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Abstract. Observations and models agree that the Greenland Ice Sheet (GrIS) surface mass balance (SMB) has decreased

since the end of  the 1990's  due to  an increase of  meltwater  runoff and that this  trend will  accelerate in the future.

However, large uncertainties remain, partly due to different approaches for modelling the GrIS SMB which have to weigh

physical complexity or low computing time, different spatial and temporal resolutions, different forcing fields as well as

different ice sheet topographies and extents, which collectively make an inter-comparison difficult. Our GrIS SMB model

intercomparison project (GrSMBMIP) aims to refine these uncertainties by intercomparing 13 models of four types which

were forced with the same ERA-Interim reanalysis forcing fields, except for two global models. We interpolate all modelled

SMB fields onto a common ice sheet mask at 1 km horizontal resolution for the period 1980-2012 and score the outputs

against  (1)  SMB  estimates  from  a  combination  of  gravimetric  remote  sensing  data  from  GRACE  and  measured  ice

discharge, (2) ice cores, snow pits, in-situ SMB observations, and (3) remotely sensed bare ice extent from MODerate-

resolution Imaging Spectroradiometer  (MODIS).  Spatially,  the largest  spread among models  can be found around the

margins of the ice sheet, highlighting model deficiencies in an accurate representation of the GrIS ablation zone extent and

processes related to surface melt and runoff. Overall, polar regional climate models (RCMs) perform the best compared to

observations, in particular for simulating precipitation patterns. However, other simpler and faster models have biases of

the same order as RCMs compared with observations and therefore remain useful  tools for long-term simulations or

coupling with ice sheet models. Finally, it is interesting to note that the ensemble mean of the 13 models produces the best

estimate of the present day SMB relative to observations, suggesting that biases are not systematic among models and that

this ensemble estimate can be used as a reference for current climate when carrying out future model developments.

However, a higher density of in-situ SMB observations is required, especially in the south-east accumulation zone, where

the model spread can reach 2 mWE/yr due to large discrepancies in modelled snowfall accumulation.

1 Introduction

Mass loss from the Greenland Ice Sheet (GrIS) has been accelerating since the 1990s (Enderlin et al., 2014; Mouginot et al.,

2019; Hanna et al., 2020; IMBIE2, 2020). Over the period 1992-2018, roughly 50% of the total mass loss can be ascribed to

reduced GrIS surface mass balance (SMB) (IMBIE, 2020)

SMB= P – RU – SU – ER + GS  (1)

which  refers  to  the  difference  between  the  total  precipitation  (rain  and  snow,  P),  meltwater  runoff  (RU),

sublimation/evaporation  (SU),  snow  erosion  by  the  wind  (ER)  and  glacier  storage  (GS).  Since  drifting  snow  erosion
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contributes ~1 Gt/yr (i.e. < 0.3%) to the SMB, ER is neglected in most models, although it can be important locally (Lenaerts

et  al.,  2012).  Moreover,  the  glacial  water  storage  (supraglacial  lakes,  melt  ponds,  rivers)  is  neglected  in  this

intercomparison, as it is not simulated by any model considered here. However, the mass changes coming from GS could

be relevant when the SMB is integrated over the whole ice sheet, but have never been evaluated until now. 

Since the end of the 1990s, the models suggest that the surface melt has almost doubled, reaching record melt volume in

the summers of 2012 and 2019, while the snowfall accumulation has remained approximately constant (Noël et al., 2019;

Lenaerts et al.,  2019;  Tedesco and Fettweis,  2020).  This recent GrIS SMB decrease -  largely driven by the increase in

meltwater runoff (Van den Broeke et al., 2016, Fettweis et al., 2017, Lenaerts et al., 2019, IPCC, 2019) - has been caused by

Arctic amplification, a state change in the North Atlantic Oscillation, and increased Greenland Blocking events in summer

(Fettweis et al., 2013b; Delhasse et al., 2018; Hanna et al., 2018, Hahn et al., 2020), which raise the average temperatures

(Screen and Simmonds, 2010), reduce the cloudiness (Hofer et al., 2017) and enhance the melt-albedo feedback (Box et al.

2012; Ryan et al., 2019; Noël et al., 2019). While models agree well with satellite-based reconstructions, large uncertainties

and model discrepancies remain in the current SMB evolution (IMBIE2, 2020). Additionally, SMB-related processes are one

of the main uncertainties in future projections of the GrIS contribution to sea level rise as the ice sheet retreats in a

warmer climate (Goelzer et al., 2013; van den Broeke et al., 2017; Hofer et al., 2019). 

Therefore, there is a pressing need to improve and refine model estimates of recent SMB changes, for which we have in

situ measurements and satellite data sets, in order to subsequently reduce the large model spread in future GrIS SMB

projections. With the aim of reducing uncertainties in current modelled SMB estimates, we compare four types of SMB

model, using 13 models in total to i) create an accurate multi-model SMB reconstruction over current climate and an

associated uncertainty based on the ensemble of these models and ii) discuss the added values and drawbacks of each of

them. Prior to this study, only a few attempts were made to compare then available models in terms of their ability to

simulate the contemporary GrIS SMB (e.g. Vernon et al., 2013). These previous studies i) evaluated SMB within a subset of

regional climate models (RCMs) (Rae et al., 2012), ii) compared positive degree day (PDD) models with energy balance

snowpack models (van de Wal, 1996; Bougamont et al., 2007) or iii) assessed the representation of specific physical sub-

processes (Reijmer et al.,  2012). Since these models implement different physical and statistical processes, are run on

different grids, use different forcing data, and/or cover various temporal ranges, previous model comparison studies suffer

from limited inter-comparability.

In  this  study,  we compare the SMB outputs  of  13  state-of-the-art  climate models (physical  and statistical)  over (1)  a

common time period (1980-2012), (2) using a common, 1 km spatial grid, and (3) over a common ice-sheet mask using the
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contemporary GrIS extent. Moreover, 11 out of the 13 participating models are forced with ERA-Interim reanalysis (Dee et

al., 2011), although each model prescribes the reanalysis forcing in a different manner. 

Four kinds of models participate in our intercomparison:

● Positive-Degree Day (PDD) models using near-surface summer temperature to estimate melt and precipitation

from  forcing.  The  melt  parameterisations  of  these  models  are  relatively  simple  and  due  to  the  underlying

assumptions they depend notably on the near-surface climate of their forcing (for precipitation in particular).

However, the computational costs are very low and therefore they can be run at very high spatial resolutions and

over long time scales.

● Energy Balance Models (EBMs) compute the surface energy balance to estimate melt by deriving surface energy

fluxes and precipitation from forcing. Although the representation of surface melt is physically more robust than

PDDs and they are able to simulate feedbacks including the melt-albedo feedback, they are also very dependent

on the near-surface climate from the forcing data.  However,  similar  to  PDDs,  EBMs are also computationally

efficient. Therefore, both PDDs and EBMs are particularly useful to downscale large scale fields in the aim of

forcing ice sheet models over long periods .

● Regional  climate  models  (RCMs)  coupled  with  energy  balance-based  snow  models  compute  energy  fluxes,

precipitation and the near-surface climate at a high resolution over the ice sheet. RCMs are forced at their lateral

boundaries by global fields, mostly temperature, humidity and general circulation. A priori, they provide the best

approach  to  represent  the  melt  and  precipitation  patterns,  as  well  as  to  simulate  the  surface-atmosphere

interactions at a high resolution. It is for this reason that the present SMB estimations of the Greenland ice sheet

are  mainly  based  on  RCMs  forced  by  reanalyses  (IMBIE2,  2020).  However,  RCMs  are  computationally  very

expensive, limiting their simulations to typically 100 years. Finally, their results remain dependent on the biases in

the forcing free-atmosphere fields above and around Greenland (Fettweis et al., 2013).

● General circulation models (GCMs) are global models that, unlike RCMs, have no spatial boundary conditions.

