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Abstract. We explore the feasibility of an observation operator producing passive microwave brightness temperatures for sea

ice at a frequency of 6.9 GHz. We investigate the influence of simplifying assumptions for the representation of sea-ice vertical

properties on the simulation of microwave brightness temperatures. We do so in a one-dimensional setup, using a complex

1D thermodynamic sea-ice model and a 1D microwave emission model. We find that realistic brightness temperatures can

be simulated in winter from a simplified linear temperature profile and a self-similar salinity profile in the ice. These realistic5

brightness temperatures can be obtained based on profiles interpolated to as few as five layers. Most of the uncertainty resulting

from the simplifications is introduced by the simplification of the salinity profiles. In summer, the simplified salinity profile

leads to too high liquid water fractions at the surface. To overcome this limitation, we suggest using a constant brightness

temperature for the ice during summer and to treat melt ponds as water surfaces. Finally, in our setup, we cannot assess the

effect of snow properties during melting. As periods of melting snow with intermediate moisture content typically last for less10

than a month, our approach allows one to estimate reasonable brightness temperatures at 6.9 GHz from climate model output

for about 11 months throughout the year.

1 Introduction

Sea-ice concentration products are retrieved from passive microwave brightness temperatures measured by satellites and come

with a non-negligible uncertainty (Ivanova et al., 2015; Tonboe et al., 2016; Lavergne et al., 2019). This observational uncer-15

tainty hinders reliable climate model initialization (Bunzel et al., 2016) and model evaluation (Notz et al., 2013). Additionally,

it hinders a robust extrapolation of the future sea-ice evolution based on current observations. For example, sea-ice area is

strongly coupled to changes in the global-mean air temperature (Gregory et al., 2002; Winton, 2011; Mahlstein and Knutti,

2012; Ridley et al., 2012; Li et al., 2013) and thus to CO2 emissions (Notz and Stroeve, 2016). The relationship between

CO2 emissions, global-mean air temperature and sea ice provides the possibility to project the future Arctic sea-ice evolution20

under different forcing scenarios. However, Niederdrenk and Notz (2018) showed that the observational uncertainty in sea-ice
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concentration translates into uncertainty in the sensitivity of sea ice to changes in global-mean air temperature and therefore

leads to uncertainty in the temperature at which an ice-free Arctic in summer can be expected.

Observation operators are a current approach in climate science to circumvent observational uncertainty and the spread

introduced by the use of retrieval algorithms on satellite measurements (Flato et al., 2013; Eyring et al., 2019). They simulate

directly the observable quantity, in our case the brightness temperature, from the climate model output instead of retrieving the5

simulated quantity, in our case the sea-ice concentration, from the satellite observations. A sea-ice observation operator reduces

the uncertainty introduced by assumptions used in retrieval algorithms about the state of other climatic variables besides the

sea-ice concentration. It takes advantage of knowing the consistent climate state in time and space simulated by the climate

model alongside the sea ice. This knowledge allows a more comprehensive approach to climate model evaluation, as we cannot

only assess the simulated sea-ice concentration but also the simulated sea-ice temperature, snow cover, and sea-ice type. The10

feasibility and limitations of an observation operator applied to sea ice simulated by a climate model have not been investigated

yet. This is the question we address here.

We investigate how important the complexity of the representation of sea-ice properties is for the simulation of sea-ice

surface brightness temperatures emitted by different ice types. Experiments using a model accounting for part of the processes

at work inside the sea ice combined with an emission model have shown that knowing the vertical sea-ice properties are15

sufficient to generate realistic microwave brightness temperatures (Tonboe, 2010; Tonboe et al., 2011). We mainly concentrate

on the vertical representation of temperature and salinity inside the ice and snow, as they are the main drivers of the liquid brine

fraction in the ice and liquid water fraction in the snow and thus of sea-ice brightness temperatures, especially at low microwave

frequencies (Ulaby et al., 1986). As most general circulation models (GCMs) do not explicitly represent the time evolution of

vertical profiles of temperature and salinity in the ice and snow, we investigate the effect of simplified temperature and salinity20

profiles on the simulation of brightness temperatures. We do so by comparing reference profiles, representing an estimate of

reality, on the one hand and simplified profiles, representing GCM output, on the other hand in an idealized one-dimensional

setup, using a complex thermodynamic sea-ice model and a microwave emission model.

We focus on the simulation of sea-ice brightness temperatures at 6.9 GHz at vertical polarization as a first step. At this

frequency, the main driver of brightness temperatures are the sea-ice properties, while the contribution of the snow emission25

and scattering and of the atmospheric absorption and scattering due to water vapor, cloud liquid water and temperature are

small compared to the surface contribution. The framework can, however, be extended to other frequencies and polarizations

in the future, if the increasing importance of the snow and atmospheric contribution with increasing frequency is taken into

account.

In Sec. 2, we provide the theoretical background about drivers of sea-ice brightness temperatures and in Sec. 3 we present30

our method and the sea-ice and emission models used. In Sec. 4, we explore the influence of simplifications in the temperature

and salinity profiles on the simulation of sea-ice brightness temperatures to then explore the effect of a reduced number of

layers in Sec. 5. To complete the study, we quantify the uncertainty introduced by a snow cover and the atmosphere in Sec. 6.

Finally, we discuss our findings in Sec. 7 and conclude with suggestions for a functional observation operator for sea ice in

Sec. 8. In our companion paper Burgard et al. (2019), we use these suggestions to construct the Arctic Ocean Observation35
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Operator (ARC3O). We then evaluate the brightness temperatures simulated by ARC3O based on output of a coupled climate

model against brightness temperatures measured by a satellite from space.

