
Dear Editor, dear reviewers,
I really want to thank the two reviewers for their comments that I found very complementary and helpful to better explain the
aims and results of this paper.
Both reviewer agreed that this paper has the potential of providing a good introduction of ensemble DA methods for the ice
sheet modelling community.5
To introduce the sequential DA algorithm and illustrate the difference with variational DA, I have added a new figure 1 (Fig.
1), that provides a schematic representation of the results expected with both methods.
Following the suggestions from the reviewers, I have mostly rewritten section 2.2 where I describe the assimilation setup.
There is an abundant literature in geophysics on DA methods and it is not always easy to understand all the subtleties and
differences between different methods. I hope that I have been successful now in giving a self-contained and clear introduction10
to the method.
To show that the synthetic experiment is realistic I have added a new Figure 3 (Fig. 2) where I compare the values for b and C
used in this study to those obtained by Brondex et al. (2018) for Thwaites Glacier in Antarctica.
For the interpretation of the results I have performed additional experiments where I study the DA performance in retrieving
the basal conditions as a function of the noise level in the surface observations (Figs. 8 and 9).15
You will find below my point by point answer to the reviewer comments, with the original comments in black and my answers
in red

Figure 1. NEW FIGURE 1. Principle of data assimilation (Adapted from Carrassi et al. (2018)). Having a physical model able to forecast the
evolution of a system from time t= t0 to time t= Tf (cyan curve), the aim of DA is to use available observations (blue triangles) to correct
the model projections and get closer to the (unknown) truth (dotted line). In EnKFs, the initial system state and its uncertainty (green square
and ellipsoid) is represented by Ne members. The members are propagated forward in time during n1 model time steps dt to t= T1 where
observations are available (Forecast phase, orange dashed lines). At T = t1 the analysis uses the observations and their uncertainty (blue
triangle and ellipsoid) to produce a new system state that is closer to the observations and with a lower uncertainty (red square and ellipsoid).
A new forecast is issued from the analysed state and this procedure is repeated until the end of the assimilation window at t= Tf . The model
state should get closer to the truth and with lower uncertainty as more observations are assimilated. Time dependent variational methods
(4D-Var) iterate over the assimilation window to find the trajectory that minimizes the misfit (J0) between the model and all observations
available from t0 to Tf (violet curve). For linear dynamics, Gaussian errors and infinite ensemble sizes, the states produced at the end of the
assimilation window by the two methods should be equivalent (Li and Navon, 2001).

REVIEWER 1, Dan Goldberg

This study is one of the first to apply Ensemble Kalman Filtering methods to an ice-sheet model with a nontrivial stress
balance (attempts have been made with Shallow- ice models). Such methods, rather than using deterministic means to optimise20
a cost/misfit function in order to infer hidden properties from error-prone observations, essentially generate an ensemble meant
to encompass a probability distribution, and repeatedly apply model dynamics and bayesian inference on this ensemble in
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order to refine the statistical properties of an unknown state and parameter set. The paper implements a variant of the EnKF
known as the Ensemble Subspace Transform Kalman Filter, which is simply a particular choice and one which is meant to
avoid costly computation of an ensemble covariance (which i do question – please see specific comments). The methodology
presented is really just one step in a long long road toward operational ice-sheet forecasting (compare with over a half-century
of development in numerical weather prediction) but an important one – especially when considering there is at least one5
person with a question about filtering methods every time a talk is presented in state and parameter estimation for ice sheets (as
the authors have pointed out, there are already others working toward the ice-sheet version of the other main tool of weather
prediction, 4Dvar). Thus i feel it is a worthwhile study which should be worthy of publication as a methodological investigation
(and the authors frame it as such, at least in the conclusions section. However I do think the manuscript needs work before this
can happen. On the basis of the extent of the comments below I choose "major revisions" – but there is no formal definition10
of what this means, and the editor may choose to ignore this classification. I am not suggesting modification of the algorithm
and/or results, simply clarity of text.
I thanks Dan Goldberg for the time spend on trying to understand the description of the method. His comments where very
helpful to point parts that where unclear. I totally agree that there is still along road toward operational ice-sheet forecasting,
and that will require to i) develop/adapt new methodologies but also (ii) improve the data bases and the characterisation of15
the observation uncertainties as pointed in my discussion. Indeed, I see this paper as a methodological investigation to see and
present the potential of the method.
Indeed there is several deterministic variants of the Ensemble Kalman Filter. All are based on the Kalman update equation for
the analysis. Keeping the covariance matrix in a square root factorisation form, allows to derive an expression for the transfor-
mation of the forecast ensemble to the analysed ensemble. As different ensembles could have the same mean and covariance20
matrix, different implementations will lead to different analysed ensembles and thus different solutions. As mentioned in the
text, ESTKF is closely related to the SEIK and ETKF filters that are widely used in oceanography and meteorology. In the
original paper that derives the ESTKF, the implementation of ESTKF is estimated to be slightly more efficient that the ETKF,
while it shares the same interesting properties of minimal transformation. However the two filters should lead to very similar
solutions. I hope that the description of the filter has been clarified in the new version.25

GENERAL COMMENTS

For one thing upon reading I had significant detail understanding what was done. There were a number of points on which i
felt clarity was needed, and most of these are addressed below in line-by-line comments so I will not list them here. Note that
these specific questions compose the bulk of my review – and this is because without having a better idea of what was actually
implemented, it is difficult to critique the results further!30
Thanks. See my point by point answer below.
However something I will state in the general comments is that despite similarities, ice-sheet models are distinct from e.g.
atmospheric models in that the unknown parameters most sought cannot generally be observed directly, in contrast to models
in which the initial conditions in a forecast/analysis cycle represent the parameters of greatest interest. This is exemplified
by the fact that the “state” vector contains non-dynamic variables (friction and bed elevation) and the fact that the observation35
operator, rather than being a simple averaging or restriction, encapsulates a fully nonlinear solve of an elliptic partial differential
equation. I think this is something that should be made very clear to members of the climate and meteorological community
who read this work.
It is relatively classical that not all the variables are observed, even for dynamic state variables; and EnKFs are also widely
used for state and parameter estimation. I have clarified the fact that the observation operator is the force balance equation and40
thus highly non-linear..
One overall comment is regarding the distribution of the ensemble. As I understand it, even if the initial ensemble is evenly
distributed given the prior, it is difficult to know a pri-ori whether the projection of the ensemble will represent a favorable
distribution of the projected space. That is, what if the forecast “clusters”, underrepresenting important regions of state space?
As I ask below, it is unclear whether there is a “reinitialisation” of the ensemble at every step. Clearly this topic has already45
been considered in the NWP literature, for example Song et al (2013) makes use of a time-dependent adjoint (a tool the authors
state the work here is meant to circumvent the need for) in order to generate a more representative ensemble.
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The algorithm leads to a transformation of the forecast ensemble to the new analysed ensemble, that has the mean and co-
variance matrix given by the original Kalman update equation. Yes with small ensembles, because the covariances matrices
are given by a "small" ensemble that can not represent the full error-space, the analysis tends to be over-confident resulting
in ensembles with a spread that becomes to small. On the long run the analyses may start to ignore the observations, causing
an ensemble that will diverge from the truth. Localisation and inflation are pragmatic remedies to this undersampling issue.5
Indeed combining ensemble and variational methods will lead to more robust estimation but at an higher cost. I have clarified
the presentation of the localisation and inflation methods, and state in the introduction that the tendency is to combine varia-
tional and ensemble methods to take the advantages of both. The objective of this first study is to use tools that are widely use
in other domains to test their applicability for ice-sheet modelling. Complexity can be added in future studies when the main
weaknesses of the method will be clearly identified; so I’m not aiming to give here a detailed discussion on hybrid ensemble/var10
methods.
The new section 2.2.2 now reads:

2.2.2 Filter stabilisation: inflation and localisation

In practice for large scale problems, EnKFs as Monte-Carlo methods can suffer from under-sampling issues. First, because of15
the rank deficiency of the covariance matrix Pf , the analysis adjust the model state only in the error subspace, ignoring error
directions not accounted for by the ensemble (Hunt et al., 2007). This can result in an analysis that is overconfident and under-
estimates the true variances. On the long run, the ensemble spread will become too small and the analysis will give to much
weight on the forecast finally disregarding the observations and diverging from the true trajectory. A common simple ad-hoc
remedy is to inflate the forecast covariance matrix with a multiplicative factor (Pham et al., 1998; Anderson and Anderson,20
20 199). Here, inflation has been introduced in Eq. (??) using the forgetting factor ρ ∈ [0,1] with ρ= 1 corresponding to no
inflation (Pham et al., 1998). It is the inverse of the inflation factor used by Bonan et al. (2014).
Second, the rank deficiency of Pf leads to the appearance of spurious correlations between parts of the system that are far
away. As these correlations are usually small, a common remedy is to damp these correlations with a procedure called lo-
calisation. In covariance localisation, localisation is applied by using an ensemble covariance matrix that results from the25
Schur product of Pf with an ad-hoc correlation matrix that drops long range correlations (Hamill et al., 2001; Houtekamer
and Mitchell, 2001). However, this localisation technique is not practical for square-root filters where Pf is never explicitly
computed. Here, as in Bonan et al. (2014), we use a localisation algorithm based on domain localisation and observation
localisation (Ott et al., 2004; Hunt et al., 2007). Both methods are illustrated in Sakov and Bertino (2011) who conclude that
they should yield to similar results. Domain localisation assumes that observations far from a given location have negligible30
influence. In practice, the state vector in each single mesh node is updated independently during a loop through the nodes that
can easily be parallelized for numerical efficiency. For each local analysis, only the observations within a given radius r from
the current node are used. In addition to avoid an abrupt cut-off, the observation error covariance matrix R is modified so
that the inverse observation variance decreases to zero with the distance from the node using a fifth-order polynomial function
which mimics a Gaussian function but has compact support (Gaspari and Cohn, 1999). Because it drops spurious long-range35
correlations and allows the local analyses to choose different linear combinations of the ensemble members in different re-
gions, localisation implicitly increases the rank of the covariance matrix, leading to a larger dimension of the error subspace,
implicitly increasing the effective ensemble size and the filter stability(Nerger et al., 2006; Hunt et al., 2007). However, it has
been reported that localisation could produce imbalanced solutions (Mitchell et al., 2002). Here, because the force balance
are non-inertial and the SSA assumes that the ice-shelves are in hydrostatic equilibrium, this shouldn’t be an issue. Another40
disadvantage is that, when long-range correlations truly exist, the analysis will ignore useful informations that could have been
used from distant observations.
Here, the forgetting factor ρ and the localisation radius r will be used as tuning parameters of the filter. Improving the the-
oretical understanding of these ad hoc procedures and developing adaptive scheme is an active research area and interested
readers can refer to review articles ((e.g. Bannister, 2017; Carrassi et al., 2018; Vetra-Carvalho et al., 2018)45
I also question whether the “toy problem” proposed by the authors truly tests all of the difficulties a filtering approach might
encounter. I bring this up in more detail below but some aspects of the approach seem to hang on the “locality” of the problem
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(a technique called “localisation” is employed to ignore long-distance correlations of the state). I wonder if this only works
because the problem is one-dimensional with no buttressing involved, so essentially to a strong degree (though not completely)
the velocities depend locally on basal friction and geometry? Would this still be a good approach in a 2D domain with an
expansive embayed ice shelf (such as the Ross or FRIS), or very weak basal traction over a large part of the domain (such as
Pine Island)?5
As explained in the new version, localisation ignores observations that are far away for the local analyses as, often, long range
correlation, are poorly estimated due to the sampling. In the case where true long range correlations may exist it will simply
ignore this so the analysis may not use the full informations contained in the observations. The lower computational cost due to
a small ensemble comes at a price. However I don’t think that the 1D experiment ignore this problem. On the contrary, because
the shelf is unbuttressed we may expect that the velocities on the shelf are extremely correlated with the basal conditions at the10
GL. Localisation is now better explained but I agree that more work will be required in the future to see if this can be improved.
Following the suggestions from reviewer 2, I know compare the values used in this study with those given by Bonan et al.
(2014):
We have used inflation and localisation to stabilise the filter. The inflation giving the best results in Bonan et al. (2014)
(ρ= 0.87− 1.02) is similar to the values tested in this study. For the localisation radius r we have used values between 4 and15
16 km, while it ranges from 80 to 120 km in Bonan et al. (2014). While this seems counter-intuitive as the velocities depends
only on the local conditions with the shallow ice approximation used by Bonan et al. (2014), in fact, because we use a different
grid size (dx= 0.2km compared to dx= 5km in Bonan et al. (2014)), for each node we assimilate twice as much observations.
Our results are in agreement with the adaptive localisation radius proposed by Kirchgessner et al. (2014) . Using three different
models, Kirchgessner et al. (2014) have shown that good performances are obtained when r is such that the effective local20
observation dimension, defined as the sum of the weights attributed to each observation during the local assimilation, is equal
to the ensemble size. Here, the value r = 8km used for the 50 members-ensemble corresponds to an effective observation
dimension of 56. Future studies should investigate if this result can be transposed to realistic 2D simulations with unstructured
meshes.
The methodology essentially uses a whole “family” of geometries and velocities to infer hidden parameters of the system. This25
somewhat bears similarity to a different paper led by the author, “Assimilation of surface velocities acquired between 1996 and
2010 to constrain the form of the basal friction law under Pine Island Glacier” – aside from the statistical formality, and the
introduction of consistency between these geometries by way of the continuity equation (which is actually not so consistent
if the analysis updates do not conserve mass!!!) – I wonder if the author would consider comparing and contrasting these
approaches.30
In the paper you mention, this was a collection of "snapshot" inversions where we assumed a constant sliding coefficient
between consecutive observed geometries and indeed we didn’t use the continuity equation. It would be interesting to compare
both method for the reconstruction part, i.e. the performances for retrieving constant basal properties, but I think this would
make a full paper. The advantage of the method used here is that we have, at the end of the assimilation window, a transient
model that has been initialised using the available observations and we can make projections. So I prefer to discuss this approach35
in the context of initialising a transient ice flow model, similarly to 4D-Var, and I think a discussion between these approaches
will add more confusion. Concerning the mass conservation, yes the analysis does not conserve mass as the ice-sheet volume is
uncertain because the geometry is uncertain. However we expect that the uncertainty is reduced as observations are assimilated
and we hope that the volume we have at the end of the assimilation window is a good estimator of the true volume, obtained
by the combination of the model and the observations. However, you are right that if we are interested by a re-analysis of the40
volume change during the assimilation window a 4D-Var or a smoother might be more appropriate. I have tried to clarify this
point and hope that the new figure 1 clarifies the concept of sequential DA.
I have added a new paragraph to discuss this point in section 3.3 Assimilation set-up:
Because both zs and b are included in the state vector, the analysis does not conserve the ice sheet volume, neither for the
ensemble mean and the individual members. However, the estimation of the ice-sheet volume is improved at each analysis45
as more data are assimilated, and the final volume is the best estimation provided by the filter knowing the model, all the
observations during the assimilation window and their uncertainties. As mentioned in the introduction, if the main interest is
an analysis of past volume changes, as smoother might be more appropriate and the smoother extension of the ESTKF can be
found in Nerger et al. (2014).
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The distinction between EnKF, 4DVar and smoother is introduced in the introduction as:
EnKF approximates the state and the error covariance matrix of a system using an ensemble that is propagated forward in time
with the model, avoiding the computation of the covariance matrices and the use of linearised or adjoint models. Contrary 15
to time-dependent variational methods where the objective is to find the model trajectory that minimizes the difference with
all the observations within an assimilation window, EnKF assimilates the observations sequentially in time as they become5
available using the analysis step of the Kalman Filter, as illustrated in Fig. 1. The model trajectory is then discontinuous and,
at a given analysis, the model is only informed by past and present observations. For the retrospective analysis of a time period
in the past, i.e. a reanalysis, ensemble filters can easily be extended to smoothers to provide analyses that are informed by all
20 past, present and future observations (Evensen and van Leeuwen , 2000; Li and Navon, 2001; Cosme et al., 2012; Nerger
et al., 2014)10
Finally, i point out that, despite the divide between filtering and adjoint-based methods, there is a growing sentiment in NWP to
take what is “best” from the various approaches and form more hybrid schemes (for instance the Song paper referenced above,
see also Kalnay 2010). Therefore I urge the author to reflect on such innovations and how they might be useful in further
developments for filtering of ice-sheet models.
I now mention this in the introduction, but I think first we have to test the performances of individual methods to identify the15
weak points, so going to far in a discussion of what we might expect by using hybrid methods is premature.