Instead,  they  require  a  small  set  of  time-dependent  primary  inputs,  such  as  aerosol  emissions,  greenhouse

concentrations, and land use. Coupled with energy balance-based snow models, GCMs are capable of simulating

GrIS  SMB  ,  which  is  particularly  useful  to  perform  future  projections.  However,  to  maintain  reasonable

computational time, their spatial  resolution remains low, limiting their ability to explicitly simulate the snow-

atmosphere interactions in the narrow ablation zone or the topography-induced precipitation. Coupled with an ice

sheet  model,  GCMs  are  the  only  tools  that  explicitly  represent  changes  in  general  circulation  in  ocean  or

atmosphere, resulting from thinning of the ice sheet and other feedback processes. 
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For both PDDs and EBMs, the models are forced by the ERA-Interim near-surface climate extrapolated to the model’s spatial

resolution.  In  RCMs,  the  reanalysis  dataset  is  prescribed at  the  ocean surface  and at  the  lateral  boundaries  of  their

integration domain. Two types of GCM configurations are used in this study, (i) using an active ocean component, i.e. a

truly  free-running  set-up,  and  (ii)  an  atmosphere-only  configuration,  where  reconstructed  historical  sea-surface

temperatures and sea ice cover are used as the boundary conditions over the ocean, possibly resulting in a modelled

climate more closely resembling the real world (AMIP experiment, see Gates et al., 1998). 

Sections 2 and 3 describe the 13 models used in the intercomparison (2 PDDs, 4 EBMs, 5 RCMs, and 2 GCMs) and the

observational  data  sets  used  for  the  evaluation  of  these  models.  The  models  are  inter-compared  in  Section  4  by

highlighting the main discrepancies between models and evaluated in Section 5 with in-situ observations and satellite data.

In Section 6, the discrepancies between models identified in Section 4 are linked to biases highlighted in Section 5 to

propose the best estimates of the mean SMB and SMB changes over the current climate (1980-2012). Finally, conclusions

are drawn in Section 7. Note that this intercomparison exercise aims to reduce uncertainty and identify regions with low

measurement density and large model discrepancies in order to provide some insight on regional uncertainty; it is not the

purpose here to formally rank model performance.

2. Model data

A brief description of each of the 13 models used in this study is provided in the following section and summarized in Table

1. 

2.1 Description of the participating models

2.1.1 BESSI (EBM – 10km)

BESSI is a surface energy and mass balance model designed for simulating long time scales (Born et al., 2019; Zolles et al.,

2019). It is forced with ERA-interim reanalysis fields of temperature, humidity, long-wave and short-wave radiation, and

precipitation (Dee et al., 2011). The temperature is the only variable that is downscaled to the actual model topography

(ETOPO1, Amante and Eakins, 2009) using a lapse rate of 0.0065 K/m. Contrary to previously published model versions,

here we use incoming longwave radiation as a forcing field rather than a temperature based parametrisation. Energy fluxes

are calculated with a time step of one day on a 10x10 km grid.

The model uses an albedo scheme based on a linear relationship between temperature and a time decay rate (Aoki et al.,

2003). This decay is enhanced in the presence of liquid water in the surface layer. The latent and sensible turbulent heat
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fluxes are calculated based on the residual method (Rolstad and Oerlemans, 2005; Braithwaite, 2009) with constant wind

speed over the entire ice sheet. Refreezing and percolation is instantaneous in every time step, with a maximum water

holding capacity of 10% of the free pore volume (Greuell, 1992). Finally, the model parameters were optimised to fit the

GRACE mass balance data over the 2002-2018 period (Born et al., 2019).

2.1.2 BOX13 (calibrated RCM – 5km)

The basis of the BOX13 surface mass balance reconstruction are linear regression parameters that describe relationships

between spatially discontinuous in-situ records from meteorological stations (i.e. monthly temperature after Vinther et al.

(2006); Cappelen et al. (2001, 2006, 2011) or firn/ice cores and spatially continuous outputs from the version 2.1 of the

regional climate model RACMO (Ettema et al., 2010), described in Section 2.112. Explanatory (independent variable) data

(air temperature and firn/ice core data) span 1840 to 2012. A 43-year overlap period 1960-2012 with RACMO2.1 is used to

determine regression parameters on a grid cell basis. A fundamental assumption is that the calibration factors; regression

slope and offset for the calibration period 1960-2012; is stationary in time. 

The RACMO2.1 data are resampled and reprojected from a 0.1 deg (~10 km) grid to a 5 km grid. See Box et al. (2013) 'part

I' for a description of the method, that includes a formal approach to estimate uncertainty. The following refinements are

however made from the SMB reconstruction of Box et al. (2013) and Box (2013). The estimation of values is made for a

domain that includes not only ice but land and sea. The physically-based meltwater retention scheme of Pfeffer et al.

(1991) replaced the simpler approach used by Box (2013).  Multiple station records contribute to the near surface air

temperature for each given year, month and grid cell in the domain while in Box (2013), only data from the single highest

correlating station yielded the reconstructed value. This revised surface mass balance data ends with year 2012 while Box

(2013) ends in 2010. Finally, the annual accumulation rates from ice cores are dispersed into a monthly temporal resolution

by weighting the monthly (based on the 1960-2012 RACMO2.1 data) fraction of the annual total for each grid cell in the

domain. The accumulation reconstruction has been evaluated by Lewis et al. (2017, 2019).

2.1.3 CESM2 (GCM – 1km)

In this study, the CESM version 2.0 (CESM2) is used in a configuration with fixed ocean state. In particular, the protocol for

the  Atmospheric  Model  Intercomparison  Project  (AMIP,  Gates  et  al.,  1999)  is  used,  with  prescribed  sea-surface

temperatures and sea ice  cover  from Hurrell  et al.  (2008)  for the period 1979-2014.  Global  land cover usage is  also

prescribed. The atmospheric and land components  are the Community  Atmosphere Model version 6 (CAM6) and the

Community  Land  Model  version  5  (CLM5),  respectively,  both  operating  at  a  nominal  resolution  of  1  degree.  No  ice

dynamics are considered, i.e. the geometry of the GrIS is static in time. Initial conditions for CAM6 and CLM5 snow pack are
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taken from a fully  coupled CESM2 simulation.  Subgrid  topographic  variability  is  partially accounted for by the use of

multiple elevation classes (ECs) in CLM5, with up to 10 ECs per grid cell. Atmospheric forcing is downscaled to each EC, with

lapse rates used for temperature and downwelling longwave radiation, and phase recomputation for precipitation (for

details: see Van Kampenhout et al., 2020). Output indexed by EC is used for downscaling CESM2 SMB to the 1 km ISMIP6

grid (Nowiki et al., 2016) using linear interpolation in the vertical and bilinear interpolation in the horizontal direction. A

detailed evaluation of present-day GrIS climate and SMB in CESM2 has been published in Van Kampenhout et al. (2020).

2.1.4 dEBM (EBM – 1km)

The diurnal Energy Balance Model (dEBM) is a surface mass balance scheme that incorporates both radiative and turbulent

heat fluxes, and captures diurnal variability in the melt-freeze cycles (Krebs-Kanzow et al., 2018) and monthly variations in

cloud cover.  As  forcing,  dEBM only  requires  monthly  means of  short  wave radiation at  the surface,  near  surface air

temperature and precipitation. Monthly mean duration and intensity of the diurnal melting and refreezing periods are

derived from the monthly mean surface radiation and from the diurnal cycle of the top of atmosphere (TOA) short wave

radiation. The latter is implicitly represented as a function of latitude and month based on prescribed parameters of the

Earth's orbit around the Sun. Monthly mean atmospheric transmissivity and cloud cover are estimated from the ratio

between  monthly  mean  shortwave  radiation  at  the  surface  and  at  the  TOA  (from  forcing  fields  and  from  orbital

parameters, respectively). The scheme has a monthly time step and distinguishes albedo of bare ice, and wet, dry and new

snow  on  the  basis  of  precipitation,  surface  energy  balance  and  the  previous  month’s  snow  type  and  snow  height.

Additionally, the scheme includes a residual heat flux R which is thought to represent those energy fluxes which are not

included in the scheme, such as the heat flux to the subsurface or latent heat fluxes at the surface. Here, R has been

treated  as  a  tuning  parameter  and  has  been  optimized  to  R  =  -5W  m-2  with  respect  to  the  surface  mass  balance

measurements from Machguth et al. (2016) over the ERA-Interim period (1979-2016). To force the model, monthly mean

ERA-Interim precipitation, surface insolation and near surface air temperatures have been interpolated to the 1 km ISMIP6

grid and temperature fields have been additionally downscaled applying a lapse rate correction of  = -0.007K/m.𝞒

2.1.4 HIRHAM (RCM – 5.5km)

The HIRHAM regional climate model has been developed to include a full surface energy and mass balance model using an

original  code developed from physical  schemes  used in  the ECHAM5 global  model  and dynamical  schemes from the

HIRLAM numerical weather prediction model. It has 31 vertical levels and is forced on 6 hourly intervals on the lateral

boundaries. The RCM has a simple five layer snowpack model to a depth of 10m over glacier surfaces, incorporating the

same parameterisations used in an offline version that has 32 layers.  The offline version assimilates  MODIS MOD10A

albedo data to get a closer fit between modelled and observed albedos. Langen et al. (2017) describe the snowpack model
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in detail and show that the inclusion of MODIS data significantly improves the modelled SMB. 

