8, l. 4: replace “this is why there is several EnKFs that exactly satisfy …” by “this is why 
several EnKFs exactly satisfy …” 
 
Done 
 
p. 8, l. 17: “EnKFs as Monte-Carlo methods can suffer from …”. Remove the “can”, EnKFs 
for large-scale problems always suffer from undersampling issues. 
 
Done 
 
p. 8, l. 18: “the analysis adjustS ...” 
 
Done 
 
p. 8, l. 32: “they should yield to similar results”. Remove “should”. 
 
Done 
 
p. 9, l. 9: Replace “this shouldn’t be” by “this should not be” 
 
Done 
 
p. 15, l. 1: “Similar conclusions are drawn IF the assimilation is pursued” 
 
Done 
 
p. 15, l. 2: “RMSEu SHOW a higher variability” 
 
Done 
 
p. 15, l. 3: “RMSEb” instead of “RMEb” 
 
Done 
 
p. 15, l. 11: “However, it DOES NOT necessarily” 
 
Done 
 



 
Anonymous Referee #3 
 

This paper presents a methodology for improving the initialisation of basal conditions from observed 
surface data for ice sheet models using a time-dependent initialisation. The author uses an 
established method – ensemble Kalman filter – to assimilate transient observations of surface 
elevation and velocities into a marine ice sheet model with a moving grounding line. The method is 
tested on an idealised marine ice sheet that is in the early stages of an unstable retreat using a twin 
experiment. Previous use of this method was for a flowline shallow ice method (Bonan et al., 2014).  

I can see that the paper has been through a thorough technical review in the previous round, and 
that the author dealt with the comments thoroughly and in detail. New figures have been added that 
aid the understanding of the method and to further explore the results. I particularly like Figure 1, 
which gives a clear outline of how the method works and provides a comparison with the maybe 
more well-known 4D time-dependent variational methods. This figure really adds to the manuscript 
and makes it more accessible. I do agree with the author that the paper now constitutes a clear 
introduction to the use of these methods in glaciology. The technical aspect of the paper is well 
explained and clear as a result of the review process already undertaken.  

The results from the idealised twin experiment look promising, with good agreement between a 
reference forecast and data-assimilated forecast when the assimilation period is sufficiently long (20-
35 years). The results are well presented and well explained. The paper is detailed, well written and 
gives a thorough discussion of the strengths and limitations of the method, in particular detailing the 
main challenges that need to be overcome before generalising this method for use in large-scale ice-
sheet modelling, which will be of interest to many other scientists.  

Overall, I find it to be an interesting and worthwhile addition to the literature in this area, and I 
expect it will be of use to a range of other scientists working towards using such algorithms in 
realistic simulations. In view of this, and the other reviews and subsequent response from the 
author, I recommend publishing this article with only a few minor revisions.  

Minor points:  

1. From looking at the results for 20 years versus 35 years, it seems that we need quite a long 
observation record in order to use this method successfully -i.e. in Figure 12 and page 16, 
second paragraph – 20 years doesn’t seem like long enough to get the benefits from using 
this method. Can you comment on that? Would we expect to have such data sets available 
soon?  

As shown in Fig. 3 and Fig. 9 each assimilation improves the reconstruction of the basal 
conditions and the model surface velocities and elevation. And after 20 years of assimilation, 
rates of retreat predicted by the model are much more accurate. However, what remains 
uncertain is the date at which the instability will occur. If the assimilation is pursued up to this 
date, all the members are pushed in the instability and the spread of the forecast around the 
truth is largely decreased. So I think the main difference is not 20 vs 35 years, but instability 
shown or not in the observations. 

I Have made slight changes in the discussion page 16: 



« In addition, the ensemble framework naturally allows to estimate and propagate the 
uncertainty of the estimated parameters. Each assimilation of new data improves the 
reconstruction of the basal conditions (Fig. 3), and the first ten years are very efficient in 
reducing error and the spread of the model surface velocities and elevation (Fig. 9). 
Furthermore, we have shown that the remaining uncertainties in the basal conditions do not 
significantly affect GL retreat rates once the unstable retreat is engaged. However, they can 
lead to considerable delays in the initiation of the instability. If the assimilation is pursued up 
to the beginning of the instability (35 years in our experiment) all the members exhibit the 
unstable retreat and centennial-scale model projections converge to the reference (Fig. 12 ) ». 
 
And added one sentence in the conclusion: 
 
“However, if the assimilation is pursued up to a time when  the glacier is engaged in the 
unstable retreat, all the members exhibit the instability and the spread of centenial-scale model 
projections, in terms of volume and grounding line position, is largely reduced.”	
 

2. Page 11, Line 30: So volume isn’t conserved, but you say that estimation of ice sheet volume 
should improve as more data are assimilated. So you should converge on the true volume 
using this method? Can you directly compare the reference volume with results at the end of 
the DA process? Actually, Figure 12 shows convergence of VAF change at t=100 – should this 
figure be referenced here?  

Very interesting question, in fact it appears that we expect that the filter will improve the 
estimation of the state variables zs and b, and thus will provide a better estimate of the ice 
thickness. So we expect that the filter will provide the best estimate of the volume distribution. 
Interestingly, by error compensation, we may expect that an a priori with a totally different 
thickness distribution, and thus high rms on zs and b, could lead to a perfect estimation of the 
ice volume. So strictly speaking, there is no guaranty that the filter will improve the estimation 
of the total volume. However you are true, a better initial state improves volume projections 
as shown in Fig. 12.  
 
I have changed the discussion page 11 as follow: 
“Because both zs and b are included in the state vector, the analysis does not conserve the ice 
sheet volume, neither for the  ensemble mean and the individual members. However, as 
illustrated in Fig. 1, the estimation of zs and b, and thus of the ice thickness, should be improved 
at each analysis as more data are assimilated, and the final state is the best estimation 
provided by the filter knowing the model, all the observations during the assimilation window 
and their uncertainties. As mentioned in the introduction, if the main interest is an analysis of 
past volume changes, a smoother or a variational method might be more appropriate. The 
smoother extension of the ESTKF can be found in Nerger et al. (2014). Note however that, 
interestingly, if we expect that the filter will improve the estimation of the ice thickness there 
is no guaranty in general that it will provide a better estimate of the total volume as an a priori 
with a totally different thickness distribution could lead, by compensation of the errors, to a 
perfect estimate of the true volume.”  
 
As this section describe the assimilation set-up I do not make reference to results in this 
paragraph. 
 
Looking at the model results, the volume above flotation (VAF) for x>300km, is underestimated 
by only 0.41% by the a priori (taking the noisy observed surface at t=35a and the mean of the 



initial bed elevations (shown in Fig. 5)), it is underestimated by 0.24% by the mean of the 
assimilation at t=35a. As I already show and discuss many results, I prefer not to add a 
paragraph to discuss this result. 

 

 

3. Page 11, Line 33 – clarify this sentence please: “as smoother might be more appropriate and 
the smoother extension of the ESTKF can be found in...”. Do you mean “a smoother”, and 
what about a 4D-var method?  

Yes you are right, this has been changed to : « As mentioned in the introduction, if the main 
interest is an analysis of past volume changes, a smoother or a variational method might be 
more appropriate. The smoother extension of the ESTKF can be found in Nerger et al. (2014). » 

 

4. Page 17, L5: I think this is the first time grid size is stated? If so, I think it’d be helpful to state 
it earlier.  

No the mesh size is defined page 9 in Sec. 3.1 Reference simulation ,  and given in Table A1. 

5. Page 17: I’m confused about the “effective observation dimension” – can you explain why it 
is 56?  

This part now reads : « Using three different models, Kirchgessner et al. (2014) have shown 
that good performances are obtained when r is such that the effective local observation 
dimension, defined as the sum of the weights attributed to each observation during the local 
assimilation, is equal to the ensemble size. Here the observation weights decrease with the 
distance to the local assimilation domain following a fifth-order polynomial function 
mimicking a Gaussian function (Gaspari and Cohn, 1999). The value r = 8km used for the 50 
members-ensemble gives an effective observation dimension of 56. »  

6. Figure 5: green dots are not clearly visible in the top panel.  

It shows bigger triangles now 

7. Table A1: Zs is listed as both top surface elevation and bottom surface elevation  

Corrected 

8. “informations” appears a few times in the text rather than “information”  

Done 
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Abstract.

