
Response to Reviewer 1: 

We thank the anonymous reviewer for his assessment and valuable ideas to improve and clarify the 

manuscript. 

This is a well written paper that introduces a novel approach to estimating snow-on-sea-ice thickness 
using multi-frequency passive microwave data. The authors go on to show how better snow thickness 
estimates impact the further calculation of sea ice thickness. The paper is well organized, the references 
complete, and the figures generally clear. The authors discuss several previous snow thickness algorithms 
in some detail. They compare results against OIB data to test RMSE and correlation. I think it would be 
useful to add additional description about the physical basis for the different algorithms. In most cases at 
least in so far as I recall, the algorithms are largely empirical and validated against in situ data.  
 
We added more details about the physical basis of the algorithms in Section 2.1:  “[Markus and 

Cavalieri (1998) developed the first algorithm to retrieve snow depth h_s on sea ice from passive 

microwave measurements in 1998.] The physical basis of their algorithm is the fact that brightness 

temperature is sensitive to volume scattering. The brightness temperature over snow on sea ice 

decreases, when snow depth increases or when frequency decreases. They found the highest 

correlation to Antarctic snow depth observations with [the gradient ratio between 19 GHz and 37 GHz 

brightness temperatures Tb at vertical polarization V:]” 

True, all algorithms presented in the paper are based on empirical fits to observation data (OIB, buoys 

or ship and ground observations). This is already discussed in the paper. 

However the authors seek to use this analysis as a guide for the CIMR mission. Without more detail on 
the physical basis, it is hard to say how well the algorithm will perform or serve to continue as a long 
term record given differences between the CIMR instrument parameters and earlier sensors. See for 
example Zabel and Jezek, 1994, Consistency in Long Term Observations of Oceans and Ice From Space, 
JGR Oceans, Vol 99, p. 10109. 
 
We added a more details describing the CIMR sensor in Section 3.2: “[Since CIMR would provide the 

same frequencies that we are using] (6.9, 18.7 and 36.5 GHz) at the same incidence angle (55 degrees) 

[and a similar L1R product, our neural networks could directly be applied to CIMR data and would 

provide snow depth at a higher spatial resolution].” 

Both AMSR2 and CIMR are measuring brightness temperature at 55 degrees incidence angle and 6.9 

GHz, 18.7 GHz and 36.5 GHz as used in the algorithms. The same holds for the former AMSR-E sensor. 

The slightly different incidence angle of SSMI (53.1 degrees) and frequency (19.35 and 37.0 GHz, no C-

band channel) were taken into account by using regression coefficients of the Markus and Cavalieri 

approach that were adapted for the AMSR instrument parameters by Comiso et al. (mentioned in 

Section 2.1). Both our neural networks and the algorithms by Rostosky et al. and Kilic et al. are 

designed for the instrument parameters of AMSR-E, AMSR2 or CIMR. To extend the long term record 

beyond 2001, when AMSR-E was launched, data from SMMR could be used, but the different 

incidence angle (50.2 degrees) and slightly different frequencies (6.6, 18.0 and 37.0 GHz) might 

degrade their performance. Zabel and Jezek (1994) state that snow on sea ice is not too sensitive to 

small differences in instrument parameters, since surface roughness dominates. Evaluating this could 

be subject to future work. 



The AMSR2+SMOS NN takes additional brightness temperature measurements at 1.4GHz from SMOS. 

CIMR will cover the same frequency, but at a constant incidence angle of 55 degrees, while SMOS is 

measuring at varying incidence angles between 0 and 65 degrees. To simulate brightness 

temperatures as they will be measures by CIMR we only took measurements from SMOS between 50 

and 60 degrees incidence angle and averaged them. This is described in Section 3.3. 

Therefore we are confident that the instrument parameters of AMSR2 and SMOS are close enough to 

CIMR.  

In several of the tables, the authors quote precision to the mm level. Given that the OIB data are at best 
accurate to 1 cm for snow thickness and maybe 5 cm for ice thickness, the precision in the table should 
be changed to reflect that. 
 
The precision in the tables and the text has been changed. For the SIT we kept cm precision, but point 

to the lower accuracy of the OIB data in the text:“[In terms of RMSE our AMSR2-only neural network 

performs as good as the OIB snow product and both the algorithm by Rostosky et al. and the 

AMSR2+SMOS neural network are only 1 cm worse,] which is not significant considering that the 

accuracy of the OIB SIT is at best 5 cm. Therefore the last digit of the bias and the RMSE should not be 

overrated.” 

And  

“[When using our two neural networks' snow depth in the SIT calculation, the difference between them 

becomes marginal] and is smaller than the accuracy of the OIB SIT.” 

 
It might also be interesting to think about the accuracy of the algorithm derived snow thickness and SIT. 
There is uncertainty in the accuracy of the OIB data but there is also algorithmic uncertainty the arises 
from the assumptions in the algorithm. What might be the later and what might be the total uncertainty 
in the results presented here? I recommend publication after the authors have reviewed my comments. 
 
We divided the former chapter 4.1. into two subsections and added a third subsection on uncertainty 

estimation at the end of chapter 4.1 (as 4.1.3.): “Finally we assess the uncertainty of our neural 

networks to enable usage of this snow product in models or for SIT calculation. The very complex and 

highly non-linear relationship between the input and snow depth output hinders a stringent variance 

propagation. Instead, to assess the uncertainty of our neural network approaches, we employ the 

Monte Carlo method and generate an ensemble of 50 samples for each input brightness temperature. 

We draw these samples from a normal distribution using the observed brightness temperature as 

mean and 0.5 K as standard deviation for AMSR2.  

For SMOS we take the standard deviation provided in the L3 files for each observation and propagate 
them through our averaging process to obtain a standard deviation for each SMOS measurement used 
as input to the polarization ratio. The mean of these standard deviations is 0.76 K for V polarization 
and 0.79 K for H polarization. Further uncertainty arises from the tie points used both in the Nasa 
Team algorithm for SIC and to correct the open water part of the footprint (Eq. 2). Therefore we also 
create an ensemble of 50 samples for each tie point using the values from Ivanova et al. as mean and 
3 K as standard deviation. The resulting mean uncertainty in SIC from the Nasa Team algorithm is 4 %.  



We then estimate snow depth using each ensemble member as input to our neural networks. This 

yields an ensemble of snow depth estimates. The standard deviation of this ensemble is used as an 

uncertainty measure for the estimated snow depth value. Across all OIB data the resulting final 

uncertainty (mean standard deviation) is 0.05 m for the AMSR2-only NN and 0.02 m for the 

AMSR2+SMOS NN, indicating that the AMSR2+SMOS NN is less sensitive to noise in the input data. 

The error (repeatability) of the Monte Carlo simulation is 0.0005 m and 0.0001 m respectively. This 

approach however only assesses how robust the neural networks are to uncertainty in the input data 

and auxiliary parameters such as the tie points. Further uncertainty arises from training the neural 

networks with OIB data, which has its own uncertainty and limitations unlike a real ground truth 

dataset. “ 

In the conclusion we added a sentence: “From a Monte Carlo simulation we derive an uncertainty of 5 

cm for the AMSR2-only and 2 cm for the AMSR2+SMOS NN.” 

We also updated the sample code provided on github (mentioned under code availability) to include a 

standard deviation for each snow depth estimate. 

 

 

Response to Reviewer 2: 
 
We thank the anonymous reviewer for his insightful comments and ideas to improve the manuscript. 

The manuscript introduces the use of neural networks into the space of snow thickness retrieval on sea 
ice. The authors compare their results to previous methods including the most recent methods on this 
subject. In addition to the snow depth algorithm evaluations, the authors present the influence on an ice 
thickness estimate from CryoSat and compare it to the widely used Warren climatology. The authors also 
give an outlook towards the possibilities of the joint forces of the candidate missions CIMR and CRISTAL 
using their methods. The research is well conducted and the manuscript is well written and is suitable for 
publication after minor copy editing and addressing the following comments: 
  
General: 
1. The neural networks are trained using a small amount of data. According to the text, the data was 
split into train, validation and test data sets. Did you somehow ensure that that similar values of snow 
depth occur in all three splits? In best case the histogram of snow depth in each of the splits should be 
similar. Did you try different splits and compare the results? 
 
We had a look at the histograms of different splits and added a few comments on this in section 3.1:  
“[To train the networks we temporally divide the OIB data into a training- (70%), a validation- (15%) and 
a test (15%) dataset.] This is a common splitting in machine learning and ensures enough training data 
when the overall amount of data is small. We also verified that each of the splits contains a similar 
range of snow depth values and that their histograms look alike. [Figure 3 shows the flight tracks and 
the measured snow depths from the 2013-2015 campaigns] (the overall dataset). [The top right box 
illustrates which parts are used as test data] and the snow depth values occurring in this split. [We end 
up with 755 valid snow depth measurements in 2013 and 2014 for training, 162 valid measurements in 
2014 and 2015 for validation – meaning the identification of the best network architecture – and 162 
valid snow depth measurements in 2015 for testing. When we train the AMSR2 + SMOS neural network, 



we have to discard all areas (especially the bigger hole at the pole), where no SMOS data is available. 
Again we split the remaining data into 70 % for training and 15 % for validation and testing each] and 
confirm similar histograms of all splits.” 
 
We found that a 60-20-20 split looks similar, but would give less training data and an 80-10-10 split for 

example yields histograms that are less alike. Attached you can find the histograms of our 70-15-15 

split. For the AMSR2+SMOS NN we have less data available due to SMOS’s bigger hole at the pole. 

However, a 70-15-15 split of the remaining data also gives histograms very similar to the ones shown.  

For the paper, we believe that figure 3 is sufficient to show which values occur in the overall and in 

the test data set.  

 

 
2. It is unclear to me why the GRs and PRs are used as input. One would expect that the neural network 
would figure out the relations and adjusts the weights accordingly during the training process. Did you 
try higher complexity of the networks when you used brightness temperatures as input? 
 
We also tried more complex neural networks when using brightness temperatures as input, but they 
have reduced performance. Our explanation for this is that a more complex neural network also 
implies that more parameters have to be learned with the same (very limited) amount of training 
data.  
 
3. For comparisons with Models and also for the uncertainty values of ice thicknesses from CryoSat it is 
quite important to have uncertainty attached to each retrieved value. Can you think of a method 
estimating uncertainties for the neural network based snow thickness retrieval? It would be good to have 
a statement about this in the manuscript. 
 
We divided the former chapter 4.1. into two subsections and added a third subsection on uncertainty 

estimation at the end of chapter 4.1 (as 4.1.3.): “Finally we assess the uncertainty of our neural 

networks to enable usage of this snow product in models or for SIT calculation. The very complex and 



highly non-linear relationship between the input and snow depth output hinders a stringent variance 

propagation. Instead, to assess the uncertainty of our neural network approaches, we employ the 

Monte Carlo method and generate an ensemble of 50 samples for each input brightness temperature. 

We draw these samples from a normal distribution using the observed brightness temperature as 

mean and 0.5 K as standard deviation for AMSR2.  

 
For SMOS we take the standard deviation provided in the L3 files for each observation and propagate 
them through our averaging process to obtain a standard deviation for each SMOS measurement used 
as input to the polarization ratio. The mean of these standard deviations is 0.76 K for V polarization 
and 0.79 K for H polarization. Further uncertainty arises from the tie points used both in the Nasa 
Team algorithm for SIC and to correct the open water part of the footprint (Eq. 2). Therefore we also 
create an ensemble of 50 samples for each tie point using the values from Ivanova et al. as mean and 
3 K as standard deviation. The resulting mean uncertainty in SIC from the Nasa Team algorithm is 4 %.  
 
We then estimate snow depth using each ensemble member as input to our neural networks. This 

yields an ensemble of snow depth estimates. The standard deviation of this ensemble is used as an 

uncertainty measure for the estimated snow depth value. Across all OIB data the resulting final 

uncertainty (mean standard deviation) is 0.05 m for the AMSR2-only NN and 0.02 m for the 

AMSR2+SMOS NN, indicating that the AMSR2+SMOS NN is less sensitive to noise in the input data. 