2.1.6 IMAU-ITM (EBM – 5km)

IMAU-ITM is an insolation- and temperature-based SMB model. This simplified EBM is used in the ANICE ice-sheet model

for paleoclimate simulations (de Boer et  al.,  2014;  Berends et  al.,  2018).  Monthly  precipitation from the ERA-Interim

reanalysis is downscaled to actual model topography (in this case, the BedMachine v3 dataset; Morlighem et al., 2017)

using the wind-orography-based parameterisation by Roe and Lindzen (2001) and Roe (2002). The resulting downscaled

precipitation is partitioned into rain and snow based on the temperature parameterisation by Ohmura (1999). The depth of

the accumulated snow layer is tracked, with a maximum value of 10 m; any additional firn is assumed to be compressed

into ice. The surface albedo is calculated as a weighted average of the albedos of fresh snow and bare ice, based on the

thickness of the snow layer and the amount of melt that occurred during the previous year. Melt is determined using the

insolation-temperature parameterisation by Bintanja et al. (2002), which uses prescribed values for insolation at the top of

the atmosphere, and which was developed especially for palaeoglaciological applications. Refreezing is calculated following

the approach by Huybrechts and de Wolde (1999) and Janssens and Huybrechts (2000), based on the available liquid water

(the sum of rain and melt) and the refreezing potential, integrated over the entire year to account for the retention of

summer melt which is refrozen in winter. For this study, the parameters in the refreezing and snowmelt parameterisations

were calibrated to obtain the closest match (i.e. highest value of linear correlation coefficient divided by RMSE) to the

RACMO2.3 values over the 1979-2017 period on the 1 km grid.

2.1.7 MAR (RCM - 15km)

The version 3.9.6 from MAR is used here by using a resolution of 15 km. MAR was forced at its lateral boundaries by ERA-

Interim at a 6-hourly time step. The boundary forcing files include information about the temperature, u- and v- wind

components, specific humidity and sea level pressure as well as the sea surface temperature (SST) and sea ice cover over

ocean. It is the same model configuration which is used in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6)

for future projections over the GrIS (Nowiki et al., 2016). With respect to the version 3.5.2 of MAR used in Fettweis et al.

(2017) and Hofer et al. (2017), the main improvements are: (1) An increase of the cloud lifetime with the aim of correcting

the biases of  solar  and infrared radiation highlighted in Fettweis et al.  (2017), (2) adjustments in the bare ice albedo

representation for a better comparison with in situ measurements, (3) a larger independence of model results to the used

time step and (4) a better dynamical stability with an increased spatial filtering for a computing time divided by a factor 2

compared  to  version  3.5.2.  Additionally,  we  also  dealt  with  minor  bug  corrections  and  small  updates  for  enhanced

computing efficiency and comparison with in-situ automatic weather data (Delhasse et al., 2019). 
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2.1.8 MPI-ESM (GCM - 1km)

The  historical  simulation  underlying  the  SMB  calculations  by  Max  Planck  Institute  (MPI)  is  simulated  with  a  higher

resolution version of the latest version of the MPI Earth System Model (MPI-ESM1.2-HR). In this version the atmospheric

model ECHAM6.3, with a spectral resolution of T127 (~100 km), is coupled to the ocean model MPIOM version 1.6.2, with a

nominal 0.4° resolution and a tripolar grid. A thorough description of this model setup can be found in Müller et al. (2018). 

An EBM approach is used to calculate the SMB from one ensemble member of the historical MPI-ESM1.2-HR simulations

(Mauritsen et al., 2019) and downscale it from ~100km to the 1km ISMIP6 topography. The offline EBM scheme is similar to

the one presented in Vizcaíno et al. (2010); despite technical changes and the introduction of elevation classes mainly the

albedo parameterisation was updated. The EBM calculates melt and accumulation rates from hourly atmospheric fields of

the historical MPI-ESM1.2-HR simulation on its native grid. The atmospheric fields are bi-linearly interpolated onto 24 fixed

elevation classes, ranging from 0 m to 8000 m. To account for height differences between each elevation class and the

surface elevation of the atmospheric model a height correction is applied to near-surface air temperature, humidity, dew

point temperature, precipitation, downward longwave radiation and near-surface density fields. The downward shortwave

radiation is kept constant, as it is largely affected by atmospheric properties that are independent of elevation differences

(e.g.  ozone concentration, aerosol thickness) (Yang et al.,  2006).  To obtain melt rates,  the EBM computes the energy

balance at the atmosphere-snow interface as sum over the radiative and turbulent as well as rain induced and conductive

heat fluxes. The albedo parameterisation used here is based on the parameterisation by Oerlemans and Knap (1998) and

considers  snow  aging,  snow  depth,  and  the  influence  of  cloud  coverage.  The  obtained  3-D  fields  of  surface  melt,

accumulation and SMB are then vertically and horizontally interpolated onto the 1km ISMIP6 topography used as reference

topography in this study.

2.1.9 NHM-SMAP (RCM – 5km)

The latest version of the polar RCM NHM-SMAP, with a horizontal resolution of 5 km, developed by Niwano et al. (2018)

was used in this study. The same version was recently utilised to assess cloud radiative effects on the Greenland ice sheet

surface  melt  (Niwano  et  al.,  2019).  The  atmospheric  part  of  NHM-SMAP  is  the  Japan  Meteorological  Agency  Non-

Hydrostatic  atmospheric  Model  (JMA-NHM)  developed  by  Saito  et  al.  (2006),  which  employs  flux  form equations  in

spherical  curvilinear  orthogonal  coordinates  as  the  governing  basic  equations.  We  pay  close  attention  to  the  cloud

microphysics processes, therefore, the version of JMA-NHM utilised for NHM-SMAP (Hashimoto et al., 2017) employs a

double-moment  bulk  cloud  microphysics  scheme  to  predict  both  the  mixing  ratio  and  the  concentration  of  solid

hydrometeors  (cloud  ice,  snow,  and  graupel),  and  a  single-moment  scheme  to  predict  the  mixing  ratio  of  liquid

hydrometeors (cloud water and rain). For the simulation of snow and ice physical conditions, the multilayered physical

snowpack model SMAP is utilised (Niwano et al., 2012, 2014). The SMAP model calculates snow albedo using the detailed
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physically based snow albedo model developed by Aoki et al. (2011) considering the effects of snow grain size evolution

explicitly. Although the model can also consider the effects of light-absorbing impurities on snow albedo, we assumed the

pure snow condition here.  On the other hand, bare ice albedo is  calculated by using a simple parameterisation as a

function of density. To estimate realistic runoff from the ice sheet, a detailed vertical water movement scheme based on

the Richards equation (Yamaguchi et al., 2012) is used. To force NHM-SMAP (dynamical downscaling), we used not the

ERA-Interim  reanalysis  but  the  JRA-55  reanalysis  (Kobayashi  et  al.,  2015)  due  to  the  lack  of  enough  computational

resources. However, it should be noted that the quality of the arctic atmospheric physical conditions from both reanalysis

data during the study period were almost the same level as reported by Simmons and Poli (2015) and Fettweis et al. (2017)

who showed not significant difference between MAR forced by ERA-Interim and JRA-55.

2.1.10 PDD5km (PDD - 5km)

European  Centre  for  Medium-Range  Weather  Forecasts  (ECMWF)  ERA-Interim  (Dee  et  al.,  2011)  2-m  surface  air

temperature, precipitation and surface latent heat flux reanalysis data were downscaled from their native 0.75° resolution

to 5x5-km using bilinear interpolation, a high-resolution DEM (Ekholm, 1996) and empirically-derived ice-sheet surface

lapse rates to correct surface air temperature, as described in full in Hanna et al. (2005, 2011). Downscaled surface air

temperature was validated using independent in-situ observational automatic weather station data from the Greenland

Climate Network (Steffen and Box, 2001), showing very good agreement between downscaled/modelled and observed

temperatures. Net solid precipitation (snowfall minus evaporation and sublimation) was spatially calibrated against the

Bales et al. (2009) kriged map of snow accumulation based on ice-core and coastal precipitation gauges. Evaporation and

sublimation were calculated from surface latent heat flux. The resulting downscaled Greenland climate gridded data were

used to drive a runoff/retention model (Janssens and Huybrechts, 2000) that produced surface melt, runoff, evaporation

and SMB at a monthly time resolution, while net precipitation was taken from the ERA-I dataset downscaled, calibrated

and adjusted as above. Ice-sheet averaged annual SMB since 1958 was shown to correlate strongly between this method

and RACMO2.1 but significant differences in absolute values  between the respective methods were considered to be

mainly due to poorly-constrained modelled accumulation (Hanna et al., 2011).