2 Theoretical background

The brightness temperature TB is a measure for the microwave radiation emitted by one medium or a combination of media

and represents the temperature of a blackbody emitting the observed radiation. It is defined as:5

TB = εeff ·Teff (1)

where εeff is the emissivity of the emitting part of the medium, i.e. the layers influencing the resulting radiation emitted at the

surface and Teff the integrated temperature over this same emitting part (Hallikainen and Winebrenner, 1992; Shokr and Sinha,

2015b; Tonboe, 2010). The thickness of the emitting part and its emissivity depend on the permittivity and scattering properties

of the medium, which in turn depend on the medium and on the frequency and polarization of the radiation.10

In the case of sea ice, the permittivity is mainly a function of the fraction and distribution of liquid water in the form of brine

inside the ice as the permittivity of water is an order of magnitude higher than the permittivity of pure ice (Ulaby et al., 1986;

Shokr and Sinha, 2015a). This means that water is a stronger absorber than pure ice in the microwave range. The liquid water

fraction in the snow and brine volume fraction in the ice are a function of temperature and bulk salinity. Brine is present within

the ice throughout the year. If the ice becomes multiyear ice, most of its brine will have drained and the brine volume fraction15

decreases substantially compared to first-year ice. In snow, liquid water is mainly present during melting periods. Also, the

lowest layer of the snow can be saline, especially above first-year ice (Barber et al., 1998; Shokr and Sinha, 2015b), enabling

the presence of liquid water at the base of the snow. However, the sea-ice model used in our setup (see Sec. 3.2) does not

simulate salinities above zero for the snow layer. We therefore do not have a reference snow salinity and cannot consider saline

snow in our study setup.20

The scattering of the microwave radiation in sea ice is a function of the permittivity and the size of scatterers inside the ice,

snow, and atmosphere. In first-year ice, the main scatterers are brine pockets, while in multiyear ice the main scatterers are air

bubbles, as most of the brine will have drained out (Winebrenner et al., 1992; Tonboe et al., 2006; Shokr and Sinha, 2015a).

While a dry atmosphere and dry snow cover have a low permittivity, they can still influence scattering for frequencies higher

than 10 GHz (Mätzler, 1987; Barber et al., 1998). In ice, snow, and atmosphere, the scattering becomes increasingly important25

with increasing frequency (Tonboe et al., 2006) as the wavelength successively approaches the size of brine pockets, snow

grains and atmospheric aerosols and droplets.

Sea-ice concentration retrievals are based on satellite measurements at frequencies ranging from 1.4 GHz to 91 GHz (Ivanova

et al., 2014, 2015; Gabarro et al., 2017). In the following, we concentrate on radiation at 6.9 GHz and vertical polarization. This

frequency is advantageous as, with a wavelength of approx. 4.3 cm, it is only slightly affected by scattering inside the ice, the30

snow, and the atmosphere. The brightness temperature at 6.9 GHz therefore mainly depends on the emission and absorption

properties inside the ice rather than on the scattering properties. This is why our focus lies on the properties of the sea-ice
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column, rather than on the snow structure or the state of the atmosphere. The emitting part of the ice can be around 20 cm thick

for first-year ice and around 50 cm thick for multiyear ice (Tonboe et al., 2006).

3 Method and Data

3.1 Method

Although a few GCMs use detailed sea-ice modules (Vancoppenolle et al., 2009; Bailey et al., 2018), most GCMs use very5

simple sea-ice models that do not resolve the properties driving absorption and scattering inside the ice and snow. The Max

Planck Institute Earth System Model (MPI-ESM, Wetzel et al., 2012) is such a GCM. In MPI-ESM, sea ice is represented as

flat sea ice, with very simple sea-ice properties: a sea-ice (bare ice) or snow (snow-covered ice) surface temperature, a constant

sea-ice bottom temperature at -1.8 ◦C, and a constant salinity of 5 g/kg regardless of sea-ice type or age (Notz et al., 2013). It

is not clear yet how these simplifications affect a brightness temperature simulated based on these properties.10

To explore the importance of the vertical distribution of sea-ice properties on the simulation of brightness temperatures,

we use an idealized one-dimensional setup. This one-dimensional setup works as follows. On the one hand, we use a one-

dimensional thermodynamic sea-ice model to simulate our reference (see Sec. 3.2). It computes highly resolved vertical sea-ice

profiles under a given atmospheric forcing. On the other hand, we simplify these reference profiles to emulate profiles that could

be inferred from information given by MPI-ESM for the same conditions. These two sets of profiles can be used to simulate15

two sets of brightness temperatures with a microwave emission model (see Sec. 3.3). The two sets of resulting brightness

temperatures can then be used to quantify the effect of the GCM simplification on the brightness temperature simulation,

compared to our reference (Fig. 1).

In this setup, we can quantify the influence of each parameter separately on the simulated brightness temperature. We

could have compared brightness temperatures simulated on the basis of MPI-ESM output directly to brightness temperatures20

measured by satellites. However, we would then have not been able to infer the contribution to the difference in brightness tem-

peratures of fundamental differences between model and observations on the one hand, and the contribution of the differences

in the resolution of the ice properties on the other hand.

