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Abstract. Arctic sea ice decrease in extent in recent decades has been linked to sea surface 25 

temperature (SST) anomalies in the North Pacific Ocean. In this study, we assess the relative 26 

contributions of the two leading modes in the North Pacific SST anomalies representing external 27 

forcing related to global warming and internal forcing related to Pacific Decadal Oscillation (PDO) 28 

to the Arctic sea ice loss in boreal summer and autumn. For the 1979-2017 period, the time series 29 

of the global warming and PDO modes show significant positive and negative trends, respectively. 30 

The global warming mode accounts for 44.9% and 50.1% of the Arctic sea ice loss in boreal 31 

summer and autumn during this period, compared to the 20.0% and 22.2% from the PDO mode. 32 

There is also a seasonal difference in the response of atmospheric circulations to the two modes. 33 

The PDO mode excites a wavetrain from the North Pacific to the Arctic; the wavetrain is not seen 34 

in the response of atmospheric circulation to the global warming mode. Both dynamic and 35 

thermodynamic forcings work in the relationship of atmospheric circulation and sea ice anomalies.  36 

 37 
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1  Introduction 47 

Accompanying the abrupt Arctic warming, Arctic sea ice has exhibited a sharp decline trend 48 

in recent decades. To explain the Arctic sea ice loss, researchers have proposed a variety of 49 

feedback mechanisms, including ice-albedo feedback (Flanner et al., 2011), water vapor and 50 

cloud-radiative feedback (Sedlar et al., 2011), and atmospheric lapse-rate feedback (Bintanja et al. 51 

2011; Pithan and Mauritsen, 2014). These feedback mechanisms exert effects on Arctic sea ice in 52 

the context of the changes in both the anthropogenic forcing and the large-scale circulations. In 53 

this study, we assess the impacts of these two factors on Arctic sea ice loss. 54 

 The anthropogenic factor mainly includes greenhouse gas and aerosol emissions. The 55 

increase in greenhouse gas concentrations and the overall decrease in aerosol emissions have been 56 

linked to the observed Arctic sea ice loss (Min et al., 2008; Notz and Marotzke, 2012; Gagné et al. 57 

2015). The natural factor, mainly changes of large-scale atmospheric and oceanic circulations, has 58 

also contributed to the Arctic sea ice decline. The decrease in Arctic sea ice extent has been linked 59 

to a positive trend in the North Atlantic Oscillation (NAO) (Deser et al., 2000), the Arctic 60 

Oscillation (AO) (Rigor et al., 2002) and the Arctic Dipole (AD) (Wang et al. 2009) indices. The 61 

multidecadal variability of sea surface temperature (SST) in the North Pacific and Atlantic Oceans 62 

referred to as the Pacific Decadal Oscillation (PDO, Mantua et al., 1997) and the Atlantic 63 

Multidecadal oscillation (AMO, Enfield, 2001) also have a strong influence on Arctic sea ice by 64 

affecting atmospheric circulation and oceanic heat transfer (Woodgate et al., 2012; Ding et al., 65 

2014; Yu et al., 2017; 2019; Zhang, 2015).  66 

It is difficult to separate the contributions of natural (internal) and anthropogenic (external) 67 

forcings to the Arctic sea ice decline. General circulation models (GCM) have been applied to 68 
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assess the relative contributions of these forcings and GCM simulations have suggested a  69 

contribution from internal forcing ranging from 20% to 50% over the last three decades (Stroeve 70 

et al., 2007; Kay et al., 2011; Day et al., 2012; Ding et al., 2019). However, results from GCMs 71 

have been found to underestimate the observed Arctic sea ice loss (Winton, 2011; Stroeve et al., 72 

2012; Mahlstein and Knutti, 2012) due possibly to low sea ice sensitivity to greenhouse gas 73 

emissions (Notz and Stroeve, 2016; Rosenblum and Eisenman, 2017) and internal climate 74 

variability (Kay et al., 2011; Stroeve et al., 2012; Notz, 2014; Swart et al., 2015).  75 

 A recent study noted a close connection between the Arctic sea ice loss and the changes in 76 

SST in the North Pacific Ocean (Yu and Zhong, 2018) in recent decades. The main modes of 77 

variability in the North Pacific SST include the global warming mode, PDO mode (Wills et al., 78 