The error (repeatability) of the Monte Carlo simulation is 0.0005 m and 0.0001 m respectively. This 

approach however only assesses how robust the neural networks are to uncertainty in the input data 

and auxiliary parameters such as the tie points. Further uncertainty arises from training the neural 

networks with OIB data, which has its own uncertainty and limitations unlike a real ground truth 

dataset. “ 

In the conclusion we added a sentence: “From a Monte Carlo simulation we derive an uncertainty of 5 

cm for the AMSR2-only and 2 cm for the AMSR2+SMOS NN.” 

We also updated the sample code provided on github (mentioned under code availability) to include a 

standard deviation for each snow depth estimate. 

Specific: 
P1. L.2: .....it is fundamental climate.... -> .... it is a fundamental climate.... 
 
Changed 

 
P2. L.34: acts as -> behaves like  
 
Changed 

 
P11. L 23: A few words about sea ice drift as a source for ice thickness variability would be nice. 
 
We added the following sentence: “In areas of mixed ice types and fast sea ice drift this assumption 
might not hold, but we want to avoid too many data gaps.” 
 



P15. L24: remove either "polar stereographic" or "EASE2". The EASE2 grid is actually not a polar 
stereographic projection but an equal area projection. 
 
Polar stereographic was removed 

P16. Figure7: The AMSR2 and the AMSR2+SMOS neural networks produce very different spatial 
distribution of snow depth and often by more than 20cm and even show inverse pattern (Canadian 
archipelago, East Greenland). To believe your statement that the combination of the two neural network 
would produce good results, a scatter plot between these two networks might be insightful, especially 
over a longer time span. 
Also P18 Figure 8 show partly anti pattern between the AMSR2 and theAMSR2+SMOS neural network. 
P23. 
 
We have produced a scatter plot between the AMSR2-only and AMSR2+SMOS neural networks on all 

the OIB data. For comparison we also plot OIB snow depth against the AMSR2-only NN and find that 

both scatter to a similar extend around the AMSR2-only NN results. Indeed, a few estimates are quite 

far apart, but the same is true for the OIB data. Given the results presented in the paper (Table 2, 

Figure 5 and 6) we believe, that filling gaps in the AMSR2+SMOS NN with the AMSR2-only NN 

produces reasonable results. One main purpose of the AMSR2+SMOS NN development, however, was 

to investigate how snow depth on sea ice could be derived from CIMR measurements and here we 

will not encounter the problem of 1.4GHz data gaps. 

We added another sentence in Section 4.1.(1) to stress this point: “[Combining the two networks could 

also be useful in a practical application to fill the hole at the pole and to still benefit from higher 

accuracies in regions, where SMOS is available.] CIMR, however, would cover the whole pole at all 

frequencies and therefore, the AMSR2 + SMOS neural network would produce no gaps. “ 

 



 

Response to Eero Rinne: 

We would like to thank Eero Rinne for his insightful comments and for opening the discussion.  

I am really happy to see work on high priority Copernicus polar mission candidates to come out - 
especially work pointing out synergies between different candidates. In short, the paper presents a novel 
way to derive the thickness of snow on sea ice – a parameter that is one of the key uncertainty 
contributors to sea ice thickness altimeter retrievals. Passive microwave based snow product from CIMR 
could complement the snow thickness estimate the dual frequency altimeter product of CRISTAL, latter 
being of superior resolution but worse coverage. For single frequency altimeters like Cryosat-2 and 
Sentinel 3 the impact of a novel PMW snow estimate, like the one presented in this paper, would be 
much larger than for CRISTAL. Whenever a new snow product emerges, it is tested against the Warren 
1999 (W99) climatology, as this manuscript has done. However, I feel that there are significant 
shortcomings in the way W99 is handled in this paper. Most importantly, instead of the original W99, the 
authors should use the modified W99which accounts for thinner snow on FYI. All of the current CS2 SIT 
products use the modified W99. Reason for this is that as authors point out, original W99 has been 
shown to give too thick snow over the FYI areas covered by OIB by Kurtz et al. A comparison of CS-2 SIT 
using modified W99 and OIB SIT can be found in for example in Tilling et al 2018 ( 
https://doi.org/10.1016/j.asr.2017.10.051 ) where the two agree within 0.5 cm. This is in stark contrast 
with the 24 cm bias in table 3.Key point of the manuscript is that the new snow product is better than the 
originalW99. Real question is, however, if the novel snow product is better than the modifiedW99 
currently used for the CS-2 SIT retrievals. The authors should, in my opinion, add this comparison in the 
next version.  
 
In the revised version of the paper, we are using the modified W99 climatology in addition to the 

original one. This indeed leads to an improved agreement with the OIB data, but does not change our 

conclusions. Our RMSE between the modified W99 and OIB are in agreement with the one reported 

by Tiling et al. 2018 (0.66 m and 0.67 m). Our bias (0.16 m) is indeed higher, but we do not expect to 

reproduce their numbers, since a few processing steps differ and we compare results for 2013-2015, 

while they compare their estimates with OIB data from 2011-2013. Apart from a very good agreement 

with OIB, they also retrieve a bias of 0.21 m compared to CryoVex, so we believe our results are 

plausible.  

Adding a comparison to the modified Warren climatology leads to the following additions in the 

paper: 

In section 2.5: “[The last - and a major - uncertainty in the calculation of SIT is snow depth h_s 

(Zygmuntowska et al. (2014), Giles et al. (2007)). Here we use the] original Warren climatology, its 

modified version where snow depth is halved over FYI and the algorithms from […].” 

In section 3.5.2: “The same product is also used to modify the Warren climatology. In areas of FYI we 

half the original snow depth values.” 

In section 4.2 another line was added to the table and an additional subplot was added to Figure 9 

and 10 to include the modified Warren climatology. In the text we added the following part: “For the 

Warren climatology we observe that the modified version performs better in all the categories, but 

still worse than most other algorithms.” 



Also a citation was added: “Kurtz, N. T. and Farrell, S. L.: Large-scale surveys of snow depth on Arctic 

sea ice from operation IceBridge, Geophysical Research Letters, 38, 

https://doi.org/10.1029/2011GL049216, (2011)” 

 
Furthermore, the authors begin their SIT processing from a freeboard product in the Cryosat-2 GDR. It is 
reasonably hard to find the details of the processor, but the free-board is most likely already corrected 
for the propagation speed of radar pulse in snow. For this, a snow estimate has been required. Authors 
should remove the propagation speed correction and calculate another with their own snow estimate. Or 
if there is no propagation speed correction in the GDR freeboard estimate, one must be applied before FB 
to SIT conversion. 
 

This is a valid point and we put a considerable amount of effort into finding out the details of the GDR 

processing. The official statement from EOhelp on the propagation speed correction is, that they don’t 

do any. Adding a snow propagation speed correction to the freeboard data, however, results in a 

considerable bias independent of the snow product used. In a paper by Kwok (2014), the effect of 

both such a snow delay correction and snow penetration correction are discussed.  

We included these findings in chapter 2.5: “For the calculation of sea ice freeboard h_fb from radar 

freeboard h_rfb two corrections should be applied (Kwok (2014)). The first correction dh_p accounts 

for penetration issues caused by the scattering of the Ku-band radar signal at the air-snow interface 

and within the snow layer. This shifts the retracking point closer to the satellite. The second 

correction dh_d adjusts the radar freeboard for the slower propagation speed of the radar signal 

within a snow layer: 

h_fb=h_rfb + dh_p + dh_d 
 
Both corrections have opposite signs and therefore more or less cancel out depending on the snow 

depth, the retracker and the ratio between the snow-ice and snow-air interface peaks (Kwok (2014)). 

It is especially hard to apply the first correction, since the ratio between the snow-ice and snow-air 

interface peaks is not known. Kwok's simulations suggest that for snow depths of 5-30 cm (which 

covers a major part of the OIB data) both corrections add up to 0.2 cm on average and are almost 

independent of snow depth, when a leading edge retracker is used. Therefore we apply a joint 

correction of 0.2 cm to all CryoSat radar freeboard data.” 

The uncertainty arising from this mean correction is again mentioned in the discussion in 4.2: 

“Additionally we only apply a mean correction for the combined effect of radar penetration and radar 

delay caused by the snow pack. The sign and magnitude of this combined correction, however, 

depend on the snow depth and primarily the ratio between the snow-ice and snow-air interface 

peaks. The lack of data for the latter add to the uncertainty budget of SIT.” 

The citation was added as well: “Kwok, R.: Simulated effects of a snow layer on retrieval of CryoSat-2 

sea ice freeboard, Geophysical Research Letters, doi:10.1002/2014GL060993 (2014)” 

 

 



Response to Sara Fleury: 
 
We thank Sara Fleury for her contribution to the discussion, adding further suggestions and 
arguments. 
 
This paper presents and compares some very interesting and promising methods to retrieve the Snow 
Depth (SD) with AMSR-2. Such studies are very important because the Snow Depth over sea ice remains 
largely unknown whereas it plays an important role in the climate (albedo), the sea ice dynamics 
(thermal insulation, melt pounds), the biochemical (UV insulation), etc. But the validation of the 
emerging solutions is a very difficult task du to the snow diversity and the lack of in-situ data. Also we 
must be very careful in our conclusions and clearly stated the uncertainties and the conditions of 
applicability.  
My remarks and questions are the following : 
1/ Could you indicate if the presented SD-AMSR-2 products are available and where we could get them in 
order to make alternative tests ? 
 
The neural networks have been uploaded and are publicly available together with sample Python 
code to read and apply them as mentioned under code availability. 
 
2/ Did you evaluate the product that is freely distributed by NSIDC 
(https://nsidc.org/data/AU_SI12/versions/1) ? 
 
We did not explicitly evaluate this product, because it is based on the algorithm by Markus and 
Cavalieri. We would expect the same result as shown for Markus and Cavalieri with the difference 
that in the NSIDC product snow depth over MYI are filtered out. We did not filter these parts in our 
paper to compare all algorithms over the same (and a larger) dataset. 
 
3/ How do you manage the impacts of the fog and clouds ? For instance within the NSIDC product some 
large parts are missing because of the presence of clouds, which is not the case for the 5 solutions you 
present. More generally, do they work all along the year over the full Arctic basin ? 
 
All snow depth on sea ice algorithms relying on passive microwave measurements are restricted to 
dry snow conditions and therefore the winter season (approx. mid Oct to mid May). Clouds and fog 
should not pose a problem, though, especially when lower frequencies are used. The large gaps in the 
NSIDC product are due to the fact that the Markus and Cavalieri approach does not work well over 
MYI (as mentioned above). Given the fact, that both our neural networks and the algorithm from 
Rostosky et al. are trained with OIB data, which are only available for the Western Arctic, we cannot 
guarantee that the same functional relationships hold for the full Arctic basin. To see how the 
different algorithms behave outside the training area and period, we applied them for a whole season 
and across the whole Arctic (pages 15-18). We cannot really evaluate if the results are correct due to a 
lack of in situ data, but we do observe a generally good consistency between the algorithms and to 
the Warren climatology. 
 
4/ For the sea ice thickness comparisons, it seems that you are using the CryoSat-2 Baseline-C freeboard 
(FB), which is known to over estimate the sea ice freeboard by more than 10cm (ie, 1m on the thickness). 
This bias will be corrected in the next baseline-D. In the meantime, you should use other FB products 
(AWI, LEGOS, CPOM,NASA, JPL, ...). 
 



The SIT part is meant to be only a minor part in the paper and may also be understood as an outlook. 
You are more than welcome to use our neural networks, which are publicly available, to investigate 
their use with other freeboard data. We believe, that in the spirit of science an independent 
evaluation would be best anyway.  
 
5/ Due to the dramatic lack of SD data over the polar regions, all study tracks have to be investigated 
and the solution will most probably come from the synergy between several solutions to cover the 
different needs. Nevertheless, in order to improve the Sea Ice Thickness (SIT) retrieval from altimetry, it is 
really important to measure the SD synchronously and coherently with the FB, ie, from the same 
platform and the same instruments, as proposed by CRISTAL Copernicus candidate mission.  
 