Marine based sectors of the Antarctic Ice Sheet are increasingly contributing to sea level rise. The basal conditions exert

an important control on the ice dynamics and can be propitious to instabilities in the grounding line position. Because the

force balance is non-inertial, most ice flow models are now equipped with time-independent inverse methods to constrain the

basal conditions from observed surface velocities. However, transient simulations starting from this initial state usually suffer5

from inconsistencies and are not able to reproduce observed trends. Here, using a synthetic flow line experiment, we assess

the performance of an ensemble Kalman filter for the assimilation of transient observations of surface elevation and velocities

in a marine ice sheet model. The model solves the shallow shelf equation for the force balance and the continuity equation

for ice thickness evolution. The position of the grounding line is determined by the floatation criterion. The filter analysis

estimates both the state of the model, represented by the surface elevation, and the basal conditions, with the simultaneous10

inversion of the basal friction and topography. The idealized experiment reproduces a marine ice sheet that is in the early stage

of an unstable retreat. Using observation frequencies and uncertainties consistent with current observing systems, we find

that the filter allows to accurately recover both the basal friction and topography after few assimilation cycles with relatively

small ensemble sizes. In addition it is found that assimilating the surface observations has a positive impact to constrain the

evolution of the grounding line during the assimilation window. Using the initialised state to perform century-scale forecast15

simulations, we show that grounding line retreat rates are in agreement with the reference, however remaining uncertainties in

the basal conditions may lead to significant delays in the initiation of the unstable retreat. These results are encouraging for the

application to real glacial systems.

Copyright statement. TEXT

1 Introduction20

Despite recent significant improvements in ice-sheet models, the projected magnitude and rate of the Antarctic and Greenland

ice sheets contribution to 21st century sea-level rise (SLR) remains poorly constrained (Church et al., 2013). Improving our
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ability to model the century-scale magnitude and rates of mass loss from marine ice sheets remains a key scientific objective

(Scambos et al., 2017).

Improving SLR estimates requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the

location where the ice detaches from its underlying bed and goes afloat on the ocean (Durand and Pattyn, 2015). In the GL

vicinity, the stress regime changes from a regime dominated by vertical shearing in the grounded part to a buoyancy driven

flow dominated by longitudinal stretching and lateral shearing (Pattyn et al., 2006; Schoof, 2007). Because this transition5

occurs on horizontal dimensions that are smaller than the typical grid size of large scale ice sheet models, many studies have

focussed on the ability of the numerical model to properly simulate grounding line migration using synthetic experiments

(e.g., Vieli and Payne, 2005; Durand et al., 2009; Gladstone et al., 2012; Seroussi et al., 2014). Two Marine Ice-Sheet Model

Intercomparison Projects (MISMIP) have allowed to identify the minimum requirements to properly resolve GL motion: (i)

inclusion of membrane stresses and (ii) a sufficiently small grid size or a subgrid interpolation of the GL (Pattyn et al., 2012,10

2013). These results suggest that, in realistic applications, the numerical error could be reduced below the errors associated

with uncertainties in the model initial state, in the model parameters and in the forcings from the atmosphere and ocean.

For obvious reasons of inaccessibility, the basal conditions (topography and friction) are an important source of uncertain-

ties. Because of the intrinsic instability of marine ice sheets resting over a seaward up-sloping bed, the resolution of the bed

topography in the coastal regions can significantly affect short term ice-sheet forecasts (Durand et al., 2011; Enderlin et al.,15

2013). Analytical developments have shown that the flux at the grounding line depends on the friction law and its coefficients

(Schoof, 2007; Tsai et al., 2015). The sensitivity of model projections to the basal friction has been confirmed by several nu-

merical studies both on synthetic and real applications (Joughin et al., 2010; Ritz et al., 2015; Brondex et al., 2017, 2018). In

particular, Brondex et al. (2017) have shown that, for unbuttressed ice sheets, spatially varying friction coefficients can lead to

stable GL positions also in up-sloping bed regions.20

Uncertainties in the model state and parameters can be reduced by data assimilation (DA). The objective of formal DA

methods is to update the model using observations in a framework consistent with the model, the data and their associated

uncertainties (Bannister, 2017). Most ice flow models are now equipped with variational methods to constrain the basal condi-

tions from surface observations (e.g. MacAyeal, 1993; Vieli and Payne, 2003; Larour et al., 2012; Gillet-Chaulet et al., 2012).

However most studies perform “snapshot” calibrations, where the inversion is performed at a unique initial time step. The25

state of the model produced from this calibration is therefore sensitive to inconsistencies between the different datasets. The

resulting transient artefacts are usually dissipated during a relaxation period where the model drift from the observations.

Because historic remote sensing data collections are spatially incomplete as well as temporarily sparse, most distributed

maps are mosaicked, stacked or averaged to maximize the spatial coverage at the expense of the temporal information (Moug-

inot et al., 2012). However, in the last few years, the development of spaceborne ice-sheet observations has entered a new30

era with the launch of new satellite missions, considerably increasing the spatial and temporal resolution of surface observa-

tions. Because they require linearized versions of the forecast model and of the observation operator, extending the existing

variational methods implies important numerical developments (e.g. Goldberg et al., 2016; Larour et al., 2016; Hascoët and

Morlighem, 2018). In Goldberg and Heimbach (2013), a time-dependent adjoint ice flow model is derived using a source-to-
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source algorithmic differentiation software combined with analytical methods. The DA capabilities are illustrated with a suite35

of synthetic experiments, including the simultaneous inversion of the basal topography and friction from surface observations

and the assimilation of transient surface elevations to retrieve initial ice thicknesses. In a real-world application to a region of

West Antarctica, they show that assimilating annually resolved observations of surface height and velocities between 2002 and

2011 allows to improve the model initial state, giving better confidences in projected committed mass losses (Goldberg et al.,

2015). Because of the complexity of the code, Larour et al. (2014) use an operator-overloading approach to generate the adjoint5

and assimilate surface altimetry observations from 2003 to 2009 to constrain the temporal evolution of the basal friction and

surface mass balance of the Northeast Greenland Ice Stream.

Ensemble DA methods, based on the ensemble Kalman filter (EnKF), have been successful in solving DA problems with

large and non-linear geophysical models. Comparative discussions of the performances and advantages of variational and

ensemble DA methods can be found in, e.g. Kalnay et al. (2007), Bannister (2017) and Carrassi et al. (2018). As they aim at10

solving similar problems, a recent tendency is to combine both methods to benefit from their respective advantages.

EnKF approximates the state and the error covariance matrix of a system using an ensemble that is propagated forward in

time with the model, avoiding the computation of the covariance matrices and the use of linearised or adjoint models. Contrary

to time-dependent variational methods where the objective is to find the model trajectory that minimizes the difference with

all the observations within an assimilation window, EnKF assimilates the observations sequentially in time as they become15

available using the analysis step of the Kalman Filter, as illustrated in Fig. 1. The model trajectory is then discontinuous and,

at a given analysis, the model is only informed by past and present observations. For the retrospective analysis of a time period

in the past, i.e. a reanalysis, ensemble filters can easily be extended to smoothers to provide analyses that are informed by all

past, present and future observations (Evensen and van Leeuwen , 2000; Li and Navon, 2001; Cosme et al., 2012; Nerger et al.,

2014). Since the first version introduced by Evensen (1994) many variants have been developed mainly differing in the way the20

Kalman Filter analysis is rewritten and the analysed error covariance matrix resampled (e.g. Burgers et al., 1998; Houtekamer

and Mitchell, 1998; Pham et al., 1998; Bishop et al., 2001; Nerger et al., 2012). A review of the most popular EnKFs using

common notations can be found in Vetra-Carvalho et al. (2018). Efficient and parallel algorithms have been developed, and

because they are independent of the forward model, several open-source toolboxes that implements various EnKFs are now

available, e.g. OpenDA (https://www.openda.org ), PDAF (http://pdaf.awi.de).25

As Monte-Carlo methods, EnKFs suffer from under sampling issues as often the size of the ensemble is much smaller than

the size of the system to estimate. Localisation and inflation are popular methods to counteract these issues and to increase the

stability of the filtering. Because they are based on the original Kalman Filter equations, EnKFs are optimal only for Gaussian

distributions and linear models. However, the many applications in geoscience with large and non-linear models have shown

that the method remains robust in general and EnKFs are used in several operational centres with atmosphere, ocean and30

hydrology models (e.g. Sakov et al., 2012; Houtekamer et al., 2009; Hendricks Franssen et al., 2011). While firstly developed

for numerical weather and ocean prediction where the forecasts are very sensitive to the model initial state, the method is also

widely used, e.g. in hydrology, for join state and parameters estimations (Sun et al., 2014).
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In the context of ice-sheet modelling, encouraging results have been obtained by Bonan et al. (2014) for the estimation of

the state and basal conditions of an ice-sheet model using the Ensemble Transform Kalman Filter (ETKF, Bishop et al., 2001;

Hunt et al., 2007). They study the performance of the method using idealised twin experiments where perturbed observations

generated from a model run are used in the DA framework to retrieve the true model states and parameters. Using a flowline

shallow ice model, they show that both the basal topography and basal friction can be retrieved with good accuracy from

surface observations with realistic noise levels, even for relatively small ensembles. The method has been further developed to5

assimilate the margin position in a shallow ice model that explicitly tracks the boundaries with a moving mesh method (Bonan

et al., 2017).

The purpose of this paper is to explore the performance of ensemble Kalman filtering for the initialisation of a marine ice

sheet model that includes GL migration. In particular, we want to address (i) the quality of the analysis for the simultaneous

estimation of the basal topography and friction in the context of a marine ice sheet that is undergoing an unstable GL retreat,10

and (ii) the effects of the remaining uncertainties for the predictability of GL retreat. The ice flow model and the EnKF used in

this study are described in Section 2. To test the DA framework, we define a twin experiment in Section 3. Section 4 presents

the results for both the transient assimilation and the forecasts. Finally, perspectives and challenges for real applications are

discussed in Section 5, before concluding remarks.

