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This is a well written paper that introduces a novel approach to estimating snow-on-
sea-ice thickness using multi-frequency passive microwave data. The authors go on
to show how better snow thickness estimates impact the further calculation of sea
ice thickness. The paper is well organized, the references complete, and the figures
generally clear. The authors discuss several previous snow thickness algorithms in
some detail. They compare results against OIB data to test RMSE and correlation. |
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think it would be useful to add additional description about the physical basis for the
different algorithms. In most cases at least in so far as | recall, the algorithms are
largely empirical and validated against in situ data.

We added more details about the physical basis of the algorithms in Section
2.1 (p4 1. 23-25): “[Markus and Cavalieri (1998) developed the first algorithm to
retrieve snow depth i, on sea ice from passive microwave measurements in 1998.]
The physical basis of their algorithm is the fact that brightness temperature is
sensitive to volume scattering. The brightness temperature over snow on sea
ice decreases, when snow depth increases or when frequency decreases. They
found the highest correlation to Antarctic snow depth observations with [the
gradient ratio between 19 GHz and 37 GHz brightness temperatures Tb at vertical
polarization V3]

True, all algorithms presented in the paper are based on empirical fits to ob-
servation data (OIB, buoys or ship and ground observations). This is already
discussed in the paper.

However the authors seek to use this analysis as a guide for the CIMR mission. Without
more detail on the physical basis, it is hard to say how well the algorithm will perform or
serve to continue as a long term record given differences between the CIMR instrument
parameters and earlier sensors. See for example Zabel and Jezek, 1994, Consistency
in Long Term Observations of Oceans and Ice From Space, JGR Oceans, Vol 99, p.
10109.

We added a more details describing the CIMR sensor in Section 3.2 (p.11 11.7-9):
“[Since CIMR would provide the same frequencies that we are using] (6.9, 18.7 and
36.5 GHz) at the same incidence angle (55°) [and a similar L1R product, our neural
networks could directly be applied to CIMR data and would provide snow depth at a
higher spatial resolution].”

Both AMSR2 and CIMR are measuring brightness temperature at 55° incidence
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angle and 6.9 GHz, 18.7 GHz and 36.5 GHz as used in the algorithms. The same
holds for the former AMSR-E sensor. The slightly different incidence angle of
SSMI (53.1°) and frequency (19.35 and 37.0 GHz, no C-band channel) were taken
into account by using regression coefficients of the Markus and Cavalieri ap-
proach that were adapted for the AMSR instrument parameters by Comiso et
al. (mentioned in Section 2.1). Both our neural networks and the algorithms by
Rostosky et al. and Kilic et al. are designed for the instrument parameters of
AMSR-E, AMSR2 or CIMR. To extend the long term record beyond 2001, when
AMSR-E was launched, data from SMMR could be used, but the different inci-
dence angle (50.2°) and slightly different frequencies (6.6, 18.0 and 37.0 GHz)
might degrade their performance. Zabel and Jezek (1994) state that snow on
sea ice is not too sensitive to small differences in instrument parameters, since
surface roughness dominates. Evaluating this could be subject to future work.

The AMSR2+SMOS NN takes additional brightness temperature measurements
at 1.4GHz from SMOS. CIMR will cover the same frequency, but at a constant in-
cidence angle of 55°, while SMOS is measuring at varying incidence angles be-
tween 0 and 65°. To simulate brightness temperatures as they will be measures
by CIMR we only took measurements from SMOS between 50 and 60° incidence
angle and averaged them. This is described in Section 3.3. Therefore we are
confident that the instrument parameters of AMSR2 and SMOS are close enough
to CIMR.

In several of the tables, the authors quote precision to the mm level. Given that the OIB
data are at best accurate to 1 cm for snow thickness and maybe 5 cm for ice thickness,
the precision in the table should be changed to reflect that.

The precision in the tables and the text has been changed. For the SIT we kept
cm precision, but point to the lower accuracy of the OIB data in the text: “[In terms
of RMSE our AMSR2-only neural network performs as good as the OIB snow product
and both the algorithm by Rostosky et al. and the AMSR2+SMOS neural network are
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only 1 cm worse,] which is not significant considering that the accuracy of the
OIB SIT is at best 5 cm. Therefore the last digit of the bias and the RMSE should
not be overrated.” And “[When using our two neural networks’ snow depth in the SIT
calculation, the difference between them becomes marginal] and is smaller than the
accuracy of the OIB SIT.”

It might also be interesting to think about the accuracy of the algorithm derived snow
thickness and SIT. There is uncertainty in the accuracy of the OIB data but there is also
algorithmic uncertainty the arises from the assumptions in the algorithm. What might
be the later and what might be the total uncertainty in the results presented here? |
recommend publication after the authors have reviewed my comments.

We divided the former chapter 4.1. into two subsections and added a third sub-
section on uncertainty estimation at the end of chapter 4.1 (as 4.1.3.) (p.18, 1.10):
“Finally we assess the uncertainty of our neural networks to enable usage of this
snow product in models or for SIT calculation. The very complex and highly non-
linear relationship between the input and snow depth output hinders a stringent
variance propagation. Instead, to assess the uncertainty of our neural network
approaches, we employ the Monte Carlo method and generate an ensemble of
50 samples for each input brightness temperature. We draw these samples from
a normal distribution using the observed brightness temperature as mean and
0.5 K as standard deviation for AMSR2.

For SMOS we take the standard deviation provided in the L3 files for each obser-
vation and propagate them through our averaging process to obtain a standard
deviation for each SMOS measurement used as input to the polarization ratio.
The mean of these standard deviations is 0.76 K for V polarization and 0.79 K for
H polarization. Further uncertainty arises from the tie points used both in the
Nasa Team algorithm for SIC and to correct the open water part of the footprint
(Eq. 2). Therefore we also create an ensemble of 50 samples for each tie point
using the values from lvanova et al. as mean and 3 K as standard deviation. The
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resulting mean uncertainty in SIC from the Nasa Team algorithm is 4 %.

We then estimate snow depth using each ensemble member as input to our
neural networks. This yields an ensemble of snow depth estimates. The stan-
dard deviation of this ensemble is used as an uncertainty measure for the es-
timated snow depth value. Across all OIB data the resulting final uncertainty
(mean standard deviation) is 0.05 m for the AMSR2-only NN and 0.02 m for the
AMSR2+SMOS NN, indicating that the AMSR2+SMOS NN is less sensitive to
noise in the input data. The error (repeatability) of the Monte Carlo simulation
is 0.0005 m and 0.0001 m respectively. This approach however only assesses
how robust the neural networks are to uncertainty in the input data and auxil-
iary parameters such as the tie points. Further uncertainty arises from training
the neural networks with OIB data, which has its own uncertainty and limitations
unlike a real ground truth dataset. “

In the conclusion we added a sentence (p.22, 1.11): “From a Monte Carlo sim-
ulation we derive an uncertainty of 5 cm for the AMSR2-only and 2 cm for the
AMSR2+SMOS NN.”

We also updated the sample code provided on github (mentioned under code
availability) to include a standard deviation for each show depth estimate (p.23,
11.18-19).
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