We agree on that. However, sea ice thickness is not the only application where snow depth estimates 
are needed. Models and Forecasts for example might need (sub-) daily maps covering the whole 
Arctic, which CIMR would offer. Furthermore both satellites should be used in synergy and for inter-
calibration of the snow depth products. 
 
On the other hand the synergy between CRISTAL and CIMR could aim to daily pan-Arctic SD observations, 
which would be a major step forward to better model the dynamics of the ice pack and its snow cover, 
and their impact on the climate. 
This kind of study could definitively participate to reach such an achievement. 
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Abstract. Snow lying on top of sea ice plays an important role in the radiation budget because of its high albedo, the Arctic

freshwater budget, and influences the Arctic climate: it is
:
a
:
fundamental climate variable. Importantly, accurate snow depth

products are required to convert satellite altimeter measurements of ice freeboard to sea ice thickness (SIT). Due to the harsh

environment and challenging accessibility, in situ measurements of snow depth are sparse. The quasi-synoptic frequent repeat

coverage provided by satellite measurements offers the best approach to regularly monitor snow depth on sea ice. A number5

of algorithms are based on satellite microwave radiometry measurements and simple empirical relationships. Reducing their

uncertainty remains a major challenge.

A High Priority Candidate Mission called the Copernicus Imaging Microwave Radiometer (CIMR) is now being studied at

the European Space Agency. CIMR proposes a conically scanning radiometer having a swath > 1900 km and including channels

at 1.4, 6.9, 10.65, 18.7 and 36.5 GHz on the same platform. It will fly in a high inclination dawn-dusk orbit coordinated with the10

MetOp-SG(B). As part of the preparation for the CIMR mission, we explore a new approach to retrieve snow depth on sea ice

from multi-frequency satellite microwave radiometer measurements using a neural network approach. Neural networks have

proven to reach high accuracies in other domains and excel in handling complex, non-linear relationships. We propose one

neural network that only relies on AMSR2 channel brightness temperature data input and another one using both AMSR2 and

SMOS data as input. We evaluate our results from the neural network approach using airborne snow depth measurements from15

Operation IceBridge (OIB) campaigns and compare them to products from three other established snow depth algorithms. We

show that both our neural networks outperform the other algorithms in terms of accuracy, when compared to the OIB data and

we demonstrate that plausible results are obtained even outside the algorithm training period and area. We then convert CryoSat

freeboard measurements to SIT using different snow products including the snow depth from our networks. We confirm that a

more accurate snow depth product derived using our neural networks leads to more accurate estimates of SIT, when compared20

to the SIT measured by a laser altimeter at the OIB campaign. Our network with additional SMOS input yields even higher

accuracies, but has the disadvantage of a larger “hole at the pole”. Our neural network approaches are applicable over the

whole Arctic, capturing first-year ice and multi-year ice conditions throughout winter. Once the networks are designed and

trained, they are fast and easy to use. The combined AMSR2 + SMOS neural network is particularly important as a pre-cursor

demonstration for the Copernicus CIMR candidate mission highlighting the benefit of CIMR.25

1



1 Introduction

Climate change and globalisation are the dominant drivers of societal impacts in the Arctic with economic development rapidly

transforming the geo-politics and the physical and biogeochemical environment of the region. For example, new prospectors are

increasing their activities using modern techniques for oil and gas, fisheries and mineral resources, and commercial ship traffic

is growing dramatically. In this context, snow depth is an important parameter for climate studies, modelling and forecasting.5

Snow on sea ice strongly influences the Earth’s radiation budget with its high albedo and acts as
::::::
behaves

::::
like an insulation

controlling sea ice growth and melt. In the melt season snow on sea ice contributes to the freshwater input and inhibits deep

ocean circulation because of surface freshwater stratification. Additionally, to retrieve sea ice thickness (SIT) from laser (NASA

ICESat) or radar altimeter (e.g European Space Agency (ESA) CryoSat) freeboard measurements, snow depth has to be known

with a high accuracy. The uncertainty in today’s snow on sea ice products contributes significantly to the uncertainty in SIT10

(Zygmuntowska et al. (2014), Giles et al. (2007)). Ship traffic across the northern Sea Route in the Arctic is increasing and

will further increase as sea ice retreats. To navigate through the sea ice, SIT is a key parameter, but also the snow depth itself

is relevant due to its very high friction (Huang et al. (2018)).

To derive SIT from CryoSat freeboard the Warren climatology product (Warren et al. (1999)) is often used. It relies on

snow depth measurements collected from manned drifting stations and isolated locations (reached via aircraft) over multi-year15

ice (MYI) in the Arctic between 1954 and 1991. These measurements are summarised in monthly maps and contour lines of

snow depth have been derived. For lack of a better operational product, this climatology is still widely used - sometimes with

a modification factor of 0.5 or 0.7 to account for lower snow depths on first-year ice (FYI) and the fact that less ice survives

each summer (
::::::::::::::::::::
Kurtz and Farrell (2011),

:
Kwok and Cunningham (2015)). Obvious drawbacks of this climatology are that it is

outdated (Kern et al. (2015)), that it was collected mostly over MYI, its quite broad spatial resolution and that it does not allow20

for any interannual variation.

The quasi-synoptic frequent repeat coverage provided by satellite measurements offer an excellent approach to regularly

monitor snow depth on sea ice. Satellite microwave measurements offer a clear advantage over visible or thermal infrared

techniques because they penetrate through clouds and deliver measurements during the long polar night. Unfortunately, at this

time the frequencies of primary interest (1.4 – 7.0 GHz) are characterized by a large surface footprint. Measurements made at25

higher frequency (18-89 GHz) are used to derive estimates of snow depth on sea ice with varying degrees of success. A number

of algorithms are based on simple empirical relationships to in situ measurements and reducing the uncertainty in derived

snow depth products remains a major challenge. The first algorithm that was developed using satellite microwave radiometer

data is reported in Markus and Cavalieri (1998). It uses an empirical relation between the gradient ratio of the 37.0 GHz

and 19.4 GHz channels of the Special Sensor Microwae/Imager (SSM/I) sensor together with in situ and ship observations of30

snow depth in Antarctica. Comiso et al. (2003) modified the Markus and Cavalieri (1998) algorithm coefficients to match the

slightly different frequencies of the Advanced Microwave Scanning Radiometer (AMSR-E) and follow on AMSR2 mission.

This algorithm only produces reasonable results over FYI and in general the use of microwave radiometer data is limited to

cold and dry snow conditions, because in the melt season wet snow acts as a black body (Markus et al. (2006)).
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Recently it was argued that the use of lower frequencies (e.g. 6.9 GHz) that measure microwave emissions deeper in the

snow layer could improve the accuracy and allow the retrieval of larger snow depths, since the 36.5 GHz signal is saturated

at around 50 cm (Markus et al. (2006)). Rostosky et al. (2018) proposed such an algorithm using the gradient ratio between

6.9 GHz and 18.7 GHz. Furthermore their algorithm enables an extension to MYI by using two separate empirical fits for FYI

and MYI.5

More recently, Kilic et al. (2018b) make use of the low frequency 6.9 GHz channel, but instead of using the gradient ratio,

they fit a multilinear regression between microwave radiometer data and snow depth using data from Ice Mass Balance (IMB)

buoys in the Arctic.

In general microwave radiometer observations are widely used input data for snow depth retrieval. They benefit from a

long data record, allow at least daily coverage over the poles and most importantly are independent of weather and darkness.10

The only drawback is the rather broad spatial resolution (AMSR2 has a 35 x 62 km footprint at 6.9 GHz). The European

Space Agency (ESA) is now studying a High Priority Candidate Mission (HPCM) called the Copernicus Imaging Microwave

Radiometer (CIMR, Donlon et al. (2019)). CIMR proposes a conically scanning radiometer having a swath > 1900 km and will

include channels at 1.4 GHz (60 km), 6.9 and 10.65 GHz (<15 km), 18.7 GHz (5-6 km) and 36.5 GHz (4-5 km) on the same

platform. The mission will occupy a high inclination dawn-dusk orbit coordinated with the MetOp-SG(B) satellite offering15

opportunities for synergy with the Microwave Imager (MWI) and Scatterometer (SCA). CIMR would not only guarantee

continuity in microwave radiometer observations, but it would also ensure continuity at low frequency L-band (1.4 GHz),

currently provided by ESA’s Soil Moisture and Ocean Salinity (SMOS) and NASA’s Soil Moisture Active Passive (SMAP)

satellite and for the first time provide L-band and higher frequency measurements on the same platform in a high inclination

orbit.20

Maaß et al. (2013) demonstrate the possibility to determine snow depth from 1.4 GHz brightness temperatures measured by

SMOS. The insulation of the snow cover leads to increasing brightness temperatures at 1.4 GHz correlated with snow depth.

Maaß et al. find that the effect is more pronounced at horizontal polarization. The approach works well for thick sea ice (ice

thicker than 1-1.5 m) and snow depths of 35 cm. Also Zhou et al. (2018) developed a combined snow depth and SIT retrieval

approach from a combination of SMOS data with laser altimetry incorporating a radiation model.25

Yet another possibility to determine snow depth is to exploit the different scattering horizons from CryoSat (Ku-band)

and SARAL/AltiKa (Ka-band) (Guerreiro et al. (2016), Lawrence et al. (2018)). The same concept may be applied to the

upcoming overlap of CryoSat and ICESat-2 (Lawrence et al. (2018)). ESA currently also investigates the Copernicus polaR Ice

and Snow Topography ALtimeter (CRISTAL, Kern et al. (2019)) as a High Priority Candidate Mission. If selected, CRISTAL

would uniquely offer co-temporal Ku- and Ka-band measurements in a high inclination orbit. In comparison to microwave30

radiometer measurements, however, the temporal coverage would be quite low due to the small nadir-only footprint of the

altimeter although repeat global sampling every 10 days is anticipated.

The opportunity for synergy and inter-calibration between multi-frequency altimetry (e.g. CRISTAL) and CIMR snow depth

retrievals over sea ice is obvious. As part of the preparation for the future CIMR mission, we explore a new approach to retrieve

snow depth on sea ice from satellite microwave radiometer measurements using a neural network approach. Neural networks35
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provide a technique to model any complex, non-linear relationship, including the multi-frequency microwave signal emissions

from within a snow layer. The application of neural networks for this purpose is still developing but a few simple attempts

exist: Tedesco et al. (2004) apply a simple neural network with one hidden layer to derive snow depth and SWE on land. They

use the 19 and 37 GHz brightness temperatures at both polarizations as input.

We build a deeper, more advanced neural network to retrieve snow depth on sea ice from satellite microwave radiometer5

measurements and train our network with Operation Ice Bridge (OIB) snow depths (Kurtz et al. (2013)) in the Arctic. We build

on the algorithms by Markus and Cavalieri and Rostosky et al. using both the ’traditional’ 36.5/18.7 gradient ratio and the

lower frequency 18.7/6.9 gradient ratio as input together with polarization ratios. We also explore the use of SMOS together

with AMSR2 data as input for one of our neural networks. Our neural networks are applicable over both FYI and MYI ice and

no additional ice type product is needed to differentiate between both. Once designed and trained, they are fast and easy to use10

and would also work with future measurements from the CIMR radiometer.

We verify our neural network approaches with another part of the OIB data and compare the results to the snow depth

algorithms by Markus and Cavalieri , Rostosky et al. and Kilic et al. . We also evaluate how the different snow products

influence the SIT retrieval from CryoSat freeboard data.

In the next section we summarise the different snow depth algorithms used for comparison, introduce our neural network15

approach and explain the SIT calculation. In section
:
3 we introduce the data used for training, evaluation and the comparisons.

The results are then shown and discussed in section 4 before we end with a conclusion.

2 Methodology

First we review a few existing algorithms for snow depth on sea ice calculation from satellite microwave radiometer brightness

temperatures, before we introduce our own neural network approach. The neural network somehow builds upon the findings20

of these more traditional algorithms and will also be compared to them in section 4.