2 Methods15

2.1 Ice flow model

The gravity-driven free surface flow of ice is solved using the finite-element ice flow model Elmer/Ice (Gagliardini et al., 2013).

For the force balance, we solve the shelfy-stream approximation (SSA) equation (MacAyeal, 1989) in one horizontal dimen-

sion. This is a vertically integrated model that derives from the Stokes equations for small aspect ratio and basal friction. In

1D, this leads to the following non-linear partial differential equation for the horizontal velocity field u20

@

@x

✓
4⌘̄H

@u

@x

◆
� ⌧b = ⇢igH

@zs

@x
(1)

whith ⇢i the ice density, g the gravity norm, H = zs�zb the ice thickness with zs and zb the top and bottom surface elevations,

respectively. Using the Glen’s constitutive flow law, the vertically averaged effective viscosity ⌘̄ is given by

⌘̄ =
1

H

zsZ

zb

1

2
A

�1/n
D

(1�n)/n
e dz (2)

where De is the second invariant of the strain-rate tensor, equal here to D
2
e = (@u/@x)2, A is the rate factor and n is the creep25

exponent, taken equal to the usual value n= 3 in the following. The basal friction ⌧b is null under floating ice and is represented

with the non-linear Weertman friction law for grounded ice

⌧b = Cu
m (3)
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with C and m the friction coefficient and exponent, respectively. In the following, we use the classical power law with m=

1/n= 1/3. When in contact with the ocean, the ice is assumed to be in hydrostatic equilibrium. The floating condition is

evaluated directly at the integration points and ⌧b in Eq. (1) is set to 0 wherever ice is floating (Seroussi et al., 2014).

The time dependency is introduced by the evolution of the top and bottom free surfaces. Because of the hydrostatic equi-

librium, the ice sheet topography is fully defined by the bed elevation b and only one prognostic variable. Equation (1) is then5

coupled with the vertically integrated mass conservation equation for the evolution of the ice thickness H

@H

@t
+

@(uH)

@x
= as � ab (4)

with as the surface accumulation rate and ab the basal melt rate. The free surfaces zs and zb are obtained from the floating

condition which, for zs, using a constant sea level zsl = 0, gives
8
>><

>>:

zs = b+H for H ��b
⇢w

⇢i

zs =H

✓
1� ⇢i

⇢w

◆
otherwise

(5)10

with ⇢w the sea water density.

2.2 Data Assimilation

2.2.1 Filter Algorithm

For the assimilation, we use the Error Subspace Ensemble Transform Kalman Filter (ESTKF, Nerger et al., 2012). Originally

derived from the singular evolutive interpolated Kalman filter (SEIK, Pham et al., 1998), ESTKF leads to the same ensemble15

transformations as the ETKF but at a slightly lower computational cost. In practice we use the local version of the filter

implemented in PDAF (http://pdaf.awi.de Nerger et al., 2005b) and coupled to Elmer/Ice in an offline mode. This section

outlines the ESTKF algorithm.

As an EnKF, ESTKF approximates the state xk and the error covariance matrix Pk of a system at time tk using an ensemble

of Ne realisations xk
i , i= 1, ...,Ne. The state vector, of size Nx, contains the prognostic variables and model parameters to be20

estimated and is approximated by the ensemble mean

x̄k =
1

Ne

NeX

i=1

xk
i (6)

while the error covariance matrix is approximated by

Pk =
1

Ne � 1
X

0
kX

0T
k (7)

where X
0
k = (xk

1 � x̄k
, ...,xk

Ne
� x̄k) 2 RNx⇥Ne is the ensemble perturbation matrix.25

The algorithm can be decomposed in two steps, the forecast and the analysis. Superscripts f (resp. a) denote quantities

related to each step respectively. The forecast propagates the state and the error covariance matrix of the system forward in
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time, from a previous analysis at t= tk�1 to the next observation time t= tk. For this, the numerical model Mk, assumed

perfect in the sequel, is used to propagate each ensemble member individually during ndt model time steps

xf,k
i =Mk(x

a,k�1
i ) (8)

At t= tk, a vector of observations yk
o of size Ny (with usually Ny <<Nx) is available. yk

o is related to the true system

state xf by yk
o =H(xf )+ ✏k where the observation error ✏k is assumed to be a white Gaussian distributed process with

known covariance matrix R
k, and H is the observation operator that relates the state variables to the observations. When yk

o5

is the observed surface velocities, the relation between the observations and the system state, i.e., the ice-sheet geometry, and

,parameters, i.e. the boundary conditions, is given by the force balance equation (1), thus H is a non-linear elliptic partial

differential equation.

The analysis provides a new estimation of the system state by combining the informations
:::::::::
information

:
from the forecast and

the observations. In the following we will omit the time index k in the notations as all the analysis is performed at t= tk. As10

others EnKFs, ESTKF uses the Kalman Filter update equations to compute the analysed system state x̄a and covariance matrix

P
a from the forecast, the observations and their uncertainties:

8
><

>:

x̄a = x̄f +Kd

P
a = (I�KH)Pf

(9)

where d= yo �H(x̄f ) is the innovation and K is the Kalman gain given by

K=P
f
H

T (HP
f
H

T +R)�1 (10)15

Here, H is the linearised observation operator at the forecast mean. However, in practice H does not need do be computed as it

always acts as an operator to project the ensemble members in the observation space. Defining the forecast ensemble projected

in the observation space by yf
i =H(xf

1 ), i= 1, ...,Ne with ȳf the ensemble mean, we make the linear approximation

Y
f =HX

f (11)

with X
f = (xf

1 , ...,x
f
Ne

) 2 RNx⇥Ne the forecast ensemble matrix and Y
f = (yf

1 , ...,y
f
Ne

) 2 RNy⇥Ne its equivalent in the20

observation space.

In practice, with large models (Nx >> 1), the covariance matrices Pf and P
a of size Nx ⇥Nx can not be formed, so that,

to be implemented, the analysis (Eq. 9) needs to be reformulated. Moreover, the sample covariance matrix approximated with

an ensemble of size Ne (Eq. 7) is only a low-rank approximation of the true covariance matrix and its rank is at most Ne � 1.

ESTKF uses this property to write the analysis in a (Ne� 1)-dimensional subspace spanned by the ensemble and referred to25

as the error subspace (Nerger et al., 2005a). The forecast covariance matrix P
f is then rewritten as

P
f =

1

Ne � 1
LL

T (12)
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where L 2 RNx⇥Ne�1 is given by

L=X
f
⌦ (13)

The matrix ⌦ 2 RNe⇥Ne�1 defined as5

⌦ij =

8
>>>>>>><

>>>>>>>:

1� 1

Ne

1
1p
Ne

+1
for i= j, i < Ne

� 1

Ne

1
1p
Ne

+1
for i 6= j, i < Ne

� 1p
Ne

for i=Ne

(14)

projects the ensemble matrix X
f onto the error subspace. The multiplication with X

f subtracts the ensemble mean and a

fraction of the last column of the ensemble perturbation matrix X
0f from all other columns.

After some algebra using Eq. (12) and Eq. (9), Pa can be written as a transformation of L

P
a = LAL

T (15)10

with the transform matrix A 2 RNe�1⇥Ne�1 given by

A
�1 = ⇢(Ne � 1)I+(Yf

⌦)TR�1
Y⌦ (16)

where ⇢ 2 [0,1] is the forgetting factor discussed in section 2.2.2.

Finally, the update step is obtained as a single equation for the transformation of the forecast ensemble X
f to the analysed

ensemble X
a as15

X
a = X̄

f +X
f
⌦(W̄+W) (17)

where X̄
f is the matrix where the columns are given by the forecast ensemble mean, W̄ is a matrix where the columns are

given by the vector

w̄ =A(Y⌦)TR�1(yo � ȳf ) (18)

and W is given by20

W =
p

Ne � 1C⌦
T (19)

where C is the symmetric square root of A obtained by singular value decomposition.

Finally, the analysed ensemble X
a is used as the initial ensemble for the next forecast, and so on up to the end of the data

assimilation window.

We draw attention to several remarks on the algorithm:25
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– To compute the innovation d, we have made the same linear approximation H(x̄f ) = ȳf as Hunt et al. (2007). This

choice is consistent with the computation of the covariance matrices Pf
H

T and HP
f
H

T in Eq. (10) using the linear

approximation Eq. (11) (Houtekamer and Mitchell, 2001).

– Several ensembles can have the same mean and covariance matrix, this is why there is several EnKFs that
::::::
several

::::::
EnKFs

exactly satisfy Eq. (9) but lead to different ensemble transformations and thus different analysed ensembles (Vetra-

Carvalho et al., 2018). With the same arguments several variants of ESTKF can be introduced, e.g. by replacing ⌦ in

Eq. (19) by a random matrix with the same properties or using a Cholesky decomposition to compute C.5

– As written here, the ESTKF leads to the same ensemble transformation as the ETKF. However, as the computations are

not performed in the same sub-space tiny differences due to the finite precision of the computations may grow leading

to slight differences at the end of the assimilation window (Nerger et al., 2012).