2018) and Victoria mode (Bond et al., 2003). The relative contributions of these modes to Arctic 79 

sea ice loss remain unclear. In this study, we examine the contribution of the global warming and 80 

PDO modes, whose time coefficients show significant trends, to the Arctic sea ice loss in boreal 81 

summer and autumn during 1979-2017. We will show that the global warming modes in summer 82 

and autumn contribute to 44 and 50%, respectively, of Arctic sea ice loss in these seasons; while 83 

the respective percentages for the PDO mode are 20 and 22%. 84 

 85 

2  Methodology 86 

The National Snow and Ice Data Center (NSIDC) provides Arctic sea ice concentration data 87 

(http://nsidc.org/data/NSIDC-0051) on a 25 km×25 km grid with a polar stereographic projection 88 

from October 1979 to the present. Although the sea ice data have some defects from surface 89 

flooding (Comiso and Steffen, 2001) and land contamination and weather (Cavalieri et al., 1999), 90 
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they can be applicable to the study of changes of Arctic sea ice concentration. The current analyses 91 

use monthly data from boreal summer (June-August) and autumn (September - November). 92 

Atmospheric variables are derived from the European Centre for Medium-Range Weather 93 

Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011), which has a horizontal resolution 94 

of 79 km (T255) at 60 vertical levels. ERA-Interim reanalysis outperforms other contemporary 95 

global reanalysis datasets, even though it has a warm and moist bias in the planetary boundary 96 

layer (Jakobson et al., 2012). The North Pacific SST patterns are derived from the 2° latitude × 2° 97 

longitude U.S. National Oceanic and Atmospheric Administration (NOAA) Extended 98 

Reconstructed SST data (http://ftp.cdc.noaa.gov/ noaa.ersst.v5), which is superior in high latitudes 99 

to other SST datasets (Huang et al., 2017). 100 

The empirical orthogonal function (EOF) method is employed to obtain the global warming 101 

and PDO modes considered as the first two modes. The EOF modes include spatial patterns (EOFs) 102 

and corresponding time coefficients or principal components (PCs) characterized with 103 

orthogonality with each other. The global warming signal and the PDO index correspond to the 104 

time series of the first two modes of the SST anomalies in the North Pacific north of 20°N. The 105 

statistical significance level is tested by the Student’s t- test.  106 

 107 

3  Results 108 

3.1  Arctic sea loss explained by the first two EOF modes 109 

We first present the trends in the North Pacific SST in boreal summer and autumn (Figure 1a 110 

and 1b). Warming trends dominate over the whole study region with significant ones in the 111 

western and central North Pacific. As an important climate mode of the North Pacific, PDO may 112 
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contribute to the warming trend. The PDO indices (http://research.jisao.washington.edu/pdo) show 113 

statistically significant negative trends of -0.0293 (p < 0.05) and -0.0261 yr
-1

 (p < 0.1) respectively 114 

for boreal summer and autumn (Figure 1c and 1d).  115 

The results of EOF analysis of the North Pacific SST anomalies in boreal summer and autumn 116 

are shown in Figure 2 and 3. The first mode (EOF1) of the summer SST and the second mode 117 

(EOF2) of the autumn SST, explaining 29.6% and 19.6% of total variance, show a nearly uniform 118 

warming pattern in the North Pacific. An increasing trend in the time series for these two EOF 119 

modes (PC1 for summer and PC2 for autumn) represents a global warming mode (Wills et al., 120 

2018). The warming trends at 0.0623 and 0.0645 per year (p < 0.05) for summer and autumn, 121 

respectively,  are not steady with a warming hiatus between 1998 and 2012, flanked by two rapid 122 

warming periods. The domain-averaged warming trends in the North Pacific SST are the same for 123 

summer and autumn, at 0.94 °C per century. Trenberth and Shea (2006) considered the global 124 

mean SST as a proxy for external signal. The global mean SST is significantly corrected with 125 

summer PC1 (correlation coefficient 0.79, p < 0.05) and autumn PC2 (0.84, p < 0.05), suggesting 126 

that these global warming modes in SST is likely to represent an external signal.  127 