2.1 Snow depth from Markus and Cavalieri

Markus and Cavalieri (1998) developed the first algorithm to retrieve snow depth hs on sea ice from passive microwave

measurements in 1998. This algorithm is still widely used and is based on the
:::
The

:::::::
physical

:::::
basis

::
of

::::
their

::::::::
algorithm

::
is
:::
the

::::
fact

:::
that

:::::::::
brightness

::::::::::
temperature

::
is

:::::::
sensitive

::
to

::::::
volume

:::::::::
scattering.

::::
The

::::::::
brightness

::::::::::
temperature

::::
over

:::::
snow

::
on

:::
sea

:::
ice

:::::::::
decreases,

:::::
when25

::::
snow

:::::
depth

::::::::
increases

::
or

:::::
when

:::::::::
frequency

:::::::::
decreases.

::::
They

:::::
found

::::
the

::::::
highest

:::::::::
correlation

::
to

::::::::
Antarctic

:::::
snow

:::::
depth

:::::::::::
observations

::::
with

::
the

:
gradient ratio between 19 GHz and 37 GHz brightness temperatures Tb at vertical polarization V :

hs[cm] = 2.9− 782 · Tbice(37V )−Tbice(19V )

Tbice(37V ) + Tbice(19V )
(1)

4



Tbice is the brightness temperature of the ice covered part of the footprint. This correction is important, since we are only

interested in the change of brightness temperature due to snow cover and otherwise the open water part would dominate the

signal. It is calculated from:

Tbice(f,p) =
Tb(f,p)− (1−SIC) ·TbOW(f,p)

SIC
(2)

TbOW(f,p) is the open water tie point for frequency f and polarization p and SIC is sea ice concentration. In the equations5

we round the frequency to the nearest integer and indicate vertical linear polarisation with a V and horizontal linear polarisation

with an H . Originally the two linear regression coefficients were derived from a fit of SSM/I brightness temperatures to

Antarctic in situ and ship observations. Comiso et al. (2003) updated the algorithm coefficients to fit the slightly different

incidence angle and frequencies of AMSR-E. The same coefficients are also applied for the Arctic
:::
and

::::
their

::::::::
algorithm

::
is
::::
still

:::::
widely

:::::
used.10

The algorithm is limited to dry, cold snow, which is thinner than 50 cm and should only be applied over FYI (Markus et

al. (2006)). Instead of the original values, we use the coefficients from Comiso et al. as given in Eq. 1, open water tie point

values for AMSR2 from Ivanova et al. (2014) and calculate the SIC with the Nasa Team algorithm (Cavalieri et al. (1984)).

To be comparable with the other algorithms, we ignore the shortcomings of the algorithm over MYI and apply it Arctic wide

anyway. This is also an essential requirement when applied in SIT retrieval.15

2.2 Snow depth from Rostosky et al.

Rostosky et al. (2018) follow a similar approach as Markus and Cavalieri using a gradient ratio and two linear regression

coefficients. However, instead of using the gradient ratio between 18.7 GHz and 36.5 GHz, they apply the 6.9 GHz to 18.7 GHz

gradient ratio. The lower frequencies enable a determination of snow depths exceeding 50 cm (due to microwave emissions

emanating from deeper within the snow at this frequency), where the 36.5 GHz channel becomes saturated. Furthermore a20

simulation by Markus et al. (2006) and a correlation analysis by Rostosky et al. (2018) suggest a stronger relation of snow

depth to this gradient ratio. To use this gradient ratio, they determined a new set of regression coefficients by fitting AMSR-

E and AMSR2 brightness temperatures to OIB snow depth. They exclude single years for verification and validation work.

Furthermore they extend the approach to be applicable over both FYI and MYI, while Markus and Cavalieri ’s approach was

found to deliver reasonable results only over FYI. The extension to MYI is achieved by fitting a second set of parameters to25

the MYI covered part of the OIB data. We use the coefficients determined with OIB data from 2009 - 2014, since our test data

is from 2015. When applying this algorithm, the ice type (FYI or MYI) must be known with confidence. They use the ice type

product from OSISAF - derived by a combination of microwave radiometry and scatterometer data (Aaboe et al. (2016)) and

discard areas where the ice type is not known with high confidence (confidence level < 4). On FYI snow depth is calculated

from30

hs[cm] = 19.74− 556.69 · Tbice(19V )−Tbice(7V )

Tbice(19V ) + Tbice(7V )
(3)
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and on MYI from

hs[cm] = 18.73− 376.32 · Tbice(19V )−Tbice(7V )

Tbice(19V ) + Tbice(7V )
. (4)

Again, SIC from the NASA Team algorithm is used to correct for the open water part within the footprint (Eq. 2).

2.3 Snow depth from Kilic et al.

Kilic et al. (2018b) developed a simple multilinear regression approach using vertically polarised brightness temperatures at5

6.9 GHz, 18.7 GHz and 36.5 GHz. These three channels were identified as the best predictor combination in a forward selection

method with the OIB data of 2013. They then derived the multilinear regression coefficients from a fit of AMSR2 brightness

temperatures with the data from four IMB buoys (2012G, 2012H, 2012J and 2012L) to yield the following formula:

hs[cm] = 177.01 + 1.75 ·Tb(7V )− 2.80 ·Tb(19V ) + 0.41 ·Tb(37V ) (5)

They use SIC charts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis Interim (ERA-10

Interim) data and discard areas outside 100% SIC. To be consistent with the other approaches we use the OSISAF SIC product

(Lavergne et al. (2019)) and discard areas with SIC lower than 80%.

2.4 Snow depth from our Neural Network Approach

Artificial neural networks are a means of machine learning inspired by the human brain to learn higher-order representations

and perform diverse tasks. In contrast to other machine learning techniques they are designed to extract relevant features15

and their weighting in the model themselves. Deep neural networks allow to learn higher-order representations, to tackle

more complex problems and outperform other means of machine learning in terms of accuracy (Schmidhuber (2015)). Neural

networks can be viewed as a universal system to represent any function. Instead of designing representative features or building

a complex physical model, the challenge with neural networks is to design an appropriate architecture.

We design our neural networks with the framework Keras (Chollet et al. (2015)), using Tensorflow (Abadi et al. (2015))20

backend. Three inputs from AMSR2 are used in our neural networks: the gradient ratio between vertically polarised brightness

temperatures at 18.7 GHz and 36.5 GHz, as proposed by Markus and Cavalieri , the gradient ratio between vertically polarised

brightness temperatures at 6.9 GHz and 18.7 GHz, as used by Rostosky et al. , and the polarization ratio PR between vertically

and horizontally polarised brightness temperatures at 36.5 GHz:

PR(37) =
Tbice(37V )−Tbice(37H)

Tbice(37V ) + Tbice(37H)
(6)25

This polarization ratio is also used to differentiate between FYI and MYI by Comiso (2012), so it seems likely that this

information is not directly correlated with snow depth, but rather with the ice type and that the neural network uses this input in

a similar manner as the approach by Rostosky et al.
:
, which requires independent ice type information. We also experimented
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Figure 1. Architecture of the AMSR2-only neural network: the 37/19 gradient ratio, the 19/7 gradient ratio and the polarization ratio at

37 GHz are used as input (green circles). They are transformed by five fully connected hidden layers with fifteen or twenty neurons each

(yellow circles) to finally produce snow depth as output (blue circle). Each neuron (circle) has a bias and each connection (arrow) is associated

with a different weight.

with other combinations, gradient- and polarization ratios, as well as using the brightness temperatures directly as input. This

choice yields the best results. Just as Markus and Cavalieri , we also apply a correction for the open water part within the

footprint, using Tbice with SIC from the NASA Team algorithm in our gradient and polarization ratios (Eq. 2).

The first (AMSR2-only) neural network consists of five fully connected hidden layers with 15 neurons in each of the first

four hidden layers and 20 neurons in the last hidden layer (see Figure 1 for an illustration). The number of layers and neurons5

was empirically found to work best for this specific set up. A few rules of thumb exist for the design of a good neural network

architecture, but to a large part it is subject to trying different set-ups and observing the error on the validation data set.

In a fully connected neural network all neurons of the previous layer are connected to each neuron of the next layer and

each connection is associated with a different weight. Furthermore each neuron can have a different bias. The output from each

neuron in the first hidden layer is given by the sum of all three weights (the arrows connected to this neuron in figure 1) times10

the three inputs plus the bias of this neuron. To introduce a non-linearity and enable the network to learn non-linear relations,

the output of each layer may be transformed by a so called activation function φ. Taking into account all fifteen outputs from

the first hidden layer h we can write this as a matrix vector multiplication, where W is a 15x3 weight matrix, x the 3x1 input

vector and b a 15x1 bias vector:

h = φ(W ·x+ b). (7)15
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Figure 2. Architecture of the AMSR2 + SMOS neural network: the 37/19 gradient ratio, the 19/7 gradient ratio and the polarization ratio

at 37 GHz are used as input from AMSR2 (green circles) and the polarization ratio at 1.4 GHz is used as input from SMOS (light green

circle). They are transformed by four fully connected hidden layers with fifteen or twenty neurons each (yellow circles) to finally produce

snow depth as output (blue circle).

The hidden layers store the features or the information extracted from the input. The different weights and biases allow each

neuron to focus on a different aspect. Usually the features get more abstract and complex the deeper the network becomes,

since each subsequent layer is created from the already transformed features of the previous layer. The output layer consists of

one neuron and represents the estimated snow depth.

To allow the network to learn non-linear relationships, as we expect them to occur in the emission and scattering of a5

microwave signal in a snow layer, we apply activation functions φ. After the first hidden layer we apply a sigmoid function, after

all subsequent hidden layers we apply the rectified linear unit (ReLU) activation function and finally the output is transformed

by a hyperbolic tangent activation function.

Batch normalization (Ioeffe and Szegedy (2015)) makes a neural network less sensitive to the random initialization of the

weights and biases and improves its generalization capabilities. The use of batch normalization is recommended for deep neural10

networks and with sigmoidal non-linearities. Therefore we include batch normalization after the first hidden layer.

Training a neural network means to slightly change its weights and biases step by step to minimise a loss function. This

technique is known as Stochastic Gradient Descent. The Adam optimiser (Kingma and Ba (2015)) is a more elaborate extension

of Stochastic Gradient Descent, which we use to train our network in 250 epochs using a batch size of 30. We choose the mean

absolute percentage error between the estimated snow depth and the OIB snow depth as our loss function.15

The design of the second neural network combining AMSR2 and SMOS input is very similar to the first one. In addition to

the three AMSR2 inputs, we add the polarization ratio between vertically and horizontally polarised brightness temperatures

at 1.4 GHz from SMOS as a fourth input node. This is calculated analogously to Eq. 6. At 1.4 GHz, SMOS provides a means
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to penetrate deeper into the snow layer. We also tested gradient ratios between the AMSR2 and SMOS channels and using

brightness temperatures at 1.4GHz directly. The polarization ratio gave the best results. This is the only time we do not account

for open water within the footprint and we do not use open water tie points to correct the SMOS brightness temperatures. We

calculated some open water tie points at 1.4 GHz and applied Eq. 2, but this slightly degraded the network’s performance, so

we choose not use them. Because SMOS coverage has a large hole at the pole, we have less data for training, validation and5

testing. Therefore we also reduce the number of parameters of the neural network and delete one hidden layer with 15 neurons.

Otherwise the network is identical to the AMSR2-only network. Figure 2 illustrates the design of the combined AMSR2 +

SMOS network.

2.5 Sea ice thickness

Sea Ice Thickness (SIT) can be calculated from the sea ice freeboard hfb measured by CryoSat assuming hydrostatic equilib-10

rium:

SIT =
ρw ·hfb + ρs ·hs

ρw − ρi
. (8)

ρw is the density of sea water, which we set to 1025 kg
m3 (Alexandrov et al. (2010)), ρi the ice density and ρs the snow density.

For the snow density we assume a bulk value of 320 kg
m3 , as suggested by the Warren climatology (Warren et al. (1999)) of

March and April (when the OIB data was collected). The ice density depends on the age of the sea ice and Alexandrov et al.15

(2010) found a mean value of 882 kg
m3 for MYI and 917 kg

m3 for FYI. Both values can be weighted according to the MYI

fraction as suggested by Kwok and Cunningham (2015). However, King et al. (2018) found that using only the MYI value of

882 kg
m3 agrees better with helicopter-borne electromagnetic SIT sounding measurements. We observe the same in comparison

to the OIB SIT measurements, and therefore apply 882 kg
m3 everywhere.

