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Dear editor and reviewer,1
Thank you for your positive comments and very important recommendations to improve our2
manuscript. We have carefully modified the manuscript based on your suggestions and provide a3
response to each comment. Reviewer comments are given in black, and responses are given in4
blue. Below we provide a marked-up manuscript version showing the changes based on your5
comments. The main modifications to the manuscript are as follows:6
1. Fig. 10 and Table 7 were revised according to your suggestions.7
2. We revised the description in Abstract, Section 4.2 and, Section 5 accordingly.8
3. We change the term of “Total SWE” to “snow mass” in whole manuscript9

10
Please see below the detailed responses (in blue color).11

12
REVIEWER 1#13

In this manuscript, the authors use a support vector regression (SVR) algorithm that they14
developed in a previous paper to estimate snow depth from passive microwave observations.15

In addition to evaluating their estimates of snow depth against values from GlobSnow and16
ERA-Interim/Land, they also use snow density assumptions to estimate snow water17
equivalent (SWE) for the Northern Hemisphere. Their major conclusion is that SWE has been18
declining by _5 800 km3 a year, or approximately 139 200 km3 over their 24-year study19
period. The authors say this decline is equivalent to a 12.5% reduction of SWE over the study20
period, suggesting the initial amount of SWE was 1113 600 km3.21

I believe there is a fundamental flaw in how the authors are calculating annual snow22
accumulation in this manuscript. Their estimate of annual SWE is orders of magni- tude larger23
than other global datasets suggest. Mudryk et al. (2015) show that the Northern Hemisphere has24
an average annual snow accumulation of 3500 km3 (see Figure 1a, taken from Figure 3 in that25
manuscript). Using four commonly used global datasets (ERA-Interim, GLDAS, MERRA2, and26
VIC), I estimate the long-term-average global snow storage to be ~4000 km3 (see Figure 1b).27
Even if these global models/reanalyses are underestimating SWE, it is unlikely they are wrong by28
as much as this manuscript indicates. I believe the authors may be summing daily values of SWE29
when calculating their annual total SWE, as one would do when calculating annual precipitation30
from daily precipitation values. However, this is incorrect when working with SWE. Instead, the31
authors should consider comparing the annual maximum SWE over their period of record. This32
will not lead to such a dramatic value of SWE decline, but I think it would be interesting to see33
how their method compares to changes in SWE from GlobSnow, ERA-Interim/Land, and other34
global data products.35

With this mistake, the manuscript is not ready for publication. But if the authors redo their SWE36
calculations and the following analyses, I would be interested to see the SWE results from their37
SVR method. Since this error is critical to the main conclusions of the manuscript, I do not include38
a review of the rest of the paper.39

Reference: Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown, R.: Characterization of40
Northern Hemisphere Snow Water Equivalent Datasets, 1981–2010, Journal of Climate, 28,41
8037-8051.42
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1
Response: Thank you very much for your review of our manuscript. We appreciate your positive2
comments and very useful suggestions for improving the manuscript. We made modification3
according to your suggestion.4
1. The analysis indexes were changed. In Fig. 10, we used annual maximum snow mass, annual5
average snow mass and annual minimum snow mass to analyze the variation characteristic of6
snow mass over the past 25 years (1992-2016). The average annual maximum snow mass of7
NHSnow SWE products have quite same magnitude as the analysis datasets provides by the8
reviewers and Mudryk et al. (2015), which is approximately 4200 km3.9

10
Figure 10. Interannual variation of annual maximum snow mass (A), annual average snow mass11

(B) and annual minimum snow mass (C) over the Northern Hemisphere for three period12
1992-2016 (black line), 1992-2001 (blue line), and 2002-2016 (red line). Trends estimates were13
computed from least squares. P is the confidence level for the coefficient estimates; R2 is the14

goodness of fit coefficient.15
16

Subsequently, we mainly revised the description of Paragraph 2 in Section 4.2, the updated17
description as flowing:18
“19
The snow mass variation characteristic over the past 25 years were explored by interannual20
variation (Fig. 10) and intra-annual cycles (not show figure) of snow mass over the Northern21
Hemisphere . Figure 10 depicts the time series of interannual variation of annual maximum,22
average and minimum snow mass with respect to 1992–2016 period. The biggest value of annual23
maximum snow mass occurred in 1998–1999 up to 4875 km3, while the least was 3969 km3 in24
2007-2008. The annual maximum snow mass present particularly significant decreasing trends (P25
≤ 0.05) during 1992–2016, at the rate of approximately -19.88 km3 yr.-1 (Fig. 10A). Trend analysis26
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reveals that annual maximum snow mass have a 8% reduction from 1992 to 2016. Note that it1
present a increase variation trend by about 25.59 km3 yr.-1 (P > 0.05) rate for 1992-2001. In2
contrast, the annual maximum snow mass exhibits a significantly decrease trends (with -34.80 km33
yr.-1, P ≤ 0.05) since 2002, which would lead to a extraordinary decrease during 1992–2016.4
According to the static, the annual maximum snow mass usually appear in February (about 60%)5
and March (about 40%), and in recent several years this occurred in March become a normal state.6
We can find that the biggest and the least value of annual average snow mass respectively appear7
in 1998-1999 (~2370 km3) and 2015-2016 (~1850 km3) in Fig 10B. Likewise, in Fig 10B and 10C8
the annual average (minimum) snow mass exhibit a significant decrease trend in 1992-2016 period9
by rate -19.72 km3 yr.-1, P > 0.05 (-2.00 km3 yr.-1, P ≤ 0.05) and 2002-2016 period at a rate of10
-30.70 km3 yr.-1, P > 0.05 (-2.2 km3 yr.-1, P ≤ 0.05). For 1992-2016 period, the variation tendency11
of annual average (minimum) snow mass do not pass the significance level test. Moreover, the12
reduction for the annual average and annual minimum snow mass is 13% and 67%, respectively.13
”14

15
2. We changed the original calculation method of snow mass and only using SWE. The revised16
Table 7 show the variation of monthly average snow mass.17
Table 7. Variation rate and changes of monthly average snow mass during 1992-2016. The asterisk18

indicate that the changes are significant at 95% confidence level19
Month Variation rate (km3/yr.) % Change in the mean of monthly average snow mass

September -5.96* -63.89%
October -25.50* -43.99%
November -36.50* -26.96%
December -32.66* -5.00%
January -34.38* -9.53%
February -30.89* -11.91%
March 1.90 -4.30%
April -4.29 -6.46%
May -11.33* -19.59%
June -8.01* -64.67%

20
21

We revised the description of Paragraph 3 to flowing statement:22
“23
When analyzing long-term variation of monthly average snow mass, ten months (September to24
June) exhibit significant decreasing apart from March and April (Table 7). The maximum decrease25
rate was approximately -36.50 km3 yr.-1 (P ≤ 0.05) in November while the minimum decrease26
occurred in April at -4.29 km3 yr.-1 (P > 0.05). An increasing trend appears in March with a rate of27
approximately 1.90 km3 yr.-1 (P > 0.05), however, relatively large decrement in fall and winter are28
unable to partially be offset by the increment of March. Compared with the fall (September to29
November) and spring (March to June), the interannual variability of monthly average snow mass30
significantly decreased in winter (December to February), with average rate of less than -32 km331
yr.-1. The reduction of monthly average snow mass in ten month were generated using the average32
pattern of each month over 1992-2016 as a reference. We found that the reduction of monthly33
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average snow mass fluctuated ranging from -65% to -4% for each month (September to June) over1
1992-2016 (Table 7). The largest and smallest reduction were about 64.67% and 4.30%, which2
occurred in June and March, respectively. Variation analysis of monthly average snow mass could3
offer a powerful evidence for annual average snow mass exhibit a significantly decreasing4
tendency (Table 7, Fig. 10B).5
”6

7
3. We changed (Page 19 Lines 12-15) “Similar conclusions also appear in total SWE change8
analysis. The total SWE shows a 12.5% reduction and the monthly average total SWE is 65.8%9
for the largest reduction and a 4.2% for least reduction which occur in June and March,10
respectively. The total SWE report well-documented significant decreasing trends (P < 0.05)11
during the study period.” to “Similar conclusions also appear in snow mass change analysis. The12
annual maximum, average and minimum snow mass exhibit significantly decrease trends and13
respectively show a 8%, 13% and 67% reduction. The monthly average snow mass has shown a14
decreasing trend almost in every month and the reduction range from 64.67% (June) to 4.3%15
(March). The annual average snow mass report well-documented significant decreasing trends16
(~20 km3 yr.-1, P < 0.05) during the study period.” in Section 5.17