2.1.11 PDD1km (PDD - 1km)

The modelling method is essentially the same as described in 2.1.10. However, here a higher-resolution DEM (Bamber et

al., 2013) was used to downscale ERA-Interim reanalysis data to 1x1 km2 resolution, producing monthly output for 1979-

2012 (Wilton et al. ,2017). In addition, variable “sigma” - standard deviation of 6-hourly temperatures, computed for each

month- was incorporated into the PDD method, based on earlier work by Jowett et al. (2015). The resulting high-resolution

PDD  model  output  was  evaluated  using  PROMICE  observations  (Machguth  et  al.,  2016),  showing  generally  robust

10/42

285

290

295

300

305

310

10



correlations (Wilton et al., 2017) which were broadly comparable, though not quite as good, as the polar RCMs. Finally, this

method is particularly useful for long centennial/pre-satellite timescales for which relatively few reliable meteorological

fields are available (Wilton et al., 2017).

2.1.12 RACMO2.3 (RCM - 1km)

The polar (p) version of the Regional Atmospheric Climate Model (RACMO2.3p2) is run at 5.5 km horizontal resolution for

the period 1958-2018 (Noël et al., 2019). The model incorporates the dynamical core of the High-Resolution Limited Area

Model (HIRLAM; Undèn et al., 2002) and the physics from the European Centre for Medium-range Weather Forecasts-

Integrated  Forecast  System  (ECMWF-IFS  cycle  CY33r1;  ECMWF-IFS,  2008).  RACMO2.3p2  includes  a  multi-layer  snow

module that simulates melt,  water percolation and retention in snow, refreezing and runoff (Ettema et al.,  2010). The

model  also  accounts  for  dry  snow  densification  (Ligtenberg  et  al.,  2018),  and  drifting  snow  erosion  and  sublimation

(Lenaerts et al., 2012). Snow albedo is calculated based on snow grain size, cloud optical thickness, solar zenith angle and

impurity concentration in snow (Van Angelen et al., 2012). Bare ice albedo is prescribed from the 500 m MODIS 16-day

Albedo product (MCD43A3), as the 5% lowest surface albedo records for the period 2000-2015, minimized at 0.30 for dark

bare ice and maximized at 0.55 for bright ice under perennial firn. Glacier outlines and surface topography are prescribed

from a down-sampled version of the 90 m Greenland Ice Mapping Project (GIMP) Digital Elevation Model (DEM) (Howat et

al., 2014). RACMO2.3p2 is forced at its lateral boundaries by ERA-40 (1958-1978) (Uppala et al., 2005) and ERA-Interim

(1979-2018) (Dee et al.,  2011) re-analyses on a 6-hourly basis within a 24 grid cells wide relaxation zone. The forcing

consists of temperature, specific humidity, pressure, wind speed and direction being prescribed at each of the 40 vertical

atmosphere model levels. Upper atmosphere relaxation (nudging) is also implemented in RACMO2.3p2 (Van de Berg and

Medley, 2016). The model has 40 active snow layers that are initialized in September 1957 using temperature and density

profiles derived from the offline IMAU Firn Densification Model (IMAU-FDM) (Ligtenberg et al., 2018). Detailed description

of the model and recent updates are discussed in Noël et al. (2018, 2019).

The 5.5 km product is further statistically downscaled onto a 1 km grid to resolve the steep SMB gradients over narrow

glaciers and confined ablation zones at the rugged ice sheet margins. Statistical downscaling corrects runoff for biases in

elevation and bare ice albedo using a down-sampled version of the GIMP DEM (topography and ice mask) and a MODIS

albedo product at 1 km resolution. This allows to accurately represent the high runoff rates observed at the GrIS margins,

significantly  improving  the  agreement  with  SMB  measurements.  Detailed  description  of  the  statistical  downscaling

procedure is discussed in Noël et al. (2016).

2.1.13 SnowModel (EBM - 5km)

SnowModel was forced with ERA-Interim (ERA-I) reanalysis products on a 0.75° longitude × 0.75° latitude grid from the
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European Centre for Medium-Range Weather Forecasts (ECMWF; Dee et al. 2011), where the 6-hour (precipitation at 12-

hour) temporal resolution ERA-I data were downscaled to 3-hourly values and a 5-km grid. SnowModel (Liston and Elder,

2006a)  contains  six  sub-models,  where  five  of  the  models  were  used  here  to  quantify  spatiotemporal  variations  in

atmospheric forcing, GrIS surface snow properties (including refreezing and retention), sublimation, evaporation, runoff,

and  SMB.  The  sub-model  MicroMet  (Liston  and  Elder,  2006b;  Mernild  et  al.,  2006)  downscaled  and  distributed  the

spatiotemporal atmospheric fields using the Barnes objective interpolation scheme, where the interpolated fields were

also adjusted using known meteorological algorithms, e.g., temperature-elevation, wind-topography, humidity-cloudiness,

and radiation-cloud-topography relationships (Liston and Elder, 2006b). Enbal (Liston, 1995; Liston et al., 1999) simulated a

full surface energy balance considering the influence of cloud cover, sun angle, topographic slope, and aspect on incoming

solar radiation, and moisture exchanges, e.g., multilayer heat- and mass-transfer processes within the snow (Liston and

Mernild, 2012). SnowTran-3D (Liston and Sturm, 1998, 2002; Liston et al., 2007) accounted for the snow (re)distribution by

wind. SnowPack-ML (Liston and Mernild, 2012) simulated multilayer snow depths, temperatures, and water-equivalent

evolutions. HydroFlow (Liston and Mernild, 2012) simulated watershed divides, routing network, flow residence-time, and

runoff routing (configurations based on the hypothetical gridded topography and ocean-mask datasets),  and discharge

hydrographs for each grid cell including from catchment outlets. These sub-models have been tested against independent

observations with success in Greenland, Arctic, high mountain regions, and on the Antarctic Ice Sheet with acceptable

results (e.g., Liston and Hiemstra, 2011; Mernild and Liston, 2012; Mernild et al., 2015; Beamer et al., 2016).

2.2 Interpolation on a common grid

One of the key issues raised by the first SMB model intercomparison performed by Vernon et al. (2013) was the high

dependency of modelled integrated SMB values to the used ice sheet mask. To mitigate this problem, we interpolate all

model  outputs  to the same 1-km grid used in the Ice  Sheet Model  Intercomparison Project  for CMIP6 (ISMIP6).  This

resolution is chosen because the highest resolution model outputs (e.g. RACMO2.3p2) are available at 1 km and choosing a

coarser resolution could compromise their quality. A common grid also allows a comparison on two common ice sheet

masks: the contiguous Greenland ice sheet, which is common to all the models and the Greenland ice sheet plus peripheral

ice caps and mountain glaciers, common to all the models except the two PDD models. Unless otherwise indicated, the

SMB components have been interpolated to 1 km using a simple linear interpolation metric of the four nearest inverse-

distance-weighted model grid cells. Moreover, as done in Le Clech't et al. (2019), the interpolated 1-km SMB and runoff

fields  have  been  corrected  for  elevation  differences  between  the  model  native  topography  and  the  GIMP  250  m

topography (upscaled to 1 km here), using time and space-varying SMB-elevation gradients, similar to Franco et al. (2012)

and Noël et al. (2016). No correction was applied to precipitation after interpolation to 1-km. Finally, the ensemble mean is

based on the average of the 13 modelled monthly outputs interpolated onto the common 1-km grid.
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3. Observational data

3.1. Ice core and SMB measurements.

Similar to Fettweis et al. (2017), we compare modelled SMB with in-situ observations from:

(1) ice core measurements in the accumulation zone (Bales et al., 2001, 2009; Ohmura et al., 1999). The model outputs are

averaged over the overlapping measurements period. We use the annual mean over 1980-2012 when the measurements

period  is  not  specified  or  not  included  into  the  period  1980-2012,  to  increase  the  number  of  available  ice  core

measurements for model evaluation, as the snowfall accumulation has remained approximately constant over the last

decades. The modelled SMB values are compared to ice cores by interpolating the four nearest inverse-distance-weighted

grid cells to the common 1-km ISMIP6 grid.