The last - and a major - uncertainty in the calculation of SIT is snow depth hs (Zygmuntowska et al. (2014), Giles et al.20

(2007)). Here we use the Warren climatology
::::::
original

:::::::
Warren

::::::::::
climatology,

:::
its

:::::::
modified

:::::::
version

:::::
where

:::::
snow

:::::
depth

::
is

::::::
halved

:::
over

::::
FYI

:
and the algorithms from Markus and Cavalieri , Rostosky et al. , Kilic et al. , our neural networks and also the snow

depth measured directly by the OIB snow radar to see how different snow products influence SIT.

:::
For

:::
the

:::::::::
calculation

:::
of

:::
sea

:::
ice

::::::::
freeboard

:::
hfb:::::

from
:::::
radar

::::::::
freeboard

::::
hrfb:::

two
::::::::::

corrections
::::::
should

:::
be

::::::
applied

:::::::::::::
(Kwok (2014)

:
).

:::
The

::::
first

:::::::::
correction

:::
δhp::::::::

accounts
:::
for

:::::::::
penetration

::::::
issues

::::::
caused

:::
by

:::
the

::::::::
scattering

::
of

:::
the

::::::::
Ku-band

:::::
radar

:::::
signal

::
at

:::
the

::::::::
air-snow25

:::::::
interface

:::
and

::::::
within

:::
the

:::::
snow

:::::
layer.

::::
This

:::::
shifts

:::
the

:::::::::
retracking

::::
point

::::::
closer

::
to

:::
the

:::::::
satellite.

::::
The

::::::
second

:::::::::
correction

::::
δhd ::::::

adjusts

::
the

:::::
radar

::::::::
freeboard

:::
for

:::
the

::::::
slower

::::::::::
propagation

:::::
speed

::
of

:::
the

:::::
radar

:::::
signal

:::::
within

::
a
:::::
snow

:::::
layer:

hfb = hrfb + δhp + δhd
::::::::::::::::::

(9)

::::
Both

:::::::::
corrections

:::::
have

:::::::
opposite

:::::
signs

:::
and

::::::::
therefore

::::
more

:::
or

:::
less

::::::
cancel

:::
out

:::::::::
depending

::
on

:::
the

:::::
snow

::::::
depth,

:::
the

:::::::
retracker

::::
and

::
the

:::::
ratio

:::::::
between

:::
the

::::::::
snow-ice

:::
and

:::::::
snow-air

::::::::
interface

:::::
peaks

::::::::::::
(Kwok (2014)

::
).

:
It
::
is
:::::::::
especially

::::
hard

::
to

:::::
apply

:::
the

::::
first

:::::::::
correction,30
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::::
since

:::
the

:::::
ratio

:::::::
between

:::
the

::::::::
snow-ice

:::
and

::::::::
snow-air

::::::::
interface

:::::
peaks

::
is

:::
not

:::::::
known.

:::::::
Kwok’s

::::::::::
simulations

::::::
suggest

::::
that

:::
for

:::::
snow

:::::
depths

::
of
:::::

5-30
:::
cm

::::::
(which

::::::
covers

:
a
:::::
major

::::
part

::
of

:::
the

::::
OIB

:::::
data)

::::
both

::::::::::
corrections

:::
add

:::
up

::
to

:::
0.2

:::
cm

:::
on

::::::
average

::::
and

:::
are

::::::
almost

::::::::::
independent

::
of

:::::
snow

::::::
depth,

:::::
when

:
a
:::::::

leading
:::::
edge

:::::::
retracker

::
is
:::::

used.
:::::::::
Therefore

:::
we

:::::
apply

::
a
::::
joint

:::::::::
correction

::
of

::::
0.2

:::
cm

::
to

:::
all

:::::::
CryoSat

::::
radar

::::::::
freeboard

:::::
data.

3 Data5

3.1 Operation Ice Bridge (OIB)

Operation Ice Bridge (OIB) was a flight campaign conducted in March and April 2009–2015 by NASA (Kurtz et al. (2013)).

The onboard snow radar provides snow depth measurements by identifying both the air–snow and snow–ice interface within

the radar returns. This time difference can then be converted to snow depth, if the snow density is known. Furthermore, a

combination of the onboard laser altimeter (tracking the ice + snow freeboard) with snow depth allows the calculation of SIT10

(Farrell et al. (2012)). We use OIB data from the Round Robin Data Package (RRDP) Version 2. This dataset was developed

as part of ESA’s sea ice climate change initiative (CCI) project and can be downloaded from http://www.seaice.dk/RRDB-v2/.

It contains the OIB snow depth and SIT data together with collocated AMSR-E or AMSR2 data. In this study we only use data

from the years 2013–2015, where AMSR2 data is available, to avoid the need for an AMSR-E versus AMSR2 inter-calibration.

The OIB data in this RRDP stem from NSIDC and OIB snow depth data are averaged into 50 km sections for a better overlap15

and collocation with AMSR (Pedersen et al. (2019)).

The OIB measured snow depth and SIT were compared to ground-based in situ measurements along a 2 km transect from

the Danish GreenArc sea ice camp across different ice types. Both snow depth and SIT were found to agree very well with

in situ data (mean difference 0.01 m and 0.05 m respectively, (Farrell et al. (2012)). Also a comparison to in situ snow depth

measurements from the Bromine, Ozone, and Mercury Experiment (BROMEX, Webster et al. (2014)) and to a reconstruction20

of snow depth from snowfall reanalysis data and sea ice motion (Blanchard-Wrigglesworth et al. (2018)) show good agreement.

Therefore we regard the OIB data as the best available validation data set and use a part of it to train our neural network and

another part for evaluation.

To train the network
::::::::
networks we temporally divide the OIB data into a training- (70%), a validation- (15%) and a test (15%)

dataset. This gives us
:
is

:
a
::::::::
common

:::::::
splitting

::
in

:::::::
machine

:::::::
learning

::::
and

::::::
ensures

:::::::
enough

::::::
training

::::
data

:::::
when

:::
the

::::::
overall

:::::::
amount

::
of25

:::
data

::
is
::::::
small.

:::
We

::::
also

::::::
verified

::::
that

::::
each

:::
of

:::
the

::::
splits

::::::::
contains

:
a
::::::
similar

:::::
range

:::
of

::::
snow

:::::
depth

::::::
values

:::
and

::::
that

::::
their

::::::::::
histograms

::::
look

::::
alike.

::::::
Figure

::
3

:::::
shows

:::
the

::::
flight

::::::
tracks

:::
and

:::
the

::::::::
measured

:::::
snow

:::::
depths

:::::
from

:::
the

:::::::::
2013–2015

:::::::::
campaigns

::::
(the

::::::
overall

:::::::
dataset).

:::
The

:::
top

::::
right

::::
box

::::::::
illustrates

::::::
which

::::
parts

:::
are

::::
used

:::
as

:::
test

::::
data

::::
and

:::
the

::::
snow

:::::
depth

::::::
values

::::::::
occurring

::
in

:::
this

:::::
split.

:::
We

:::
end

:::
up

::::
with

755 valid snow depth measurements in 2013 and 2014 for training, 162 valid measurements in 2014 and 2015 for validation

– meaning the identification of the best network architecture – and 162 valid snow depth measurements in 2015 for testing.30

Figure 3 shows the flight tracks and the measured snow depths from the 2013–2015 campaigns. The top right box illustrates

which parts are used as test data. When we train the AMSR2 + SMOS neural network, we have to discard all areas (especially

the bigger hole at the pole), where no SMOS data is available. Again we split the remaining data into 70% for training and

10



Figure 3. Flight tracks of the Operation Ice Bridge (OIB) campaigns 2013, 2014 and 2015. The measured snow depth is colour-coded. The

box on the top right shows which part of the OIB data is used as test data.

15% for validation and testing each . We then end up with
:::
and

:::::::
confirm

::::::
similar

:::::::::
histograms

::
of

:::
all

:::::
splits.

::::
This

:::::
gives

::
us

:
only 299

valid data points for training, 64 for validation and 65 for testing.

3.2 AMSR2

To train the neural networks and for all comparisons with OIB data, we use the collocated AMSR2 brightness temperatures

provided in the RRDP. For all other purposes (longer time series and maps of the whole Arctic), we use the AMSR2 L1R5

brightness temperature swath data from JAXA (available at ftp.gportal.jaxa.jp). In the L1R product all frequencies are resam-

pled to the 6.9 GHz resolution and centred at the center of the 89 GHz A footprint (Maeda et al. (2016)). Since CIMR would

provide the same frequencies that we are using and
::::
(6.9,

::::
18.7

:::
and

::::
36.5

:::::
GHz)

::
at

:::
the

:::::
same

::::::::
incidence

:::::
angle

:::
(55◦

:
)
:::
and

:
a similar

L1R product, our neural network could directly be applied to CIMR data and would provide snow depth at a higher spatial

resolution.10

3.3 SMOS

We use daily L3 SMOS data from the Centre Aval de Traitement des Données SMOS (CATDS), available at https://www.catds.fr

/sipad/. This product is derived from L1C by gridding it to the 25 km global EASE-2 grid. RFI filtering is applied and certain

11



SMOS L1C flags are taken into consideration. The brightness temperatures are available at full linear vertical and horizontal

polarization and averaged into 5◦incidence angle bins (Al Bitar et al. (2017), Kerr et al. (2013)). We average the ascending

and descending tracks and two of those incidence angle bins to receive brightness temperatures around 55°(50–60°) incidence

angle, as CIMR would measure them (Kilic et al. (2018a)). To collocate the SMOS data with the OIB and AMSR2 data from

the RRDP, we average SMOS measurements within 25 km from the OIB position of the same date.5

3.4 CryoSat

For the calculation of SIT, we use the
::::
radar

:
freeboard data in the Geophysical Data Record (GDR) product from the CryoSat-2

Science server: http://science-pds.CryoSat.esa.int. Flagged freeboard data are excluded. To compare the CryoSat-derived SIT

with the OIB SIT, we need to collocate the CryoSat freeboard with the OIB measurements. For each OIB SIT measurement we

average all CryoSat measurements within 25 km from the OIB position and within +/- 10 days to the OIB flight, assuming that10

SIT does not change so quickly.
::
In

::::
areas

:::
of

:::::
mixed

:::
ice

:::::
types

:::
and

::::
fast

:::
sea

:::
ice

::::
drift

:::
this

::::::::::
assumption

:::::
might

:::
not

::::
hold,

:::
but

:::
we

:::::
want

::
to

:::::
avoid

:::
too

:::::
many

::::
data

::::
gaps.

:
Doing so, we take the mean of on average 296 CryoSat freeboard measurements (median: 167

CryoSat measurements) and thereby account for the much smaller footprint of CryoSat compared to the snow depth products

and the averaged OIB data in the RRDP, but also reduce the uncertainty of a single freeboard measurement.

3.5 Ancillary data15

3.5.1 Ice concentration chart

All snow depth on sea ice algorithms, that are investigated here, rely on a SIC chart to apply them only in areas of at least 80%

SIC. For this we apply the SIC product from OSISAF available at ftp://osisaf.met.no/reprocessed/ice/conc/v2p0 (Lavergne et

al. (2019)). Apart from Kilic et al. all algorithms also require SIC to correct the brightness temperatures for a potential open

water part within the footprint. For this purpose we apply the Nasa Team (Cavalieri et al. (1984)) algorithm, as suggested by20

Markus and Cavalieri . This is much faster than to map a gridded SIC chart to all swath data, but it also misidentifies a few

areas in the open ocean as sea ice. To remove these we use the more accurate OSISAF SIC chart at the end.

3.5.2 Ice type product

The algorithm from Rostosky et al. requires reliable information on the ice type to distinguish FYI from MYI. As proposed

in their paper, we also use the OSISAF ice type product (Aaboe et al. (2016)) from ftp://osisaf.met.no/archive/ice/type.
:::
The25

::::
same

:::::::
product

::
is

:::
also

::::
used

::
to
:::::::
modify

:::
the

::::::
Warren

::::::::::
climatology.

