The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-40-RC2, 2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Interactive comment on "An enhancement to sea ice motion and age products" by Mark A. Tschudi et al.

Anonymous Referee #2

Received and published: 1 July 2019

Review of "An enhancement to sea ice motion and age products" by Mark A. Tschudi et al. TC-2019-40

General comments: 1) 7-10: Stale opening sentences in the abstract. Reads boring, repeats phrases.

- 2) Abstract: Suggest to provide more "scientific" results/summary. And drop the first few sentences.
- 3) The ms is a bit plain and could be lifted by addition of further investigation of the ice-motion and ice-age data sets and discussion of the results.

Specific comments:

C1

1/12-13: Pls specify/give example on how they "are not substantially different between the versions."

1/18: "recent years" or "recent decades"?

1/26: Suggest to rephrase "it is more difficult to draw solid quantitative".

2/26: Correct "will expand greatly with the launch of the NASA ICESat-2 in September 2018" as all this is happened (i.e., it is not longer in the past).

2/27: Could mention Op IceBridge in this paragraph.

3/8-9: Redundant?

3/12-14: Shorten.

3/17: Change "ice motion" to "sea ice motion".

3/25-26: Provide info on typical repeat frequency of "Two geolocated, spatially-coincident, temporally-consecutive satellite images".

4/18: How is the oversampling rate of "4" motivated?

4/34: This statement is not correct as is: "AVHRR was discontinued after 2000." Please qualify or remove.

5/3: How is the threshold of "0.4" motivated?

5/8-15: It is not clear how exactly previous versions dealt with input PM data. Can you separate into composite versus swath or similar?

5/19-24: The assumption that sea ice moves at 0.01 of the wind speed (for the Arctic) needs to be reviewed, especially in an environment of highly variable and increasing wind speeds. —> Underestimate of the ice speed. I.e., Rampal et al. [2009], Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007, J. Geophys. Res., 114, C05013, doi:10.1029/2008JC005066.

5/29: Replace "data" in "These buoys monitor meteorological and oceanographic data", i.e., to read "conditions" or "states".

5/33: Mention explicitly that there are too few sea-ice buoys in the Southern Ocean.

8/23ff: It is not clear how the few PM (or combined) motion vectors are treated to derive a broad map of sea-ice motion (on EASE grid)? It appears as if severe extrapolation is taking place.

8/24: There are several experiments with decent buoy arrays available for some parts of the Antarctic sea-ice zone. Why not use some of those to at least assess the skill of the product... and to possibly explore the suitability of Antarctic ice-buoy data to provide information into the ice-motion product discussed here.

9/2: The netCDF file should include an additional mask (0/1) where one can mask all gridded ice motion that is "too far" from an actual observation, where the value of "too far" needs to be discussed.

9/32: How is the limit of "16 years" for the maximum ice age set? Physical motivation?o

10/19: There is not quantitative measure of how V4 ice age as improved relative to V3: "there is less "speckling"".

10/21ff: In discussing the relative "ageing" of Arctic ice from V3 to V4 there are no physical details provided as to what process would be the main driver of this change.

11/1ff: The discussion of trends and variability in ice motion & age between V3 and V4 should be more quantitative. – Also, regional contributions should be explored.

12/7: Correct "Fennoscandian peninsula." to "Fennoscandian Peninsula." (upper case)

Fig.7: There seems to be a cyclical signal in the ice-speed difference between V3 and V4. Decadal or perhaps 11 - 12 years. Can different PM sensors be the reason for this? Or the speed magnitude??

C3

Fig.9: The version difference in ice age for 4yr+ is not well explained.

Fig.10 & 11 are not well explained/discussed.

Interactive comment on The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-40, 2019.