(2) airborne radar transects in the accumulation zone from Karlsson et al. (2016, 2020). For all of these measurements, the

annual mean over 1980-2012 is used as comparison and as for the ice cores, outputs are interpolated using the four

nearest inverse-distance-weighted grid cells to the common 1-km ISMIP6 grid.

(3) the SMB database (Machguth et al., 2016) compiled under the auspice of PROMICE and available through the PROMICE

web portal (http://www.promice.dk). This dataset mainly covers the ablation zone of the GrIS and includes measurements

over some peripheral ice caps (as shown in Fig 1). Measurements not included in the 1980-2012 period, records shorter

than 3 months or located outside the common 1 km ice mask are discarded from the comparison. In a similar fashion as in

Wilton et al. (2017), monthly model outputs are weighted by the length of the observed month, e.g. if the record starts in

the middle of a month. Daily outputs, available for some models, are not used here and as for the ice cores, outputs are

interpolated using the four nearest inverse-distance-weighted grid cells onto the ISMIP6 ice mask.

(4)  the  unpublished  database  of  snow  pits  (Jason  Box,  personal  communication)  incorporating  observations  of  winter

accumulation over previously exposed bare ice or firn.  Snow pits  were monitored at the end of  the following winter

accumulation period (usually in May). As only the date when the snow pits were dug is known (May), we assume, for the

comparison with the models, that each record has started on the 1st of September. However, for some years and locations,

the winter accumulation may have started slightly later in October or November, after some late-season melt events. That

is why, we have accumulated modelled SMB values from September to May when the monthly modelled SMB is positive.
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3.2. GRACE estimation

The GRACE-based product, coupled with an estimate of monthly ice discharge from all (n > 200) large outlet glaciers (King

et al., 2018), is used here to evaluate the trend of the 2003-2012 modelled SMB. These quantities are integrated over the 6

basins defined in King et al. (2018) and based on basin configurations from Sasgen et al. (2012). The correction for glacial

isostatic adjustment is based on the model of Khan et al., 2016. Monthly glacier discharge estimates are combined with

RACMO2.3p2 based SMB,  and compared to  the resulting total  mass  balance estimate from the GRACE product.  It  is

important  to  note  that  these  discharge/GRACE  products  from  King  et  al.  (2018)  were  derived  independently  from

RACMO3.2p2, and can therefore be used to evaluate the trends in SMB products. 

3.3. Bare ice extent

The MODIS-based bare ice monthly product was used to evaluate the mean extent of the ablation zone (i.e. where the

mean annual SMB is negative) simulated by the models over 2000-2012 (Ryan et al., 2019). The daily classified bare ice

maps were used to calculate a summer (June, July, and August) bare ice presence index (or exposure frequency). The bare

ice presence index varies between 0 and 1 in any given summer and is defined as the number of times a pixel is classified as

bare ice divided by the total number of valid observations of that pixel (i.e., when not cloud obscured) between June 1 and

August 31. Finally, a 1x1 km² pixel was considered within the ablation zone if it was detected as bare ice in at least 50% of

the summers in 2000-2012. 

4. Model intercomparison

Integrated over the common main ice sheet mask (see Table 2), the average total GrIS SMB over 1980-2012 ranges from 96

Gt/yr (SnowModel) to 429 Gt/yr (NHM-SMAP), with a mean value of ~ 340 +/- 110 Gt/yr. Comparing the two largest SMB

components (i.e. snowfall and runoff), we can see large discrepancies between models. For some models, SMB falls within

the range of the other models only due to compensating effects of over- or underestimating both snowfall and runoff (see

supplementary Fig. S1). For example, the snowfall and runoff from BESSI and the PDD models are very low compared to

other  models  but  yield  similar  integrated  SMB  values.  In  addition,  the  SMB  of  NHM-SMAP  (resp.  SnowModel)  is

substantially higher (resp. lower) than that of other models, due to larger snowfall accumulation (resp. meltwater runoff)

than other models. Except for SnowModel (which suggests a SMB trend close to -12.9 Gt/yr²) and both GCMs, all models

suggest that the SMB of the GrIS has decreased at a rate of ~7 Gt/yr² over the period 1980-2012, primarily due to an

increase of meltwater runoff (~ +8 Gt/yr²). It is also interesting to note that the meltwater runoff increase is about 2 times

lower in the GCMs, probably because a recent increase of atmospheric blocking events in summer, increasing surface

runoff, is not captured by the GCMs (Hanna et al., 2018). Finally, while Bougamont et al. (2007) concluded that PDDs are
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more sensitive to climate warming than the EBMs, it is not the case here as the PDD based melt increase rates are fully

included in the EBMs-based spread. 

If we compare each model to the ensemble mean (see Figs. 1 and 2), we can see that BESSI, NHM-SMAP and PDD1km

generally  simulate lower runoff in the ablation zone compared to  the other models (Fig.  3).  In  contrast,  SnowModel,

HIRHAM and BOX13 simulate larger runoff than the ensemble mean. These differences largely explain the SMB anomaly in

the ablation zone shown in Fig. 2 with respect to the ensemble mean. Finally, IMAU-ITM, BESSI and SnowModel are drier in

the interior of the ice sheet (Fig. 4), even though they use identical ERA-Interim precipitation forcing as the other PDD/EBM

models.

In the accumulation zone of South Greenland, CESM simulates larger snowfall rates while MPI-ESM simulates small ones in

addition to larger runoff than the ensemble mean. Finally, for all the RCMs, the snowfall accumulation does not show

similar and systematic deviations over a large extent from the ensemble mean. This better representation of the spatial

variability in precipitation in the RCMs is likely due to the fact that the precipitation is resolved at higher resolution than in

both the GCMs and the ERA-Interim reanalysis, the latter of which is used to force the PDD/EBM models. This highlights the

advantage  of  simulating  precipitation  at  high  spatial  resolution  in  order  to  represent  the  interaction  between  the

atmospheric flow and (ice-sheet) topography. The south-east coast of Greenland shows the largest discrepancy between

models, reaching 2 mWE/yr locally, and this is where most RCMs simulate higher precipitation than other types of models.

Unfortunately, in-situ data coverage along the south-eastern coast is very sparse, making it hard to prove whether high

accumulation rates in RCMs, locally exceeding 3 mWE/yr, are actually realistic. This highlights the need for a higher density

of in-situ measurements in southeast Greenland where the models simulate the maximum of precipitation. Shallow ice

radar or remote sensing ( elevation changes) could also help to evaluate the accumulation rates in this area.

5. Evaluation of models

5.1 Comparison with in-situ SMB measurements

In comparison with SMB derived from ice cores (location shown in Fig. 5), both PDD models perform the best (See Table 3).

However, the same ice core dataset has been used to correct ERA-interim precipitation as that used to force both of these

models,  therefore  they  are  not  completely  independent.  Furthermore,  the  RCMs  MAR,  NHM-SMAP  and  RACMO2.3

generally agree better with observations than the other models that use ERA-Interim precipitation as forcing or GCM-based

precipitation computed at lower spatial resolution. Except for the two PDD models, the RMSE of the models is generally
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larger than the standard deviation of the ice core measurements meaning that the model biases are statistically significant.

In comparison with airborne radar transects, all the models compare very well and biases are not significant but these

transects are representative of only a small part of the dry snow zone, already covered by some ice core measurements.

Finally, as for the ice cores, the best comparison occurs for the PDD models. We can also note that the correlations are

lower for both GCMs as a result of a coarser spatial resolution in GCMs disallowing to represent the spatial variability of

SMB. However, the RMSE from GCMs is comparable to the other models. 

All the models show a worse agreement with the 130 snow pits than with the ice cores measurements (Table 3). However a

large part of these discrepancies can likely be ascribed to the use of monthly outputs knowing that the starting date of the

snow pit records (i.e. when the winter accumulation actually started) is uncertain. With respect to the PROMICE SMB data

set, the model RMSE varies between 0.48 mWE (for MAR) and 0.89 mWE (for BESSI) over the main ice sheet. For most of

the models, the RMSE is close to the temporal standard deviation (0.62 mWE) of the PROMICE data set, suggesting that the

modelled biases are not statistically significant. Finally, it is interesting to note that the best statistics are performed with

the ensemble mean of the 13 models (see Fig. S1 in supplementary), which will be used hereafter as the SMB reference

field. This suggests also that biases of each model are of different signs and are compensated when the 13 models based

estimates are averaged. 