:::
In

::::
areas

::
of

::::
FYI

:::
we

::::
half

:::
the

::::::
original

:::::
snow

:::::
depth

::::::
values.

12



4 Results and discussion

4.1 Results on snow depth

4.1.1
:::::::::::
Comparison

::
to

::::
OIB

::::
and

:::::
other

:::::::::
algorithms

In this section we measure the performance of our neural networks and compare the results to the algorithms proposed by

Markus and Cavalieri (1998), Rostosky et al. (2018) and Kilic et al. (2018b). For this evaluation we employ the test data part5

of the OIB snow depth measurements. The performance is evaluated using the root mean squared error (RMSE), the correlation

coefficient CC, the coefficient of determination (R2) and the bias. These are defined as follows:

RMSE =

√∑N
i=1(fi − yi)2

N
(10)

CC =

∑N
i=1(fi − f̄)(yi − ȳ)√∑N

i=1(fi − f̄)2 ·
∑N

i=1(yi − ȳ)2
(11)

R2 = 1−
∑

i(yi − fi)
2∑

i(yi − ȳ)2
(12)10

bias =

∑N
i=1(fi − yi)

N
(13)

with fi being the estimated values from the algorithm, yi values from OIB and ȳ or f̄ the mean of the OIB or predicted

::::::::
estimated values respectively.

Table 1 shows the results for the different algorithms. Here we use only those parts of the data, where AMSR2, SMOS and

OIB data is available. This gives us 65 valid data points for testing. In terms of RMSE and the coefficient of determination15

the two neural networks (AMSR2-only NN and AMSR2 + SMOS NN) yield the best results, followed by the approach by

Rostosky et al. . For Markus and Cavalieri one should keep in mind that we include snow depth estimates over MYI, where

the algorithm is known to have issues. Concerning the correlation the algorithms by Rostosky et al. and Kilic et al. perform

best, giving correlation coefficients of 0.93. Last but not least, the neural networks have essentially no bias (0.005
:::
0.00 m and

-0.011
::::
-0.01 m), while Rostosky et al. show the second smallest bias with 0.060

:::
0.06 m. So overall both neural networks show20

very promising results and a higher agreement with OIB snow depth than the other algorithms. Comparing both neural networks

with each other, we can easily conclude, that the addition of SMOS data further improves the neural network’s accuracy - only

the bias slightly increases.

To exploit also those parts of the OIB data, where no SMOS data is available, we now show the results on the full OIB test

data set (162 valid data points for testing instead of 65). Figure 3 top right corner shows the whole test data set from OIB. It25
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RMSE CC R2 bias

Markus & Cavalieri 0.200
:::
0.20 m 0.75 -4.37 0.182

:::
0.18 m

Rostosky et al. 0.075
:::
0.07 m 0.93 0.31 0.060

:::
0.06 m

Kilic et al. 0.132
:::
0.13 m 0.93 -1.33 0.101

:::
0.10 m

AMSR2-only NN 0.053
:::
0.05 m 0.84 0.63 0.005

:::
0.00 m

AMSR2 + SMOS NN 0.040
:::
0.04 m 0.91 0.79 -0.011

::::
-0.01 m

Table 1. RMSE, correlation, coefficient of determination and bias between the different snow depth retrieval algorithms and OIB measured

snow depth for all the test data where SMOS data is available

RMSE CC R2 bias

Markus & Cavalieri 0.194
::::
0.19 m 0.77 -2.67 0.172

:::
0.17 m

Rostosky et al. 0.066
::::
0.07 m 0.90 0.58 0.040

:::
0.04 m

Kilic et al. 0.158
::::
0.16 m 0.89 -1.44 0.120

:::
0.12 m

AMSR2-only NN 0.063 m
:::
0.06

::
m 0.82 0.61 0.003

:::
0.00 m

AMSR2 + SMOS NN 0.059
::::
0.06 m 0.85 0.66 -0.003

:::
0.00 m

Table 2. RMSE, correlation, coefficient of determination and bias between the different snow depth retrieval algorithms and OIB measured

snow depth for all the test data. When no SMOS data is available, the neural network with SMOS is equal to the neural network without

SMOS

covers a range of snow depths on both FYI and MYI. The AMSR2 + SMOS neural network results stem from the AMSR2

+ SMOS net, if SMOS data is available and from the AMSR2-only neural network otherwise. This ensures that we compare

the same part of the data for all approaches and have more test data available. Combining the two networks could also be

useful in a practical application to fill the hole at the pole and to still benefit from higher accuracies in regions, where SMOS is

available.
::::::
CIMR,

:::::::
however,

::::::
would

:::::
cover

:::
the

:::::
whole

::::
pole

::
at
:::
all

::::::::::
frequencies

:::
and

::::::::
therefore,

:::
the

:::::::
AMSR2

::
+
::::::
SMOS

::::::
neural

:::::::
network5

:::::
would

:::::::
produce

::
no

:::::
gaps.

:

Table 2 again shows the results for the different algorithms over the whole test data set. In terms of RMSE and the coefficient

of determination the approach by Rostosky et al. and the neural networks again yield the best results (RMSE 0.066
:::
0.07 m,

0.063
:::

0.06 m and 0.059
::::
0.06 m, R2 0.58, 0.61 and 0.66), with the AMSR2-only neural network being slightly better than

Rostosky et al. and the combined neural network working best. Concerning the correlation also here the algorithms by Rostosky10

et al. and Kilic et al. outperform the others, giving correlation coefficients of 0.89 and 0.90. Last but not least, both neural

networks have essentially no bias (+/-0.003
::::
0.00 m), while Rostosky et al. show the second smallest bias with 0.040

:::
0.04 m.

Overall we can conclude that the exact excerpt of the data does not make a big difference in terms of the conclusions and also

here the neural networks perform best, with the combined neural network outperforming the AMSR2-only one. The difference

between the two neural networks obviously is much larger and clearer, when only those parts of the data are used, where15
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Figure 4. OIB measured snow depth (test data) versus predicted
:::::::
estimated

:
snow depth using different algorithms. Note that Markus and

Cavalieri should only be applied over FYI, but this plot includes also MYI.

SMOS data is available. With CIMR we expect to see the same significant improvement as demonstrated in Table 1 without

the problem of losing data for training and testing.

For a visual impression we plot the estimated snow depth versus the snow depth measured by OIB in figure 4. The black line

indicates a perfect match between the algorithm and OIB and the grey shaded region indicates the uncertainty range of the OIB

snow depth measurements. In general the neural networks (pink dots for AMSR2-only and purple cross for AMSR2 + SMOS)5

and the approach by Rostosky et al. (green plus) are closest to OIB. For Markus and Cavalieri (blue stars) we observe that

low snow depths fit quite well, but larger snow depths are largely overestimated. We acknowledge that these high snow depths

probably occur on MYI, where the algorithm is not well defined.

Most algorithms start to flatten at around 35-40 cm snow depth. This behavior can be explained by the saturation of the

36.5 GHz signal around this depth. The algorithm by Rostosky et al. is the only one, solely relying on lower frequency10

channels and should not yet saturate at this depth. Indeed their estimation stays quite close to the OIB measurements, but

also shows a slight decrease in slope. Anyway this might not be significant considering the small number of samples. For the

AMSR2 + SMOS neural network, we do not observe a flattening, but we also only have very few samples available for high

snow depth.

Figure 5 reveals the distribution of OIB snow depth in grey and the distribution of estimated snow depth in colour. To get15

a better idea of the algorithms’ characteristics and to be statistically more meaningful, we show the results for the whole OIB

dataset. For the test data the plots look similar, but less obvious. For Markus and Cavalieri (first plot in blue), we again observe

15
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Figure 5. Distribution of OIB measured snow depth (all data) in grey versus estimated snow depth using different algorithms in colour.
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Figure 6. Deviation from OIB (predicted
:::::::
estimated snow depth using different algorithms minus OIB measured snow depth) for all OIB

data. The vertical black line indicates a perfect match between OIB and the algorithm, the left half corresponds to an underestimation and

the right half to an overestimation of snow depth compared to the OIB measurements.

that a lot of snow depths are highly overestimated - most likely due to the application of this algorithm over MYI (where it

is poorly constrained). The second plot in green for Rostosky et al. reveals that this algorithm only spans snow depths from

around 18 cm to 45 cm. The overall agreement is quite good, but the lack of snow depth lower than 18 cm is quite striking. The

third plot in red is associated with the snow depth estimates by Kilic et al. . It reveals the widest spread of estimated snow depth

values and shows a good overall agreement with the OIB distribution, but a tendency to overestimate snow depth. The plot in5

pink shows the snow depth distribution from our AMSR2-only neural network and the purple plot shows the distribution from

a combination of the two neural networks. When SMOS data is available, we use the AMSR2 + SMOS network, otherwise just

the AMSR2 network. Both neural networks show the best agreement with OIB: they capture the spread of OIB snow depths

quite well, just a few snow depths deeper than 40 cm are missing and the modes are a little bit shifted. Especially a high mode

at 10 cm snow depth sticks out, slightly underestimating OIB snow depth and again the combined neural network agrees a little10

bit better with OIB than the AMSR2-only neural network.

Finally we also plot the distribution of the deviation from OIB (estimated snow depth - OIB snow depth) in Fig. 6. The

vertical black line indicates zero deviation or a perfect match between the algorithm and OIB. For clarity, we choose to use all
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Figure 7. Map of Arctic snow depth on 11 January 2013 estimated with different algorithms

the OIB data, since the results for the test data look similar. The neural networks show the least bias and an almost Gaussian

distribution compared to OIB. Their modes are exactly at zero, while all other algorithms tend to more or less overestimate

snow depth compared with the OIB measurements.

4.1.2
:::::::::::
Applicability

:::::::
outside

:::
the

:::::::
training

::::
area

::::
and

::::::
period

To get a better feeling for the algorithms’ performance outside the areas (West Arctic) and times (spring) of the OIB data, we5

apply them to the whole Arctic for a whole winter season. Figure 7 shows the spatial distribution of snow depth on 11 January

2013, gridded to the 25 km polar stereographic EASE2 grid. This date was chosen arbitrarily in mid-winter. For comparison we

also include the Warren climatology for January. While we do not know which solution is closest to the truth, we can see how

broad the Warren climatology is compared to the maps from satellite data. We also observe that the climatology only covers

the central Arctic. Outside the diagram (e.g. 80◦N on the Atlantic side) snow depth can only be calculated by extrapolation,10
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but is no longer supported by measurements. In the plot for Markus and Cavalieri we observe a large area of snow depths

exceeding 50 cm (white) in the MYI area, where this algorithm overestimates snow depth and should not be applied. We note

that Rostosky et al. lack thin snow depths of less than approximately 15 cm, which seems unrealistic in areas of young ice. The

small gaps in the central Arctic and the smaller extend of the snow depth map are due to uncertainties in the ice type product.

These parts are excluded in the algorithm. Rostosky et al. fill them by averaging over a month. Gaps in the AMSR2 + SMOS5

neural network map are due to missing SMOS data. They could be closed using the AMSR2-only neural network instead. In

the case of CIMR, however, we expect the AMSR2 + SMOS neural network to produce a continuous map with no hole at the

pole which is a feature of the CIMR coverage (i.e. there will be no hole at the pole for all CIMR measurements). The snow

depth maps from Kilic et al. and the neural networks look reasonable exhibiting a higher snow cover on MYI in the central

Arctic and lower snow depth on FYI and in areas of new ice, as it is also recorded in the Warren climatology. Both the spatial10

patterns and the average snow depth of our neural networks on MYI agree well with the Warren climatology, which is based

on in situ snow depth measurements. On FYI our neural networks yield lower snow depths than recorded in the climatology,

which can be explained by a strong retreat of MYI since the period when the underlying in situ data for the climatology were

collected (1954-1991). Overall we can conclude that the snow depth values and the spatial pattern generated by our neural

networks seem reasonable compared to both other algorithms and the Warren climatology, which is based on actual in situ15

measurements. However, a full validation is not possible due to a lack of ground truth data.