3.2 SAMSIM

Our reference profiles are simulated by the 1D Semi-Adaptive Multi-phase Sea-Ice Model (SAMSIM, Griewank and Notz,25

2013, 2015). This is a complex thermodynamical model simulating the evolution of a 1D sea-ice column under given surface

forcing. It computes sea-ice temperature, salinity, and brine volume fraction profiles on a semi-adaptive grid, with a number

of layers varying between 0 and 100. It includes most of the processes governing sea-ice growth and melt, and interactions

between the ice and, if existent, its snow cover. It was developed to investigate the brine dynamics inside the ice. A detailed

description of underlying equations and represented processes can be found in Griewank and Notz (2013) and Griewank and30

Notz (2015).
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Figure 1. Schematic of the steps of our simulation and comparison method.

We force SAMSIM with 2 m air temperature, surface downward longwave radiation, surface downward shortwave radiation,

and precipitation from the ERA-Interim reanalysis (Dee et al., 2011) in the time period from July 2005 to December 2009. This

gives us insight into 4.5 annual cycles, so that we can assess the interannual variability of the growth and melt of sea ice and

the evolution of its properties. The ocean salinity is kept at 34 g/kg and the oceanic heat flux at the bottom of the ice is derived

from SHEBA measurements, varying between 0 W/m2 in spring and 14 W/m2 in autumn (Huwald et al., 2005; Griewank and5

Notz, 2015).

To gain insight into differences in microwave emission between first-year ice and multiyear ice, we focus on two points

in the Arctic Ocean (Fig. 2). The first point represents first-year ice at 75◦N00◦W, where the ice always melts completely

in summer in our SAMSIM simulations. The second point is at 90◦N, where the ice survives the melt season and becomes

multiyear ice from the second simulation year onwards. Note that in our setup the simulated sea-ice evolution is not necessarily10

representative for the real sea-ice evolution at that location. For example, sea ice seldom exists at 75◦N00◦W in reality. The

presence of ice in this idealized simulation is likely linked to the oceanic heat flux used. This oceanic flux was measured in the

SHEBA site north of Alaska and is very different than in the North Atlantic. However, this does not affect our study because

we work in an idealized setup. Also, to ensure our results are robust, we have conducted the same analysis on five other points

distributed in the Arctic Ocean (74◦N170◦E, 77◦N39◦E, 80◦N160◦W, 82◦N120◦W, 85◦N50◦W) and the results support our15

conclusions.
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Figure 2. Evolution of sea-ice (black line) and snow (grey line) thickness as simulated by SAMSIM under ERA-Interim forcing between

July 2005 and December 2009. The peaks in ice thickness during the snow melt period are a model artifact of SAMSIM, where snow melt

occurs in the form of snow-to-slush conversion, briefly increasing the thickness of the top ice layer.

3.3 MEMLS

The simulation of sea-ice brightness temperatures is conducted with a slightly modified version of the Microwave Emission

Model for Layered Snowpacks (MEMLS) extended to sea ice (Tonboe et al., 2006). MEMLS was first developed by Wiesmann

and Mätzler (1999) to simulate brightness temperatures emitted by a snowpack composed of several layers and was later5

extended to sea ice (Tonboe et al., 2006). MEMLS uses the information of the properties of the ice and snow layers to simulate

the path of microwave radiation from the bottom to the surface of the ice and, if present, snow. It uses the thickness, the

temperature, the salinity, the density, the correlation length (measure for the scatterer size), the wetness, and information about

the type of medium (snow, first-year/multiyear ice) of the different sea-ice and snow layers to compute absorption and scattering

along the path. This then results in a brightness temperature emitted at the surface of the ice or snow.10

Unless otherwise mentioned, we do not take into account the atmosphere in our analysis as its effect is relatively small

at 6.9 GHz. The use of the term "brightness temperatures" in the following is therefore equivalent to the use of "brightness

temperatures emitted at the surface of the ice and snow column".
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3.4 General simulation setup

The temperature and salinity profiles produced by SAMSIM are used as input for MEMLS for the simulation of brightness

temperatures. Additionally, density profiles are derived from these properties using relationships given by Notz (2005) (see

App. A). Next to the temperature, salinity and density profiles, other variables, which are not computed by SAMSIM, have to5

be provided to MEMLS. These are the correlation length, the incidence angle, the ocean temperature, the incoming microwave

radiation from the atmosphere and the ice-ocean reflectivity for vertical polarization. They are set to constants, listed in Tab. 1.

Additionally, except for snow thickness and temperature, snow properties are neither resolved in SAMSIM nor in MPI-ESM.

The main effect of snow on the radiation is its thermal insulation of the ice column and its refractive effect on the radiation

induced by the difference in density between ice and snow and snow and atmosphere. The former is taken into account through10

the use of the SAMSIM snow thickness and snow temperature evolution, and the latter is taken into account through the

snow thickness and by using a low density of snow compared to ice. We therefore set all snow properties, except the snow

temperature and snow thickness, to constants, also listed in Tab. 1. In theory, the brightness temperature simulation is affected

by the snow wetness if it is above zero. Neither SAMSIM or MPI-ESM resolve the liquid water fraction in the snow. In this

study, we therefore set the snow wetness to zero. However, in a possible observation operator based on the results from this15

study, we strongly recommend to not consider periods of melting snow as we do not have the necessary information to simulate

plausible brightness temperatures.

Table 1. MEMLS constant input details and properties of the snow layer.

Incidence angle 55◦

Ocean temperature -1.8 ◦C

Incoming microwave radiation from the atmosphere 0 K

Ice-ocean reflectivity for V-polarization 0.25

Correlation length first-year ice 0.35 mm for depth < 20 cm,

0.25 mm for depth > 20 cm

Correlation length multiyear ice 1.5 mm

Snow thickness as computed by SAMSIM

Snow density 300 kg/m3

Snow correlation length 0.15 mm

Snow salinity 0 g/kg

Snow temperature as computed by SAMSIM

Our input for the emission model, e.g. salinity, correlation length, brine pocket form, comes with uncertainties. These are

mainly caused by a partial or complete lack of in-situ observations and the resulting low understanding of their evolution. We

therefore recommend more observations of the ice properties combined with concurrent microwave radiation measurements.