In  Fig 5,  we can see that all  models underestimate most of  the few measurements  that we have above 1  mWE and

underestimate ablation rates greater than 3 mWE, except RACMO2.3 and the two PDD models. Between 0 and 2 mWE,

most of the models rather overestimate ablation. Finally, BESSI, BOX13 and NHM-SMAP systematically underestimate the

ablation rates over the whole range of observations, explaining their unfavourable statistics in Tab. 3 relative to other

models. 

In brief, it is interesting to note that all types of model generally show similar performance (see Fig. S2 in supplementary

material).  Computationally  expensive  models  (i.e.  the  RCMs)  give  the  best  agreement  with  observations:  MAR  and

RACMO2.3 perform very well  on average compared to SMB observations GrIS-wide, while NHM-SMAP (resp. HIRHAM)

performs better  at  representing SMB in the accumulation zone (resp.  in  the ablation zone).  However,  the evaluation

statistics from the more simple models (PDDs and EBMs) and from GCMs are generally similar to the ones of polar RCMs. It

is nevertheless important to note that RCMs were used to calibrate some of these models, partly explaining their general

good performance.
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5.2 Comparison with GRACE measurements

To enable comparison with GRACE mass change, we estimate total mass balance (MB) for each model in 6 basins (see Fig. 6

and Table 4) by subtracting observed ice discharge D (King et al., 2018) from modelled SMB for the 13 models, as King et al.

(2018) originally did using the RACMO-based SMB: 

MB = SMB – D            (2)

The GRACE signal variability is mainly a combination of the i) seasonal cycle (accumulation in winter and melt in summer),

ii) interannual variability in this seasonal cycle and, iii) long- climate variability (linked in part to global warming) induced

mass loss, that we assume here to be the linear trend over the considered period (2003-2012). Over Basin 1 and 2, IMAU-

ITM and SnowModel (resp. CESM2 and MPI-ESM) overestimate (resp. underestimate) the mass loss in the GRACE signal

(i.e. the linear trend) over 2003-2012. Over Basin 3, all the models underestimate the mass change. Additionally, some of

the models (in particular MAR) do not simulate mass variations in Basin 3, despite GRACE data suggesting a mass loss of

450 Gt over 2003-2012. In south Greenland (Basin 4), the two PDD models show the most favourable statistics but all the

models (except MPI-ESM) underestimate mass loss. Along the west coast (Basin 5 and Basin 6), MAR and RACMO2.3 are

most closely aligned with the observations, while SnowModel systematically overestimates, and NHM-SMAP systematically

underestimates the mass loss. For the other models, the bias in Basin 5 and 6 varies in sign. Finally, an EBM (dEBM), a GCM

(MPI-ESM),  a  PDD (PDD1km)  and  two  RCMs  (MAR  and  RACMO2.3)  compare  the  closest  to  the  GRACE-derived  GrIS-

integrated mass loss over 2003-2012. These favourable statistics are due to error compensation as none of the models

matches well the GRACE-derived regional mass loss integrated over individual basins. 

For a total surface mass loss over 2003-2012 of ~ 3000 Gt as suggested by the GRACE data set, the models range from -

1066 Gt to -6034 Gt with an ensemble mean of -2611 +/- 1253 Gt suggesting a large discrepancy between models and

therefore a large uncertainty in the modelled SMB trends over the current climate. It is nevertheless interesting to note

that, for most of the models, the sign of the bias when compared to the PROMICE data (see Table 3) is highly correlated to

the sign of the trend bias with respect to the GRACE based product. For example, as the 2003-2012 changes in SMB were

driven by an increase of melt, those models underestimating surface ablation also underestimate these recent changes

(the signal coming from discharge change is the same for all the models). However, we need to mention that all of our

modelled total mass balance estimations use the same discharge estimates from King et al. (2018) and do not take into

account changes in mass over tundra, over small  ice caps (not included in the common ice sheet mask) and in glacial

storages (e.g. meltwater lakes, water tables,...): this partly explains why the discrepancies between models and GRACE
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could be very high in some areas. 

Finally, by removing the linear trend in both time series (i.e. the signal mainly coming from the surface melt increase over

2003-2012 as no change in snowfall accumulation is suggested by the models) we are able to evaluate the seasonal/inter-

annual variability gauged here by the RMSE and the correlation listed in Table 4. We find that the five RCMs simulate the

seasonal cycle of SMB much better than other types of models (see supplementary Fig. S3), although the linear trend over

2003-2012 (Fig. 6) is significantly underestimated in e.g. HIRHAM and NHM-SMAP. The two GCMs have a larger RMSE

mainly  because  they  are  not  forced  by  ERA-Interim,  hence,  years  with  large/low snowfall  accumulation/melt  do  not

necessarily take place at the same time in the GCMs as in the real climate; still the linear trend over 2003-2012 compares

very well with GRACE (e.g. for MPI-ESM). 

5.3 Comparison with bare ice extent

We can reasonably assume that the mean SMB should be negative in the bare ice area and positive above the snow line.

However, the equilibrium line altitude varies each year. Therefore, we have chosen to only use SMB values that fall within

0  mmWE/yr  plus  (resp.  minus)  half  the  SMB  interannual  variability  (/2)  to  detect  the  modelled  accumulation  (resp.

ablation)  zone.  Except  BESSI,  all  models  are  able  to  develop  a  large  enough  bare  ice  area,  although  most  of  them

overestimate the ablation zone extent, in particular IMAU-ITM and SnowModel (see Table 5). In Fig. 1, the hatched areas

outline the regions where the models overestimate or underestimate (only for BESSI) the bare ice area. We can see that

BESSI  fails  to  represent  the  extent  of  the  south-western  ablation  zone.  Conversely,  IMAU-ITM,  BOX13,  PDD5km  and

SnowModel overestimate the extent of the ablation area in north-east Greenland, where the SMB from the other models is

also very low but remains positive. Finally, it is interesting to note that both GCMs (CESM2 and MPI-ESM), despite their

coarse native resolution in the atmosphere, are able to accurately model the mean snow line, which is attributed to their

subgrid downscaling module.

6. Discussion

After having inter-compared the models in Section 4 and evaluated them with in situ and satellite observations in Section 5,

this section aims to link the results discussed in the two previous sections. In Fig. 7, we can see that the deviation with the

GRACE trend is roughly a linear function of the annual mean GrIS SMB over 1980-2012 and of this trend. The models

under/over-estimating  meltwater  runoff  with  respect  to  the  ensemble  mean  (which  compares  well  with  GRACE),

systematically under/over-estimate the GRACE-derived mass loss, largely driven by the increase of meltwater runoff. As the

sensitivity of the runoff to temperature increase is not linear (Fettweis et al., 2013), the runoff increase is lower/larger for
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the models under/over-estimating the meltwater runoff. With respect to GRACE, the best comparisons occur for mean

SMB rates between ~ 280 and ~ 380 GT/yr over 1980-2012 and SMB trends between ~ - 9 and ~ -6 GT/yr² over 1980-2012.

With respect to the PROMICE data set, the best comparisons occur for mean SMB rates (resp. SMB trend) between ~ 280

and ~ 380 GT/yr over 1980-2012 in agreement with GRACE (resp. between ~ - 9 and ~ -7 GT/yr²). According to the linear

regression line in Fig.7, the best mean SMB and SMB trend estimates are ~ 320 GT/yr and ~ – 7.2 GT/yr², which are very

close to the values of the ensemble mean of the 13 models. This suggests that the ensemble mean can be reliably chosen

as the best reference to represent the mean SMB and its variability over 1980-2012 for any validation of future model

developments. 

Finally, for 95% (resp. 90% and 99%) of the 10767 in-situ measurements (see Fig. 1) over the main ice sheet, the mean bias

between the ensemble mean and the measurements represents 72% (resp. 70% and 75%) of the model spread around this

ensemble mean. Therefore, we can reasonably estimate three quarters of the model spread around the ensemble mean as

the uncertainty of this ensemble mean based SMB reconstruction, which gives a mean SMB and SMB trend estimates of

338 +/- 68 GT/yr and respectively –7.3 +/- 2 GT/yr² over 1980-2012.