18
4. In Abstract “Further analysis were performed across the Northern Hemisphere during19
1992-2016, which used snow depth, total snow water equivalent (snow mass) and, snow cover20
days as indexes. Analysis showed the total snow water equivalent has a significant declining21
trends (~5794 km3 yr.-1, 12.5% reduction)” were revised to “Further analysis were performed22
across the Northern Hemisphere during 1992-2016, which used snow depth, snow mass and, snow23
cover days as indexes. Analysis showed annual average snow mass has a significant declining24
trends (~19.72 km3 yr.-1, 13% reduction).”25

26
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Abstract: Snow cover is an effective best indicator of climate change due to its effect on regional and11

global surface energy, water balance, hydrology, climate, and ecosystem function. We developed a long12

term Northern Hemisphere daily snow depth and snow water equivalent product (NHSnow) by the13

application of the support vector regression (SVR) snow depth retrieval algorithm to historical passive14

microwave sensors from 1992 to 2016. The accuracies of the snow depth product were evaluated15

against observed snow depth at meteorological stations along with the other two snow cover products16

(GlobSnow and ERA-Interim/Land) across the Northern Hemisphere. The evaluation results showed17

that NHSnow performs generally well with relatively high accuracy. Further analysis were performed18

across the Northern Hemisphere during 1992-2016, which used snow depth, snow mass and, snow19

cover days as indexes. Analysis showed annual average the snow mass has a significant declining20

trends (~19.72 km3 yr.-1, 13% reduction) (~5794 km3 yr.-1, 12.5% reduction). Although spatial variation21

pattern of snow depth and snow cover days exhibited slight regional differences, it generally reveals a22

decreasing trend over most of the Northern Hemisphere. Our work provides evidence that rapid23

changes in snow depth and snow water equivalent are occurring beginning at the turn of the 21st24

century with dramatic, surface-based warming.25

1. Introduction26

Seasonal snow cover is an important component of the climate system and global water cycle that27

stores large amounts of freshwater and play major impacts on the surface energy budget, climatology28

and water management (Immerzeel et al., 2010;Zhang, 2005;Robinson and Frei, 2000;Tedesco et al.,29
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2014). On account of the high albedo and low heat conductivity properties of snow, snow cover may1

directly modulate the land surface energy balance (Flanner et al., 2011), influence on soil thermal2

regime (Zhang et al., 1996;Zhang, 2005), and indirectly affect atmospheric circulation (Cohen et al.,3

2012;Zhang et al., 2004;Li et al., 2018). Most jurisdictions in the Northern Hemisphere rely on natural4

water storage provided by snowpack (Diffenbaugh et al., 2013;Barnett et al., 2005), supplying water for5

domestic and industrial use (Sturm, 2015;Qin et al., 2006). Accurate estimation of and reliable6

information on snow cover spatial and temporal change at regional and global scales is very critical for7

climate change monitoring, model evaluation and water source management (Brown and Frei,8

2007;Flanner et al., 2011).9

Snow depth (SD) is most commonly measured using in situ observations. Given the sparseness of10

measurements, it is not possible to fully capture spatial variability of snow cover. Although the in situ11

observation method is accurate, it is unrealistic in mountain regions and low population zones because12

it is labor, material and financial resource intensive. Remote sensing is the most effective and powerful13

way of obtaining information of snow cover over larger areas (Foster et al., 2011). Optical remote14

sensing is capable of observing large areas of snow; however, it is unable to observe the Earth’s surface15

under cloudy conditions (Foster et al., 2011;Che et al., 2016;Dai et al., 2017). However, microwave16

remote sensing has this potential and is an attractive alternative to optical remote sensing under all17

weather conditions and round the clock. It can also be used to estimate SD and snow water equivalent18

(SWE) due to the interaction with snowpack by providing dual polarization data at different19

frequencies (Chang et al., 1987;Che et al., 2008;Takala et al., 2011).20

Snow cover products derived from passive microwave (PM) data have been widely applied to21

investigate regional and global climate change, and validate hydrological and climate models (Brown et22

al., 2010;Brown and Robinson, 2011;Dai et al., 2017). Progress in satellite data acquisition, as well as23

SD/SWE retrieval algorithm development, have led to a global improvement in snow monitoring (Qin24

et al., 2006;Snauffer et al., 2016). The PM brightness temperature of the SMMR (Scanning25

Multichannel Microwave Radiometer), SSM/I (Special Sensor Microwave Imager), AMSR-E26

(Advanced Microwave Scanning Radiometer for Earth Observing System), AMSR2 (Advanced27

Microwave Scanning Radiometer 2 on the Global Change Observation Mission – Water), SSMIS28

(Special Sensor Microwave Imager), SSM/I (Special Sensor Microwave Imager Sounder) and,29

FY-3B/C (Fengyun-3 satellite B/C) are available and several algorithms have been developed to30
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estimate SD and SWE using PM brightness temperature data (Chang et al., 1987;Dai et al., 2012;Xiao1

et al., 2018;Pulliainen, 2006;Takala et al., 2011;Che et al., 2008;Foster et al., 1997).2

Most retrieval algorithms operate on the principle that the difference in brightness temperature3

between 18 and 37 GHz reflects the quantity of SD and SWE (Chang et al., 1987). Over and4

underestimated trends are prevalent in these linear SD and SWE retrieval algorithms (Gan et al., 2013)5

for which there are two possible and reasonable explanations. One is that vegetation overlaying snow6

attenuates its microwave scatter signal and results in underestimating SD and SWE from PM data (Che7

et al., 2016;Vander Jagt et al., 2013). To reduce the effect of tree canopy, a forest fraction was8

introduced into retrieval algorithm developed to estimate SD and SWE (Foster et al., 1997;Che et al.,9

2008), or the retrieval algorithm was constructed based on particular land cover types (Goïta et al.,10

2003;Che et al., 2016;Derksen et al., 2005;Foster et al., 2009). The other explanation is that the11

relationship between snow properties (SD or SWE) and the PM brightness temperature is non-linear.12

Newer approaches (e.g. artificial neural networks, support vector regression, decision tree) have13

emerged using data-mining and have been explored to retrieve SD and SWE that are intended to14

replace traditional linear methods (Gharaei-Manesh et al., 2016;Tedesco et al., 2004;Liang et al.,15

2015;Forman et al., 2013;Xue and Forman, 2015). However, there are remain some limitations for16

these retrieval algorithms due to the diversity of land cover types and the spatiotemporal heterogeneity17

of snow physical properties.18

Numerous studies have reported the changes in snow cover extent (SCE) at regional and19

hemispheric scales (Rupp et al., 2013;Dai et al., 2017;Derksen and Brown, 2012;Brown and Robinson,20

2011;Huang et al., 2016). Huang et al. (2017) repored the impact of climate and elevaion on snow21

cover varition in Tibetan Plateau, including SWE, snow cover area and, snow cover days. Hori et al.22

(2017) developed a 38-year Northern Hemisphere daily snow cover extent product and analyzed23

seasonal Northern Heimsphere snow cover extent variation trends. In this study, SD was selected as24

basis for analyzing spatiotemporal change of snow cover. SD provides an additional dimension to snow25

cover characteristics. Barrett et al. (2015) explored intra-seasonal variability in springtime Northern26

Hemisphere daily SD change by the phase of the Madden–Julian oscillation. Wegmann et al. (2017)27

compared four long-term reanalysis datasets with Russian SD observation data. However, this study28

only focused on snowfall season (October and November) and snowmelt season (April). SD change29

trends have also been analyzed at regional scales (Ye et al., 1998;Dyer and Mote, 2006). Several studies30
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quantified the spatial and temporal changes consistency of SWE or snow mass derived from satellite1

data (Mudryk et al., 2015) but these studies have focused on the limited dimension of snow cover2

variation. Dyer and Mote used a gridded dataset to study regional and temporal variability of SD trends3

across North America from 1960-2000 (Dyer and Mote, 2006) and the characteristic of seasonal snow4

extent and snow mass in South America form 1979 to 2006 was descripted and reported (Foster et al.,5

