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Abstract. The buoyancy boundary condition applied to floating portions of ice sheets and glaciers in Stokes models requires

special consideration when the glacier rapidly departs from hydrostatic equilibrium. This boundary condition can manifest in

velocity fields that are unphysically (and strongly) dependent on time step size, thereby contaminating diagnostic stress fields.

This can be especially problematic for models of calving glaciers, where rapid changes in geometry cause configurations

that suddenly depart from hydrostatic equilibrium and lead to inaccurate estimates of the stress field. Here we show that the5

unphysical behavior can be cured with minimal computational cost by reintroducing a regularization that corresponds to the

acceleration term in the stress balance. This regularization provides consistent velocity solutions for all time step sizes.
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1 Introduction

Stokes simulations are used in glaciology as a tool to determine the time evolution of glaciers (e.g., Gagliardini et al., 2013).10

Increasingly, these models are also used to examine the stress field within glaciers to better understand factors that control

crevasse formation and the onset of calving events (Ma et al., 2017; Benn et al., 2017; Nick et al., 2010; Todd and Christoffersen,

2014; Ma and Bassis, 2019). This type of model can provide insight into the relationship between calving, climate forcing, and

boundary conditions (e.g., Todd and Christoffersen, 2014; Ma et al., 2017; Ma and Bassis, 2019).

Here we show that a common method used to implement the ice-ocean boundary condition in Stokes models can result in15

solutions that are unphysically sensitive to the choice of simulation time step size. This behavior manifests in applications

that allow for rapid changes in the model domain — a type of change associated with models that allow for instantaneous

calving events or crevasses (Todd and Christoffersen, 2014; Todd et al., 2018; Yu et al., 2017). The time step dependence arises

because for glaciers outside of hydrostatic equilibrium, the acceleration is not small as assumed in Stokes flow. We illustrate

both the issue and the solution using an idealized ice shelf geometry (illustrated in Fig. 1) where the upper portion has calved20

away, emulating the “footloose” mechanism proposed by Wagner et al. (2014) where an aerial portion of the calving front first

detaches.
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2 Problem Description

2.1 Glacier Stress Balance

Denoting the velocity field in two dimensions by u(x,z, t) = (ux(x,z, t),uz(x,z, t)) and pressure by P (x,z, t), conservation25

of linear-momentum can be written in the form:

∇ ·σ+ ρig = ρi
Du

Dt
, (1)

where D/Dt denotes the material derivative. The Cauchy stress is defined in terms of strain rate, effective viscosity, pressure,

and the identity matrix I:

σ = 2ηε−PI, (2)30

with strain rate tensor ε given by:

εij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
. (3)

Here ρi is the density of ice, g is the acceleration due to gravity, and η is the effective viscosity of ice:

η =
B

2
ε

1
n−1
e . (4)

The effective viscosity is a function of the effective strain rate εe =
√
εijεij/2, a temperature dependent constant B, and the35

flow-law exponent n= 3; the acceleration term on the right hand side of Eq. (1) denotes the material derivative.

In the Stokes approximation, we drop the acceleration term from Eq. (1), which is justified for most glaciological applications

(e.g., Greve and Blatter, 2009). However, as we shall show, this assumption is problematic for applications where the ice departs

from hydrostatic equilibrium.

2.2 Boundary Conditions40

To illustrate an example where the Stokes flow problem departs from hydrostatic equilibrium, we consider a two-dimensional

floating ice shelf (Fig. 1). We specify the normal component of the velocity u · n̂= u1, where u1 is a constant along the inflow

portion of the domain (Γ1) and n̂ is the normal vector along Γ1. At the ice-atmosphere boundary (Γ2) we assume the surface

is traction free. At the boundary between ice and ocean (Γ3) the shear traction along the ice-interface vanishes and continuity

of normal traction along the ice-ocean interface can be written as σnn(x,t) = −ρwgb(x,t) where b(x,t) is the position of the45

ice-ocean interface.

Problems arise with this form if the glacier is not exactly in hydrostatic equilibrium because buoyancy forces along the

ice-ocean interface cannot be balanced by internal stresses. In this case, there is no unique solution and vertical velocities

are singular. In reality, of course, the ice will quickly re-adjust to hydrostatic equilibrium as a consequence of buoyant uplift

through the (nearly) inviscid ocean.50
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Sea-Spring Damping Force

Figure 1. A diagram showing the boundary conditions of an idealized floating ice shelf. The ice-ocean interface is subject to two normal

stresses - the depth dependent water pressure and the numerical damping force for stabilization to hydrostatic equilibrium. The dashed

red line illustrates an iceberg that breaks off from the top of the calving front (exaggerated), reducing the freeboard and instantaneously

perturbing the ice shelf from hydrostatic equilibrium.