7. Conclusion

This paper describes the methodology and results of the GrIS SMB Model Intercomparison Project (GrSMBMIP): a novel

effort that intercompares GrIS SMB fields produced using 5 RCMs, 4 EBMs, 2 PDDs, and 2 GCMs. Model evaluation using ice

core data highlights that polar RCMs (in particular MAR and RACMO2.3) have the most accurate representation of SMB in

both the GrIS accumulation and ablation zones,  but they are also the only ones to have been calibrated to simulate

snowfall and melt individually. Biases of other models are nevertheless of the same order of magnitude to those of polar

RCMs,which  are  often  used  to  calibrate  these  more  simple  but  faster  models.  The  ensemble  mean  of  the  13  inter-

compared models compares the best with in-situ SMB observations and is among the best to represent the GRACE-derived

mass loss trend between 2003 and 2012. Our results reveal that the mean GrIS SMB of all 13 models has been positive

between 1980 and 2012 with an average of 338 +/- 68 Gt/yr, but has decreased at an average rate of -7.3 +/- 2 Gt/yr 2,

mainly driven by an increase of 8.0 +/- 2 Gt/yr2 in meltwater runoff. The uncertainty has been evaluated to be three

quartersof  the  model  spread  around  the  ensemble  mean  with  respect  to  the  in-situ  SMB  measurements.  The  good

performance of the PDD models in the ablation zone suggests that estimating melt from temperature remains valid under

current climate conditions and that the use of more sophisticated energy balance melt schemes can generate larger biases,

despite better a priori physics. Finally, the mean bias in the ablation zone mostly explains the large discrepancy between
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models and GRACE-derived mass loss trend in 2003-2012. This suggests that biases that operate under current climate

could strongly impact the models’ ability to simulate future meltwater runoff acceleration and associated sea level rise

(Fettweis et al., 2013a).

RCMs have the advantage that they resolve near-surface climate and dynamically downscale the precipitation to higher

spatial resolution with respect to their forcing, while PDD and EBM models are fully driven by the near-surface climate of

their low resolution forcing fields. Although the two GCMs used in this study are not (or only weakly) forced by historical

weather, they simulate the melt reasonably well, which can probably be ascribed to subgrid elevation corrections applied

in MPI-ESM and CESM2. However, for precipitation, the native GCM resolution remains too coarse to resolve the spatial

variability simulated by RCMs. The spatial variability of precipitation in RCMs is particularly high along the southeast coast

of Greenland. However, the paucity of observations prevents us from confirming whether the local high precipitation rates

simulated by RCMs, and not captured by lower resolution models, are realistic. Finally, while RCMs are useful tools for

evaluating the melt-elevation feedback since they explicitly compute precipitation and melt changes at high resolution on a

different ice sheet topography when coupled with an ice sheet model (Le clec'h et al., 2019), running RCMs at a high spatial

resolution becomes computationally expensive on time scales beyond one century. This suggests that the PDD/EBM and

GCM based approaches may be more suitable for questions that require long simulations (where a coupling to an ice sheet

model may be desirable as well).
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Table 1: List of the 13 models used in this study listing the type (Energy Balance Model (EBM), Regional Climate Model (RCM),

General Circulation Model (GCM), Positive Degree Day (PDD) model), the forcing (the ERA-Interim or JRA-55 reanalysis), the

native resolution,  the method used eventually afterwards to downscale  the Surface Mass balance (SMB) at  1-km (when it  is

different than the one use to interpolate all the outputs to 1-km, see Section 2.2) and the country where main development takes

place.
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Name Type ERA-Int. Forcing Downscaling method Resolution Main country

BESSI EBM 10km yes 10km Norway
BOX13 RCM ~10km yes interpolation 5km Denmark
CESM GCM ~100km no elevation classes 1km the Netherlands
dEBM EBM 1km yes 1km Germany
HIRHAM RCM 5.5km yes 5.5km Denmark
IMAU-ITM EBM 5km yes 5km the Netherlands
MAR RCM 15km yes 15km Belgium
MPI-ESM GCM ~100km no EBM 1km Germany
NHM-SMAP RCM 5km Yes (JRA-55) 5km Japan
PDD1km PDD 1km yes 1km UK – Belgium
PDD5km PDD 5km yes 5km UK – Belgium
RACMO RCM 5km yes Statistical downscaling 1km the Netherlands
SNOWMODEL EBM 5km yes 5km USA

Native 
Resolution
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Table 2: Mean, interannual variability (standard deviation of the annual means) and linear trend of the main ice sheet SMB,

snowfall and runoff in (Gt/yr) over 1980-2012 simulated by the 13 models. 
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SMB Snowfall Runoff
Mean Std dev Trend Mean Std dev Trend Mean Std dev Trend

BESSI 387 80 -4.1 566 54 0.3 134 52 4.2
BOX13 426 99 -6.5 718 61 -0.3 508 118 9.1
CESM 421 87 -3.1 668 59 0.1 276 66 4.0
dEBM 359 121 -8.1 604 59 -0.1 280 108 8.6
HIRHAM 398 109 -7.3 701 63 -1.5 491 123 8.2
IMAU-ITM 281 129 -8.7 638 62 0.4 382 122 9.5
MAR 372 122 -7.8 640 55 -0.5 302 107 8.0
MPI-ESM 284 101 -3.5 558 59 0.5 336 70 4.0
NHM-SMAP 429 99 -4.3 807 81 1.3 260 79 6.1
PDD1km 332 101 -6.3 519 55 0.2 230 87 7.0
PDD5km 285 111 -6.8 534 56 0.3 278 97 7.5
RACMO 357 115 -7.2 667 59 -0.7 306 90 6.7
SNOWMODEL 96 179 -12.9 665 65 0.3 469 171 13.4
ENSEMBLE 338 111 -7.3 642 59 0.0 331 102 8.0
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Table 3: Statistics (in mWE) of models vs SMB databases described in Section 3. The number of measurements as well as the mean
value and the standard deviation around this mean value for each data set is listed in the titles of the table. Finally, except for both
PDD models, the statistics of  models vs the SMB PROMICE data base over the main ice sheet or the peripheral ice caps from the
common ice sheet mask are given in supplementary material in Table S1. 
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 Air-borne Radar (#9043; 0.17±0.13mWE)
Bias RMSE Correlation Bias RMSE Correlation

BESSI (EBM) -0.07 0.11 0.87 -0.08 0.08 0.94
BOX13 (RCM) 0.10 0.19 0.87 -0.04 0.04 0.94
CESM (GCM) 0.05 0.14 0.80 0.02 0.02 0.90
dEBM (EBM) -0.01 0.08 0.90 -0.04 0.04 0.96
HIRHAM (RCM) 0.02 0.13 0.83 -0.01 0.02 0.96
IMAU-ITM (EBM) 0.00 0.10 0.88 -0.06 0.06 0.94
MAR (RCM) 0.01 0.08 0.93 -0.01 0.02 0.99
MPI-ESM (GCM) 0.01 0.12 0.76 0.00 0.04 0.82
NHM-SMAP (RCM) 0.01 0.09 0.93 -0.02 0.02 0.96
PDD1km -0.01 0.04 0.97 0.00 0.01 0.96
PDD5km -0.01 0.04 0.96 0.00 0.01 0.96
RACMO (RCM) -0.02 0.08 0.88 -0.01 0.01 0.96
SNOWMODEL (EBM) -0.05 0.12 0.87 -0.09 0.09 0.95
ENSEMBLE 0.00 0.06 0.95 -0.03 0.03 0.98

Snow pits (#130; 0.41±0.34mWE)

BESSI (EBM) -0.11 0.38 0.72 0.45 0.89 0.81
BOX13 (RCM) -0.03 0.33 0.73 0.23 0.86 0.78
CESM (GCM) -0.16 0.41 0.67 0.11 0.61 0.89
dEBM (EBM) -0.12 0.44 0.43 -0.03 0.66 0.87
HIRHAM (RCM) -0.10 0.38 0.66 0.09 0.57 0.91
IMAU-ITM (EBM) 0.12 0.53 0.16 0.03 0.58 0.89
MAR (RCM) -0.08 0.37 0.68 0.10 0.48 0.93
MPI-ESM (GCM) -0.08 0.35 0.75 -0.05 0.69 0.85
NHM-SMAP (RCM) -0.10 0.30 0.81 0.39 0.78 0.88
PDD1km -0.09 0.44 0.40 -0.18 0.69 0.89
PDD5km -0.09 0.46 0.27 -0.17 0.72 0.86
RACMO (RCM) -0.12 0.36 0.78 -0.05 0.63 0.90
SNOWMODEL (EBM) -0.17 0.47 0.33 -0.32 0.61 0.92
ENSEMBLE -0.09 0.39 0.60 0.05 0.46 0.94

ice cores (# 260; 0.33±0.08mWE)