Line by Line comments

– p2.l3: would be good to state this is a point when only resolving 1 horizontal dimension

this has been changed to:
Improving SLR estimates requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the20
location where the ice detaches from its underlying bed and goes afloat on the ocean, implying that this is a line in
2D-plane view and a point in 1D..

– p3.10 variational

done

– p3.13 "use of linearised or adjoint models" this assumes a trivial mapping from model vars to observations – see my25
comments below.

This point has been clarified. If it is true that the linearised observation operator is used in the KF update equation, in
practice we do not need to compute it as it always act as an operator to project the ensemble members in the observation
space, and we make the classical linear approximation

Yf = HXf (1)30

with Xf = (xf1 , ...,x
f
Ne

) ∈ RNx×Ne the forecast ensemble matrix and Yf = (yf1 , ...,y
f
Ne

) ∈ RNy×Ne its equivalent
in the observation space where yfi =H(xf1 ), i= 1, ...,Ne. This point has been clarified in section 2.2

– p3.15 rewrited?

yes thanks.

– p3.35 – would be good to explain as soon as possible i.e. here what you mean by a twin experiment, or give a reference,35
as this is jargony

The meaning of twin experiment is now introduced in the introduction:
In the context of ice-sheet modelling, encouraging results have been obtained by ? for the estimation of the state and basal
conditions of an ice-sheet model using the Ensemble Transform Kalman Filter (ETKF, ??). They study the performance
of the method using idealised twin experiments where perturbed observations generated from a model run are used in40
the DA framework to retrieve the true model states and parameters.
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– p 5 thru eq (10): this is a well written explanation of the EnKF. However I have a few questions which might be due to
my lack of familiarity with filtering methods, but I think this might be true of many readers of this paper. This is also
important as, though it is not the algorithm used, the one used is far more complex so this is a chance to explain your
methods to the reader.

(a) is Pˆf = Pk?5

Yes I mention that I omit the time index k as all the analysis is done at a given time tk. However, ESTK rewrites
P f as a function of Xf and Ω as explained in the new version.

(b) you do not say how the individual ensemble members (xiˆk,a) arise/are updated, only the state vector (which looks
like the mean of the analysed ensemble)?
it is now clear that the update equation for the mean and covariance is rewritten to give a unique equation for the10
transformation of the forecast members xfi to the analysed members xai

(c) is the posterior/analysis covariance used at all in subsequent time/filtering steps, as from eq 7 the covariance is
always formed from the present ensemble – so i am struggling to grasp what is done in the algorithm in a multi-
time step (k>1) framework.
I now clearly mention that the analysed ensemble is used as the initial ensemble for the next forecast, and so on15
until the end of the assimilation window. I also think that the new figure 1 helps to clarify this point.

(d) For each new forecast/analysis cycle, is the ensemble generated anew from the analysis-generate ensemble statis-
tics?
See reply above, the analysed ensemble is directly obtained for the analysis equation and can be used as the initial
ensemble for the next forecast.20

(e) the formula given assumes normality of the ensemble does it not?
As mentioned in the introduction the KF analysis is optimal for Gaussian distributions and it only uses the first
moments of the distribution, mean and covariance.