– The leading computational cost of the ensemble transformation in ESTKF is O
�
Ny(Ne � 1)2 +Ne(Ne � 1)2 +NxNe(Ne � 1)

�
,

so it scales linearly with Nx and Ny (Nerger et al., 2012). Naturally, increasing Ne also requires to increase the number10

of model runs and, in general, the objective is to get the ensemble size as small as possible. The performance of the

algorithm also depends on the evaluation of the product of R�1 with some vectors, which can become more expensive

when the observation errors are spatially correlated.

2.2.2 Filter stabilisation: inflation and localisation

In practice for large scale problems, EnKFs as Monte-Carlo methods can suffer from under-sampling issues. First, because of15

the rank deficiency of the covariance matrix P
f , the analysis adjust

::::::
adjusts the model state only in the error subspace, ignoring

error directions not accounted for by the ensemble (Hunt et al., 2007). This can result in an analysis that is overconfident and

underestimates the true variances. On the long run, the ensemble spread will become too small and the analysis will give to

much weight on the forecast finally disregarding the observations and diverging from the true trajectory. A common simple ad-

hoc remedy is to inflate the forecast covariance matrix with a multiplicative factor (Pham et al., 1998; Anderson and Anderson,20

199). Here, inflation has been introduced in Eq. (16) using the forgetting factor ⇢ 2 [0,1] with ⇢= 1 corresponding to no

inflation (Pham et al., 1998). It is the inverse of the inflation factor used by Bonan et al. (2014).

Second, the rank deficiency of Pf leads to the appearance of spurious correlations between parts of the system that are

far away. As these correlations are usually small, a common remedy is to damp these correlations with a procedure called

localisation. In covariance localisation, localisation is applied by using an ensemble covariance matrix that results from the25

Schur product of Pf with an ad-hoc correlation matrix that drops long range correlations (Hamill et al., 2001; Houtekamer

and Mitchell, 2001). However, this localisation technique is not practical for square-root filters where P
f is never explicitly

computed. Here, as in Bonan et al. (2014), we use a localisation algorithm based on domain localisation and observation

localisation (Ott et al., 2004; Hunt et al., 2007). Both methods are illustrated in Sakov and Bertino (2011) who conclude that

they should yield to similar results. Domain localisation assumes that observations far from a given location have negligible30

influence. In practice, the state vector in each single mesh node is updated independently during a loop through the nodes
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that can easily be parallelized for numerical efficiency. For each local analysis, only the observations within a given radius r

from the current node are used. In addition to avoid an abrupt cut-off, the observation error covariance matrix R is modified

so that the inverse observation variance decreases to zero with the distance from the node using a fifth-order polynomial

function which mimics a Gaussian function but has compact support (Gaspari and Cohn, 1999). Because it drops spurious

long-range correlations and allows the local analyses to choose different linear combinations of the ensemble members in

different regions, localisation implicitly increases the rank of the covariance matrix, leading to a larger dimension of the error

subspace, implicitly increasing the effective ensemble size and the filter stability (Nerger et al., 2006; Hunt et al., 2007).

However, it has been reported that localisation could produce imbalanced solutions (Mitchell et al., 2002). Here, because the5

force balance are non-inertial and the SSA assumes that the ice-shelves are in hydrostatic equilibrium, this shouldn’t
::::::
should

:::
not

be an issue. Another disadvantage is that, when long-range correlations truly exist, the analysis will ignore useful informations

:::::::::
information

:
that could have been used from distant observations.

Here, the forgetting factor ⇢ and the localisation radius r will be used as tuning parameters of the filter. Improving the

theoretical understanding of these ad hoc procedures and developing adaptive scheme is an active research area and interested10

readers can refer to review articles (e.g. Bannister, 2017; Carrassi et al., 2018; Vetra-Carvalho et al., 2018).

3 Experimental design

To evaluate the performance of the DA framework we perform a twin experiment. In this section we first describe the synthetic

reference simulation that will be used to assess the performance of the DA framework. From this reference, we generate a set of

synthetic noisy observations that will be used by the assimilation scheme. Finally, we describe the initial ensemble constructed15

using a priori or background informations
:::::::::
information.

3.1 Reference simulation

We start by building an initial steady marine ice-sheet. The domain extends from x= 0km where we apply a symmetry

condition, u= 0 in Eq. (1), to x= 800km where we have a fixed calving front. We use 1D linear elements with a uniform

mesh resolution of 200m, leading to 4001 mesh nodes.20

Following Durand et al. (2011), we generate a synthetic bed geometry that reproduces a typical large-scale overdeepening

with some small scale roughness. The bed b= btrend + br is the sum of a general trend btrend defined as

btrend =

8
><

>:

�1100+x for x 450km

�650� 5(x� 450) for x > 450km
(20)

and a roughness signal br that is computed at 200m resolution using a random midpoint displacement method (Fournier et al.,

1982). This is a classical algorithm for artificial landscape generation. In 1D, the algorithm recursively subdivide a segment and25

a random value drawn from a normal distribution N (0,�2) is added to the elevation of the midpoint. The standard deviation
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� is decreased by a factor 2h between two recursions. Here we have used 12 recursions using an initial standard deviation

� = 500m and a roughness h= 0.7. The resulting bed is shown in Fig. 2.

For the basal friction, we use a synthetic sinusoidal function with two wavelengths for C (MPam� 1
3 a�

1
3 )

C = 0.020+0.015sin(5
2⇡x

L
)sin(100

2⇡x

L
) (21)30

with L= 800km (Fig. 3).

While not tuned to match any specific glacier, this synthetic design compares relatively well to the conditions found in

Thwaites Glacier (Antarctica). Thwaites has been the focus of many recent studies as it is undergoing rapid ice loss and,

connected to deep marine-based basins, its retreat could trigger a large scale collapse of the West Antarctic Ice Sheet over the

next centuries (Scambos et al., 2017). In Fig. 4, C and b are compared with model results from Brondex et al. (2018) along5

three streamlines. In Brondex et al. (2018) , C has been inferred from the observed surface velocities using a time-independent

control inverse method and a SSA model. We can see that our synthetic design is realistic both in terms of amplitude and spatial

variations. As the other characteristics (geometry, small flow divergence/convergence) are also similar, the model velocities

have the good order of magnitude.

Using an uniform ice rigidity B = (2A)�1/n = 0.4MPa a
1
3 , we grow an ice sheet to steady state using a uniform surface10

accumulation as = 0.5ma�1 and no basal melting ab = 0. The steady state GL is located at x= 440km, just downstream of

the region of overdeepening (Fig. 2).

In Jenkins et al. (2018), observed ice-flow accelerations in the Amundsen sea sector have been attributed to the decadal

oceanic variability, where warm phases associated with increased basal melt induce a thinning of the ice shelves reducing their

buttressing effect initiating short lived periods of unstable retreat of the most vulnerable GLs. In a flow line experiment the15

ice shelf do not exert any buttressing effect. Using a suite of melting and calving perturbation experiments for Pine Island

Glacier, Favier et al. (2014) have shown that, when initiated, the dynamics of the unstable retreat is fairly independent of the

type and magnitude of the perturbation. Here, to trigger the initial acceleration, we instantaneously decrease the ice rigidity to

B = 0.3MPa a
1
3 at t= 0, keeping all the other parameters constant.

This initial perturbation induce an acceleration, a thinning and a retreat of the GL. The model is then run for 200 years with20

a time step dt= 510�3 a�1. After a short stabilisation at x= 437.2km between t= 13a and t= 32a, the GL retreats at a rate

of approximately 1kma�1 during the following 100 years, then the rate decreases as the GL enters an area of down-slopping

bed (Fig. 2). The retreat rate shows small variations associated with spatial variations of the topography and basal friction.

3.2 Synthetic Observations

From the reference run, we generate synthetic noisy observations that are typical of the resolution and performance of actual25

observing systems.

For the bed, we mimic an airborne radar survey conducted perpendicular to the ice flow with an along flow resolution of

approximately 15km. For this, we randomly select 54 locations between x= 0 and x= 800km, and then linearly interpolate

the true bed and add a random uncorrelated Gaussian noise with a standard deviation �
obs
b = 20m (Fig. 3).
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We assume that the surface elevation and velocities are observed at an annual resolution at each mesh node. We then add30

an uncorrelated Gaussian noise with a standard deviation �zobs
s

= 10m for the surface elevation and �
obs
u = 20ma�1 for the

velocity. The most recent velocity products are now posted with a monthly to annual resolution (Mouginot et al., 2017; Joughin

et al., 2018). The reported uncertainty for individual velocity estimates using the 6- and 12-day image pairs from the Sentinel

1A/B satellites is 6.2 and 17.5ma�1 for the two horizontal velocity components in stable conditions; however this could be

underestimated in the coastal areas. For the surface elevation, the spatial and temporal resolution as well as the coverage and

uncertainty will depend on the sensors. The ArcticDEM (http://arcticdem.org) is a collection of openly available digital surface

models derived from satellite imagery and posted at 2-m spatial resolution. After co-registration, a standard deviation ranging

from 2 to 4m has been reported for the uncertainty of elevation difference between two individual models of static surfaces5

(Dai and Howat, 2017). Using the same satellites, Greenland digital elevation models are now posted with a 3-month temporal

resolution (https://nsidc.org/data/nsidc-0715).