PROMICE – main ice sheet 
(#1438; -0.92±0.62mWE)
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Table 4: Statistics of models (in which the signal coming from the ice discharge has been subtracted from SMB) vs GRACE for
each basin and the whole ice sheet. The trend (in Gt/year) shows the linear trend that must be applied to match GRACE estimates.
So negative numbers mean that the downward trend is underestimated compared to GRACE. RMSE (root-mean-square error)
and correlation are computed after having applied this trend to the modelled time series.
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Basin 1 Basin 2 Basin 3 Basin 4
RMSE Corr. Trend RMSE Corr. Trend RMSE Corr. Trend RMSE Corr. Trend

BESSI 10.4 0.95 3.1 18.9 0.87 -4.9 20.4 0.97 -35.4 32.6 0.98 -62.8
BOX13 10.7 0.94 7.4 18.9 0.87 13 22.1 0.96 -35.8 32.1 0.98 -88.6
CESM 13.7 0.91 -5.4 23.6 0.79 -31.2 44 0.87 -38.8 41.2 0.97 -57.7
dEBM 10.7 0.94 13.1 17.5 0.88 10.8 18.5 0.97 -31.1 33.9 0.98 -36.1
HIRHAM 8.8 0.96 -7.4 17.7 0.89 4 15.6 0.98 -24.4 24.5 0.98 -48.9
IMAU-ITM 18.2 0.86 39.1 21.6 0.86 38.1 14.8 0.98 -29.6 28.8 0.98 -19.9
MAR 9.3 0.96 12.3 16.5 0.9 4.7 16.4 0.98 -40.1 26 0.98 -39.3
MPI-ESM 15.9 0.88 -9.2 30.7 0.64 -21 27 0.95 -16.3 56.4 0.94 4.5
NHM-SMAP 9.5 0.95 6 18.5 0.87 3.6 15.8 0.98 -19.1 25.5 0.98 -75.3
PDD1km 11.9 0.93 -5.8 17.6 0.88 -14.6 19.1 0.97 -12.7 30.5 0.98 0
PDD5km 11.8 0.93 8.5 15.2 0.91 2.3 19.6 0.97 -14.2 30.4 0.98 -5.3
RACMO 9.8 0.95 12 17.3 0.89 12.8 16.3 0.98 -18.2 26.3 0.98 -38.9
SNOWMODEL 18.7 0.86 66 27.2 0.81 89.7 13.8 0.98 -8.4 23.8 0.99 -17.8
ENSEMBLE 10.5 0.95 10.5 16.7 0.89 12.3 16.8 0.98 -23.5 27.7 0.98 -40.3

Basin 5 Basin 6 Ice sheet
RMSE Corr. Trend RMSE Corr. Trend RMSE Corr. Trend

BESSI 45.2 0.94 -41.4 17 0.99 16.2 95.5 0.98 -113.7
BOX13 39.4 0.96 2.7 15 0.99 -14.5 84 0.99 -103.1
CESM 51.4 0.93 -41.4 21.5 0.98 -8.9 95.7 0.98 -165.9
dEBM 43.5 0.95 0.1 19.1 0.99 20.6 94.5 0.98 -9.9
HIRHAM 26 0.98 -1.1 14.5 0.99 -21.5 54.2 0.99 -87.3
IMAU-ITM 43.7 0.95 2.7 26.5 0.98 30.7 101.2 0.98 71.6
MAR 26.8 0.98 6.7 14.2 0.99 -1 51.7 0.99 -42.4
MPI-ESM 90.3 0.8 31 39.9 0.96 -29.8 193.6 0.94 -28.3
NHM-SMAP 32.7 0.97 -52.6 17 0.99 -29.7 71.3 0.99 -153.4
PDD1km 42.7 0.95 -19.9 18.7 0.99 11.4 93.5 0.98 -28
PDD5km 40.6 0.95 -6.4 19.6 0.99 27.7 83.5 0.99 26.1
RACMO 26.9 0.98 -4.5 14.6 0.99 -9.4 56.7 0.99 -34.3
SNOWMODEL 43.3 0.95 85.8 23.7 0.98 79.2 93.3 0.98 304.2
ENSEMBLE 35.1 0.96 -3.6 16.2 0.99 9.6 73.2 0.99 -22.3
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Table 5: left) Percentage of the main ice sheet area where presence of bare ice area detected in MODIS on average over 2000-2012
and where the modelled mean SMB is significantly positive. The half of the interannual variability is used to evaluate the statistical
significance of the equilibrium line. Middle) the same for (no) presence of bare ice and where SMB is significantly negative. Right)
Percentage of agreement between modelled ablation zone and bare ice area from MODIS.
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Agreement

BESSI 3.5 1.1 95.5
BOX13 0.9 5.0 94.0
CESM 1.9 1.6 96.4
dEBM 0.6 2.9 96.4
HIRHAM 0.6 2.4 97.0
IMAU-ITM 0.5 9.2 90.4
MAR 0.4 3.6 96.0
MPI-ESM 0.8 2.3 96.9
NHM-SMAP 0.6 3.7 95.8
PDD1km 1.4 2.3 96.3
PDD5km 1.0 5.3 93.7
RACMO 0.7 3.0 96.3
SNOWMODEL 0.3 14.1 85.6
ENSEMBLE 0.4 4.2 95.3

bare ice area 
and SMB > 

STD/2

bare ice area 
and SMB <   -

STD/2
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Fig. 1: Mean SMB (in mmWE/yr) over 1980-2012 simulated by the 13 models as well as the ensemble model mean and the spread
around this mean. The SMB measurements (ice cores + PROMICE) used to evaluate the models are represented as white circles.
The areas listed in Table 4 where SMB disagree with the satellite derived bare ice area are shown in hatch. Finally, it is important
to note that for better visibility, the scale is not linear by using a step of 100 for absolute values lower than 500 mmWE/yr and a
step of 500 above. 
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Fig. 2: Same as Fig 1 but for the modelled SMB vs the ensemble model mean over 1980-2012 (shown in the 2 last plots). As Fig. 1,
the areas listed in Table 4 where SMB disagrees with the MODIS-derived bare ice area are shown in hatch.
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Fig. 3: Same as Fig 2 but for the modelled runoff. The ensemble mean and models spread around the mean are also shown in
mmWE/yr in the two last plots. Finally it is important to note that only the area where the runoff of the ensemble mean is higher
than 100mmWE/yr is shown here.
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Fig. 4: Same as Fig 23 but for the modelled snowfall (linearly interpolated on the 1 km common grid but without any elevation
correction) vs the ensemble model mean over 1980-2012 as a percentage of the ensemble model mean of snowfall accumulation.
The ensemble mean and models spread around the mean are also shown in mmWE/yr in the two last plots. 
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Fig. 5: Left) Scatter plot of modelled vs measured SMB in mWE. To increase the visibility of this figure, a running mean on 200
samples has been applied here after having sorted the samples (observation, model) on the observations. The numbers in blue on
the X-axis indicate the number of observations with SMB values within each interval of the X-axis. Right) Locations of the in-situ
measurements: ice cores in dark blue, airborne radar transects in light blue, snow pits in green and PROMICE in red.
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Fig. 6: Time series of the mass balance (MB) changes from GRACE over 2003-2013 as well as from the 13 models in which the
signal from ice discharge (King et al., 2018) has been subtracted from the modelled SMB. Times series are shown for 6 basins as
well as over the whole ice sheet. Except for both PDD models, the ice caps from the common ice sheet mask are included and the
tundra areas are discarded. Finally, the legend is sorted in order of the mass balance changes estimated over the whole ice sheet.
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Fig.  7: Left) Scatter plots of the deviation from GRACE trend (in GT/year) vs mean SMB over 1980-2012 (in GT/yr),  listed
respectively in Table 4 and Table 2. Right) Same as left but with the SMB trend over 1980-2012 (in GT/yr²). On both plots, the
colour background gives the RMSE with the PROMICE SMB data base (see Table 3).
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