7

https://doi.org/10.5194/tc-2019-317
Preprint. Discussion started: 20 January 2020
c© Author(s) 2020. CC BY 4.0 License.



A few of such observations exist already, from both laboratory setting and in-situ, but they mainly focus on frequencies higher

than 6.9 GHz (e.g. Grenfell et al., 1998; Jezek et al., 1998; Perovich et al., 1998; Hwang et al., 2007). With more combined

observations at lower frequencies, we expect that the uncertainty in the brightness temperature simulation can be reduced in

the future through further research and better understanding of the components introducing the uncertainty.5

For example, a better understanding of the sea-ice salinity evolution would be of advantage. The salinity parametrization

used in Sec. 4.3 is based on an "L-shape" of the salinity profile, while it is argued that the sea-ice salinity profile often resembles

a "C-shape" or even a "Γ-shape" (Nakawo and Sinha, 1981; Shokr and Sinha, 2015a). Another parameter of uncertainty is the

correlation length. Although it is a variable quite well understood and quantifiable for snow (Mätzler, 2002; Proksch et al.,

2015; Lemmetyinen et al., 2018), its quantification in sea ice is not clear and its values not well known. On a similar note,10

MEMLS makes assumptions about the form of the brine pockets. In our study we assumed spherical brine pockets. However,

it is known that the shape depends highly on the ice age and formation. An extensive summary of the brine pocket form can be

found in Light et al. (2003).

Finally, the use of MEMLS as a sea-ice emission model is a source of uncertainty as well. Here again, the lack of mea-

surements of the parameters needed for the brightness temperature simulation and of microwave radiation itself has inhibited15

a comprehensive evaluation of the sea-ice version of MEMLS simulations against reality. Still, it is accepted as one of the

main tools for sea-ice brightness temperature simulations and has shown its strength in several previous studies (Tonboe, 2010;

Tonboe et al., 2011; Willmes et al., 2014; Lee et al., 2017).

These uncertainties, however, only have a limited impact on the present study. We concentrate on a relative comparison,

where we change temperature and salinity in the ice to understand their impact on the brightness temperature, but assumptions20

about correlation length and the form of brine pockets are the same in our reference and our simplified brightness temperature

simulations. The uncertainties will therefore not impact the difference between the two sets of brightness temperatures. Addi-

tionally, in regard to the absolute values, Burgard et al. (2019) show that realistic brightness temperatures can be simulated by

MEMLS using the above mentioned uncertain assumptions with slight tuning. The effect of the uncertainties therefore remains

small when considering large scales.25

4 The influence of vertical sea-ice properties

4.1 Brine volume fraction

Sea-ice brightness temperatures at 6.9 GHz are mainly driven by the distribution of liquid water in the form of brine inside the

ice, as absorption plays a larger role than scattering at this frequency. We compute the ice surface brine volume fraction with

Eq. A4 based on the ice surface temperature and salinity given by SAMSIM and find that this relationship is clearly visible in30

the brightness temperatures simulated based on the vertical profiles from SAMSIM output. The brightness temperatures show

a strong dependence on the ice surface brine volume fraction, i.e. in the top ice layer of the profiles (Fig. 3a). If we concentrate

the brightness temperature simulation on the ice layers, i.e. using only the ice layers of the snow and ice column as input to

MEMLS, the relationship is even clearer (Fig. 3b).
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Especially above an ice surface brine volume fraction of 0.2, the brightness temperature at the ice surface is linearly related

to the ice surface brine volume fraction (Fig. 3b). This means that no radiation signal from below the surface influences the

brightness temperature but only the surface brine volume fraction matters. The brightness temperature transitions roughly

linearly between brightness temperatures typical for ice (≈ 260 K) at an ice surface brine volume fraction of 0.2 and brightness5

temperatures typical for open water (≈160 K) at an ice surface brine volume fraction of 1. The properties inside the ice do

therefore not influence the brightness temperature when the ice surface has a brine volume fraction higher than 0.2. In our

SAMSIM profiles, these high surface brine volume fractions fractions occur predominantly in summer, i.e. from April to

September. We therefore suggest that an ice surface brine volume fraction above 0.2 can be interpreted both as very wet ice or

as a measure for the melt-pond fraction.10

a) reference brightness temperatures emitted by the
ice and snow column

b) reference brightness temperatures emitted by the
ice column only
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Figure 3. Reference brightness temperatures at 6.9 GHz, vertical polarization, simulated based on the (a) ice and snow column and on the

(b) ice column only as a function of the reference ice surface brine volume fraction. Circles represent first-year ice (FYI), crosses represent

multiyear ice (MYI). Blue is winter (October to March), red is summer (April to September). r is the correlation coefficient between the

brightness temperature and the ice surface brine volume fraction for both ice types.