Figure 8 shows time series of snow depth over one winter season 2012/2013 at different locations in the Arctic. We calculate

snow depth using the different algorithms on a daily basis from the AMSR2 L1R swath data. The resulting time series have

been smoothed by applying a 7-day running average to reduce noise. The first panel on the top left shows the evolution of

snow depth at 65 ◦N, 80 ◦W at the entrance to Hudson Bay. As the time series reveal, a closed sea ice area started forming20

here only at the end of November 2012. The algorithm by Rostosky et al. gives no estimate at this position, since the ice type

information is not certain enough. In general all four algorithms show an overall increase of snow depth with time, which is in

line with our expectation on FYI. The exact progression and the absolute depth vary depending on the algorithm. Most striking

is, that in mid of March the neural networks and Markus and Cavalieri ’s algorithm observe an increase in snow depth, while

the approach by Kilic et al. leads to a decrease. Unfortunately no in situ measurements are available for comparison to verify25

the actual situation.

The two plots on the right show snow depth evolution on FYI at 80 ◦N, 80 ◦E in the Kara Sea (lower panel) and at 80 ◦N,

160 ◦E very close to the MYI or minimum ice extend edge of 2012 (upper panel). For all three FYI plots one might expect, that

snow depth would start at zero, when the new ice has just formed. In reality most algorithms start at approximately 0.10 m and

snow depth estimation from Rostosky et al. starts at 0.20 m. This can be explained by the fact that we start calculating snow30

depth once SIC has reached 80% and SIC algorithms are known to underestimate SIC when thin sea ice is present: Ivanova et

al. (2014) showed that in case of 100% SIC, the Nasa Team algorithm will only reach 80% SIC at 0.20 m SIT, so snow depth

is not calculated before the ice has grown 20 cm thick.

The plots on the bottom left at 83.3 ◦N, 51.8 ◦W just North of Greenland and in the bottom center at 85 ◦N, 0 ◦E show snow

depth on MYI. The left one is an example for high snow depth all year round, while the one at the center exhibits a decrease in35
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Figure 8. Time series of snow depth over one winter season 2012/2013 at different locations in the Arctic. The different algorithms are

represented by different colours and lines. Snow depth on FYI in lower latitudes is only recorded once SIC has reached 80%.

snow depth throughout winter. This is likely because of less snow falland
:
, a densification of the snow in winter

:::
and

::::::::
primarily

:::
due

::
to

:::
ice

::::
drift

::::
from

:::
the

:::::::
(north)

:::
east

::::::::
replacing

:::::
older

:::
ice

::
by

:::::::
younger

:::
ice

::::
with

:::::::
thinner

::::
snow. In general, all algorithms more or

less agree on the main trends on MYI, but snow depths by Markus and Cavalieri and Kilic et al. are higher than snow depths

by Rostosky et al. and our neural networks. Here again we recall that the algorithm by Markus and Cavalieri is not reliable

over MYI and tends to largely overestimate snow depth larger than 50 cm.5

Even though no real validation is possible over the whole Arctic or outside the OIB season, from the verification and inter-

comparison results we present, we can conclude that our neural network results are similar in comparison to other approaches.

This indicates that, although only trained in a limited area and with spring data, the neural networks may be applied for the

whole Arctic and during a full winter season.

4.1.3
::::::::::
Uncertainty

::::::::::
estimation10

::::::
Finally

::
we

::::::
assess

:::
the

:::::::::
uncertainty

::
of

::::
our

:::::
neural

::::::::
networks

::
to

:::::
enable

::::::
usage

::
of

:::
this

:::::
snow

::::::
product

::
in

:::::::
models

::
or

::
for

::::
SIT

::::::::::
calculation.

:::
The

::::
very

::::::::
complex

:::
and

::::::
highly

:::::::::
non-linear

::::::::::
relationship

:::::::
between

::::
the

::::
input

::::
and

:::::
snow

:::::
depth

::::::
output

::::::
hinders

::
a

:::::::
stringent

::::::::
variance
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::::::::::
propagation.

:::::::
Instead,

::
to

::::::
assess

:::
the

::::::::::
uncertainty

::
of

:::
our

::::::
neural

:::::::
network

:::::::::::
approaches,

:::
we

::::::
employ

:::
the

::::::
Monte

:::::
Carlo

:::::::
method

::::
and

:::::::
generate

::
an

::::::::
ensemble

::
of

:::
50

:::::::
samples

:::
for

::::
each

:::::
input

::::::::
brightness

:::::::::::
temperature.

:::
We

::::
draw

:::::
these

:::::::
samples

::::
from

::
a
::::::
normal

::::::::::
distribution

::::
using

:::
the

::::::::
observed

:::::::::
brightness

::::::::::
temperature

::
as

:::::
mean

:::
and

:::
0.5

::
K

::
as

::::::::
standard

:::::::
deviation

:::
for

::::::::
AMSR2.

:::
For

::::::
SMOS

:::
we

::::
take

:::
the

:::::::
standard

::::::::
deviation

::::::::
provided

::
in
::::

the
::
L3

::::
files

:::
for

:::::
each

::::::::::
observation

:::
and

:::::::::
propagate

::::
them

:::::::
through

::::
our

::::::::
averaging

::::::
process

::
to

::::::
obtain

:
a
:::::::
standard

::::::::
deviation

:::
for

::::
each

::::::
SMOS

:::::::::::
measurement

::::
used

::
as

:::::
input

::
to

:::
the

::::::::::
polarization

::::
ratio.

::::
The

:::::
mean5

::
of

::::
these

::::::::
standard

:::::::::
deviations

::
is

::::
0.76

::
K

:::
for

::
V

::::::::::
polarization

::::
and

::::
0.79

::
K

:::
for

::
H

:::::::::::
polarization.

::::::
Further

::::::::::
uncertainty

:::::
arises

:::::
from

:::
the

::
tie

:::::
points

:::::
used

::::
both

::
in

:::
the

::::
Nasa

:::::
Team

:::::::::
algorithm

:::
for

:::
SIC

::::
and

::
to

::::::
correct

:::
the

::::
open

:::::
water

::::
part

::
of

:::
the

::::::::
footprint

::::
(Eq.

::
2).

:::::::::
Therefore

::
we

::::
also

:::::
create

:::
an

::::::::
ensemble

::
of

:::
50

:::::::
samples

:::
for

::::
each

::
tie

:::::
point

:::::
using

:::
the

:::::
values

:::::
from

:::::::
Ivanova

::
et

::
al.

::
as

:::::
mean

::::
and

:
3
::
K

::
as

::::::::
standard

::::::::
deviation.

::::
The

:::::::
resulting

:::::
mean

:::::::::
uncertainty

::
in
::::
SIC

::::
from

:::
the

:::::
Nasa

:::::
Team

::::::::
algorithm

::
is

::::
4%.

:::
We

::::
then

:::::::
estimate

::::
snow

:::::
depth

:::::
using

::::
each

::::::::
ensemble

:::::::
member

::
as

:::::
input

::
to

:::
our

:::::
neural

::::::::
networks.

::::
This

::::::
yields

::
an

::::::::
ensemble

::
of

:::::
snow10

::::
depth

:::::::::
estimates.

:::
The

::::::::
standard

::::::::
deviation

::
of

:::
this

::::::::
ensemble

::
is

::::
used

::
as

::
an

::::::::::
uncertainty

:::::::
measure

:::
for

:::
the

::::::::
estimated

:::::
snow

::::
depth

::::::
value.

::::::
Across

::
all

::::
OIB

::::
data

:::
the

::::::::
resulting

::::
final

:::::::::
uncertainty

::::::
(mean

:::::::
standard

:::::::::
deviation)

::
is

::::
0.05

::
m

:::
for

:::
the

::::::::::::
AMSR2-only

:::
NN

:::
and

:::::
0.02

::
m

::
for

::::
the

:::::::::::::
AMSR2+SMOS

:::::
NN,

::::::::
indicating

::::
that

:::
the

::::::::::::::
AMSR2+SMOS

::::
NN

::
is

::::
less

:::::::
sensitive

::
to
:::::

noise
:::

in
:::
the

:::::
input

::::
data.

::::
The

:::::
error

:::::::::::
(repeatability)

:::
of

:::
the

::::::
Monte

:::::
Carlo

:::::::::
simulation

::
is

::::::
0.0005

::
m

::::
and

::::::
0.0001

::
m

:::::::::::
respectively.

::::
This

::::::::
approach

:::::::
however

:::::
only

:::::::
assesses

:::
how

::::::
robust

:::
the

::::::
neural

::::::::
networks

:::
are

::
to

::::::::::
uncertainty

::
in

:::
the

:::::
input

::::
data

:::
and

::::::::
auxiliary

::::::::::
parameters

::::
such

::
as

:::
the

:::
tie

::::::
points.

:::::::
Further15

:::::::::
uncertainty

:::::
arises

::::
from

:::::::
training

:::
the

::::::
neural

:::::::
networks

::::
with

::::
OIB

:::::
data,

:::::
which

:::
has

:::
its

:::
own

::::::::::
uncertainty

:::
and

:::::::::
limitations

::::::
unlike

:
a
::::
real

::::::
ground

::::
truth

::::::
dataset.

:

4.2 Results on sea ice thickness

Having assessed the different snow depth algorithms, we now investigate how they influence SIT retrieval from CryoSat

freeboard data and compare the results to OIB measured SIT. In addition to the algorithms discussed above, we also include20

the
::::::
original

::::::::::::::::::
(Warren et al. (1999)

:
)
:::
and

::::::::
modified

:::
(i.e.

::::::
halved

::::
over

:::::
FYI,

::::::::::::::::::::
Kurtz and Farrell (2011)

:
) Warren climatology and the

OIB measured snow depth, that was used as validation snow depth data before. From the Warren climatology we use the mean

monthly snow depth of 0.324 m in March and 0.337 m in April without taking any spatial variability into account. The OIB

flight tracks lay within the 32 cm to 40 cm contour lines provided by Warren et al. , so using the mean value may lead to a

slight underestimation of snow depth and hence also SIT, but this deviation should be within the uncertainty range. The
:::
The25

results are presented in Table 3 and visualised in Fig. 9.

Using the OIB measured snow depth yields the lowest bias and RMSE, the highest coefficient of determination, and the

second highest correlation coefficient. Therefore using it as validation data for snow depth seems justified. However, the dif-

ference to the snow depth algorithms is not that large, when they are used in SIT retrieval.
:
In

:::::
terms

::
of

::::::
RMSE

:::
our

::::::::::::
AMSR2-only

:::::
neural

:::::::
network

::::::::
performs

::
as

::::
good

:::
as

:::
the

:::
OIB

:::::
snow

:::::::
product

:::
and

::::
both

:::
the

::::::::
algorithm

:::
by

:::::::::::::
Rostosky et al.

:::
and

:::
the

::::::::::::::
AMSR2+SMOS30

:::::
neural

:::::::
network

:::
are

::::
only

::
1
:::
cm

::::::
worse,

::::::
which

::
is

:::
not

:::::::::
significant

::::::::::
considering

::::
that

:::
the

:::::::
accuracy

:::
of

:::
the

::::
OIB

::::
SIT

:
is
:::

at
:::
best

::
5
::::
cm.