2009).6

There are, however, very limited data (station data, satellite data or otherwise) that can provide7

both SD and SWE on a hemispheric scale. This paper describes the approach to develop a consistent8

25-year of daily SD and SWE of Northern Hemisphere utilized multi-source data. The primary9

objective of this study is to develop 25 years (1992-2016) hemispherical SD and SWE product10

(hereafter referred to as the NHSnow) with a 25 km spatial resolution using SVR SD retrieval11

algorithm. This paper will address the following questions: 1) How consistent are NHSnow and other12

sourced snow cover datasets with the in situ SD observation? 2) What is the spatiotemporal variability13

of snow cover in the Northern Hemisphere from 1992-2016? Meanwhile, it is extremely challenging to14

make extensive quantitative validation of SD and SWE estimates.15

This paper is organized in five sections, as follows. Section 2 describes the data sets used in this16

study. The methods of data preprocessing and snow cover products generation were provided in17

Section 3. Next, we describe NHSnow validation against in-situ snow observation record, exhibit the18

variability of snow cover in the Northern Hemisphere and discuss the potential effect factors for the19

variation results utilized NHSnow data (Section 4). Finally, section 5 summarizes the work of this20

paper.21

2 Datasets22

2.1 Passive microwave data23

Because cloud often appear in the snow cover region or condition, during the winter season often24

conceals snowfall possibility, here is particularly advantageous using passive microwave remote25

sensing. SSM/I and SSMIS is PM radiometer onboard United States Defense Meteorological Satellites26

Program (DMSP) satellite (available from the National Snow and Ice Data Center,27

http://nsidc.org/data/NSIDC-0032). The SSM/I (F11 and F13) dataset from this platform, as well as28

http://nsidc.org/data/NSIDC-0032
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SSMIS (F17), present with the equal-area scale earth grid (EASE-Grid) format and 25 km spatial1

resolution (Brodzik and Knowles, 2002;Armstrong, 2008;Wentz, 2013;Armstrong and Brodzik, 1995)2

(Table 1). The snow cover area and SD derived from SSM/I (F11) and SSM/I (F13) data have high3

consistency rendering the calibration between these two sensors for snow cover area and SD4

unnecessary (Dai et al., 2015). To minimize the melt-water effect to some extent, which can change the5

microwave emissivity of snow, only descending orbit (nighttime) passive microwave data were used6

(Foster et al., 2009).7

2.2 Ground-based data8

Ground SD observation are used to construct and verify the SD retrieval model in this study from9

two sources of daily SD observation. The first is the Global Surface Summary of the Day (GSOD)10

dataset provided by National Oceanic and Atmospheric Administration (NOAA)11

(https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod). This online dataset,12

which began in 1929, is derived from the Integrated Surface Hourly (ISH) dataset (Xu et al., 2016).13

There are fourteen daily elements in GSOD dataset, including SD measured at 0.1 inch. The missing of14

SD or reported 0 on the day would be marked 999.9. Data at approximately 30000 meteorological15

stations were recorded of which 9000 typically are valid. In our study period and area, more than 1716

000 meteorological station were selected with records from 1991 and a location far from large water17

bodies.18

To supplement data from stations that were not reporting during the study periods, ground-based19

measurements of daily SD were gathered from an additional 635 Chinese meteorological stations20

available at the National Meteorological Information of China Meteorological Administration (Xiao et21

al., 2018;Zhong, 2014). These daily SD records begun in 1957 include SD (unit, cm), observation time,22

and geographical location information available (http://data.cma.cn/en).23

2.3 Topographic and land cover data24

We also used topography as an auxiliary information to estimate SD (Xiao et al., 2018). Elevation25

was available from ETOPO1 at a resolution of 1 arc-minute (Amante, 2009) available at26

(http://www.ngdc.noaa.gov/mgg/global/). To match the resolution of the PM brightness temperature27

data with 25 km spatial resolution, we resampled the ETOPO1 to 25 km resolution (Fig. 1).28

https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod
http://data.cma.cn/en
http://www.ngdc.noaa.gov/mgg/global/
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To increase the accuracy of SD estimates for different land cover types, we both used MODIS land1

cover (MCD12Q1 V051) from 2001 to 2013 (Friedl and Sulla-Menashe, 2011;Friedl et al., 2010) and2

Advanced Very High Resolution Radiometer (AVHRR) Global Land Cover classification generated by3

the University of Maryland Department of Geography. The MCD12Q1 International4

Geosphere-Biosphere Program (IGBP) classification scheme divides land surface into 17 types, which5

were reclassified into five classes according to Xiao et al (2018) study.6

AVHRR imagery was acquired between 1981-1994 from the NOAA-15 satellite (Hansen et al.,7

2000) and were categorized into fourteen land cover classes at 1 km resolution. These data allowed us8

to adjust the proposed snow-depth retrieval algorithm by reclassifying the fourteen native land cover9

classes into five classes (water, forest, shrub, prairie and, bare-land) at 25 km spatial resolution (Table10

A.). MCD12Q1 is available at site https://earthdata.nasa.gov/, while AVHRR land cover data is11

available from http://www.landcover.org/data/landcover/.12

2.4 Satellite snow cover datasets13

Two kinds of snow cover datasets were utilized based on two criteria: covering the Northern14

Hemisphere and long-term availability. We selected GlobSnow and ERA-Interim/Land which are15

widely used in global and regional climate change studies (Snauffer et al., 2016;Hancock et al.,16

2013;Mudryk et al., 2015). These datasets were used to compare with the NHSnow SD product.17

In November 2013, the European Space Agency (ESA) released the GlobSnow Version 2.0 SWE18

and Snow Extent (SE) data for the Northern Hemisphere (Takala et al., 2011;Pulliainen, 2006). These19

data include all non-mountainous areas in the Northern Hemisphere and are available online20

(http://www.globsnow.info/). Processing includes data assimilation based on combining satellite PM21

remote sensing data (SMMR, SSM/I and SSMIS), spanning December 1979 to May 2016, with22

ground-based observation data in a data assimilation scheme to derive SWE. GlobSnow Version 2.023

(hereinafter referred as GlobSnow) provides three kinds of temporal aggregation level products with24

25 km spatial resolution: daily, weekly and monthly. This dataset covers all land surface areas in a25

band between 35° N ~ 85° N excluding mountainous regions, glaciers and Greenland. To convert26

between SD and SWE using GlobSnow, the snow density is held constant at 0.24 g/cm3 (Sturm et al.,27

2010;Hancock et al., 2013;Che et al., 2016).28

ERA-Interim/Land (Balsamo et al., 2015) is a global land-surface reanalysis product with data29

http://www.landcover.org/data/landcover/
http://www.globsnow.info/
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from January 1979 to December 2010 based on ERA-Interim meteorological forcing. It is produced by1

a land-surface model simulation using the Hydrology Tiled ECMWF Scheme of Surface Exchange2

over Land (HTESSEL), with meteorological forcing from ERA-Interim. Dutra et al. (2010) described3

the snow scheme and demonstrated the verification using field experiments. “SD”, which actually is4

SWE, is one of the thirteen parameters provided. We should convert SWE to SD using the associated5

snow density data. These two datasets are available online6

(http://apps.ecmwf.int/datasets/data/interim-land/type=an/). To maximum the proximity to the7

descending orbit time of passive microwave sensor, the data with analysis type at 6 o’clock were used8

in this study, and the spatial resolution of these data is 0.125 degree.9

2.5 Snow classification data10

In order to accurately estimate SWE, snow classification data were used to convert SD into SWE.11

Global Seasonal Snow Classification System was defined by Sturm et al. (1995) based on snow12

physical properties (SD, thermal conductivity, snow density snow layers, degree of wetting, etc.), and13

seasonal snow cover. Snow cover were categorized into six snow classes (tundra, taiga, alpine,14

maritime, prairie, and ephemeral) plus water and ice fields (Figure 2). Snow classification data can be15

accessed from the National Center for Atmospheric Research (NCAR)/Earth Observing Laboratory16

(EOL) (https://data.eol.ucar.edu/dataset/6808). The snow classification dataset was developed and17

tested for the Northern Hemisphere at 0.5-degree spatial resolution(Sturm et al., 1995).18

3 Methods19

3.1 Theoretical basis20

Snow distribution is affected by various factors, but not limited to, vegetation (Che et al.,21

2016;Vander Jagt et al., 2013), soil and air temperature (Forman and Reichle, 2015;Grippa et al.,22