 The second mode of summer SST and the first mode of autumn SST, accounting for 21.4% 128 

and 27.8% of the total variance for the respective season, represent the positive phase of the PDO 129 

mode, which has negative SST anomalies over the mid-latitudes surrounded by positive SST 130 

anomalies. The time series of these two SST modes, referred as the PDO mode, are highly 131 

correlated with the PDO index with the correlation coefficients of 0.97 between the summer PC2 132 

and PDO and 0.94 between the autumn PC1 and PDO. The PCs of the PDO mode alter from 133 

positive phase with the mean index value of 0.49 before 1998, to negative phase with the mean 134 
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value of -0.51 afterwards. The trends in the PCs of the PDO mode are -0.0334 and -0.0349 per 135 

year for summer and autumn (p < 0.05).  136 

 Next, we assess the response of Arctic sea ice to the global warming (external) and PDO 137 

(internal) modes, by regressing the Arctic sea ice anomalies onto summer PC1 and autumn PC2 138 

(global warming mode) and to summer PC2 and autumn PC1 (PDO mode) (Figure 4). In both 139 

seasons, the global warming mode is associated with Arctic sea ice loss (Figure 4a and 4d). The 140 

regions with strongest association span the eastern side from Barents Sea to East Siberian, 141 

Chukchi and Beaufort Seas. While the season changes from summer to autumn when Arctic sea 142 

ice is at the minimum value, the region of the largest decrease related to the global warming mode 143 

shifts from the northern Barents Sea to East Siberian and Chukchi Seas. In contrast, the PDO 144 

modes correspond to positive Arctic sea ice anomalies (Figure 4b and 4c). Compared to the global 145 

warming mode, the associations between the PDO mode representing the positive PDO phase and 146 

the Arctic sea ice anomalies are somewhat weaker from Greenland Sea to Beaufort Sea, but 147 

stronger in Baffin Bay, Hudson Bay and the sea near Queen Elizabeth Islands. For both the global 148 

warming mode and the PDO mode, the connection is somewhat stronger in autumn than summer. 149 

Sea ice concentration show a decreasing trend everywhere north of 50
o
N except for some 150 

coastal regions of Greenland (Figure 5). Similar to the negative sea ice anomalies related to the 151 

global warming mode in SST that are larger in values in autumn than summer, negative sea ice 152 

trends are also somewhat sharper in autumn than those in summer and the largest negative trends 153 

move from Barents Sea in summer to East Siberian and Chukchi Seas in autumn. The 154 

contributions of the global warming mode and the PDO mode to the total trends in summer and 155 

autumn Arctic sea ice, which is calculated by the product of regression coefficients of sea ice into 156 
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the PC (Figure 4) and the trends in the PC (Figures 2 and 3) are shown in Figure 6. Both modes 157 

contribute to Arctic sea ice trends in the two seasons, but the amount of the contribution differs, 158 

with the largest contribution from the autumn global warming mode and the smallest one from the 159 

summer PDO mode. The relative contribution can be also assessed by a contribution ratio 160 

calculated as the ratio of trends explained by the two modes (Figure 6) to the total trends (Figure 5) 161 

and the results at grid points where the trends are significant and the contribution ratio is greater 162 

than 0.001 yr
-1

 are shown in Figure 7. The contribution ratios from the global warming mode are 163 

larger than those from the PDO mode with the exception of Hudson Bay in summer. The 164 

domain-averaged contribution ratios from the global warming mode and the PDO mode are 44.9% 165 

and 20.0%, respectively, in summer and 50.0% and 22.2% in autumn. 166 

 167 

3.2  Mechanisms 168 

The relationship between the Arctic sea ice trends and the first two modes of the North Pacific 169 

SST variability merits further consideration in the context of large-scale circulations. Regression 170 

analyses are performed where the 500-hPa geopotential height, mean sea level pressure (MSLP), 171 

850-hPa wind, and surface temperature are regressed into the PCs of the two modes in summer 172 

and autumn and the results are shown in Figures 8-11. In summer, the regression patterns of the 173 

anomalous 500-hPa height and MSLP onto the global warming mode resemble the positive phase 174 

of the NAO and AO (Figure 8a and 9a), which show a nearly barotropic structure. The positive 175 

500-hPa height and MSLP anomalies over the Bering Sea produce an anticyclonic circulation 176 