– P5 eq(8): Mk is trivially the identity on the time-invariant components of x, i.e. b and C, correct?

Yes, I now explicitly mention that I assume persistence for the parameters during the forecast step, in sec 3.3:25
The state vector is augmented by the two parameters to be estimated, the bedrock topography b and the basal friction
coefficient C. For the parameters we assume a persistence model, i.e. no time evolution, during the forecast step (Eq. 8).

– p6.4. I am struggling to see why Pˆf need be formed, as it is a tensor product of X with itself (subject to (a) above).
For instance, the last term in 9(a) is written

X(XˆTHˆT )((HX)(XˆTHˆT ) +R)ˆ− 1 (2)30

so the largest matrix that need be formed is HX, and no matrix of (Nx x Nx) need be formed. Perhaps I do not understand
where and how P^a is actually used however.

Yes this is the basis of the implementation, because the covariance matrices can not be formed, we keep the square-
root factorisation. This allows to obtained an expression for the transformation of the forecast ensemble to the analysed
ensemble that exactly has the covariance matrix P a. So we don’t have to explicitely compute and store P a.35

– P6.5 I don’t feel the concept of "error subspace" is ever suitably explained as i read the paper still wondering about this.
Ω as defined in eq 11 simply seems to be a "mixing" matrix that slightly changes the ensemble members – how is this an
"error subspace"? (Assumiing that X ∈RˆNxxNe – i take it this is the case for eq 11 to make sense...)

This is now explained as follow:
Moreover, the sample covariance matrix approximated with an ensemble of size Ne (Eq. 7) is only a low-rank approx-40
imation of the true covariance matrix and its rank is at most Ne− 1. ESTKF uses this property to write the analysis in
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a (Ne− 1)-dimensional subspace spanned by the ensemble and referred to as the error subspace (Nerger et al., 2005a)
The forecast covariance matrix Pf is then rewritten as

Pf =
1

Ne− 1
LLT (3)

where L ∈ RNx×Ne−1 is given by

L = XfΩ (4)5

The matrix Ω ∈ RNe×Ne−1 defined as

Ωij =



1− 1

Ne

1
1√
Ne

+ 1
for i= j, i < Ne

− 1

Ne

1
1√
Ne

+ 1
for i 6= j, i < Ne

− 1√
Ne

for i=Ne

(5)

projects the ensemble matrix Xf onto the error subspace. The multiplication with Xf subtracts the ensemble mean and
a fraction of the last column of the ensemble perturbation matrix X′

f from all other columns.

– Eqs 11-16: in contrast to the discussion of the EnKF this is very nonintuitive. You state (P6 line 7) that you approximate10
the covariance matrix by a low-rank matrix, which seems intuitive, but where is the equation describing this low-rank
approximation and how is it done? (for what it is worth, low-rank approximations of covariance generally involve eigen-
value decompositions to retain the leading order covariance structure, but i do not see this here...

See reply above. It is a low rank matrix as it is approximated by an ensemble of size Ne, so the rank of the sample
covariance matrix is at most Ne− 1, while, in principle, the true covariance matrix could be full-rank.15

– P6.23-25: can you give a more intuitive description of inflation? Why do you need it and what does it achieve? As it is I
am not even sure if inflation corresponds to lower or higher ρ.

Following suggestions from reviewer 2, I now give better explanations of inflation and localisation in section 2.2.2. See
reply above.

– P7, first paragraph. I’m sorry but I am struggling to follow this paragraph. For instance, how does the non-linear obser-20
vation operator applied to xi lead to the product HXˆf? i imagine they are related, as H is a linearisation ofH (which,
by the way, clashes with the symbol for ice thickness) but this is not explained.

See reply above. This is now better explained and I useH for the non-linear observation operator.

– P7.8. This assumption, i imagine, is valid in many NWP settings given the hyperbolicity of the equations. Are you
confident it is a good approach for marine ice-sheet modelling?25

Also in NWP you may have long-range correlations. Localisation is better explained and presented as a pragmatic way
to counteract under-sampling issues. As you mention this paper is a first step toward operational DA and more work will
be required on these aspects.

– P8.26. I was surprised by your suggestion that annual DEMs would be available over a multiple decadal period, as i
do not know of such products for antarctica. The best i have seen is decadal or semidecadal with MUCH lower spatial30
resolution (e.g. Konrad et al 2017, GRL). Having skimmed the ArcticDEM website i do see mention of the spatial
resolution, but not the temporal. Unless you can argue that such spatiotemporal resolution is reasonable and available, i
suggest caveating this discussion by saying it is an idealised experiment and this is the type of spatiotemporal resolution
to which the community should aspire.

7



I agree that we don’t have this kind of product yet for decadal periods, but it should become available quickly and you
can now find DEMs for the Greenland Ice sheet with a with a 3-month temporal resolution (https://nsidc.org/data/nsidc-
0715). This has been updated.

– P9.6: prognostic ice sheet models generally step forward the ice thickness, not surface elevation (as shown in your eq 4).
In the analysis step you are updating zs. Is there a simple mapping from your model state X to thickness?5

Yes I now clearly mention that the floatation equation is used for the mapping between the ice thickness and the free
surface elevation. As mentioned in the discussion, with a full-stokes model that solves the two free surfaces you will
have to put both free surfaces as state variables.

– P9.6: as mentioned in the previous comment you are updating zs in each analysis step, which i am inferring then maps
on to an update in thickness (tell me if i am wrong). Is this update at all volume conserving? If not should this be a10
concern?

See reply above. Because this is a sequential algorithm the analysis does not conserve volume because the volume is
uncertain, i.e. both the free surface and bed elevation are in the state vector. This is not a concern as this is the aim of
DA to improve the estimation of the system state by using the observations. Again, for a re-analysis it might be more
appropriate to use a smoother instead of a filter to interpret past volume changes.15

– P9.21-28: Lots of jargony language in this paragraph, likely not to be understood by the target audience. What is a sill
and a nugget? You talk of the prediction obtained by kriging – is this something you have calculated? Is there any way
to evaluate whether the ensemble does converge to it? Is this a way of evaluating whether the ensemble is large enough?

It is better explained now. The method directly draw realisations, i.e. members, from the distribution that would be
obtained from kriging. This is not an exact sampling method, i.e. the mean and covariance of the ensemble will not20
exactly match the mean and covariance of the kriging prediction. As the spatial correlation is already given by a model,
i.e. the analytical variograms, we want an initial ensemble that is representative of what we think is the initial uncertainty
given the available a-priori or observations, and this is what we get.