2004;Dai et al., 2017), topography and wind (Smith and Bookhagen, 2016). The snow retrieval process23

uses DS and other parameters (A, T, G, L, D ...) to yield snow parameters (e.g. SD, Eq. 1) (Xiao et al.,24

2018).25

[S] = g (A, T, G, L, DS, D ...) + ε (1)

where g (·) denotes the retrieval function. DS is the digital signal from remote sensing sensor (PM,26

http://apps.ecmwf.int/datasets/data/interim-land/type=fc/
https://data.eol.ucar.edu/dataset/6808
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active microwave, visible spectral remote sensing etc.), A is the atmosphere (wind speed, air1

temperature, humidity, precipitation etc.), T is the topography (latitude, longitude, elevation, terrain2

slope, aspect etc.), L is the location (latitude, longitude), G is the ground (ground surface temperature,3

vegetation type etc.), S is the snow properties (snow grain size, density, reflectance, SD, SWE etc.), D4

is the day of year and ε is the residual error or uncertainty that describes the relationship between5

sensor signal and measured snow properties.6

The SVR SD retrieval algorithm also follows the snow retrieval process (Eq. 1). We utilized ten7

parameters were as input parameters, including PM brightness temperature (19 GHz, 37 GHz, 85 GHz,8

or 91 GHz) with vertical and horizontal polarizations, geophysical location (latitude and longitude),9

elevation and, the measured SD. The output parameter is the estimated SD. Apart from above factors,10

the SVR SD retrieval algorithm also considers other influence factors, including wet snow, land cover11

types and day of year (Xiao et al., 2018) to improve the accuracy of estimated SD. Day of year have12

been converted into three snow cover stages, which mean indirectly considering snow properties13

evolution.14

3.2 Processing flow overview15

The SVR SD retrieval algorithm first proposed by Xiao et al. (2018), which indirectly considers16

seasonal variation and vegetation influence in the evolution of snow properties, was used to estimate17

SD. In Eurasia, it was found that the SVR SD retrieval algorithm performs much superior with reduced18

uncertainties compared based upon the correlation coefficient (R), mean absolute error (MAE), and19

root mean squared error in Xiao et al. (2018) study. It should be noted that this study used daily20

observation in the Northern Hemisphere with exception of July and August. Here, we provide more21

detailed but different descriptions for the SVR SD retrieval algorithm in several steps (Fig. 3). The22

detailed descriptions of the other steps can refer to the Xiao et al paper (Xiao et al., 2018) not repeated23

here.24

Step 3. Due to our study period pre-dates MODIS data, we used AVHRR land cover as suppliment25

data. MODIS and AVHRR land cover were reclassified into four classes (forest, prairie, shrub and26

bare-land) which were bases of construting SD retrieval sub-model. Table A (in appendix) describes the27

reclassification scheme of AVHRR land cover is described. MODIS land cover reclassification schemes28

were documented in Xiao et al. (2018). Because of the relative stability of land cover change, MODIS29
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land cover in 2013 was used for each year during 2013–2016. Similarly, MODIS land cover in 20011

was used in each year during 1998–2001, and AVHRR land cover data were used for 6 years2

(1992–1997).3

Step 6.1 Construction of a subcontinental model. It needs to be stressed that the snow properties in4

the Eurasia (EU) and North America (NA) exhibit noticed discrepancy especially in snow density.5

(Zhong et al., 2014;Bilello, 1984). One study pointed out that mean snow density in the former Soviet6

Union (0.21 ~ 0.31 g/cm3) was lower than the data from NA (0.24 ~ 0.31 g/cm3) (Bilello, 1984), and7

also Zhong et al. (2014) explained the possible reasons which resulting in the diversity of snow density8

in EU and NA. Based on this, we separately constructed the SD retrieval models for EU and NA.9

Step 6.2 Training dataset selection is the process of removing redundant features from spatial data.10

The accuracy of estimated SD primarily depends on training data quality, which also demonstrate the11

significance of the selection rule of training samples (Xiao et al., 2018). Inputting more data than12

needed in the training dataset to train SD retrieval model, may lead to overfitting and an estimated SD13

with high error. In this study, we collected an extremely large number of daily SD records over 25 years,14

necessitating a optimized selection rule to avoid data information redundancy.15

The selection rule proposed in previous research (Xiao et al., 2018) was modified and then it was16

divided into two steps in here. Firstly, the numbers of sample in the three layers, layer1 (0≤SD<50),17

layer2 (50≤SD<100) and layer3 (SD≥100), should be concretely quantified. To aviod an inflated18

training sample in layer2 and layer3, we set a threshold (3 000) determined by several tests (not shown).19

A threshold (12000) for layer1 was adopted following Xiao et al. (2018). Table 2 descriped the section20

of training sample for each layer in detail. After that, the quality of training sample in each layers21

determined by stratified random sampling is the second step. Stratification was performed in 1 cm SD22

intervals. Note that, all the selecton operations in here were randomly performed.23

Step 7. Through above steps, the daily estimated SD data in the Northern Hemisphere from24

January 1992 to December 2016 (excluding July and August) were obtained. Owning to the nature of25

radiometer observations, NHSnow products are only reliable in areas with seasonal dry snow cover.26

Areas with sporadic wet or thin snow are not reliably detected and areas marked as snow-free may27

include areas with wet snow. If one pixel is detected as snow cover by the detection decision tree28

(Grody and Basist, 1996), but is likely to be shallow or medium-to-deep snow with an estimated value29

of equal or less than 1 cm, the SD value is set as 5 cm (Che et al., 2016;Wang et al., 2008) (Fig. 4.).30
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Step 8. In this study, Greenland and Iceland are excluded from the generation and analysis of1

NHSnow (NH_SD, NH_SWE) products due to their complex coastal topography and the difficulty in2

discriminating snow from ice (Fig. 4) (Brown et al., 2010). Missing data and zero-data gaps occur in3

the process of generating daily SD gridded products. Therefore, the following filters were applied.4

Daily estimated SD was averaged with a sliding 7-day window to reduce noise and compensate for5

missing data in the daily time series. For example, the SD estimate for 4 January is an average of the6

assimilated scheme output for 1 to 7 January (Takala et al., 2011;Che et al., 2016). When finished, the7

sliding SD method generated daily SD products for the entire Northern Hemisphere (NH_SD; Fig. 4).8

3.3 Estimation of SWE9

SWE contains more useful information for hydrologists than SD because it represents the amount10

of liquid water in the snowpack available to the ecosystem as the snow melts. One way to estimate11

SWE uses SD and snow density (ρ) as described in Eq. 2. Northern Hemisphere SWE products were12

generated in this study using snow density that converts SD to SWE. (Eq. 2, Fig. 3 and 4, Step 9).13

SWE �� = SD �� � t � ��� � �t (2)

At present, the primary problem is to obtain relatively accurate snow density. In this study,14

dynamical calculation methods were adopted to estimate snow density. Two methods are usually used15

to convert SD to SWE. The first uses a fixed value, 0.24 g/cm3 (or other value), without spatiotemporal16

variation (Che et al., 2016;Takala et al., 2011). The second uses a temporally static by spatially variable17

mask of snow density to estimate SWE and are used to generate current AMSR-E SWE products18

(Tedesco and Narvekar, 2010). Since the snowpack are usually rather unstable, it is awfully19

unreasonable to set the snow density in the whole snow season to a constant. Observations show that20

snow density does evolve and tends to increase (decrease) throughout the snow season (from21

September to June) (Dai et al., 2012;Sturm et al., 1995). Here, daily snow density is obtained following22

Sturm et al.(2010) (Eq. 3).They used daily SD, day of the year (DOY), and the snow climate class (SC)23

to produce snowpack bulk density estimates. In this method, knowledge of SC is used to capture field24

environment variables (air temperature, initial density) that have a considerable effect on snow density25

evolution.26

ρ SD,DOY,SC = t��� � tt � � ��� � �� � �t� �� � t㘐ⁿ � tt (3)

where t��� is the maximum density, tt is the initial density, �� and �� are densification27
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parameters for SD and DOY, respectively. �� , �� , t��� , tt vary with SC (Table 3). For operational1

purposes in our work, DOY extend to 1 September each year (Matthew Sturm, personal2

communication, 2018) running from −122 (1 September) to 181 (30 June). Sturm et al. (2010) didn’t3

compute snow density for the SC as ephemeral snow despite its presence in the Northern Hemisphere.4