(Figure 10a), which transports warm air into the Pacific sector of the Arctic, leading to positive 177 

temperature anomalies (Figure 11a) and negative sea ice anomalies there (Figure 4a). The 178 
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southerly winds also move the sea ice towards the North Pole, thus resulting in sea ice loss in the 179 

Chukchi Sea. The northerly winds over the northeastern Canada and northern Greenland (Figure 180 

10a) advect warm air to the Kara and Barents Seas, increasing surface air temperature (Figure 11a) 181 

and decreasing sea ice concentration there. 182 

 In contrast to summer, the regression pattern in autumn is dominated by positive 183 

500-hPa height anomalies across the Arctic with the exception of northeastern Canada and western 184 

Greenland (Figure 8d). However the anomalous MSLP regression map displays a noticeable 185 

positive phase of the AO index (Figure 9d). The baroclinic structure in autumn differs from the 186 

barotropic feature in summer. The positive MSLP anomalies over the Bering Sea and negative 187 

MSLP anomalies over the Chukchi and East Siberian Seas are favorable for warm air flowing into 188 

the Arctic (Figure 10d), which is related to increasing air temperature (Figure 11d) and decreasing 189 

sea ice over the Pacific sector of the Arctic (Figure 4d). The negative MSLP anomalies over 190 

Greenland and positive MSLP anomalies over Northern Europe induce southwesterly winds over 191 

North Atlantic Ocean extending to most of the Arctic resulting in more significant warming and 192 

Arctic sea ice loss in autumn than in summer. Although the anomalous North Pacific SST patterns 193 

related to the global warming mode are similar in summer and autumn, the corresponding 194 

atmospheric circulations patterns are different, and produce noticeable differences in the pattern of 195 

surface air temperature increases and sea ice loss in the Arctic.  196 

 In boreal summer, the positive phase of the PDO mode is related to a Rossby wavetrain 197 

extending from the North Pacific and North America to the Arctic Ocean and Europe (Figure 8b). 198 

Throughout the Arctic, negative anomalies in 500-hPa height and MSLP dominate, corresponding 199 

to slightly positive phase of the AO index (Figure 9b). The anomalous southerly winds induced by 200 
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the negative MSLP over Greenland produce negligible warming in the northern North Atlantic and 201 

central Arctic (Figure 10b). On the contrary, northerly winds from the North Pole generate 202 

significant cooling in terrestrial Arctic and northeastern Canadian archipelago (Figure 11b), where 203 

sea ice concentration increases significantly (Figure 4b). Meanwhile the northerly winds drive the 204 

sea ice into the surrounding seas, leading to the increase in sea ice concentration there. 205 

 In autumn, the wavetrain occurs over the North Pacific, North America, and North Atlantic 206 

(Figure 8c). The positive MSLP anomalies produce increasing (decreasing) air temperature and 207 

decreasing (increasing) sea ice over Greenland and the Greenland Sea (Barents Sea), related to 208 

anomalous southerly (northerly) winds (Figure 9c, 10c, 11c and 4c). Over the Laptev and East 209 

Siberian Seas, anomalous northerly winds also generate significant cooling and sea ice increase. 210 

The anomalous high moves from Bering Strait to the Gulf of Alaska, which limits the warming 211 

into the Arctic Ocean. Thus the Pacific sector of the Arctic shows a cooling tendency and 212 

increasing sea ice concentration. Similar to the global warming mode, the PDO mode also shows a 213 

seasonal feature in its effect on atmospheric circulation and sea ice with more significant influence 214 

in autumn than summer. The response of atmospheric circulation to the PDO mode shows a more 215 

barotropic structure than the response to the global warming mode.  216 

 217 

4  Discussion and Conclusions 218 

Following the suggestion that the North Pacific SST anomalies play an important role in the 219 

melt season Arctic sea ice loss (Yu and Zhong, 2018), the current study further assesses the 220 

relative contribution of the two leading EOF modes in SST variability, representing the global 221 

warming (external) and PDO (internal) modes, to the trends in Arctic sea ice in boreal summer and 222 
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autumn for the recent four decades (1979-2017). As the first two modes of the North Pacific SST 223 

variability, the time coefficients of the global warming (summer PC1 and autumn PC2) and the 224 