– Section 4.1: Upon reading this, I realised that (a) i am unsure what time step you used, and (b) more importantly, whether
each time step is a forecast/analysis step, as Mk in eq 8 could easily encompass multiple time steps – is this the case?25

I now mention that the time step is 0.005 a and the time interval between two analysis is 1 year. So yes it is clear now
that we can have multiple model time steps between two analyses.

– P10.15: again, these factors seem very important, and as mentioned above not overly well explained.

see reply above

– Section 4.2 – section headings should be capitalised30

Done

– P12.25: Two comments about this paragraph: (a) Code that is continuously being up- dated and new algorithms devel-
oped might be an issue for *analytically* derived adjoint models, but not as much for automatic differentiation, which
is specifically designed to generate new adjoint code when the “primal” code is changed; and (b) I return to the my con-
fusion over the first paragraph on P7. Your observation matrix H contains, at the very least, a linearisation of the stress35
balance equation mapping geometry and basal friction onto velocity. It is not clear how you are finding this operator if
not through some sort of forward model linearisation.

ok I have removed this sentence. I agree that with automatic code differentiation, in principle it should be relatively
straightforward; however, I think most people will still agree that maintaining an adjoint code remains difficult in practice
for research codes. As explained above there is no linearisation required in the method used here.40
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ANONYMOUS REVIEWER 2

First of all, I would like to apologise to the author and the editor for providing my review so late. I consider this paper treats an
important subject in an innovative manner and, as such, deserves a careful review. I hope you will find my review insightful.
Yes many thanks for this insightful review. Please find below my point by point answer.

OVERVIEW10

The paper aims to adapt an Ensemble Kalman Filter (EnKF) to estimate jointly the surface elevation, the bedrock topography
and the basal friction coefficient in the case of a flowline marine ice sheet. Time-dependant ensemble data assimilation (DA)
approaches are relatively new for ice sheet initialisation. The paper focuses on the case of a grounding line retreat for unstable
glaciers, which is a hot topic in ice sheet modelling and climate change. It also studies the influence of DA on forecasts of
grounding line retreat.15

GENERAL COMMENTS

The paper targets an important and timely question: how to initialise and estimate basal parameters to forecast the evolution
of marine ice sheets and glaciers especially in the case of an unstable retreat? and proposes to use an EnKF (here an ESTKF)
in this context. EnKFs have shown how efficient they can be in a wide range of applications (not exclusively meteorology and
oceanography but also hydrology, crop modelling, oil extraction, pollutant dispersion, . . .), are a good alternative to adjoint-20
based methods and are the basis of hybrid methods that are now popular in DA (see e.g. Bannister, 2017). The paper shows
clearly that EnKFs are a good toolbox for DA in glaciology. The experiment shows clearly how beneficial this approach could
be with adequate figures and a very insightful analysis. Overall I am convinced that the paper in its final form will be a very
good introduction of ensemble DA methods in ice sheet modelling.
Nevertheless, there are few points that prevent me to publish the paper as is. I list them below:25

• I have some reservation about the experimental setup mainly on how the reference run is designed and on how the basal
friction coefficient C is estimated.

– About the reference run: The long-term objective of the study is to forecast accurately grounding line retreat for
Antarctic hemispheric glaciers in the context of global change. However, in the reference run of the experiment,
the grounding line retreat is triggered by the abrupt change of ice rigidity B. I wonder if the simulated grounding30
line retreat is “realistic” compared to one triggered by climate change. Also I have the same question about the
sinusoidal basal friction parameter C. How realistic is it compared to real cases? I know we are in flowline cases
using SSA equations. But it would strengthen the paper if the author could reflect on that subject in the section
3.1. Part of my comment may be due to my lack of knowledge in glaciology, so please accept my apologies if my
comment is irrelevant.35

I now compare the synthetic values for b and C with values obtained by Brondex et al. (2018) in Thawaites Glacier
Antarctica (Fig. 2). This shows that the values are realistic. Note however that the mesh resolution in Brondex et al.
(2018) varies from ≈ 200m close to the GL to 10km 100km upstream, so that the comparison for the wavelengths
are really meaningful only in the first tens of kilometres. For the initial retreat I have added the following discussion:
In Jenkins et al. (2018), observed ice-flow accelerations in the Amundsen sea sector have been attributed to the40
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decadal oceanic variability, where warm phases associated with increased basal melt induce a thinning of the ice
shelves reducing their buttressing effect initiating short lived periods of unstable retreat of the most vulnerable
GLs. In a flow line experiment the ice shelf do not exert any buttressing effect. Using a suite of melting and
calving perturbation experiments for Pine Island Glacier, Favier et al. (2014) have shown that, when initiated,
the dynamics of the unstable retreat is fairly independent of the type and magnitude of the perturbation. Here, to5
trigger the initial acceleration, we instantaneously decrease the ice rigidity to B = 0.3 MPa a−3 at t= 0, keeping
all the other parameters constant.

Figure 2. NEW FIGURE 4. Thwaites Glacier (Antarctica). Model results from ?: model velocities (top) and friction coefficient C and bed
elevation b extracted along three streamlines (same color code). Synthetic values used in this study are shown with black dashed lines. Note
that the mesh resolution varies from v 200m close to the GL, shown in yellow in the top panel, to v 10km at the upstream end of the
streamlines.

– About the assimilation setup: The basal friction coefficient C must be positive. To ensure such thing, you use the
following change of variable C = α2. But by doing so, you do not ensure the unicity of the estimation as α and
−α would lead to the same C. Also I thought that the C parameter could be of different order of magnitude. To10
counteract those potential issues, Bonan et al. (2014) chose the following change of variable C = 10α ensuring the
positivity of C, the unicity of the change of variables and mimicking behaviours with different order of magnitude.
Could you explain why the change of variable you used is more appropriate in your context?
There was no particular reason, only that the reference only span one order of magnitude. To my knowledge I
was one of the first to introduce the change of variable C = 10α. I have performed a new experiment with this15
change of variable to see the differences. The results a given in Figure 3. It can be seen that the performances are
extremely similar. However, for C the RMSE is a little higher (0.0045, instead of 0.004Mpa m−1/3 a1/3), while
there is nearly no difference for the velocities. I think this can be explained by the fact that the sensitivity of the
model velocities to the remaining uncertainty in C is lower that the observation uncertainty so the DA can not
really discriminate the two reconstructions. To see this effect I present in the new version of the paper, additional20
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experiments where I study the error on the retrieved values as a function of the observation noise. see answers
below.
The part describing the change of variable as been updated as follow:
Because the velocities are insensitive to the basal conditions where ice is floating, these two parameters are in-
cluded in the state vector only for the nodes where at least one member is grounded. In addition, to insure that C5
remains positive, we use the following change of variable for the assimilation C = α2. Although it does not insure
uniqueness of the estimation as α and−α would lead to the sameC, this change of variable is classical (Mac Ayeal
(993) and was chosen as the reference friction coefficient spans only one order of magnitude. Similar performances
where found using the other classical change of variable C = 10α as in Gillet-Chaulet et al. (2014).