For surface liquid water fractions below 0.2, occurring in both winter and summer, the spread between brightness tem-

peratures is 10 to 15 K for similar ice surface brine volume fractions. For these low ice surface brine volume fractions, the

brightness temperatures are driven by the distribution of brine further inside the ice, which is a function of the temperature and
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salinity distribution. In some summer multiyear ice cases, the brightness temperature drops to ≈180 K. These low brightness

temperatures occur in September when thin multiyear ice is entering the freezing period. Then, the simulated ice column has a

brine volume fraction of zero except in the bottom layer. The radiation is therefore mainly influenced by the very saline bottom

layer at the interface between ice and ocean, leading to low brightness temperatures. Unfortunately for the higher brightness5

temperatures around 260 K at low ice surface brine volume fractions, we could not infer a direct relationship between the

brightness temperature and a given layer or a given brine volume fraction inside the ice from our data. We therefore proceed

with sensitivity experiments to investigate the effect of simplifications in temperature and salinity profiles, and therefore in

liquid water fraction profiles, on the simulated brightness temperature.

These sensitivity experiments demonstrate what happens when information about the vertical sea-ice profile lacks, as in the10

sea-ice representation by MPI-ESM. To this end, we compare brightness temperatures simulated based on SAMSIM profiles

(in the following our reference) and brightness temperatures simulated based on simplified profiles (in the following our

simplification). Our focus is on the influence of the ice properties on the brightness temperature. We therefore only use the ice

layers of the ice and snow column as input for MEMLS. This way, the thermal insulation effect of the snow on the temperature

profiles is conserved but the refraction at the ice-to-snow interface is neglected for the moment. This treatment corresponds to15

assuming that the snow is transparent to microwave radiation at this frequency. The refraction effect of the snow is discussed

in Sec. 6.

The purpose of the sensitivity experiments is to identify the influence of the different profiles rather than the effect of

differences in the vertical resolution, i.e. the number of ice layers. The simplified input profiles are therefore interpolated to the

same number of layers as the reference profiles (ranging from 1 to 100 layers, depending on the ice thickness).20

4.2 Linear Temperature and Constant Salinity

In a first experiment, we investigate the brightness temperature simulated based on information as would be given by MPI-

ESM. For the simplified temperature profile, a two-step linear profile, we use the snow surface temperature as simulated by

SAMSIM and infer the ice temperature at the interface between ice and snow from it, following Eq. A6. From this ice surface

temperature, we interpolate linearly to the ice bottom layer, which has a temperature of -1.8 ◦C. For the salinity profile, MPI-25

ESM assumes a constant salinity of 5 g/kg. As this is clearly too high for multiyear ice (Ulaby et al., 1986), we assume a

constant salinity of 5 g/kg for first-year ice and a constant salinity of 1 g/kg for multiyear ice in our simplified salinity profiles

(see dashed lines in Fig. 4).

The influence of the simplifications is clearly different depending on the season. We therefore divide our results into winter

(October to March, see Fig. 5) and summer (April to September, see Fig. 6). In winter, the simplified profiles produce brightness30

temperatures close to reference brightness temperatures for first-year ice, with a mean absolute difference of 3.2±7.6 K (Fig. 5,

first row). For multiyear ice, the spread is higher and there is a tendency of simplified brightness temperatures to underestimate

the reference brightness temperatures, with a mean absolute difference of 7.2±5.0 K.

In summer, the mean absolute differences are one order of magnitude higher, with 43.21±43.94 K for first-year ice and

43.02±45.73 K for multiyear ice (Fig. 6, first row). Simplified and reference brightness temperatures are clearly different most
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Figure 4. Salinity profiles used for the simplified profiles. FYI: First-year ice, MYI: Multiyear ice. The dashed lines represent the constant

salinity profiles used in Sec. 4.2 and the full lines represent the salinity profiles as a function of depth used in Sec. 4.3

of the time. Especially, the simplified brightness temperature is close or equal to 160 K, i.e. open water brightness temperatures,

at most of the time steps. This is because in summer, the physical temperature of the ice surface approaches 0 ◦C and, the closer

it gets to 0 ◦C, the lower the salinity must be in order for dry ice to exist rather than slush. At high temperatures and salinities

of 5 g/kg, the brine voume fraction therefore approaches 1 very fast, leading to low brightness temperatures. For multiyear ice,5

the effect of a salinity of 1 g/kg on the ice surface brine volume fraction is visible in a similar way.

To confirm our findings for summer and understand further our findings for winter, we conduct two additional sensitivity

experiments. In the first experiment, the simplified brightness temperature is simulated based on the linear temperature profiles

and the reference salinity profiles. In the second experiment, on the contrary, the simplified brightness temperature is simulated

based on the reference temperature profiles and the constant salinity profiles. This enables us to separate the effect of the two10

simplifications. In both seasons, the effect of the constant salinity assumption is the main driver of the spread between the

different brightness temperatures (Fig. 5 and Fig. 6, third row), while the linear temperature assumption has a small effect on

the spread in winter and summer brightness temperatures (Fig. 5 and Fig. 6, second row).
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Figure 5. Brightness temperatures at 6.9 GHz, vertical polarization, simulated based on different simplified profiles as a function of reference

brightness temperatures for winter. Left column: first-year ice, right column: multiyear ice. Note that the axes are limited to the range between

240 to 270 K for clarity. The remaining brightness temperatures are scattered between 165 and 240 K and represent around 2% of the

simplified data and 0.4% of the reference data.
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Figure 6. Brightness temperatures at 6.9 GHz, vertical polarization, simulated based on different simplified profiles as a function of reference

brightness temperatures for summer. Left column: first-year ice, right column: multiyear ice.
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We therefore conclude that the assumption of a two-step linear temperature profile in the snow and ice does not introduce

large uncertainties in the brightness temperature simulation. The assumption of constant salinity, however, introduces very

large uncertainties in summer and smaller but still non-negligible uncertainties for multiyear ice in winter. We therefore explore

another simplification approach for salinity profiles in a next step.5

4.3 Linear Temperature and Salinity as a function of depth

An alternative approach to simplify salinity profiles is a parametrization representing salinity as a function of depth (Griewank

and Notz, 2015). This parametrization assumes an L-shaped profile, with low salinity near the surface and a rapidly increasing

salinity in the lower ice layers (see Fig. 4, full lines, and Tab. B1).