PDO (summer PC2 and autumn PC1) modes exhibit a significant increasing and decreasing trend, 225 

respectively. In summer, the PDO and global warming modes contribute to 20.0% and 44.9% of 226 

Arctic sea ice loss, respectively; while in autumn the percentages are 22.2% and 50.1%. Both 227 

modes also exert more significant effects on large-scale atmospheric circulations in autumn than in 228 

summer. The response of corresponding atmospheric circulations to the two modes also differs in 229 

summer and autumn, especially over northern North Atlantic. In contrast to summer, the autumn 230 

anomalous atmospheric circulations related to the global warming mode are more baroclinic. For 231 

the PDO mode, the wavetrain propagates more eastwards in summer than in autumn. The 232 

anomalous surface wind fields related to the two modes perturb the dynamic and thermodynamic 233 

environments in ways that are consistent with the observed patterns of the Arctic sea ice change.   234 

 Previous studies investigating the contributions of external and internal forcings to Arctic sea 235 

ice loss have been based heavily on numerical modeling. Model results, however, have shown 236 

large departures from observations in the Arctic due to the lack of understanding in sea ice 237 

dynamics and thermodynamics and their interactions with the atmosphere and other uncertainties 238 

in physical parameterizations and numerical algorithms (Winton, 2011; Stroeve et al., 2012; 239 

Mahlstein and Knutti, 2012). The results here are based on reanalysis products which are 240 

considered more reliable than model outputs because of the assimilation of in-situ observations 241 

and remote sensing satellite data. Previous studies have suggested that internal forcing may 242 

explain somewhere between 20% to 50% of Arctic sea ice loss (Stroeve et al., 2007; Kay et al., 243 

2011; Day et al., 2012; Ding et al., 2019). Our results show that internal forcing represented by the 244 
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PDO mode contributes to slightly more than 20% of the Arctic sea ice loss in summer and autumn 245 

and thus total contribution from internal factors must exceed 20%.  246 

In addition to PDO, the AMO mode is also found to be important to the Arctic sea ice loss 247 

through its effect on oceanic and atmospheric heat transport (Yu et al., 2017; Zhang, 2015). Day et 248 

al. (2012) attributed 5-30% of Arctic sea loss to the AMO mode. It must be cautioned that the parts 249 

of the global warming mode should be removed when estimating the contribution of the AMO 250 

mode to the Arctic sea ice loss (Ting et al., 2009). Besides SST in the North Pacific and Atlantic, 251 

other important factors for Arctic sea ice loss in summer and autumn include the effects of 252 

atmospheric internal variability on heat and moisture transports from mid-latitudes to the Arctic 253 

(Kapsch et al., 2013; Naakka et al., 2019).  254 

In this study, the contribution of the global warming mode to the Arctic sea ice depletion is 255 

explained in the context of atmospheric circulation anomalies. The effect of the global warming 256 

mode also work directly through some local feedback processes (Vihma et al., 2014), including 257 

ice-albedo feedback (Flanner et al., 2011), water vapor and cloud-radiative feedback (Sedlar et al., 258 

2011), and processes related to lower atmosphere stability such as surface inversion (Bintanja et al. 259 

2011; Pithan and Mauritsen, 2014). The external forcing also may interact with the 260 

above-mentioned internal forcing (Ding et al., 2019). The global warming mode considered here 261 

combines all anthropogenic factors, including greenhouse gas, aerosols, and ozone. The data and 262 

analysis tools used in this study are unable to separate their individual contributions.  263 

  264 

 265 

 266 
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Figure captions 422 

Figure 1. The trends in the North Pacific SST in summer (a) and autumn (b) (
o
C yr

-1
) and time 423 

series of the PDO indices in summer (c) and autumn (d) for the period 1979-2017. Dotted regions 424 

in Figure (a) and (b) indicate above 95% confidence level. Dashed lines in Figure (c) and (d) 425 

denote the trends in the PDO indices. 426 

Figure 2. Spatial patterns (EOF1 and EOF2) and time series (PC1 and PC2) of the leading two 427 

EOF modes of summer North Pacific SST over the region (120°E-100°W, 20°N-65°N) during 428 