Figure 3. RMSEs after analysis for the assimilation up to t= 35a. Results shown in the paper with he change of variable C = α2 are in red;
results with the change of variable C = 10α are in blue.

• The paper is full of interesting results but sometimes they deserve a more thorough analysis.10

– The assimilation window is between 1 yr and 35 yr (you run forecasts from analysed states at t = 20 yr and t =
35 yr). But the grounding line is almost steady between t = 13 yr and t = 32 yr. We also see that after the first 10
years of assimilation, RMSD for C remains stable. I wonder if those two points are correlated meaning is it easier
or more difficult to estimate C in the case of a retreating grounding line (hence a more dynamic ice sheet) or an
almost steady state? As the behaviour of grounding line is different from one marine glacier to another, it would be15
beneficial to the community if you could push your study in that direction in the revised version of the manuscript
(for example continuing DA after t = 35 yr for the next ten years and study what happens).
We don’t see more improvement if the assimilation is pursued up to t= 50a. My understanding is that the sensitivity
of the observations to the remaining uncertainties is already below the noise level, especially for the velocities, so
we still see an improvement for the few kilometres upstream of the grounding line but this do not reflects on the20
values for the RMSE for C and b, that are computed from x= 300km up to the position where at least one member
is grounded (Fig. 4 and 5). However, we still see an improvement for the forecast as shown in Figs. 6 and 7
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Figure 4. RMSEs after analyses for an assimilation up to t= 50a.

Figure 5. Same as Fig. 3 but or an assimilation up to t= 50a.
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Figure 6. Same as Fig.2 but for an assimilation up to t= 50a.
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Figure 7. Same as Fig. 12 but or an assimilation up to t= 50a.
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I have added two additional experiments where I vary the noise level for the observed velocities and the surface
elevation (Figures 8 and 9). This shows that decreasing the uncertainty on the observed velocities improves the
RMSE for b and C, but the results for the reconstructed velocities are not significant, so that 2 ensembles with
slightly different RMSE have very similar differences for the velocities and the reconstruction stagnates. Changing
the noise for the observed surface elevation has a small effect and in fact RMSEC increases for the lowest noise5
levels but this do not reflect on the velocities.

Figure 8. NEW FIGURE 10.Sensitivity to the surface velocities observation error σobsu : RMSEs after each analysis, computed only for
x≥ 300km for b and C.. The thick red lines correspond to the results with σobsu = 20 ma−1 and σzobss

= 10 m shown in Figs. ?? and ??.
The horizontal dashed lines correspond to the observation errors σobsu and the results are presented with solid lines using the same color code.
σzobss

= 10 m for all the experiments.
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Figure 9. NEW FIGURE 11. Sensitivity to the surface elevation observation error σzobss
: RMSEs after each analysis, computed only for

x≥ 300km for b and C. The thick red lines correspond to the results with σobsu = 20 ma−1 and σzobss
= 10 m shown in Figs. ?? and ??.

The horizontal dashed lines correspond to the observation errors σzobss
and the results are presented with solid lines using the same color

code. σobsu = 20 ma−1 for all the experiments.

– Figure 5 shows interesting results about the performance of ESTKF with inflation and localisation and varying
sizes of the ensemble. Bonan et al. (2014) has performed the same kind of studies for grounded ice sheet using
an ETKF. Do you obtain similar optimal parameters for inflation and localisation in your experiment or are they
different from Bonan et al. (2014)? It would be interesting to reflect on how the physics of the model influences
such parameters.5

I have added the following discussion:
We have used inflation and localisation to stabilise the filter. The inflation giving the best results in Bonan et al.
(2014) (ρ= 0.87− 1.02) is similar to the values tested in this study. For the localisation radius r we have used
values between 4 and 16 km, while it ranges from 80 to 120 km in Bonan et al. (2014). While this seems counter-
intuitive as the velocities depends only on the local conditions with the shallow ice approximation used by Bonan10
et al. (2014), in fact, because we use a different grid size (dx = 0.2km compared to dx = 5km in Bonan et al.
(2014)), for each node we assimilate twice as much observations. Our results are in agreement with the adaptive
localisation radius proposed by Kirchgessner et al. (2014). Using three different models, Kirchgessner et al. (2014)
have shown that good performances are obtained when r is such that the effective local observation dimension,
defined as the sum of the weights attributed to each observation during the local assimilation, is equal to the15
ensemble size. Here, the value r = 8km used for the 50 members-ensemble corresponds to an effective observation
dimension of 56. Future studies should investigate if this result can be transposed to realistic 2D simulations with
unstructured meshes.

– You only show results after 300 km (nothing between 0 km and 300 km). Does it mean that what happens between
0 km and 300 km does not have an influence on the grounding line retreat? Does it mean DA is pointless in those20
areas (in that case, that would make DA more affordable as less grid points need to be treated)? If so, please state
it more clearly and if not, provide more results for that area.
Yes as shown by Durand et al. (2011), we expect that uncertainties in the ice-sheet interior should not affect short-
term forecast of the coastal regions. However for completeness, I have added a figure that shows the results in the
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first 300km. Because the noise level on the observed velocity is close to 100% the is only little improvement for b.
It is better for C. Also the ensemble spread is only slightly reduced. My understanding is that the sensitivity of the
observations to the initial uncertainty is smaller than the noise level.

Figure 10. NEW FIGURE 8. Same as Fig.3. but with the RMSE computed for x ∈ [0,300] km.

– I am worried by some of the results shown for ESTKF for small ensembles (Ne = 30) as RMSD reduction is only
20% for the bedrock topography and 30% for the basal friction coefficient. For 2D real cases (either using Full-5
Stokes or SSA), we need an ensemble approach working for small ensembles due to the cost of the experiment and
30 members might be too expensive. Could you reassure me and provide the reader that the approach would be
beneficial even in 2D real cases?
Results are similar to Bonan et al. (2014), the performances start to deteriorate with ensemble sizes≤ 50. However,
I’m optimistic that we shoul be able to run 2D application, at least at the scale of a drainage bassin with ensemble10
sizes Ne at the order of 50 to 100. See the following sentences in the discussion:
Good results have been obtained with relatively small ensembles (50 to 100 members) for a state vector of size
Nx ≈ 8400 and Ny = 4002 observations. Similarly to Bonan et al. (2014), we still see an improvement with a
30-members ensemble but the performances to retrieve the basal conditions are not as good. Running 2D plane
view simulations with such ensemble sizes is largely possible as demonstrated by Ritz et al. (2015) who, using an15
hybrid shallow ice-shallow shelf model, have run a 200 years ensemble forecast of the whole Antarctic Ice Sheet
using 3000 members.