According to Zhong et al. (2014) study, the snow density of ephemeral is set to an fixed value, 0.255

g/cm3. Finally, daily snow density is simulated by the Eq. 3 in the Northern Hemisphere during the6

1992−2016 period.7

4 Results and Discussion8

4.1 Snow depth9

4.1.1 Validation of snow depth10

Here to give insight into relative performance of SD products, we compared three sources of snow11

cover product (NHSnow, GlobSnow, and ERA-Interim/Land) with ground SD observations (Fig. 5-7)12

using three indices bias, mean absolute error (MAE) and root mean square error (RMSE).The common13

period (1992 - 2010) daily SD of three products (Section 2.4) were collected as validation data. This14

validation work primarily focus on snow cover stabilization stage (December to February). Since the15

snow density change slowly over a smaller range in snow cover stabilization stage (Xiao et al., 2018),16

using a constant value (0.24 g/cm3) for GlobSnow could introduce relative little error (Section 3.3).17

Subject to the unavailability of SWE station observations, the evaluation of SWE can’t be carried out.18

The relatively little bias (blue and green dots) between the estimated SD from three products19

against measured SD is located in mid and low latitude regions (< 60 °N) for these three snow depth20

datasets (NHSnow, GlobSnow, and ERA-Interim/Land; Fig. 5). However, a large bias was found in the21

polar region and along the coast, such as the north of Russia near the Arctic Ocean, Russian Far East,22

Korean peninsula, Northern Mediterranean and Northeast Canada. For NHSnow and GlobSnow, most23

bias is distributed near the μ=0 line with high frequency, although some bias is greater than 100 (or less24

than −100) (Fig. 5b, d). Positive (negative) biases indicate mean grid cell values less (greater) than25

those of the respective stations SD measures. Fig. 5c showed the ERA-Interim/Land overestimate snow26

depth in Western Siberian Plains and Eastern European Plains (around 60 °N; orange dots). As27
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reference, Average SD pattern of three products in February (1992-2010) were also provided in1

Appendix (Fig. A)2

For analysis indexes, MAE and RMSE, the distribution of error points of NHSnow and GlobSnow3

are much the same as the distribution of its bias (Fig. 5-7).We used all evaluation records to calculate4

three precision indexes for three products. We found that the bias, MAE and RMSE is 0.59 cm, 15.125

cm and 20.11 cm, respectively, for NHSnow gridded product, but more bias (1.19 cm), MAE (15.98 cm)6

and lower RMSE (15.48 cm) for GlobSnow (Table 4). This comparison (NHSnow vs. GlobSnow)7

showed relatively good agreement, although NHSnow over- or underestimated the SD with larger8

RMSE. Overall, the performance of GlobSnow was better than the NHSnow gridded product. However,9

part of the validation data were also applied for GlobSnow assimilation, it is highly possible that in this10

case GlobSnow validation may not completely independent. The different performance for these two11

products may be mainly because the evolution of snow grain size by HUT (The Helsinki University of12

Technology) model was used to generate SWE in GlobSnow. Che et al. (2016) reported that the grain13

size is more important than snow density and temperature. Further, ERA-Interim/Land had the worst14

performance of all three products with highest bias (-5.60), MAE (18.72) and RMSE (37.77). The15

smallest bias is located near mid-latitude regions (< 50 °N) and much of the bias lies at 0–100 cm for16

ERA-Interim/Land products (Fig. 5e, f). It must be noted that there are 89 bias records in two stations,17

which located in Novosibirsk Islands and Victoria Island, is much less than -300 cm (approximately18

-3000 cm). Large MAE and RMSE can be found in high latitude and coastal region (Fig. 5e). Unlike19

NHSnow and GlobSnow, ERA-Interim/Land is more likely to overestimate SD and appears to be less20

consistent with in situ observation across the Northern Hemisphere (Fig. 5f). Through analyzing ground21

observation, we can see that deep snow is distributed in high latitude areas.22

While the gridded products do a fairly good job of representing smaller accumulations of SD23

(shadow and mid-deep snow cover), they all struggle to capture very high accumulations (deep snow)24

with less bias, MAE and RMSE (Fig. 5-7, Fig. A). As a result, variation in snow cover could fail to be25

adequately captured in areas with frequent deep snow and, thus, we should be cautious when26

interpreting of this validation result.27

Uncertainties in these three gridded snow products caused by ground temperature and topographic28

factor could result in some level discrepancies between the measured and the estimated SD (Vander29

Jagt et al., 2013;Snauffer et al., 2016). Forests exhibit strong influence on snow distributions by canopy30
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interception and the evolution of snow properties. The dense portions of boreal forests are widely1

distributed in NA and northern EU (Friedl et al., 2010) Large bias, MAE and RMSE regions of three2

gridded products (Fig. 5-7) cover vast areas of tall vegetation (forests and shrub). Furthermore, the3

spatial inhomogeneity cause one grid cells (~25 km) that is almost not possible to completely cover by4

one vegetation type (low heterogeneity). Because the estimated SD of NHSnow depends on land cover5

types, this discrepancy induced by surface cover heterogeneity could partly account for why NHSnow6

has a smaller MAE and RMSE for low vegetation (bare-land and prairie) distributed at middle and low7

latitudes, than the higher vegetation (shrub and forest) areas at higher latitudes (Xiao et al., 2018).8

As well, there are scale mismatches between in situ observation and the gridded products with9

regard to snowpack properties and their spatiotemporal representativeness (Frei et al., 2012). It is10

difficult to precisely validate coarse-resolution satellite observation using ground truth. Subsequently,11

over- or underestimates are inevitable when using a single in situ (SD or SWE) observation to test the12

veracity of the gridded products (Mudryk et al., 2015;Xiao et al., 2018). Snow surveys would benefit13

from multiple measurements at different points within one pixel (López-Moreno et al., 2011). In situ14

observations are highly representative when the SD varies smoothly in space, and poorly representative15

when the SD is spatially stepped (Che et al., 2016). However, there is almost always a lack of sufficient16

ground-measured data. To date, field site observations are still to be more authentic and reliable17

datasets than satellite observation.18

As a whole, the accuracy of estimated SD in the Northern Hemisphere presented a spatial19

heterogeneity. Issues of scale and spatial heterogeneity of validation data notwithstanding, these20

comparisons conducted in our work can yield valuable insight into the performance of these products.21

4.1.2 Variation of snow depth22

To better understand and interpret snow cover variation across the Northern Hemisphere, we23

conducted an analysis of SD variation using seasonal maximum SD from 1992–2016. According to the24

rules of variation level grading, which was divided into 5 grade (extremely significant increase,25

significant increase, non-significant change, extremely significant decrease, and significant decrease;26

Table 5), we can easily gained seasonal maximum SD variation level range 1992 to 2016. Figure 827

shows the variation pattern of seasonal maximum SD in three seasons (fall, winter and spring) with28
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statistical significance level. In three seasons, variation trend of seasonal maximum SD exhibited a1

distinctly different pattern over the Northern Hemisphere since 1992. Seasonal maximum SD variation2

results in fall illustrated that a reduction trend account for most area of the EU with the rate ranging3

from 0 to 1 cm yr.-1. The Figure 8a show the significant level pattern of corresponding maximum SD4

change trend. We can find that the area, which show extremely significant decrease in fall, are mainly5

located in the Russian Far East, the Qinghai-Tibet Plateau, the southern Siberian Plateau, and the6

northeastern region of Canada. On the contrary, Russia’s Taimer Peninsula and the United States’7

Alaska region shows extremely significant increase trend (0 ~1 cm yr.-1). In addition, the maximum SD8

in winter and spring also exhibited extremely significant decrease in the Qinghai-Tibet Plateau and the9

northeastern region of Canada as shown in Figure 8b and 8c. The area with extremely significant10

decrease trend extent add a Western Siberian plain region. Wang and Li (2012) used nearly 50a of daily11

station SD observation data to analyze the trend of maximum SD in China. The variation trend of12

seasonal maximum SD in the Qinghai-Tibet Plateau form previous study is consistent with the13

conclusion observed in this study (Wang and Li, 2012).There are more regions in seasonal maximum14