3.3 Assimilation setup

We recall that our aim is to initialise the model using the DA framework to estimate the state together with the basal conditions.

As a simplification to realistic experiments, we assume in the following that the ice rheological properties (represented by the10

Glen flow law and its parameters) and the forcing (represented by the surface and basal mass balances in Eq. (4)) are perfectly

known. In addition, we assume that the form of the basal friction follows Eq. (3) with m= 1/3, so that only the spatially-

varying friction coefficient C is uncertain.

In our model, as the force balance equation (1) contains no time derivative, the velocity is a diagnostic variable. Because of

the flotation condition, the topography can be represented by only one prognostic variable. The state vector x is then given by15

the free surface elevation zs at every mesh node, and we use the floatation Eq. (5) for the mapping between the ice thickness H

and zs. The state vector is augmented by the two parameters to be estimated, the bedrock topography b and the basal friction

coefficient C. For the parameters we assume a persistence model, i.e. no time evolution, during the forecast step (Eq. 8).

Because the velocities are insensitive to the basal conditions where ice is floating, these two parameters are included in the

state vector only for the nodes where at least one member is grounded. In addition, to insure that C remains positive, we use20

the following change of variable for the assimilation C = ↵
2. Although it does not insure uniqueness of the estimation as ↵ and

�↵ would lead to the same C, this change of variable is classical (MacAyeal, 1993) and was chosen as the reference friction

coefficient spans only one order of magnitude. Similar performances where found using the other classical change of variable

C = 10↵ as in Gillet-Chaulet et al. (2012).

Because both zs and b are included in the state vector, the analysis does not conserve the ice sheet volume, neither for the25

ensemble mean and the individual members. However,
:
as

:::::::::
illustrated

::
in

::::
Fig.

::
1,

:
the estimation of the ice-sheet volume is

::
zs

:::
and

::
b,

:::
and

::::
thus

:::
of

:::
the

:::
ice

::::::::
thickness,

::::::
should

:::
be improved at each analysis as more data are assimilated, and the final volume

::::
state is the best estimation provided by the filter knowing the model, all the observations during the assimilation window and

their uncertainties. As mentioned in the introduction, if the main interest is an analysis of past volume changes, as smoother
:
a

:::::::
smoother

:::
or

:
a
:::::::::
variational

:::::::
method might be more appropriateand the

:
.
:::
The

:
smoother extension of the ESTKF can be found in30
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Nerger et al. (2014).
::::
Note

::::::::
however

:::
that,

:::::::::::
interestingly,

::
if

:::
we

:::::
expect

::::
that

:::
the

::::
filter

:::
will

:::::::
improve

:::
the

:::::::::
estimation

::
of

:::
the

:::
ice

::::::::
thickness

::::
there

::
is

:::
no

:::::::
guaranty

::
in

:::::::
general

:::
that

::
it
::::
will

:::::::
provide

:
a
:::::
better

::::::::
estimate

::
of

:::
the

::::
total

:::::::
volume

::
as

::
an

::
a
:::::
priori

::::
with

::
a

:::::
totally

::::::::
different

:::::::
thickness

::::::::::
distribution

:::::
could

::::
lead,

:::
by

::::::::::::
compensation

::
of

:::
the

:::::
errors,

::
to

::
a
::::::
perfect

:::::::
estimate

::
of

:::
the

::::
true

:::::::
volume.

Kalman-based filters are based on the hypothesis of the independence between the background, i.e. the initial ensemble, and

the observations that are used during the assimilation. As the synthetic bed observations will be used to construct the initial

ensemble (cf next section), we assimilate only the surface elevation and velocity observations, every year from t= 1a up to

t= 35a. The observation operator H is a simple mapping for the surface elevation, and is given by the non-linear SSA equation

(Eq. 1) for the surface velocities.5

Finally, to illustrate the effect of the transient assimilation on model projections on time scales relevant for sea level pro-

jections, the analysed states at t= 20a and t= 35a are used to run deterministic and ensemble forecasts up to t= 200a.

The deterministic forecast uses the ensemble mean produced by the analysis while the ensemble forecast propagates the full

ensemble.

3.4 Initial ensemble10

For atmosphere and ocean models, the initial state is usually sampled from a climatology, either observed or from a model

run. This method can not be used for the parameters and the initial ensemble must reflect the background and the estimation

of its uncertainty, available a priori before the assimilation. Following previous studies (Gudmundsson and Raymond, 2008;

Pralong and Gudmundsson, 2011; Bonan et al., 2014; Brinkerhoff et al., 2016), we assume that the initial distributions for b and

C are Gaussian with a given mean and a prescribed covariance model. Furthermore we assume no cross-correlation between15

the initial b, C and zs and we draw the initial ensembles independently.

For b and C, the initial samples are drawn using the R package gstat (Pebesma and Wesseling, 1998). As classical in

geostatistics, the covariance model is prescribed using a variogram �(d) that is half the variance of the difference between

field values as a function of their separation d. It is usually defined by two parameters, the sill s that defines the semi-variance

at large distances and the range ra which, for asymptotic functions, is defined as the distance where the �(ra) = 0.95s. The20

package gstat allows directly to draw simulations, i.e. random realisations of the field, from the prescribed spatial moments

(Pebesma and Wesseling, 1998).

For the bed we use an exponential function

�(d) = s(1� e
� 3d

r ) (22)

with ra = 50km and s= 4000m2. We also add a nugget model defined by25

�(d) =

8
><

>:

0 d= 0

nug d > 0
(23)

with nug = 200m2. This model is meant to represent the bed measurement error. To draw the initial ensemble, the simulations

are conditioned with the bed observations.This procedure gives an initial ensemble that is drawn from the posterior probability
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distribution that would be obtained using ordinary Kriging with the same observations and variograms. The ensemble mean

and spread for a 50-members ensemble are shown in Fig. 3 and the first three members are shown in Fig. 5. As expected, the30

ensemble spread increases with the distance from the observations. At the observation locations, the spread is controlled by

the nugget. For the individual members, the nugget controls the small scale variability, resulting in a roughness larger than the

reference. When averaged this roughness disappears, and the ensemble mean has a much smoother topography.

For the friction coefficient, we assume that we know the mean value Cmean = 0.020MPam� 1
3 a�

1
3 and draw unconditional

simulations. For the spatial dependence, we use a Gaussian function �(d) = s(1� e
�3( d

r )
2

) for the variogram using a range5

ra = 2.5km and a sill s= 8.10�5MPa2 m� 2
3 a�

2
3 . This results in initial ensemble members that have approximately the same

maximal amplitude as the reference, as shown in Fig. 5.

For the free surface, we initialise all the members using the observed (noisy) free surface at t= 0. Doing so, we implicitly

assume that the spread of the ensemble induced by the uncertain initial conditions at the first analysis is small compared to the

spread induced by the uncertain parameters. This is motivated by the fact that divergence anomalies induced by uncertainties10

in model parameters can typically reach tens to hundreds of meters per years in fast flowing areas (Seroussi et al., 2011).

4 Results

4.1 Assimilation

To assess the performance of the DA in retrieving the basal conditions we compute the root-mean-square error (RMSE) between

the analysed ensemble mean and the reference for both the bed and the friction coefficient, RMSEb and RMSEC respectively.15

After each analysis, the RMSE is computed using all the nodes where the basal conditions have been updated by the assim-

ilation, i.e. at least one member is grounded, and where x� 300km. The later value is close to the position reached by the

grounding line after 200 years in the reference simulation, moreover, during the assimilation window, the reference velocity at

this location is close to 80ma�1 (Fig. 6), so that the relative noise is ⇠ 25% and we don’t expect too much improvement from

the DA upstream as the velocity tends to 0.20

Here the size of the state vector x, Nx, is approximately 8400, i.e. zs at every node and the basal conditions, b and C, in the

grounded part. To test the performances of DA in conditions that would be numerically affordable for real applications, we run

the assimilation with relatively small ensemble sizes Ne = 30, Ne = 50 and Ne = 100. In this case, inflation and localisation

are required to counteract the effects of undersampling and we test a range of forgetting factors ⇢ and localisation radius r. The

errors obtained at t= 20a relative to the errors from the initial ensemble mean are shown in Fig. 7. The performances of the25

assimilation for Ne = 50 and Ne = 100 are very similar. The filter diverges and produces errors larger than the initial errors for

a localisation radius r  4km. However, for larger localisation radii, the assimilation is relatively robust for a wide range of r

and ⇢, with errors reduced by ⇠ 30% for b and ⇠ 40% for C. Decreasing the ensemble sizes reduces the filter performance but

there is still a reduction of the errors by ⇠ 20% and ⇠ 30%, respectively, with Ne = 30. For the two smallest ensembles, there

is an optimal value for r and increasing r above this value decreases the filter performance. In general, this optimal value for r30

13



increases as ⇢ decreases, because the ensemble spread reduction induced by assimilating more observations is counterbalanced

by the inflation.