– About the forecast experiments, Figure 1 shows clearly how beneficial an ensemble forecast can be compared to a
deterministic forecast. It also shows that the distribution of the grounding line position is not Gaussian. Could you
provide more information (maybe using histograms) on how grounding lines are distributed in the ensemble?20

Thanks for the suggestion; I now give the following figure that shows the histograms from the relative volume
above floatation (VAF; i.e. what matters when looking at the contribution of ice sheets to sea level rise) and GL
position.
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Figure 11. Ensemble forecast at t= 100 a: (top) relative change of volume above floatation (VAF) and (bottom) GL position with (left) no
assimilation, (center) assimilation up to t= 20 a and (right) assimilation up to t= 35 a. The red circle correspond to the reference run and
the magenta square to the deterministic forecast.
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• While on average, the paper is perfectly readable. There are few parts that are hardly accessible to the reader. As I think
the target audience of this paper is the ice sheet community and more generally the glaciology community, the paper
would benefit from a careful editing. I detail those parts in the Specific comments section.

Thanks for these specific comments; see the specific replies below.

Overall I consider the paper as a highly valuable addition to data assimilation for ice sheets. But it deserves mostly some5
rewriting. Therefore I recommend a minor revision as almost all the science is already here!

SPECIFIC COMMENTS

Overall I think it would be nice for the reader to have two tables summarising the various variables used in this paper, one for
the ice flow model and one for data assimilation.
Good suggestion; I now have the following two tables in appendix10

Table 1. NEW APPENDIX TABLE A1: Notations and values used in this study associated with the ice flow model

Prognostic variables:
H = zs− zb m Thickness
zs m top surface elevation
zs m bottom surface elevation
Diagnostic variable:
u m a−1 horizontal velocity
Parameters:
ab = 0.0 m a−1 basal melting
as = 0.5 m a−1 surface accumulation
b m bed elevation
B = 0.4 Mpa a1/3 ice rigidity
C m basal friction coefficient
m= 1/3 friction law exponent
n= 3 Glen’s creep exponent
ρi = 900 kg m3 ice density
ρw = 1000 kg m3 sea water density
Numerical parameters:
dt= 510−3 a model time step
dx= 200 m mesh resolution
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Table 2. NEW APPENDIX TABLE A2: Notations and values used in this study associated with the ensemble filter

Variables:
x = (zs, b,C) state vector
P covariance matrix
Stabilisation parameters:
r m localisation radius
ρ forgetting factor
Sizes:
Ne ensemble size
Nx state vector size
Ny observation vector size
Others:
∆t= 1 a time interval between two analyses

20



About Ensemble Kalman Filters:

– I feel localisation and inflation should be better explained in the paper (either in the introduction and in the DA sec-
tion). I agree they are both used to counteracts the effects of undersampling. But the reader would benefit from having
more information. Undersampling causes underestimated variances (counteracted by inflation) and spurious correlations
(counteracted by localisation in the case of long-range spatial spurious correlations). Could you add few lines on the5
subject. Also few references are missing. For inflation:

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce en-
semble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, doi: 10.1175/1520- 0493(1999)127<2741/AM-
CIOT>2.0.CO;, 1999.

For localisation, the first one is for local analysis (the one you use), the other two are for covariance localisation (the10
historical one):

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza, M., Kalnay, E., Patil, D. J., and Yorke,
A.: A local ensemble Kalman filter for atmospheric data assimilation, Tellus A, 56, 415–428, doi: 10.1111/j.1600-
0870.2004.00076.x, 2004.

Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-dependent fil- tering of background error covariance estimates in15
an ensemble Kalman filter, Mon. Weather Rev., 129, 2776–2790, doi: 10.1175/1520- 0493(2001)129<2776/DDFOBE>2.0.CO;,
2001.

Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter for atmospheric data assimilation, Mon.
Weather Rev., 129, 123–137, doi: 10.1175/1520-0493(2001)129<0123/ASEKFF>2.0.CO;, 2001.

I now have a section 2.2.2 Filter stabilisation: inflation and localisation where inflation and localisation are better20
described using the given references. See reply to reviewer 1.

– Also about inflation, the term “forgetting factor” introduced by Pham et al. (1996) is, unfortunately, very uncommon in
the EnKF community. Could you state somewhere that this is just the inverse of the traditional inflation parameter known
widely in the EnKF community?

I now state that the forgetting factor ρ is the inverse of the inflation factor used by Bonan et al. (2014).25

– p. 6, l. 23: There is no unicity of the symmetric square root matrix C. It is known that the choice of C can have a
significant impact on results (see e.g. Livings et al., 2008). Could you detail how C is calculated in PDAF?

Livings, D. M., Dance, S. L., and Nichols, N. K.: Unbiased ensemble square root filters, Physica D, 237, 1021–1028,
doi: 10.1016/j.physd.2008.01.005, 2008.

I now mention that C is the symmetric square root of A obtained by singular value decomposition. I have added a remark30
to say that C could also be computed from a Cholesky decomposition.

– p. 7, first paragraph on how to use the ESTKF with a nonlinear observation operator. It is a very good point you raise
especially in the case of assimilating surface ice velocities (highly nonlinear observation operator). However, I find it
difficult to see where the nonlinearity of the observation operator intervenes. Could you rewrite the whole section 2.2
and consider directly the case when the observation operator is nonlinear? That would avoid confusion for readers.35

Section 2.2 has been updated. I now use Yf = (yf1 , ...,y
f
Ne

) ∈ RNy×Ne for the ensemble projected in the observation
space with yfi =H(xf1 ), i= 1, ...,Ne. The formulas are now given directly using Yf , however for clarity I still use the
linearised observation operator H for the formula of the Kalman filter update:

K = PfHT (HPfHT + R)−1 (6)40

Here, H is the linearised observation operator at the forecast mean. However, in practice H does not need do be
computed as it always acts as an operator to project the ensemble members in the observation space. Defining the
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forecast ensemble projected in the observation space by yfi =H(xf1 ), i= 1, ...,Ne with ȳf the ensemble mean, we
make the linear approximation

Yf = HXf (7)

with Xf = (xf1 , ...,x
f
Ne

) ∈ RNx×Ne the forecast ensemble matrix and Yf = (yf1 , ...,y
f
Ne

) ∈ RNy×Ne its equivalent
in the observation space.5

About the experiment:

– p. 8, l. 1-2: About the roughness signal br ,could you detail, in annex for example, how do you simulate the roughness
(which equation?) because I do not know this approach.