We now simulate the brightness temperature based on the linear temperature profiles and on the salinity profiles as a function10

of depth (Fig. 5 and Fig. 6, fourth row). With a mean absolute difference of 2.9±6.6 K in winter for first-year ice, the uncertainty

is comparable to the constant salinity assumption. However, for multiyear ice, the uncertainty is reduced by around two thirds

compared to the constant salinity, with a mean absolute difference of 2.5±2.8 K. In summer, the uncertainty is strongly

reduced to 10.6±21.7 K for multiyear ice and stays comparable for first-year ice with 43.0±44.2 K. This represents a small

improvement but the uncertainty remains too large in summer.15

Again, if the brightness temperature is simulated based on reference temperature profiles and on the salinity profiles as a

function of depth (Fig. 5 and Fig. 6, fifth row), it becomes clear that the assumption in the salinity profiles is the main driver for

uncertainties in the brightness temperature simulations. However, using salinity profiles as a function of depth introduces less

error than assuming the salinity to be constant throughout depth. We therefore recommend using a two-step linear temperature

profile in snow and ice and an ice salinity as a function of depth when simulating brightness temperatures based on GCM20

output.

The effect of temperature and salinity distribution being clearer now, we turn to another characteristic of GCMs, the limited

vertical resolution owing to computational efficiency. Indeed, computing vertical temperature and salinity profiles based on the

surface temperature and sea-ice thickness given by a GCM adds a vertical dimension to a two-dimensional output. This means

that the computation time and power needed by an operator applied to a GCM will be much higher than a one-dimensional25

setup. We therefore investigate the importance of the vertical resolution in a next step.

5 The influence of vertical spatial resolution

Applying an emission model to a GCM consumes high computation power, as the input profiles must be prepared and the emis-

sion model must be applied to many grid cells. In the case of the Arctic Ocean at the MPI-ESM low atmospheric resolution of

1.9◦, this would mean for example ≈ 4000 data points per timestep. As ocean components in GCMs often have higher hori-30

zontal resolution than the atmosphere, this would mean even more computation power needed when using oceanic variables.

Reducing the number of layers for the brightness temperature simulation is a possible aspect to reduce the computation time.

This is the issue we explore in the following.
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The simplified profiles used for sensitivity experiments in Sec. 4 are interpolated to the same number of layers as the

reference profiles, i.e. a variable number of layers depending on the ice thickness between one and 100 layers. We now run the

brightness temperature simulation with the simplified profiles (linear temperature, salinity as a function of depth) interpolated

on ten, seven, five, and three equidistant layers and compare the results to the reference brightness temperatures. We also5

include the experiment of Sec. 4 as an indicator for the minimal simplified uncertainty in the comparison. We concentrate

on winter months, as we showed that the uncertainty in summer is already very large at high vertical resolution and mainly

depends directly on the surface rather than on properties further inside the ice.

Table 2. Absolute mean difference and standard deviation [K] between simplified brightness temperatures simulated based on profiles

interpolated on different number of layers and reference brightness temperatures simulated based on profiles covering 1 to 100 layers,

depending on the thickness of the ice. These values only represent winter (October to March).

3 layers 5 layers 7 layers 10 layers 1 to 100 layers

First-year ice 3.3±6.9 3.1±6.8 3.1±6.8 3.1±6.8 2.9±6.6

Multiyear ice 3.3±2.7 2.4±2.7 2.4±2.7 2.4±2.7 2.5±2.6

We find that the difference in uncertainty remains small between the reference simplification between 1 and 100 layers and

the interpolation on ten, seven, or five layers, the mean uncertainty varying between 2.9 and 3.1 K for first-year ice and between10

2.4 and 2.5 K for multiyear ice (see Tab. 2). Using three layers, the uncertainty increases slightly by 0.4 K for the former and

by 0.8 K for the latter but still remains small. We therefore argue that using as few as five is as reasonable as 100 layers for the

simulation of simplified brightness temperatures.

6 The influence of snow and atmosphere

Until now, we concentrated on the influence of sea-ice properties on the simulation of brightness temperatures emitted at15

the surface of the ice. These simulations included the thermal insulation effect of the snow but did not take into account the

refraction effect of the snow cover on the radiation and the path of the radiation through the atmosphere. These are assumed to

be small at 6.9 GHz. Nevertheless, it is of interest to quickly investigate the radiative effect of snow cover and atmosphere on

the brightness temperature for uncertainty quantification and attribution.

We include the radiative effect of the snow cover in the brightness temperature simulation by using both snow and ice layers20

of the reference input profiles as input for MEMLS. Except thickness and temperature, which are computed by SAMSIM, all

other variables are set to constants (Tab. 1), as neither SAMSIM nor MPI-ESM compute more details about the snow properties.

Especially, we only consider dry snow in this study.