::::::::
Therefore

:::
the

:::
last

::::
digit

:::
of

:::
the

:::
bias

::::
and

:::
the

::::::
RMSE

::::::
should

:::
not

::
be

:::::::::
overrated. Concerning the correlation coefficient, using snow

depth from Kilic et al. gives the best result, but the difference to other algorithms is marginal. In terms of RMSE and
:::
For

:::
the

::::::::
coefficient

:::
of

::::::::::::
determination,

::::
both

:::
our

:::::
neural

::::::::
networks

:::
are

::
as

:::::
good

::
as

:::
the

:::
OIB

:::::
snow

:::::::
product

::::::
closely

:::::::
followed

:::
by

:::
the

:::::::::
algorithms

20



RMSE CC R2 bias

Warren climatology 0.720
::::
0.73 m 0.75 0.51

:::
0.49 0.237

:::
0.25 m

::::::
Modified

::::::
Warren

: :::
0.67

::
m

: :::
0.77

: :::
0.57

: :::
0.16

::
m

Markus & Cavalieri 0.752
::::
0.76 m 0.79 0.46 0.377

:::
0.39 m

Rostosky et al. 0.648
::::
0.65 m 0.79 0.62 0.071

:::
0.08 m

Kilic et al. 0.629
::::
0.63 m 0.81 0.62 0.120

:::
0.13 m

OIB snow 0.620 m
::::
0.62

:
m 0.80 0.63 -0.054 m

:::
-0.04

::
m

AMSR2-only NN 0.625 m
:::
0.62

::
m 0.79

:::
0.80 0.63 -0.059

::::
-0.05 m

AMSR2 + SMOS NN 0.628
::::
0.63 m 0.79 0.62

:::
0.63 -0.074

::::
-0.06 m

Table 3. RMSE, correlation, coefficient of determination and bias between CryoSat derived SIT using different snow products and OIB

measured SIT for all data.
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Figure 9. OIB measured SIT (all data) versus predicted
:::::::
estimated

:
SIT using CryoSat freeboard with different snow depth algorithms.
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::
by

:::::::::::::
Rostosky et al.

:::
and

:::::::::
Kilic et al.

:
.
::::
Also

::
in

:::::
terms

::
of

:
bias, our neural networks show the second highest agreement with the OIB

SIT, just after the OIB measured snow depth. For the coefficient of determination, the AMSR2-only neural network is even as

good as the OIB snow product, closely followed by the AMSR2+SMOS neural network and the algorithmsby Rostosky et al.

and Kilic et al.
::::::
Warren

::::::::::
climatology

:::
we

:::::::
observe

::::
that

:::
the

:::::::
modified

:::::::
version

::::::::
performs

:::::
better

::
in

::
all

::::
the

:::::::::
categories,

:::
but

:::
still

::::::
worse

:::
than

:::::
most

:::::
other

:::::::::
algorithms. Markus and Cavalieri ’s approach may perform equally well on FYI. Here we include the perfor-5

mance over MYI, where the algorithm is not suitable, to allow a comparison to the other approaches over all the OIB data.

This explains why their approach performs worse. For the Warren climatology we observe a large positive bias corresponding

to an overestimation of SIT/snow depth. This indicates that the use of the monthly mean value has no negative impact, since

we would have expected this to result in an underestimation.

When using our two neural networks’ snow depth in the SIT calculation, the difference between them becomes quite small.10

Here the AMSR2-only neural network performs slightly better than the combined network, but not much
:::::::
marginal

::::
and

:
is
:::::::
smaller

:::
than

:::
the

::::::::
accuracy

::
of

:::
the

::::
OIB

::::
SIT. This is first of all because when no SMOS data is available, both have the same result and

second, in SIT calculation many other uncertainties (e.g. uncertainty in freeboard retrieval due to a varying scattering horizon

within the snow pack
:::
and

:::::
radar

:::::
signal

:::::
delay

::::::
caused

::
by

::::
the

::::
snow

:::::
pack, the choice of the retracking algorithm, uncertainty in

snow density and ice density) overshadow the uncertainty in snow depth itself. In the following plots
:::
plot we therefore only15

show the AMSR2-only neural network.

In Figure 9 differences between each of the snow depth products are hard to see. Most striking is that for SITs lower than

1 m all algorithms overestimate SIT. Scatter around the measured OIB SIT is evident and the uncertainty in OIB SIT is quite

large (grey shaded area).

Figure 10 shows the distribution of OIB measured snow depth in grey and the distribution of SIT calculated from CryoSat20

freeboard using different snow products in colour. The SIT distribution from CryoSat freeboard using the Warren climatology

shows less low SIT (up to 2 m) compared to OIB measured SIT. The same holds when using
:::
the

:::::::
modified

:::::::
Warren

::::::::::
climatology

::
or snow products from Markus and Cavalieri or

:::
and Rostosky et al. , but the effect is

:
a
::
lot

:
less pronounced. Apart from that

both distributions are in quite good agreement for all the snow products.

Figure 11 exhibits the deviation of the calculated SIT with CryoSat using different snow depth products from the OIB25

measured SIT. For most snow depth estimates, CryoSat derived SIT is higher than the OIB measured SIT. This effect can

be seen clearly for the Warren climatology and the Markus and Cavalieri snow depth product, but also the
:::::::
modified

:::::::
Warren

::::::::::
climatology

:::
and

:::
the

:
algorithms by Rostosky et al. and Kilic et al. lead to a slight overestimation of SIT. In contrast, using

the OIB measured snow depth or the neural networks in the CryoSat SIT retrieval gives almost no bias compared to OIB

SIT measurements. The modes of the deviation are exactly at zero. Only a minor skew in the distribution indicates a slight30

underestimation of SIT.

Snow depth is not the only uncertainty in SIT estimation. A large contribution to the SIT error budget is the position of the

radar scattering horizon. For CryoSat the assumption is that most of the signal is scattered at the snow-ice interface, however

different studies suggest that in some cases (e.g. with a saline snow pack, slush and layering) the main scattering horizon is

rather “somewhere within the snowpack” (King et al. (2018), Price et al. (2015), Kwok and Kacimi (2018)). Alexandrov et35
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Figure 10. Distribution of OIB measured SIT (all data) in grey versus predicted
:::::::
estimated SIT using CryoSat freeboard with different snow

depth algorithms in colour.

al. (2010) state that the freeboard error may be reduced by averaging. In our comparison with OIB we take the mean of on

average 296 CryoSat freeboard measurements in the collocation process, so the freeboard error should be reduced significantly,

but systematic errors e.g. originating from the choice of the retracker remain (Ricker et al. (2014)).
::::::::::
Additionally

:::
we

:::::
only

::::
apply

::
a
:::::
mean

::::::::
correction

:::
for

:::
the

:::::::::
combined

:::::
effect

::
of

:::::
radar

:::::::::
penetration

::::
and

:::::
radar

::::
delay

::::::
caused

:::
by

:::
the

:::::
snow

:::::
pack.

:::
The

::::
sign

::::
and

::::::::
magnitude

:::
of

:::
this

::::::::
combined

::::::::::
correction,

:::::::
however,

:::::::
depend

::
on

:::
the

:::::
snow

:::::
depth

:::
and

::::::::
primarily

:::
the

::::
ratio

::::::::
between

:::
the

:::::::
snow-ice

::::
and5

:::::::
snow-air

:::::::
interface

::::::
peaks.

:::
The

::::
lack

::
of

::::
data

:::
for

:::
the

::::
latter

::::
add

::
to

::
the

::::::::::
uncertainty

::::::
budget

::
of

::::
SIT. Both snow- and ice density change

spatially and temporally, but are mostly treated as a constant bulk value. This introduces further uncertainty in the conversion of

CryoSat freeboard to SIT. Kern et al. (2015) found in their sensitivity study that the uncertainties of ice density and snow depth

contribute about equally to SIT uncertainty. According to Zygmuntowska et al. (2014) and Giles et al. (2007) snow depth is

the biggest uncertainty. With our results we also show that the snow depth product does play a role and makes a difference.10

This implies that using a reliable snow depth product also gives more accurate SIT. Compared with OIB we can confirm that

the neural networks give the best results both for snow depth and using this snow depth in the SIT calculation.

23



2 0 2
deviation from OIB SIT [m]

0

20

40

60

80

100
Warren climatology

2 0 2
deviation from OIB SIT [m]

0

20

40

60

80

100
modified Warren

2 0 2
deviation from OIB SIT [m]

0

20

40

60

80

100
Markus and Cavalieri

2 0 2
deviation from OIB SIT [m]

0

20

40

60

80

100
Rostosky et al

2 0 2
deviation from OIB SIT [m]

0

20

40

60

80

100
Kilic et al

2 0 2
deviation from OIB SIT [m]

0

20

40

60

80

100
OIB snow

2 0 2
deviation from OIB SIT [m]

0

20

40

60

80

100
AMSR2-only NN

2 0 2
deviation from OIB SIT [m]

0

20

40

60

80

100
AMSR2+SMOS NN

Figure 11. Deviation from OIB (predicted
::::::
estimated

:
SIT using CryoSat freeboard with different snow depth algorithms minus OIB measured

SIT) for all OIB data. The vertical black line indicates a perfect match between OIB and the algorithm, the left half corresponds to an

underestimation and the right half to an overestimation of SIT compared to the OIB measurements.

5 Conclusions

In this paper we introduce a novel neural network approach to derive snow depth on sea ice from microwave radiometer

brightness temperatures. We design one neural network that relies only on AMSR2 brightness temperatures and another neural

network that takes brightness temperatures from SMOS as additional input. We evaluate the results with snow depth measure-

ments from the OIB snow radar and compare them to three other more conventional microwave radiometer algorithms.5

We find that both our neural networks outperform the other algorithms when compared to OIB snow depths. The neural

networks show the lowest RMSE, the highest coefficient of determination and especially have essentially no bias. The estimated

snow depth covers the full range of measured OIB snow depths and our approach works over both FYI and MYI without

requiring a map of ice types to distinguish between both. We also demonstrate that the neural networks are applicable outside

the OIB period and time, showing reasonable results, that are in line with our expectation, the other algorithms and the Warren10

climatology, which is based on in situ measurements, but a true validation should be subject to future work. Comparing our two

neural networks with each other shows
::::
From

:
a
::::::
Monte

:::::
Carlo

:::::::::
simulation

:::
we

:::::
derive

::
an

::::::::::
uncertainty

::
of

::
5

:::
cm

::
for

:::
the

::::::::::::
AMSR2-only

:::
and

::
2

:::
cm

:::
for

:::
the

::::::::::::::
AMSR2+SMOS

::::
NN.

::::
This

:::
and

:::
the

::::::::::
comparison

:::
to

::::
OIB

::::
show

:
that the addition of SMOS further boosts the

accuracy. The AMSR2-only neural network can be used to fill areas where no SMOS data is available.
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Additionally we derive SIT from CryoSat freeboard measurements using different snow products including the algorithms

tested before, the Warren climatology and our neural networks. In comparison to the SIT derived from laser altimeter measure-

ments onboard OIB, we can confirm that using the snow depth retrieved with our neural networks also yields the best matching

SIT. This underlines the importance of a reliable snow product and supports our neural network approach.

The Copernicus Imaging Microwave Radiometer (CIMR) candidate mission is now being studied at ESA. CIMR proposes5

a conically scanning radiometer having a swath > 1900 km and will include channels at 1.4 GHz (60 km), 6.9 and 10.65 GHz

(<15 km), 18.7 GHz (5-6 km) and 36.5 GHz (4-5 km) on the same platform in a high inclination dawn-dusk orbit coordinated

with the MetOp-SG(B). CIMR offers improved spatial resolution compared to AMSR2 with sub-daily coverage of the polar

regions above 60◦north and south. An adapted version of the AMSR2 + SMOS snow depth on sea ice neural network retrieval

would be extremely valuable – especially if used in synergy with the proposed CRISTAL dual-frequency radar altimeter10

dedicated to sea ice thickness retrievals. Both missions could fly in late 2020.
:::
the

::::::
2020s.

As future work we propose a more extensive inter-comparison of our neural network approach (and other microwave ra-

diometry retrievals) to twin-frequency altimetry snow depth retrievals, modelling approaches and climatologies. Additionally

it would be interesting to examine how the neural networks perform in Antarctica or to train a similar neural network with

Antarctic in situ data. Especially the combined AMSR2+SMOS neural network seems promising for the retrieval of deeper15

Antarctic snow depth on sea ice, since it incorporates low frequency channels and - in contrast to most other microwave

radiometry approaches - does not exhibit a saturation of the signal at 35-50 cm snow depth.

Code availability. Both the AMSR2-only and the AMSR2+SMOS neural networks are made available in h5 format on https://github.com/

AnneBF/snownet. They come with a sample Python code to read and apply them. DOI: https://zenodo.org/badge/latestdoi/170323330
:::
The

:::::
outputs

:::
are

::::
snow

:::::
depth

:::::::
estimates

:::
and

::::
their

:::::::
respective

:::::::
standard

:::::::
deviation.
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