In the sequel we discuss the results obtained with an ensemble size Ne = 50. As a compromise between the performances

in retrieving b and C, we choose a forgetting factor ⇢= 0.92 and a localisation radius r = 8km. The evolution of the RMSEs

as a function of assimilation time together with the initial and final ensembles are shown in Fig. 3. RMSEb decreases steadily

from ⇠ 25m for the initial ensemble at t= 0 to ⇠ 12m at t= 35a. For the basal friction, RMSEC is decreased by a factor 1.75

during the first ten years, then there is still a slight but much smaller improvement as new observations are assimilated.

At the end of the assimilation, for both fields, the spatial variations are well reproduced by the ensemble mean and, compared

to the initial ensemble, the difference from the reference is decreased everywhere except between 300 and 325km for C. The5

reduction in the error is also accompanied by a diminution of the ensemble spread, represented by the minimum and maximum

values in Fig. 3. This reduction is the most important just upstream of the grounding line where the relative noise for the

velocity is the smallest. For the first 100km upstream of the grounding line, the ensemble standard deviation increases by a

factor 4, from approximately 4 to 17m for b and from 1.10�3 to 4.10�3MPam� 1
3 a�

1
3 for C. Downstream of the GL where

all members are floating, the model is insensitive to the basal conditions and the initial ensemble is unchanged.10

We expect that uncertainties in the ice-sheet interior should not affect short-term forecast of the coastal regions (Durand

et al., 2011), however for completeness we also show the results for the first 300km in Fig. 8. For the bed there is only a

small improvement of the ensemble mean with an RMSE decreasing from 50m to 45m after 35 years. Because the relative

observation error on the velocity is very high in the first kilometres, the reduction of the ensemble spread due to the assimilation

of new observations is very small and eventually outperformed by the inflation leading to an ensemble spread that becomes15

larger than before the assimilation. The model seems more sensitive to the basal friction and this effect is less pronounced for

C with a continuous decrease of the RMSE and a small reduction of the ensemble spread everywhere.

Figure 2 shows that some members undergo a fast GL retreat of few kilometres before assimilation at the end of the first

year. Interestingly, as the assimilation updates both the thickness and the bed, it also corrects the GL position which never

departs by more than few nodes from the reference for the rest of the assimilation period.20

As in realistic simulations, the true bed and friction are not available to assess the performance of the DA, we also look at the

variables assimilated by the model. Figure 9 shows the RMSEs between the ensemble mean and the reference for the velocity

u (RMSEu) and the free surface zs (RMSEzs ), computed for the entire domain (0 x 800km). We also report the evolution

of the ensemble spread, computed as the square root of the averaged ensemble variance. The velocities before and after the

analysis at t= 1a and t= 35a are shown in Fig. 6. The RMSEs are largely decreased during the first few years, especially25

for the velocity with an error of more than 300ma�1 before the first assimilation to approximately the noise level, 20ma�1,

at t= 20a. For zs, RMSEzs is already below the noise level before the first analysis and decreases relatively steadily to reach

⇠ 2m after 35 years. RMSEu increases at the end of the period when the reference GL leaves the stable region. As can be

shown in Fig. 6, the error is dominated by the larger difference over the ice-shelf due to the few members that still have their

GL at the stable location, largely affecting the ensemble mean.30
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In general, during the first and last years of the assimilation period, the error and the ensemble spread increase during the

forecast step. The analysis step reduces both the error and the ensemble spread (Fig. 9). With the stabilisation of the grounding

line, both the error and the spread remain relatively stable during the forecast, and as RMSEu and RMSEzs have already

reached levels comparable to the observation noise, there is no much improvement during the analysis. After few assimilation

steps, as expected for a reliable ensemble, the error and the spread have similar values.

Similar conclusions are drawn is
:
if the assimilation is pursued up to t= 50a. Because of the sensitivity of the ice-shelf

velocities to the grounding line position, RMSEu shows
::::
show

:
a higher variability, but expect for few exceptions, stay close to

the noise level. RMEb :::::::
RMSEb:and RMSEc stagnate as continue to improve the reconstruction mostly in the first few tens5

of kilometres upstream of the GL where the relative noise on u is the smallest.

To asses the influence of the observation uncertainties in the performance of the DA, we repeat the experiment with the same

localisation and inflation but different levels for the uncertainties on the observed surface velocity (�obs
u ) and surface elevation

(�obs
zs ) (cf section 3.2). We recall that these uncertainties are not correlated spatially and temporally. As shown in Fig. 10, the

performance of the DA to retrieve both b and C increases when the uncertainty on the velocity observation �
obs
u decreases.10

However, when looking at the model velocities and surface elevation, this improvement is not significant as the RMSEs were

already below the noise level. As shown in Fig. 11, as expected, decreasing �
obs
zs improves the analysis for the surface elevation.

However, it doesn’t
::::
does

:::
not

:
necessarily reflect on the basal conditions and, on the contrary, reducing �

obs
zs below 10m leads

to an increase of RMSEC from 0.004 to 0.005Mpam�1/3 a1/3 . However, again, this effect does not reflect on the model

velocities that are retrieved with the same accuracy.15

4.2 Forecast simulations

We now discuss model projections from the initial state to t= 200a.

Without assimilation, the deterministic forecast, i.e. using the ensemble mean basal conditions, rapidly leads to the fastest GL

retreat and, after few years the GL position is no more included within the previsions from the ensemble (Fig.2B). This is due

to the fact that the ensemble mean is smoother than the reference and any of the ensemble members. The reference GL position20

is included in the ensemble and at the end of the simulations most of the members are within ±25km from the reference.

However, for few members the GL remains very stable near its initial position for tens to hundreds of years, eventually never

switching to an unstable regime during the duration of the simulation. Retreat rates are relatively variable from one member to

the other, depending on the basal conditions.

With assimilation, the ensemble mean is improved and the difference from the reference reduced. The deterministic forecast25

cannot be distinguished from the ensemble members any more (Fig.2C-D). Retreat rates are closer to the reference, with the

previsions from all the ensemble members being more or less parallel to the reference. We note however that, when the forecast

starts after an assimilation window of 20 years, i.e. during a period of stable GL position for the reference, the deterministic

forecast leaves the stable position with a delay of approximately 25 years, and a few members remain stable for the entire

simulation. On average between t= 13 to t= 32a, the thinning rate at the GL in the reference simulation, is approximately 0.630

m/a, reducing to 0.25 m/a during the last two years. The total thinning between two analyses is then much lower than the noise

15



in the observed surface elevation and cannot be captured accurately by the DA. In addition, at the GL, the difference between

the minimum and maximum bed elevation given by the ensemble is approximately 20 meters. This remaining uncertainty

induces a difference of more than two meters for the floatation surface, and combined with the small thinning rates explains

the delays in the initiation of the instability.

Extending the assimilation window up to t= 35a when the reference has switched in a fast retreat, allows to force all the

members in the unstable retreat. There is a very good agreement between the reference and the deterministic forecast up to

t= 110a. This is also true for the ensemble and after that the spread is larger and the predicted GLs are less retreated than for5

the reference.

These results can be summarized by looking at the distribution of the ensemble forecasts for the grounding line position

and volume above floatation (VAF) at t= 100a in Fig. 12 where the relative VAF change is computed as (V AFt=100 �
V AF

ref
t=0)/V AF

ref
t=0 with V AF

ref
t=0 the reference VAF at t= 0. As expected there is a clear correlation between grounding line

retreat and mass loss, higher retreat leading to higher mass loss. The distributions are clearly non Gaussian, however, even10

without assimilation there is already a mode close to the reference. The mode is more pronounced, with more members close

to the reference as observations are assimilated. As discussed before, with no assimilation or a short assimilation up to t= 20a

before the unstable retreat, the deterministic forecast can be very different from the mode of the ensemble forecast. However

they are very similar if the assimilation is pursued up to t= 35a, within 1% for the relative volume loss or 5km for the GL

position.15

5 Discussion

Here, we have tested an ensemble Kalman Filter to assimilate annually observed surface velocities and surface elevation in a

marine ice-sheet model. Similarly to previous studies, we have shown that, in fast flowing regions, it is possible to accurately

separate and recover both the basal topography and basal friction from surface observations (Gudmundsson and Raymond,

2008; Goldberg and Heimbach, 2013; Bonan et al., 2014; Mosbeux et al., 2016). In view of our results, because the synthetic20

bed observations were already used once to generate the initial ensemble, it seems unnecessary to assimilate these same

observations again during each analysis as in Bonan et al. (2014).