The main driver for the radiative effect of the dry snow cover is its density difference to the ice and atmosphere and its

thickness. The density difference, and therefore the permittivity difference, between snow and ice on the one hand and between25

snow and atmosphere on the other hand leads to refraction of the radiation at its boundaries. The snow thickness also has an

influence. A linear regression between snow thickness and differences between the simulated brightness temperatures with and
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without snow layer in winter gives a decrease by 0.13 K (0.13 K for first-year ice, 0.14 K for multiyear ice) for each cm of

snow and an intercept of around -1.5 K (-1.7 K for first-year ice, -1.4 K for multiyear ice). This relationship only depends on

the snow thickness and the density difference between snow and ice and between snow and atmosphere. It is independent of

the snow temperature in our setup. In winter, using both ice and snow layers of the profile leads to a mean effect of -2.7±2.1 K5

for first-year ice and -3.8±2.4 K for multiyear ice on the brightness temperature compared to only using the ice layers of the

profile. Although scattering is limited, the radiative effect of the snow cover hence remains important.

We consider only dry snow here as we do not know anything about the vertical profiles inside the snow from neither MPI-

ESM nor SAMSIM. As liquid water and its distribution within the snow strongly affects the brightness temperature, we do not

yet have a reliable solution to simulate the sea-ice brightness temperature when covered by wet snow.10

We investigate the influence of the atmosphere with a similar approach as the influence of the snow cover. A simple at-

mospheric radiative transfer model developed by Wentz and Meissner (2000) is applied using the brightness temperatures

simulated based on the reference ice and snow input profiles as the lower boundary conditions. The atmospheric effect mainly

depends on the columnar liquid and water vapor content, which we again take from the ERA-Interim reanalysis, and on oxygen

absorption, included in the radiative transfer model. Assuming a sea-ice concentration of 100%, the absolute mean impact of15

the atmosphere on the total brightness temperature is between 0.1 and 0.3 K between October and March, between 0.1 and 2 K

between April and September.

7 Summary and Discussion

7.1 Winter brightness temperatures

We showed that in winter, sea-ice surface brightness temperatures simulated using a two-step linear temperature profile in20

ice and snow and an ice salinity as a function of depth as input for an emission model are comparable to sea-ice surface

brightness temperatures simulated using complex temperature and salinity profiles. The remaining uncertainty is mainly driven

by the simplification of the sea-ice salinity distribution. These realistic brightness temperatures can be reproduced with similar

uncertainty using as few as five layers. A very high vertical resolution of the ice properties is therefore not needed. The

refraction induced by the snow cover affects the brightness temperature, depending on its thickness, by 2.7 to 3.8 K. The25

atmosphere above the ice and snow column is negligible with an effect reaching at most 0.3 K at 100% sea-ice concentration.

This study was motivated by the fact that observational uncertainty could be reduced by the approach of an observational

operator. It is however not trivial to evaluate this proposition based on our results. To compare the uncertainty [K] introduced

by the brightness temperature simulation to uncertainties [%] introduced by a sea-ice concentration retrieval algorithm, we

translate the uncertainty in brightness temperature into uncertainty in sea-ice concentration.30

A simple retrieval algorithm to retrieve sea-ice concentration SIC is given by

SIC =
TB−TBw

TBi−TBw
, (2)

16

https://doi.org/10.5194/tc-2019-317
Preprint. Discussion started: 20 January 2020
c© Author(s) 2020. CC BY 4.0 License.



with TB the total brightness temperature (ice and open water combined), TBw a typical open water brightness temperature,

and TBi a typical sea-ice brightness temperature. If we introduce uncertainties ∆SIC and ∆TB in the previous equation, this

leads to

SIC + ∆SIC =
TB + ∆TB−TBw

TBi−TBw
, (3)5

resulting in

∆SIC =
∆TB

TBi−TBw
. (4)

In our simulated reference brightness temperatures, TBi, here the simulated brightness temperature for ice with low surface

brine volume fraction, varies around 263 K (263.8±3.6 K for first-year ice and 263.7±4.3 K for multiyear ice) and TBw, here

the simulated brightness temperatures at very high surface brine volume fractions, varies around 166 K (166.1±0.7 K for first-10

year ice and 165.9±0.1 K for multiyear ice). Following Eq. 4, in this range spanning approximately 100 K, an uncertainty of

1 K in brightness temperature therefore approximately translates into 1% of absolute uncertainty in sea-ice concentration. The

observational uncertainty of sea-ice concentration in winter is up to 2.5% in consolidated ice and up to 12% for marginal ice

zones (Ivanova et al., 2015). The uncertainty of the simulated brightness temperatures translates to a similar range. This might,

at first glance, not appear as a solution to drastically reduce the observational uncertainty. However, an observational operator15

is consistent in time and space and therefore allows a process-understanding of the uncertainties in brightness temperature

simulations and, in a possible next step, in retrieval algorithms.

7.2 Spring and summer brightness temperatures

In summer, we cannot reproduce realistic sea-ice surface brightness temperatures due to the very high sensitivity of the liquid

water fraction to small changes in salinity near 0 ◦C. We therefore recommend using another approach to simulate summer20

brightness temperatures. We suggest assuming that the brightness temperature of summer bare ice is similar all over the Arctic,

as temperatures are near 0 ◦C. The surface brightness temperature is a linear combination of the bare ice brightness temperature

and the brightness temperature of the melt ponds covering the ice. Therefore, this constant brightness temperature can be

combined with open water brightness temperature, weighted by the fraction of melt ponds forming throughout the summer.

This approach is simple. We have however not found any other approach that could come closer to reality as the sensitivities25

are very high near 0 ◦C.