SD with extremely significant increase trend in winter and spring (green region). Furthermore, a15

strange phenomenon that the variation trend of seasonal maximum SD in the Russian Far East show16

extremely significant decrease, while it is in inverse in spring. This variation trend of maximum SD in17

spring analyzed using NHSnow products is consistent with the analysis results using GlobSnow18

products from recently published study (Wu et al., 2018). It need be pointed out that the significant19

increase (decrease) area is located around extremely significant increase (decrease) as shown in Figure20

8. No matter which season, although the variation trend of maximum seasonal SD didn't pass the21

significance level test, we can draw the conclusion that the wide range of area across the Northern22

Hemisphere experienced pronounced change during the period 1992 to 2016.23

Finally, we analyzed season variation analysis of SD across the Northern Hemisphere using24

seasonal average SD as analysis index. Seasonal average SD was defined as the cumulative SD divided25

by the days in one snow cover season.SD variation rate fluctuated in different regions and seasons. It26

was generally large in the region north of 55° N (Fig. 9, Fig. B and C in appendix). This fluctuation27

was large in winter with high of −0.11 ± 0.40 cm yr.-1 than other seasons during 1992–2016 (Fig. 9d,28

Table 6.), which means that the maximum changes occurred in winter. Similar conclusion also can be29

easily found in the two periods 1992–2001 and 2002–2016 (Fig. B-d, C-d and Table 6). Although not30
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all variation trends passed the significance test, most regions in the Northern Hemisphere show1

increasing trends during 1992-2001 (Fig. B; Table 6). The SD variation trend in the three seasons2

during 2002–2016 was reversed. The SD absolute variation rate during 2002–2016 is apparently greater3

than its rate during 1992–2001 (Fig. C; Table 6). The last century were considered to be the warmest4

period.5

The high fluctuation of SD variation rate especially occurred in the polar region (the arctic and the6

Tibetan plateau) for three seasons. In the context of global climate change, we found that winter SD7

variation was more sensitive to climate change (Brown et al., 2010). The strength of this relationship is8

spatially complex, varying by latitude, region, and climate condition.9

4.2 Snow mass10

GlobSnow dataset covers all land surface areas excluding mountainous regions, glaciers and11

Greenland as described in Section 2.4. From above analysis, we can find that ERA-Interim/Land have12

somewhat poor performance in SD estimation. Thus, further analysis of snow cover variation in the13

Northern Hemisphere used NHSnow products as analysis data. The forecast for snow mass have great14

potential consequences on agriculture practices in many regions. Snow mass in here is calculated by15

SWE multiplied by snow cover area (Qin et al., 2006). It should be noted that the snow classification16

tree (Grody and Basist, 1996), which have been applied in many studies (Che et al., 2008;Dai et al.,17

2017;Yu et al., 2012), was used to detect snow cover for NHSnow product. Liu et al. (2018) also18

reported that Grody’s algorithm had higher positive predictive values and lower omission errors by19

testing snow cover mapping algorithms with the in situ SD over China. In this study, Annual (or20

monthly) average (maximum, and minimum) in one snow cover year (excluded July and August) were21

calculated as analysis indexes and also monthly average snow mass in 25 years, which is the sum of22

daily (or the mean of monthly) total SWE in one snow cover year (or each month of 25 years).23

The snow mass variation characteristic over the past 25 years were explored by iInterannual24

variation (Fig. 10) and intra-annual cycles (not show figure) of total SWEsnow mass over the25

Northern Hemisphere were used to analyze total SWE variation characteristic over the past 25 years26

(1992–2016). Figure 108 depicts the time series of interannual variation of annual total27

SWEmaximum, average and minimum snow mass anomaly with respect to 1992–2016 reference28

period. The biggest value of annual maximum snow mass anomaly occurred in 1998–1999 up to 487529
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km3 period, with while the least minimum was 3969 km3 in during 2007-20082015–2016. It The1

annual maximum snow mass present particularly significant decreasing trends (P ≤ 0.05) during2

1992–2016, at the rate of approximately -5794 19.88 km3 yr.-1 (Fig. 10A). Trend analysis reveals that3

annual maximum total SWEsnow mass have a 812.5% reduction from 1992 to 2016. Note that itThere4

is present a slow increase variation trend rate by about 710 25.59 km3 yr.-1 (P > 0.05) rate for5

1992-2001 period. In contrast, the annual maximum total SWEsnow mass exhibits a anomaly6

significantly decrease trends (with -34.80 km3 yr.-1, P ≤ 0.05) after since 2002 at rate of approximately7

-9041 km3 yr.-1, which may would lead to a extraordinary decreaseing trends of total SWE during8

1992–2016. According to the static, the annual maximum snow mass usually appear in February9

(about 60%) and March (about 40%), and in recent several years this occurred in March become a10

normal state There was a sudden drop of total SWE in 2008–2009 as found in previous studies . We11

can find that the biggest and the least value of annual average snow mass respectively appear in12

1998-1999 (~2370 km3) and 2015-2016 (~1850 km3) in Fig 10B. Likewise, in Fig 10B and 10C the13

annual average (minimum) snow mass exhibit a significant decrease trend in 1992-2016 period by14

rate -19.72 km3 yr.-1, P > 0.05 (-2.00 km3 yr.-1, P ≤ 0.05) and 2002-2016 period at a rate of -30.70 km315

yr.-1, P > 0.05 (-2.2 km3 yr.-1, P ≤ 0.05). For 1992-2016 period, the variation tendency of annual16

average (minimum) snow mass do not pass the significance level test. Moreover, the reduction for the17

annual average and annual minimum snow mass is 13% and 67%, respectively. However, oOther18

factors, for instance, oceanic and atmospheric heat transport, sea ice season wind, and solar insolation19

anomalies, may have contributed to the fluctuation of total SWEsnow mass (Liu and Key, 2014).20

Variation of total SWEsnow mass across the Northern Hemisphere could well capture the variation21

characteristic of the Arctic sea ice extent (Tilling et al., 2015).22

When analyzing long-term variation of monthly average total SWEsnow mass, ten months23

(September to June) exhibit significant decreasing apart from March and April (Table 7). The24

maximum decrease rate was approximately -1066 36.50 km3 yr.-1 (P ≤ 0.05) in January November25

while the minimum decrease occurred in September April at -4.29177 km3 yr.-1 (P > 0.05). An26

increasing trend appears in March with a rate of approximately 1.9068 km3 yr.-1 (P > 0.05), however,27

relatively large decrement in fall and winter are unable to partially be offset by the increment of28

March. Compared with the fall (September to November) and spring (February March to June), the29

interannual variability of monthly average total SWEsnow mass significantly decreased in winter30
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(December to JanuaryFebruary), with average rate of less than -321000 km3 yr.-1. The reduction of1

monthly average snow mass in ten month were generated using the average pattern of each month2

over 1992-2016 as a reference. We also found that the reduction of monthly average total SWEsnow3

mass reduction fluctuated ranging from -6665% to -4% for each month (September to June) over4

1992-2016 (Table 7). The largest and smallest reduction were about 65.84.67% and 4.302%, which5

occurred in June and March, respectively. Variation analysis of monthly average snow mass could6

offer a powerful evidence for annual average snow mass exhibit a significantly decreasing tendency7

(Table 7, Fig. 10B).8

Over large areas, it is extremely convenient to use remote sensing to infer SWE. Albeit there are9

numerous ways to estimate SWE, it is very challenging to determine precise distributions of SWE at10

regional and global scales (Chang et al., 1987;Kongoli, 2004;Tedesco and Narvekar, 2010;Bair et al.,11

2018). Snow density, which can be used to convert SWE from SD, is potential and key factor in12

accurate estimation of SWE (Sturm et al., 2010;Tedesco and Narvekar, 2010). In fact, snow density13

typically varies from 0.05 g/cm3 for new snow at low air temperatures to over 0.55 g/cm3 for a ripened14

snowpack (Anderton et al., 2004;Cordisco et al., 2006). Noteworthily, this study using dynamic snow15

density to convert SD to SWE is based on the assumption that snowpack occurs as a single layer16

(Sturm et al., 2010), to capture dynamic characteristics of snow property. The evolution of the17

ephemeral snow class did not be provided by Sturm et al. (2010). The mean value (0.25 g/cm3) of snow18

density of ephemeral snow (Zhong et al., 2014), which mean that without any evolution throughout the19

snow cover year. Meanwhile, this value for ephemeral snow was set as 0.2275 g/cm3 in Tedesco and20