I have added a reference to Fournier et al. (1982) where the original algorithm can be found and added the following
information in the main text:10
This is a classical algorithm for artificial landscape generation. In 1D, the algorithm recursively subdivide a segment
and a random value drawn from a normal distribution N (0,σ2) is added to the elevation of the midpoint. The standard
deviation σ is decreased by a factor 2h between two recursions. Here we have used 12 recursions using an initial
standard deviation σ = 500 m and a roughness h= 0.7.

– p. 9, l. 21-22: you mention the term "variogram" which is not well known for readers. Could you provide more details15
how do you generate the ensemble of initial bedrock topographies, in annex for example?

– p. 9, l. 30-31: same comment as previous.

For the two points above, I now introduce the definition of a variogram and give the formulas for the variograms used in
this study:
Following previous studies (Gudmundsson and Raymond, 2008; Pralong and Gudmundsson, 2011; Bonan et al., 2014;20
Brinkerhoff et al., 2016), we assume that the initial distributions for b and C are Gaussian with a given mean and a
prescribed covariance model. Furthermore we assume no cross-correlation between the initial b, C and zs and we draw
the initial ensembles independently. For b and C, the initial samples are drawn using the R package gstat (Pebesma
and Wesseling, 1998). As classical in geostatistics, the covariance model is prescribed using a variogram γ(d) that is
half the variance of the difference between field values as a function of their separation d. It is usually defined by two25
parameters, the sill s that defines the semi-variance at large distances and the range ra which, for asymptotic functions,
is defined as the distance where the γ(ra) = 0.95s. The package gstat allows directly to draw simulations, i.e. random
realisations of the field, from the prescribed spatial moments (Pebesma and Wesseling, 1998).

About the discussion:

– p. 12, l. 25-29: you seem to oppose ensemble and variational methods, but more and more, the tendency is to develop30
hybrid methods as detailed in Bannister (2017) and Vetra-Carvalho et al. (2018). The main tendency is to use variational
approaches in which the adjoint is replaced by ensembles making those adjoint- free approaches. Could you modify your
paragraph to reflect this tendency?

I have removed this part from the conclusion, but added a sentence in the introduction:
Ensemble DA methods, based on the ensemble Kalman filter (EnKF), have been successful in solving DA problems with35
10 large and non-linear geophysical models. Comparative discussions of the performances and advantages of variational
and ensemble DA methods can be found in, e.g. Kalnay et al. (2007), Bannister (2017) and Carrassi et al. (2018). As
they aim at solving similar problems, a recent tendency is to combine both methods to benefit from their respective
advantages.

– p. 13, l. 4-13: There is a now long range of DA literature on how to estimate model bias. One good reference is the40
following:

Dee, D. P. Bias and data assimilation, Q. J. Roy. Meteor. Soc., 131, 3323–3343, doi: 10.1256/qj.05.137, 2005.

Could you reflect on that possibility in your discussion?
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– p. 13, l. 14-20: Same comment as before on estimating observation error covariances matrices. A good review paper:

Tandeo, P., Ailliot, P., Bocquet, M., Carrassi, A., Miyoshi, T., Pulido, M. and Zhen, Y.: Joint Estimation of Model and
Observation Error Covariance Matri- ces in Data Assimilation: a Review. Mon. Weather Rev., submitted, available at:
https://arxiv.org/abs/1807.11221v2, 2018.

Most approaches are based on Desroziers diagnostics, see:5

Desroziers, G., Berre, L., Chapnik, B. and Poli, P.: Diagnosis of observation, background and analysis-error statistics in
observation space. Q. J. Roy. Meteor. Soc., 131, 3385–3396, doi: 10.1256/qj.05.108, 2005.

For the two points above, I have slightly reformulated the discussion and added the references :
In a review paper Tandeo et al. (2018) illustrate the impacts of badly calibrated observation and model error covariance
matrices in a sequential DA framework and discuss available methods and challenges for their joint estimation. For the10
question of the impact of systematic errors, i.e. bias, either in the model and in the observations, and their correction by
augmenting the system state in variational and ensemble DA, interested readers are referred to Dee (2005).

MINOR COMMENTS AND TYPOS

– p. 1, l. 5: “starting FROM this initial state . . .”

Done15

– p. 3, l. 15: “the Kalman filter analysis is REWRITTEN and . . .”

Done

– p. 3, l. 16: The references you mention are all about deterministic versions of the EnKF (Pham et al., 1998, SEIK filter;
Bishop et al., 2001, ETKF filter: Nerger et al., 2012, ESTKF filter). But not every EnKF has a deterministic analysis, the
stochastic EnKF has also been an important part of EnKF history. Could you add the following references to make your20
point broader?

Burgers, G., van Leeuwen, P. J., and Evensen, G. Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev.,
126, 1719–1724, doi: 10.1175/1520- 0493(1998)126<1719:ASITEK>2.0.CO;2, 1998.

Houtekamer, P. L., and Mitchell, H. L. Data assimilation using an ensemble Kalman filter technique, Mon. Weather Rev.,
126, 796-811, doi: 10.1175/1520- 0493(1998)126<0796%3ADAUAEK>2.0.CO%3B2, 1998.25

References added. I do not introduce in the paper this distinction between stochastic and deterministic filters, as I think
it would add more confusion for the reader. As suggested in the sentence just after, interested readers may refer to the
review paper by Vetra-Carvalho et al. (2018).

– p. 3, l. 23: “However the many applications in meteorology and oceanography show . . .” While EnKFs have been
primarily developed for those two applications, it has been successfully used in a wide range of applications, from30
hydrology, to crop modelling and oil extraction. Could you rephrase the sentence to show the broad range of applications
for EnKF including some that may be closer to glaciology? Maybe add other references too?

this has been changed to:
However, the many applications in geoscience with large and non-linear models have shown that the method remains
robust in general and EnKFs are used in several operational centres with atmosphere, ocean and hydrology models (e.g.35
Sakov et al., 2012; Houtekamer et al., 2009; Hendricks Franssen et al., 2011). While firstly developed for numerical
weather and ocean prediction where the forecasts are very sensitive to the model initial state, the method is also widely
used, e.g. in hydrology, for join state and parameters estimations (Sun et al., 2014).

– p. 6, Eq. (13): Could you define X̄f ?

Done40
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– p. 9, l. 13: “the transient ASSIMILATION ON model projections”

Done

24