Using a scheme that assimilates time-dependent observations provides a model state consistent with transient changes and

that can directly serve as an optimal initial condition to run forecast simulations without the need of an additional relaxation

(Goldberg and Heimbach, 2013; Goldberg et al., 2015). Interestingly the position of the grounding line is also corrected during25

the analysis step, and the ensemble quickly converges within few grid nodes from the reference. In addition, the ensemble

framework naturally allows to estimate and propagate the uncertainty of the estimated parameters. We
::::
Each

::::::::::
assimilation

::
of

::::
new

:::
data

::::::::
improves

:::
the

::::::::::::
reconstruction

::
of

:::
the

:::::
basal

:::::::::
conditions

::::
(Fig.

:::
3),

:::
and

:::
the

::::
first

:::
ten

::::
years

:::
are

::::
very

:::::::
efficient

::
in
::::::::
reducing

::::
error

::::
and

::
the

::::::
spread

::
of

:::
the

::::::
model

::::::
surface

::::::::
velocities

::::
and

:::::::
elevation

:::::
(Fig.

::
9).

:::::::::::
Furthermore,

:::
we

:
have shown that the remaining uncertainties

in the basal conditions do not significantly affect GL retreat rates once the unstable retreat is engagedbut .
::::::::
However,

::::
they

:
can30

lead to considerable delays in the initiation of the instability.
::
If

:::
the

::::::::::
assimilation

::
is

::::::
pursued

:::
up

::
to

:::
the

::::::::
beginning

::
of

:::
the

:::::::::
instability
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:::
(35

:::::
years

::
in

:::
our

::::::::::
experiment)

:::
all

:::
the

::::::::
members

::::::
exhibit

:::
the

:::::::
instable

::::::
retreat

:::
and

::::::::::::::
centennial-scale

:::::
model

::::::::::
projections

::::::::
converge

::
to

::
the

::::::::
reference

:::::
(Fig.

:::
12).

:

Good results have been obtained with relatively small ensembles (50 to 100 members) for a state vector of size Nx ⇡ 8400

and Ny = 4002 observations. Similarly to Bonan et al. (2014), we still see an improvement with a 30-members ensemble but

the performances to retrieve the basal conditions are not as good. Running 2D plane view simulations with such ensemble sizes

is largely possible as demonstrated by Ritz et al. (2015) who, using an hybrid shallow ice-shallow shelf model, have run a 200

years ensemble forecast of the whole Antarctic Ice Sheet using 3000 members.

We have used inflation and localisation to stabilise the filter. The inflation giving the best results in Bonan et al. (2014)5

(⇢= 0.87� 1.02) is similar to the values tested in this study. For the localisation radius r we have used values between 4 and

16 km, while it ranges from 80 to 120 km in Bonan et al. (2014). While this seems counter-intuitive as the velocities depends

only on the local conditions with the shallow ice approximation used by Bonan et al. (2014), in fact, because we use a different

grid size (dx= 0.2km compared to dx= 5km in Bonan et al. (2014)), for each node we assimilate twice as much observations.

Our results are in agreement with the adaptive localisation radius proposed by Kirchgessner et al. (2014). Using three different10

models, Kirchgessner et al. (2014) have shown that good performances are obtained when r is such that the effective local

observation dimension, defined as the sum of the weights attributed to each observation during the local assimilation, is equal

to the ensemble size. Here , the
::
the

::::::::::
observation

:::::::
weights

:::::::
decrease

::::
with

:::
the

:::::::
distance

::
to

:::
the

:::::
local

::::::::::
assimilation

::::::
domain

:::::::::
following

:
a
:::::::::
fifth-order

:::::::::
polynomial

::::::::
function

:::::::::
mimicking

:
a
::::::::
Gaussian

::::::::
function

:::::::::::::::::::::
(Gaspari and Cohn, 1999).

::::
The

:
value r = 8km used for the

50 members-ensemble corresponds to
::::
gives

:
an effective observation dimension of 56. Future studies should investigate if this15

result can be transposed to realistic 2D simulations with unstructured meshes.

In the experiments presented above, we have used a depth integrated model for the force balance equations where GL

migration is implemented through a hydrostatic floatation condition. This allows to fully describe the ice topography with only

one prognostic variable. Adaptation of the framework to a full-Stokes model requires minimum adaptations, however these

models do not rely on the floatation condition and solve a proper contact problem for the grounding line migration (Durand20

et al., 2009), this implies to incorporate the two prognostic free surfaces zb and zs in the state vector. These models might be

more sensitive to unbalanced geometries that could result from the analyses, especially when localisation is used (Cohn et al.,

1998; Houtekamer and Mitchell, 2001). However, the ESTKF, as the ETKF, induces a minimal transformation of the ensemble

members and thus has better chances to preserve balance (Nerger et al., 2012).

Before generalizing such methods to real glacial systems, several points must be taken in consideration. They are independent25

of the DA method but they will eventually be treated differently in a variational or in an ensemble framework.

First, if the implementation is not an issue, the computational cost implied by running a full-Stokes model might remain a

limiting factor. Compared to the Stokes solution, the SSA is known to overestimates the effects of bed topography perturbations

on the surface profile for wavelengths less than few ice thicknesses (Gudmundsson, 2008). How this issue can affect the

reconstruction of the basal properties has never been quantified, however snapshot basal friction inversions have shown that the30

solution is sensitive to the force balance approximation (Morlighem et al., 2010). In addition, the MISMIP experiments have

shown that the GL position and its response to a perturbation depend on the force balance solved by the models (Pattyn et al.,
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2012, 2013). In real applications, the performance of DA can be improved by explicitly taking into account the model error.

Several strategies have been developed to account for this error, one approach with EnKFs being to use different versions of

the model for different ensemble members (Houtekamer et al., 2009). Further studies could investigate the potential benefits of35

using ensembles that combine several force balance approximations.

Second, the quality of the analysis and the accuracy of the error estimates depends on the observation error covariance matrix

R. It is then important to provide meaningful error estimates. Recent velocity maps provide an error estimates reported as the

1� value for each individual location (Mouginot et al., 2012; Joughin et al., 2018). In general, this value agrees well with

independent estimates, however care must be taken when the maps results from a composite of different sensors or different5

periods and in general it might be difficult to properly estimate R.

In a review paper Tandeo et al. (2018) illustrate the impacts of badly calibrated observation and model error covariance

matrices in a sequential DA framework and discuss available methods and challenges for their joint estimation. For the question

of the impact of systematic errors, i.e. bias, either in the model and in the observations, and their correction by augmenting the

system state in variational and ensemble DA, interested readers are referred to Dee (2005).10

Third, the results depends on prior assumptions on the control variables and their variability, represented here by the initial

ensemble. For the basal topography, current reference maps provide local error estimates (Fretwell et al., 2013; Morlighem

et al., 2017), however they do not provide informations
::::::::::
information about spatial correlations so that generating initial en-

sembles with the correct statistics might be problematic. In addition, the gridding can result in a loss of information for some

regions of dense measurements, or can lead to too smooth terrains in sparsely sampled areas. With the aim of generating15

terrains that have the correct high-resolution roughness, Graham et al. (2017) propose a synthetic 100-m resolution Antarctic

bed elevation that combines the reference topography bedmap2 (Fretwell et al., 2013) with an unconditional simulation where

the spatial correlation is fitted from dense radar measurements. This method could be used to generate initial ensembles but

requires to have access to the initial high resolution measurements. Generating initial ensembles for the basal friction might be

more problematic as there is in general no independent a-priori informations
::::::::::
information about the magnitude and spatial vari-20

ability of the basal friction. If there is a correlation between the basal drag and the seismic observations of the bed conditions at

large scale, a proper physical theory is still missing to quantitatively incorporate such informations
:::::::::
information

:
in the models

(Kyrke-Smith et al., 2017). It could be interesting to investigate how the existing multi-model basal friction reconstructions,

based on snapshot inversions, could be used to derive initial uncertainty statistics and reduce the initial ensemble spread.

Finally, in our synthetic applications, we have not accounted for all potential sources of uncertainty which are, for example:25

– the ice flow law: the ice viscosity depends on the englacial temperature which itself is function of the ice sheet history

and the boundary forcing, including the geothermal heat flux (e.g. Van Liefferinge and Pattyn, 2013). Several other

processes also affect the ice viscosity, including damage and strain-induced mechanical anisotropy (e.g. Pimienta et al.,

1987; Schulson and Duval, 2009; Borstad et al., 2013). For the stress exponent, if the values n= 3 is used by most

models, published values ranges between 1 and 5 (e.g. Gillet-Chaulet et al., 2011).30
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– The friction law: more and more direct or indirect evidences show that the friction under fast ice streams is at least

partially controlled by the presence of sediments leading to a Coulomb type friction law (e.g. Tulaczyk et al., 2000;

Murray, 1997; Joughin et al., 2010; Gillet-Chaulet et al., 2016). For hard beds, the development of subglacial cavities

also implies deviations for the classical Weertman friction law (Schoof, 2005; Gagliardini et al., 2007).

– The density: the firn layer is not accounted for in most models, however its depth and density affect the floatation

condition and thus the GL position (e.g. Griggs and Bamber, 2011). Direclty assimilating the GL position, using e.g. the5

moving mesh approach develop by Bonan et al. (2017), would certainly be beneficial in realistic applications to reduce

the discrepancy between the modelled and observed GL (Goldberg et al., 2015).