Jeyaratnam (2016) study. Snow density also exhibits great heterogeneity in vertical direction, so that a21

single layer of snow concept cannot fully capture the snowpack property. The density of the top22

snowpack (fresh snow; ~ 0.10 g/cm3) increases gradually from the top toward the bottom (Dai et al.,23

2012). The bottom layer of snowpack is old undergoing compaction and grain size growth with a24

relatively high density (0.3~0.6 g/cm3). Although our snow density description strategy does not25

completely describe the actual evolution in snow density, there is no better alternative.26

4.3 Snow cover days27

Snow cover days (SCD) is defined as the number of days in one snow cover year in which SD is28

over 0 cm (Zhong, 2014). Snow cover year was defined as the period between July of a given year and29
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June of the following year (Xiao et al., 2018). A least-squares regression was used to analyze the1

variation of SCD for each pixel from 24 snow cover years, with per-pixel evaluation of significance2

(F-test).3

We exploring the variation in SCD during 1992-2016. Most areas across the Northern Hemisphere4

present a prominently decreasing trend at a rate ranging from 0 to 5 day yr.-1 (Fig. 11a). Decreasing5

regions are mainly distributed in EU. For example, north of Russia and large parts of central Asia. The6

area that shows decreasing trends of SCD in EU is much larger than that in NA (Fig. 11a) (Derksen and7

Brown, 2012). Areas that the decrease at a rate greater than 5 day yr.-1 are almost all located in China,8

such as North of Qilian Mountain, central Tibetan Plateau, and Tianshan Mountain. Areas that exhibits9

increasing trends, can be found in central of NA, Western Europe, Northwestern Mongolia, and some10

parts of China. Throughout the Northern Hemisphere (Fig. 11b), the decreasing trend covered most11

parts of the regions (25 ~ 85 °N) with a mean decreasing rate of approximately 1.0 day yr.-1. Latitudes12

around 50 °N is an exception where variation is close to 0 day yr.-1. The most notable variation trend13

(decreasing or increasing) occurred over polar region (Fig. 11b). This may be because there are few14

pixels in the polar mainland.15

SCD variation rate also were divided into 5 grade (Table 5). Unlike SCD variation rate patterns,16

the variation level pattern shows that the non-significant changes area dominates SCD variation trends17

across the Northern Hemisphere (Fig. 11c). Extremely significant and significant decrease appear in18

northwest of Hudson Bay in Canada, Kamchatka peninsula, Eastern European plains, the north of19

Russia, Iranian plateau, and several regions in China (the Tibet Plateau, Tianshan Mountain and20

Northeast China Plain). In addition, extremely significant and significant increase only occur in a21

limited area of NA, eastern Tibet Plateau regions, and China’s central and northern regions.22

Interestingly, the opposite variation trends in SCD and SD appear in several regions. Maximum23

SD in spring (Fig. 8c) and annual average SD (figure not shown) show extremely significant increasing24

trends , whereas SCD exhibit extremely significant decreases in corresponding regions (Fig. 11c), such25

as Central Siberian Plateau, Greater Khingan Mountains in China, and the eastern Scandinavian26

Peninsula. This different variation trend of SD and SCD was also reported by Zhong et al. (2018) using27

ground-based data. The primary reason may be the increase of frequency of extreme snowfall in which28

SD could demonstrate on increasing trend. Additionally, a recent study found that the greater SWE, the29

faster melting rate leading to a shortened SCD in Northern Hemisphere (Wu et al., 2018).30
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Despite the similarities between the station- and satellite-derived time series, it can be1

demonstrated that Northern Hemisphere meteorological station data do not provide perfect large-scale2

variation characteristics of ground snow cover (Zhong et al., 2018). Our analyses provide further3

evidence supporting observations of significant decreasing trends in SCD occurring in the Northern4

Hemisphere. Compared to SCD derived from optic sensors snow cover product, however, the specific5

quantity of SCD and SCD variation rate derived from NHSnow SD data was overestimated (Wang et6

al., 2018;Hori et al., 2017). The SCD variation trends derived from NHSnow product almost is same as7

derived from optical snow cover product in variation pattern (Hori et al., 2017).8

Since the optical (MODIS or AVHRR) and microwave sensors (SSM/I or AMSR-E) respond in9

different parts of the electromagnetic spectrum, the estimated snow cover will to be somewhat vary.10

The shallow snow could not induce volume scattering at 37 GHz, and thus passive microwave11

observations often give better snow cover result at thick snow (>5 cm) (Foster et al., 2009;Wang et al.,12

2008). The threshold for SCD definition in here is 0 cm, whereas it is 1 cm or larger in other studies13

(Ke et al., 2016;Dyer and Mote, 2006). As well, another explanation for these discrepancy could be14

snow cover identification algorithm (Liu et al., 2018;Hall et al., 2002).15

The microwave radiation characteristics of snow cover is similar to that of precipitation, cold16

desert and, frozen ground (Grody and Basist, 1996). Commission and omission errors in NHSnow17

product may result from coarse spatial resolution, snow characteristics and topography according to18

Dai et al. (2017), precipitation (Liu et al., 2018;Grody and Basist, 1996) especially over frozen ground19

(Tsutsui and Koike, 2012). Algorithm several rules were used to distinguish snow from precipitation,20

cold desert, and frozen ground (Xiao et al., 2018), it is impossible to entirely remove interference21

factors in each image. Additionally, the precondition of NHSnow is dry snow, which mean almost no22

wet snow was considered into SCD variation analysis (Singh and Gan, 2000). The poorer performance23

of the microwave derived products was anticipated because of documented difficulties monitoring24

snow cover over forested and mountainous terrain (Vander Jagt et al., 2013;Smith and Bookhagen,25

2016).26

5 Conclusions27

This project applied the SVR SD retrieval algorithm proposed by Xiao et al (2018), which using28
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PM remote sensing and other auxiliary data, to develop a long term (from January 1992 to December1

2016) Northern Hemisphere daily SD and SWE products (NHSnow) with 25-km spatial resolution. We2

then analyzed the spatial and temporal change in snow cover (SD, total SWEsnow mass and, SCD)3

across the Northern Hemisphere, and quantified the magnitude of variation of snow cover using SD and4

SWE extracted from NHSnow product.5

In this study, we validated and compared among daily gridded products (NHSnow, GlobSnow and6

ERA-Interim/Land) against ground snow-depth observations. The results show relatively high7

estimation accuracy of SD from NHSnow, providing the relatively little bias, RMSE, and MAE8

between the newly SD products and in situ observation. Analysis of SD variation revealed that the9

variation rate ranging from 0 to 1 cm yr.-1 (negative and positive) dominates the change in the Northern10

Hemisphere, and the maximum changes appear in winter. Additionally, the results revealed the overall11

SD trends in three seasons show increasing trend during 1992–2001, however it has a decreasing trend12

during 2002–2016. Similar conclusions also appear in total SWEsnow mass change analysis. The total13

SWEannual maximum, average and minimum snow mass exhibit significantly decrease trends and14

respectively shows a 8%, 132.5% and 67% reduction. and tThe monthly average snow mass has shown15

a decreasing trend almost in every monthm onthly average total SWE and the reduction range fromis16

64.6765.8% (June) tofor the largest reduction and a 4.32% (March)for least reduction which occur in17

June and March, respectively. The total SWEannual average snow mass report well-documented18

significant decreasing trends (~20 km3 yr.-1, P < 0.05) during the study period. Regression analysis19

multi-year Northern Hemisphere SCD exhibits a prominent decreasing trend at a rate ranging from 0 to20

5 day yr.-1. The area of decreasing trends of SCD in EU is much larger than in NA. Unlike the SCD21

variation rate, its variation level shows that non-significant changes areas dominate the variation22

pattern across the Northern Hemisphere. An abnormal and interesting phenomenon is that opposite23

SCD and SD variation trends appear in several regions.24

While this study shed light on the spatiotemporal variability trends of snow cover across the25