1979-2017. The number in the left panels indicates the percentage of variance explained by the 429 

two modes. The black dashed lines in the right panels denote the trends for the period 1979-2017. 430 

Figure 3. The same as Figure 2, but for autumn. 431 

Figure 4. Regression maps of summer (a), (b) and autumn (c), (d) sea ice concentration anomalies 432 

into the time series of the first (a), (c) and second (b), (d) mode of summer (a), (b) and autumn (c), 433 

(d) SST anomalies in the North Pacific. Dotted regions denote above 95% confidence level. 434 

Figure 5. Trends in sea ice concentration (yr
-1

) for summer (a) and autumn (b). Dotted regions 435 

denote above 95% confidence level. 436 

Figure 6. Trends in sea ice concentration (yr
-1

) explained by the first (a), (c) and second (b), (d) 437 

modes of summer (a), (b) and autumn (c), (d) North Pacific SST anomalies. 438 

Figure 7. The ratio of trends explained by the first (a), (c) and second (b), (d) modes of summer (a), 439 

(b) and autumn (c), (d) North Pacific SST anomalies. Only grid points where the trends are 440 

significant and more than 0.001 yr
-1

 are shown. 441 

Figure 8. Regression maps of 500-hPa geopotential height (gpm) onto the time series of the first 442 

(a), (c) and second (b), (d) mode of summer (a), (b) and autumn (c), (d) North Pacific SST 443 
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anomalies. Dotted regions indicate above 95% confidence level. 444 

Figure 9. The same as Figure 8, but for mean sea level pressure (MSLP) (Pascal). 445 

Figure 10. The same as Figure 8, but for 850-hPa wind field. 446 

Figure 11. The same as Figure 8, but for surface air temperature (
o
C). 447 
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 466 

Figure 1. The trends in the North Pacific SST in summer (a) and autumn (b) (oC yr-1) and time 467 

series of the PDO indices in summer (c) and autumn (d) for the period 1979-2017. Dotted regions 468 

in Figure (a) and (b) indicate above 95% confidence level. Dashed lines in Figure (c) and (d) 469 

denote the trends in the PDO indices. 470 
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 497 
Figure 2. Spatial patterns (EOF1 and EOF2) and time series (PC1 and PC2) of the leading two 498 

EOF modes of summer North Pacific SST over the region (120°E-100°W, 20°N-65°N) during 499 

1979-2017. The number in the left panels indicates the percentage of variance explained by the 500 

two modes. The black dashed lines in the right panels denote the trends for the period 1979-2017. 501 
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 528 
Figure 3. The same as Figure 2, but for autumn. 529 
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 560 

Figure 4. Regression maps of summer (a), (b) and autumn (c), (d) sea ice concentration anomalies 561 

into the time series of the first (a), (c) and second (b), (d) mode of summer (a), (b) and autumn (c), 562 

(d) SST anomalies in the North Pacific. Dotted regions denote above 95% confidence level. 563 
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 577 

Figure 5. Trends in sea ice concentration (yr
-1

) for summer (a) and autumn (b). Dotted regions 578 

denote above 95% confidence level. 579 
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 607 

Figure 6. Trends in sea ice concentration (yr
-1

) explained by the first (a), (c) and second (b), (d) 608 

modes of summer (a), (b) and autumn (c), (d) North Pacific SST anomalies.  609 
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 624 

Figure 7. The ratio of trends explained by the first (a), (c) and second (b), (d) modes of summer (a), 625 

(b) and autumn (c), (d) North Pacific SST anomalies. Only grid points where the trends are 626 

significant and more than 0.001 yr
-1

 are shown. 627 
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 641 

Figure 8. Regression maps of 500-hPa geopotential height (gpm) into the time series of the first (a), 642 

(c) and second (b), (d) mode of summer (a), (b) and autumn (c), (d) North Pacific SST anomalies. 643 

Dotted regions indicate above 95% confidence level. 644 
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 659 

 660 

Figure 9. The same as Figure 8, but for mean sea level pressure (MSLP) (Pascal). 661 
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 677 

 678 

Figure 10. The same as Figure 8, but for 850-hPa wind field. 679 
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 695 

 696 

Figure 11. The same as Figure 8, but for surface air temperature (
o
C). 697 
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