We can more appropriately specify the boundary condition for Stokes flow at the ice-ocean interface by writing it in the

form:

σnn(x,t) = −ρwg [b(x,t) + ∆z(x,t)] on Γ3 (5)

where ∆z(x,t) is an a priori unknown isostatic adjustment that could potentially include a rigid body translation and, for a

freely floating iceberg, rigid body rotation. Crucially, the rigid body motion must be determined as part of the solution to enable55

the local and global force balance to close.

The additional isostatic adjustment term ∆z has a simple physical explanation: if normal stress was exactly hydrostatic,

σnn = ρigH where H is the ice shelf thickness. Equation (5) can then be solved for ∆z to determine the position of the

bottom interface needed for the forces to balance, which is exactly what is done in the shallow shelf approximation. The full

Stokes approximation is more complex as internal stresses also contribute to the normal stress at the ice-ocean interface, but60

the location of the ice-ocean interface needs to be solved for as part of solution to the problem, which we examine next.

2.3 Numerical Stabilization of Buoyant Uplift

Different numerical methods use different techniques to estimate ∆z in Eq. (5). For example, in Elmer/Ice, a popular package

for modeling Stokes glacier flow, Durand et al. (2009) proposed an ingenious solution in which ∆z is estimated based on a

Taylor series of vertical position of the ice-ocean interface:65

∆z = uz(x,t)∆t+O(∆t2). (6)

This Taylor series transforms the isostatic adjustment into a time step-dependent Newtonian velocity damping:

σnn(x,t) = −ρwg [b(x,t) +uz(x,t)∆t] . (7)
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Figure 2. L2 norm of (a) vertical velocity, (b) effective strain rate, (c) maximum shear stress, and (d) greatest principal stress immediately

after the emulated calving event. Norm is calculated based on cell-averaged values. Solutions shown for sea-spring damping and sea-spring

with Navier Stokes (NS) for time steps ranging from 1 second to 30 years. The sea-spring with Navier Stokes term gives physical solutions

for all time steps but still shows variability with time step consistent with the evolution of the system.

Here, the velocity uz can include rigid body translation. The coefficient of the damping force in this approximation is pro-

portional to the time step size ∆t and vanishes in the limit of small ∆t. In this small time step limit, vertical velocities can70

become singular. We refer to the damping method given in Eq. (7) as the “sea-spring” method based on the nomenclature used

in Elmer/Ice documentation.

We illustrate the time step dependence using a floating ice shelf as an example. In this case, global force balance is not

guaranteed, leading to a formally ill-posed problem. However, the problem of singular vertical velocities persists even when

grounded ice is included in the domain because the velocity (and strain rate) solution can become unphysically sensitive to the75

position of the ice-ocean interface.

3 Calving-Based Convergence Test

3.1 Test Design

For our test, we implement an idealized rectangular ice shelf of thickness 400 m and length 10 km. This ice shelf is initialized

to be in exact hydrostatic equilibrium. We set the inflow velocity for the upstream boundary condition to 4 km a−1. These80

thickness and velocity parameters are broadly consistent with observations for the last 10 km of Pine Island ice shelf (Rignot

et al., 2017, 2011; Mouginot et al., 2012; Paden et al., 2010, updated 2018). The temperature dependent constant in Glen’s flow

law is chosen to be 1.4× 108 Pa s
1
3 , the value given by Cuffey and Paterson (2010) for −10◦C.
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To emulate the occurrence of a calving event that would perturb the ice shelf from hydrostatic equilibrium, a rectangular

section of length 50 m and thickness 20 m is removed from the upper calving front of the glacier (Fig. 1). This type of calving85

behavior has been proposed as the trigger of a larger calving mechanism related to buoyant stresses on the ice shelf (Wagner

et al., 2014). The numerical effects we document are not unique to this style of calving and this mechanism is only meant to

illustrate the numerical issues.

The problem is implemented in FEniCS (Alnæs et al., 2015), an open source finite element solver with a Python interface

that has been previously used for Stokes glacier modeling (Ma et al., 2017; Ma and Bassis, 2019). The problem is solved90

using an Arbitrary Lagrangian-Eulerian formulation using mixed Taylor-Hood elements with quadratic elements for velocity

and linear elements for pressure. The open source finite element mesh generator Gmsh is used to generate a unstructured mesh

with uniform grid spacing of 10 m near the calved portion of the domain and grid spacing of 40 m elsewhere.

3.2 Time Step Dependent Behavior

Figure 2 shows the sensitivity of the vertical velocity, effective strain rate, maximum shear stress, and greatest principal stress95

to time step size when using the sea-spring boundary condition from Eq. (7). The unphysically large velocities at small time

steps are magnified by the coupling between effective strain rate and viscosity. As effective strain rates become larger with

small time steps, viscosity decreases, causing even greater strain rates. This problem can be alleviated by using a viscoelastic

rheology when examination of short time scale behavior is desired. However, even for a purely viscous model, short time

steps may be necessary to satisfy numerical stability criteria during hydrostatic adjustment that momentarily forces the model100

outside of the Stokes range.