Another problematic component when surface temperatures increase in spring and summer is the snow. While the detailed

profile of dry snow is not needed as long as its presence is taken into account for the thermal insulation of the ice and for the

refraction of the radiation, wet snow has a much higher influence on microwave emission. As in the case of melting snow,

very precise information about the snow structure, e.g. wetness distribution, correlation length, and form of snow grains, are30

needed, we cannot come close to simulate realistic brightness temperatures from GCM output. In our experiments we have

ignored this effect by setting the snow wetness to zero at all times. However, for an all-year-round realistic simulation of

brightness temperatures, we suggest to exclude data containing melting snow from the brightness temperature simulation.
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7.3 Outlook

The evaluation framework in this study can be used to explore simulated brightness temperatures at higher frequencies, nearer

to the most used operational frequencies. However, snow is a limiting factor in this case. While the radiative effect of the

snow cover is small at 6.9 GHz, its impact increases with increasing frequency. It becomes therefore more important to know5

the snow structure, e.g. snow density, snow temperature, and snow scatterer structure. This information is lacking in GCMs.

As the snow structure is more dynamic and changes faster than the ice structure, parametrization for the snow structure do

not exist yet to our knowledge. It would be of high interest to explore the evolution of snow on sea ice in more details and

perform sensitivity studies to identify possible simplifications. These could eventually lead to realistic brightness temperatures

simulated based on GCM output at higher frequencies than 6.9 GHz.10

Finally, our analysis focuses on the simulation of brightness temperatures based on output from a GCM which simulates

sea ice with a very simple sea-ice model. The use of output from GCMs that simulate sea ice with more complex sea-ice

models might yield lower uncertainty in the brightness temperature simulation. However, although these models compute many

physical properties inside the ice, they do not necessarily store them for each time step. Using the more complex properties of

these models would therefore require one to build the emission model into the model code, instead of applying an "external"15

operator to already produced model output.

8 Conclusions

With the help of a one-dimensional thermodynamic sea-ice model and a one-dimensional emission model, we investigated

if realistic sea-ice brightness temperatures can be simulated based on GCM output at a frequency of 6.9 GHz with vertical

polarization. We conclude that it is possible to simulate realistic sea-ice brightness temperatures depending on the time of year20

and on the boundary conditions.

We propose the following structure for an observational operator for sea ice at 6.9 GHz, vertical polarization:

– Periods of cold conditions: Use the temperature profile provided by the GCM if existing. Otherwise, use the simulated

snow surface temperatur to infer the ice surface temperature and interpolate a linear temperature profile through the

ice from there. Use the salinity profile provided by the GCM if existing. Otherwise, interpolate the salinity profile as a25

function of depth, following the functions given by Griewank and Notz (2015). Apply an emission model, e.g. MEMLS,

to these profiles, combined with information about correlation length, sea-ice type, etc. Apply a simple ocean emission

model and atmospheric radiative transfer model, e.g. Wentz and Meissner (2000), to account for the effect of open water

when the sea-ice concentration is below 100% and for the effect of the atmosphere.

– Periods of bare ice near 0 ◦C: Use a constant brightness temperature for the ice surfaces. Burgard et al. (2019) derive30

a summer sea-ice surface brightness temperature of 266.78 from observational estimates. This represents a brightness

temperature at the top of the atmosphere of 262.29 K corrected by the mean atmospheric effect of 4.49 K in their sim-

ulations. Weight this constant brightness temperature with the melt pond fraction. Apply a simple atmospheric radiative
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transfer model, e.g. Wentz and Meissner (2000), to account for the effect of open water when the sea-ice concentration

is below 100% and for the effect of the atmosphere.

– Periods of melting snow: Ignore these points in the analysis. The GCM output does not provide enough information

about the snow properties and wet snow strongly affects the brightness temperature.5

The observational operator structure we present here allows us to simulate brightness temperatures from two-dimensional

output by a GCM that can be compared with brightness temperatures measured by satellites. This opens new possibilities and

perspectives for model-to-observation comparison in the Arctic Ocean.

Code and data availability. Primary data and scripts used in this study are archived by the Max Planck Institute for Meteorology and can be

obtained by contacting publications@mpimet.mpg.de.10

Appendix A: Retrieving sea-ice properties from temperature and salinity

The following formulas were used to compute the ice density ρi and brine volume fraction Φl profiles from the ice temperature

T and salinity S profiles (Notz, 2005)

ρ0 = 916.18− 0.1403T (A1)

where ρ0 is the density of pure ice.15

Sb =−17.6T − 0.389T 2− 0.00362T 3 (A2)

where Sb is the brine salinity.

ρw = 1000.3 + 0.78237Sb + 2.8008 · 10−4S2
b (A3)

where ρw is the density of seawater.

Φl = S/Sb (A4)20

ρi = Φl · ρw + (1−Φl) · ρ0 (A5)

The following formula was used to infer the ice surface temperature Tice,surf from the snow surface temperature Tsnow,surf:25

Tice,surf =
Tsnow,surf · ks

hs
+Tbottom · ki

hi

ks

hs
+ ki

hi

(A6)

with ks the thermal conductivity of snow (= 0.31 W/Km), ki the thermal conductivity of ice (= 2.17 W/Km), hs the snow

thickness, hi the ice thickness, Tbottom the temperature at the bottom of the ice, set to -1.8 ◦C.
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Appendix B: Salinity parametrization as a function of depth

Table B1. Formulas describing salinity as a function of depth as shown in the full lines in Fig. 4.

Ice type Salinity parametrization Constants needed

as a function of depth z

First-year ice Sfy
z

a+bz
+ c a = 1.0964, b = -1.0552,

c = 4.41272

Multiyear ice Smy
z
a

+( z
b
)1/c a = 0.17083, b = 0.92762,

c = 0.024516

Transition (1− t) ∗Smy(z)+ t ∗Sfy(z) t=0 at start of melt season and

first-year to t=1 at start of freezing season

multiyear ice
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