Northern Hemisphere using 25-year NHSnow product, we cannot claim NHSnow dataset could26

completely capture the climate change signal in each region and season. Because of the deficiencies27

and limitations (e.g. overestimation, underestimation), further efforts should be made to improve the28

estimation accuracy and robustness of the SD inversion algorithm. Additionally, when more reliable29

and numerous data become available, we will do more comprehensive validation over higher latitudes30
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and mountainous regions (Dai et al., 2017). Meanwhile, the validation analysis also should be carried1

out in complex terrain and different land cover types (Tennant et al., 2017;Snauffer et al., 2016). It is2

recommended that future work focus on the climatic effects and climatological causes in snow cover3

changes to comprehensively understand the associated snow cover change mechanisms against a4

climate change background (Huang et al., 2017;Flanner et al., 2011;Cohen et al., 2012).5
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Figure A. Monthly average snow depth climatology of three products in February during 1992-2010: a)13

NHSnow; b) GlobSnow, c) ERA-Interim/Land14
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1

Figure B. The variation rate pattern of annual average (season) SD over the Northern Hemisphere for2

three snow cover season, fall (a, b; September to November), winter (c, d; December to February),3

spring (e, f; March to June) from 1992-2001. Black dots in (a, c, e, g) indicate that the changes are4

significant at 95% confidence level (CL). The zonal distribution in (b, d, f, h) are mapped at 0.255

degree resolution in latitude. The error bars in (b, d, f, h) is one times of standard deviation.6
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1

Figure C. The variation rate pattern of annual (season) average SD over the Northern Hemisphere for2

three snow cover season, fall (a, b; September to November), winter (c, d; December to February),3

spring (e, f; March to June) from 2002-2016. Black dots in (a, c, e, g) indicate that the changes are4

significant at 95% confidence level (CL). The zonal distribution in (b, d, f, h) are mapped at 0.255

degree resolution in latitude. The error bars in (b, d, f, h) is one times of standard deviation.6

7
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Table A. AVHRR Global Land Cover classification and reclassification schemes1

Value Classification Label Reclassification Label

0 Water Water

1 Evergreen needle leaf forest

Forest

2 Evergreen broad leaf forest

3 Deciduous needle leaf forest

4 Deciduous broad leaf forest

5 Mixed forest

6 Woodland

7 Wooded grassland
Prairie (Grassland)

10 Grassland

8 Closed shrub land
Shrub

9 Open shrub land

11 Cropland

Bare-land12 Bare ground

13 Urban and built

2
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List of Tables and Figures1

Table 1 Detail description for SSM/ and SSMIS sensors. H and V denotes horizontal and vertical2

polarization, respectively.3

Satellite SSM/I SSMIS

Platform F 11 F 13 F 17

Temporal coverage 1991.12-1995.5 1995.5-2008.6 2006.12 -

Channels (GHz) 19 H, V; 22 V; 37 H, V; 85 H, V 19 H, V; 22 V; 37 H, V; 91 H, V

4

Table 2. Training sample filter rules5

Layer ID Filter rules

Layer2. If Number�u��e e�敵�ㄥ� � �ttt

Number�ㄥ�eses� e�敵�ㄥ� = Number�u��e e�敵�ㄥ� �

Else Number�ㄥ�eses� e�敵�ㄥ� = �ttt

Layer3. If Number�u��e e�敵�ㄥ� � �ttt

Number�ㄥ�eses� e�敵�ㄥ� = Number�u��e e�敵�ㄥ� �

Else Number�ㄥ�eses� e�敵�ㄥ� = �ttt

Layer1. If Number�ㄥ�eses� e�敵�ㄥ� � �ttt or Number�ㄥ�eses� e�敵�ㄥ� � �ttt

Number�ㄥ�eses� e�敵�ㄥ�

= ��ttt � Number�ㄥ�eses� e�敵�ㄥ� � Number�ㄥ�eses� e�敵�ㄥ�

Else Number�ㄥ�eses� e�敵�ㄥ� = ��ttt

6

Table 3 Snow density estimation model parameters7

Snow class ρ��� ρt k� k� References

Alpine 0.5975 0.2237 0.0012 0.0038

Sturm et al. (2010)

Maritime 0.5979 0.2578 0.0010 0.0038

Prairie 0.5940 0.2332 0.0016 0.0031

Tundra 0.3630 0.2425 0.0029 0.0049

Taiga 0.2170 0.2170 0 0

Ephemeral 0.2500 0.2500 0 0 Zhong et al. (2014)

8
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Table 4. The evaluated indexes (bias, MAE, RMSE; unit: cm) for three gridded SD products (NHSnow,1

GlobSnow, ERA-Interim/Land).2

Products Bias MAE RMSE

NHSnow 0.59 15.12 20.11

GlobSnow 1.19 15.98 15.48

ERA-Interim/Land -5.60 18.72 37.77

3

Table 5. Rules of variation level grading4

Variation rate P value Variation level

rate > 0 p ≤ 0.01 extremely significant increase

rate > 0 0.01 < p ≤ 0.05 significant increase

- P > 0.05 non-significant change

rate < 0 p ≤ 0.01 extremely significant decrease

rate < 0 0.01 < p ≤ 0.05 significant decrease

5

Table 6. Mean variation rate of average SD (cm yr.-1) over the Northern Hemisphere for three common6

period (1992-2016, 1992-2001, 2002-1996) and snow cover seasons (fall, winter, spring). Std. means7

standard deviation8

Season 1992-2016 (Mean ± 1 Std.) 1992-2001 (Mean ± 1 Std.) 2002-2016 (Mean ± 1 Std.)

Fall -0.08 ± 0.11 -0.01 ± 0.19 -0.15 ± 0.22

Winter -0.11 ± 0.40 0.06 ± 0.62 -0.22 ± 0.75

Spring -0.04 ± 0.25 0.02 ± 0.51 -0.07 ± 0.41

Year -0.06 ± 0.20 0.02 ± 0.35 -0.11 ± 0.34

9

Table 7. Variation rate and changes of monthly average snow mass during 1992-2016. The asterisk10

indicate that the changes are significant at 95% confidence level11

Month
Variation rate

(km3/yr.)

% Change in the mean of monthly average snow mass over

1992-2016 period

September -5.96* -63.89%
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October -25.50* -43.99%

November -36.50* -26.96%

December -32.66* -5.00%

January -34.38* -9.53%

February -30.89* -11.91%

March 1.90 -4.30%

April -4.29 -6.46%

May -11.33* -19.59%

June -8.01* -64.67%

1

2

3

Figure 1. Distribution of Meteorological stations overlaid on ETOPO1 in the Northern Hemisphere.4

5

6

Figure 2. Snow Class distribution in the Northern Hemisphere7
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1

Figure 3. Process flowchart diagram for developing Northern Hemisphere daily snow depth and snow2

water equivalent data3

4

5
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1

Figure 4. Flowchart diagram of the generation of NHSnow products.2

3

Figure 5. Bias of each meteorological station and histogram of biases for three products: a), b)4

NHSnow; c), d) GlobSnow, e), f) ERA-Interim/Land. The red dashed line in right column figures are5

the fitted normal distribution curve6

7
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1
Figure 6. MAE of each meteorological station for three products: a) NHSnow, b) GlobSnow, c)2

ERA-Interim/Land.3

4

Figure 7. RMSE of each meteorological station for three products: a) NHSnow, b) GlobSnow, c)5
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ERA-Interim/Land.1

2

3

Figure 8. The variation rate pattern of season maximum SD with statistical significances over the4

Northern Hemisphere for three snow cover season, fall (a; September to November), winter (b;5

December to February), spring (c; March to June) from 1992-2016.6

7
Figure 9. The variation rate pattern of season average SD over the Northern Hemisphere for three snow8
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cover season, fall (a, b; September to November), winter (c, d; December to February), spring (e, f;1

March to June) from 1992-2016. Black dots in (a, c, e) indicate that the changes are significant at 95%2

confidence level (CL). The zonal distribution in (b, d, f) are mapped at 0.25 degree resolution in3

latitude. The error bars in (b, d, f) is one times of standard deviation.4

5

6
Figure 10. Interannual variation of annual maximum snow mass (A), annual average snow mass (B)7

and annual minimum snow mass (C) over the Northern Hemisphere for three period 1992-2016 (black8

line), 1992-2001 (blue line), and 2002-2016 (red line). Trends estimates were computed from least9

squares. P is the confidence level for the coefficient estimates; R2 is the goodness of fit coefficient.10

11

Figure 11. The variation rate pattern of SCD (a) and their statistical significances (c) over the Northern12
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Hemisphere from 1992-2016. The zonal distribution in (b) are mapped at 0.25 degree resolution in1

latitude. The error bars in (b) is one times of standard deviation.2

3
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