– The external forcings from the atmosphere and the ocean: increasing mass loss rates from the ice sheets, in a large

portion, can be attributed to a response to oceanic forcing, but multiple challenges remain for a proper assessment of

their magnitude (Joughin et al., 2012).10

Realistic simulations with ice flow models cover a wide range of spatial and temporal scales, and the relative importance of

these uncertainties as well as their representation in the models will certainly have to be evaluated partly in a case by case basis,

requiring to develop robust framework for a variety of applications.

6 Conclusions

Developing model initialisation strategies that properly reproduce the ice-sheets dynamical mass losses observed over the last15

decades, requires to develop transient assimilation frameworks that are able to account for the growing availability of dense

time series, especially from space observations. Here, we presented a synthetic twin experiment demonstrating the possibility

to calibrate a marine ice model using an ensemble Kalman Filter which requires less numerical developments than variational

methods.

Using resolutions and noise levels consistent with current observing systems, good performances are obtained to recover both20

the basal friction and basal topography with an ensemble of at least 50 members. Localisation and inflation have been tuned

manually, however the results are consistent over relatively wide ranges. Future studies should investigate how these values

can be transposed to realistic applications. Nevertheless, there is an abundant and growing literature in other geophysical fields

to overcome problems that we might be facing in future studies.

Once the GL enters an unstable region, retreat rates largely depends on the basal conditions, thus using DA to reduce the

associated uncertainties largely increases the skill of the model to predict rates and magnitude of GL retreat for time scales5

relevant for sea level rise projections. In our simplified application, the assimilation of the surface observations was sufficient

to capture the GL migration during the assimilation window, without explicitely assimilating the observed position. However,

for the GL to enter a irreversible retreat, the thickness must reach a tipping point, i.e. the thickness at the GL must reach

floatation. This can seriously impact the predictability of the system as, for small perturbations, remaining uncertainties on the

basal conditions can lead to an uncertainty on the residence time of the GL on stabilisation points, that can be similar to the10
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simulation timescale.
:::::::
However,

::
if

:::
the

::::::::::
assimilation

::
is

:::::::
pursued

:::
up

::
to

:
a
::::
time

:::::
when

:::
the

::::::
glacier

::
is

:::::::
engaged

::
in

:::
the

::::::::
unstable

::::::
retreat,

::
all

:::
the

::::::::
members

::::::
exhibit

:::
the

::::::::
instability

::::
and

:::
the

::::::
spread

::
of

::::::::::::
centenial-scale

::::::
model

::::::::::
projections,

::
in

:::::
terms

::
of

:::::::
volume

:::
and

:::::::::
grounding

:::
line

:::::::
position,

::
is
::::::
largely

::::::::
reduced.

Finally, we have discussed the main challenges to tackle before generalizing transient DA in ice-sheet modelling. This

includes a better assessment of the uncertainties in the model and in the observations used for the background and for the15

assimilation.

Code availability. Elmer/Ice code is publicly available through GitHub (https://github.com/ElmerCSC/elmerfem, Gagliardini et al. (2013)).

PDAF is distributed under the GNU General Public License, version 3, and is available at http://pdaf.awi.de.

Appendix A: Notations

Table A1. Notations and values used in this study associated with the ice flow model

Prognostic variables:

H = zs � zb m Thickness

zs m top surface elevation

zs::
zb m bottom surface elevation

Diagnostic variable:

u ma�1 horizontal velocity

Parameters:

ab = 0.0 ma�1 basal melting

as = 0.5 ma�1 surface accumulation

b m bed elevation

B = 0.4 Mpa a1/3 ice rigidity

C m basal friction coefficient

m= 1/3 friction law exponent

n= 3 Glen’s creep exponent

⇢i = 900 kgm3 ice density

⇢w = 1000 kgm3 sea water density

Numerical parameters:

dt= 510�3 a model time step

dx= 200 m mesh resolution
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Table A2. Notations and values used in this study associated with the ensemble filter

Variables:

x= (zs, b,C) state vector

P covariance matrix

Stabilisation parameters:

r m localisation radius

⇢ forgetting factor

Sizes:

Ne ensemble size

Nx state vector size

Ny observation vector size

Others:

�t= 1 a time interval between two analyses
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Figure 1. Principle of data assimilation (Adapted from Carrassi et al. (2018)). Having a physical model able to forecast the evolution of a

system from time t= t0 to time t= Tf (cyan curve), the aim of DA is to use available observations (blue triangles) to correct the model

projections and get closer to the (unknown) truth (dotted line). In EnKFs, the initial system state and its uncertainty (green square and

ellipsoid) is represented by Ne members. The members are propagated forward in time during n1 model time steps dt to t= T1 where

observations are available (Forecast phase, orange dashed lines). At T = t1 the analysis uses the observations and their uncertainty (blue

triangle and ellipsoid) to produce a new system state that is closer to the observations and with a lower uncertainty (red square and ellipsoid).

A new forecast is issued from the analysed state and this procedure is repeated until the end of the assimilation window at t= Tf . The model

state should get closer to the truth and with lower uncertainty as more observations are assimilated. Time dependent variational methods

(4D-Var) iterate over the assimilation window to find the trajectory that minimizes the misfit (J0) between the model and all observations

available from t0 to Tf (violet curve). For linear dynamics, Gaussian errors and infinite ensemble sizes, the states produced at the end of the

assimilation window by the two methods should be equivalent (Li and Navon, 2001).
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Figure 2. (A) Reference ice sheet topography every 10 years from t= 0 to t= 200a (black to grey). (B-D) GL position as a function of

the simulation time for the reference (black line), for the ensemble (grey lines), and for the deterministic forecast (magenta line) (B) without

assimilation, (C) with assimilation up to t= 20a and (D) with assimilation up to t= 35a. The right column show a zoom on the first 40

years. In C-D), the horizontal dashed line show the end of the assimilation window.
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Figure 3. (left) RMSE between the reference and the analysed ensemble mean for the bed and friction coefficient. (Right) Bed and friction

coefficient, the reference is shown in black, the synthetic bed measurements in the top panel are shown as green dots, the ensemble mean

before assimilation is in blue and at t= 35a in red. The shading shows the ensemble spread between the minimum and maximum values,

before assimilation (blue) and at t= 35a (red). The dashed vertical lines show the GL position at t= 0 and t= 35a.
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Figure 4. Thwaites Glacier (Antarctica). Model results from Brondex et al. (2018): model velocities (top) and friction coefficient C and

bed elevation b extracted along three streamlines (same color code). Synthetic values used in this study are shown with black dashed lines.

Note that the mesh resolution varies from v 200m close to the GL, shown in yellow in the top panel, to v 10km at the upstream end of the

streamlines.
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Figure 5. Initial ensemble for the bed and friction coefficient, the reference is shown in black, the synthetic bed measurements are shown as

green dots
::::::
triangles in the top panel, the ensemble mean is the dashed blue curve and the shading shows the ensemble spread. Coloured solid

lines show the first 3 members.
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Figure 6. Velocity, u, at t= 1a and t= 35a. The reference is in black, the ensemble mean before and after the analysis is in blue and red,
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Figure 7. RMSE at t= 20a, relative to the initial (before assimilation) RMSE for the 50-member ensemble as a function of the forgetting

factor ⇢ and the localisation radius r for different ensemble sizes Ne. A) for the bed and B) for the friction coefficient. Black lines as isovalues

spaced by 5%.
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Figure 8. Same as Fig. 3 but with the RMSE computed for x 2 [0,300] km.
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Figure 9. RMSE (solid lines) and square root of the averaged ensemble variance (dashed lines) during the assimilation window for (top) the

velocity, u, and (bottom) the free surface, zs. Each year, the blue triangle and the red square are the RMSEs before and after the analysis,

respectively. Each segment represent a 1-year forecast step.
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Figure 10. Sensitivity to the surface velocities observation error �obs
u : RMSEs after each analysis, computed only for x� 300km for b and

C.. The thick red lines correspond to the results with �
obs
u = 20 ma�1 and �zobss

= 10 m shown in Figs. 3 and 9. The horizontal dashed

lines correspond to the observation errors �obs
u and the results are presented with solid lines using the same color code. �zobss

= 10 m for all

the experiments.
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Figure 11. Sensitivity to the surface elevation observation error �zobss
: RMSEs after each analysis, computed only for x� 300km for b and

C. The thick red lines correspond to the results with �
obs
u = 20 ma�1 and �zobss

= 10 m shown in Figs. 3 and 9. The horizontal dashed lines

correspond to the observation errors �zobss
and the results are presented with solid lines using the same color code. �obs

u = 20 ma�1 for all

the experiments.
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Figure 12. Ensemble forecast at t= 100 a: (top) relative change of volume above floatation (VAF) and (bottom) GL position with (left) no

assimilation, (center) assimilation up to t= 20 a and (right) assimilation up to t= 35 a. The red circle correspond to the reference run and

the magenta square to the deterministic forecast.
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