In addition to the behavior of the L2 norm, we also examine the maximum value of the maximum shear stress and greatest

principal stress (Fig. 3). Maximum values may be a better predictor of the effect of time step dependence on the output of

Stokes calving models. Because calving models often assume that calving is likely if a stress threshold is exceeded (Ma et al.,

2017), outliers in stress are more important than a stress averaged over the entire domain.105

4 Proposed Solution - Reintroduce Acceleration Term into Stress Balance

The velocity solution is unphysical because the neglected acceleration term is not actually small relative to the other terms in

Eq. (1). This is because large velocities associated with hydrostatic adjustment rapidly change on time scales that are short

compared to the internal deformation of the ice. It may be possible to separate a rigid body translation and rotation that satisfies110

global force and torque balance from the internal deformation, but this quickly becomes cumbersome and impractical when

we include the potential for ice to break: global force and torque balance would have to be maintained on each intact portion
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Figure 3. Maximum (a) maximum shear stress and (b) greatest principal stress immediately after the emulated calving event. Maximum

is calculated based on cell-averaged values. Solutions shown for sea-spring damping and sea-spring with Navier Stokes (NS) for time

steps ranging from 1 second to 30 years. Without corrections, maximum stress is overestimated in the Stokes model, which could lead to

overestimation of glacier retreat due to calving.

of ice. Instead, we reintroduce the acceleration term directly to the Stokes equation and show that this regularizes the solution

for small time steps. We use a simple first order backwards differentiation scheme in a Lagrangian reference frame:

Dui

Dt
=
ui −ui−1

∆t
, (8)115

where ui and ui−1 denote the velocity of Lagrangian fluid parcels at the current time step and the velocity at the previous

time step, respectively. In the example considered here, the fixed horizontal velocity at the upstream boundary does not permit

rigid body rotation and Equation 8 remains a valid approximation even in a Eulerian coordinate system. As an initial condition

on velocity, we assume a uniform velocity field of 4 km a−1 (equal to the inflow velocity) in the horizontal direction and zero

in the vertical direction. The choice of zero initial velocity in the vertical direction is consistent with the idea that the ice shelf120

has instantaneously been perturbed from hydrostatic equilibrium.

Restoring the inertial term effectively introduces a Newtonian damping term on the entire body of the glacier where the

damping coefficient is C = 1/∆t. Computational difficulty is not impacted by reintroducing the acceleration term in this way

because the term is linear with respect to velocity. However, unless a fully implicit scheme was implemented, the solution
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becomes inaccurate (and unstable) for long time steps. Therefore, we propose to use both damping terms so that the system of125

equations is numerically accurate for all time step sizes.

When we include both damping terms, vertical velocity, effective strain rate, maximum shear stress, and greatest principal

stress maintain physical values for both small and large time steps (Fig. 2). At small time steps the acceleration term dominates

and the sea-spring with Navier Stokes solution departs from the sea-spring solution. In this limit, the (nearly) rigid body

isostatic adjustment of the ice shelf dominates the solution. By contrast, for large time steps, the sea-spring damping dominates130

and the two methods overlap. At intermediate time steps, both damping terms contribute as the solution transitions from the

regime dominated by inertial effects to one where inertial effects are small. It is crucial to note that although the sea-spring

with Navier Stokes solution retains time step dependence for small time steps, the time step dependence now results from the

physical evolution of the system: the solution resolves the acceleration and deceleration of the glacier as it bobs up-and-down

in the ocean and approaches a steady-state.135

Although the sea-spring solution shows a smaller L2 norm of greatest principle stress than the sea-spring with Navier Stokes

solution, this is due to large negative compressive stresses associated with being outside of hydrostatic equilibrium. If we

instead examine the maximum of the stress fields, the sea-spring solution shows larger values for both maximum shear stress

and greatest principle stress (Fig. 3). This is particularly evident for the maximum shear stress, which is overestimated by an

order of magnitude at the shortest time step tested. In the footloose calving mechanism, when a portion of the upper calving140

front is removed, the front of the ice shelf becomes buoyant and produces increased shear stress upstream on the ice shelf

(Wagner et al., 2014). This over prediction of stresses could cause a calving model to predict unphysical calving events due to

numerical inaccuracies.

5 Conclusions

Our study shows that using a common numerical stabilization method of the ice-ocean boundary in Stokes glacier modeling145

there is an explicit time step dependence of the solution that is unphysical for small time steps when the domain departs

from hydrostatic equilibrium. For model applications where changes in the domain are only due to viscous flow, the time step

dependence is not problematic as long as domains are (nearly) in hydrostatic equilibrium at the start of simulation. However, for

applications where rapid changes to the model domain occur, such as when calving rules are implemented, sudden departure

from hydrostatic equilibrium is not only possible, but expected. In these cases, time step dependence of the solution will150

appear. This can contaminate solutions of the stress after calving, potentially leading to a cascade of calving events and an

overestimate of calving flux if numerical artifacts are not addressed. However, the time step dependence can be easily cured

with little computational cost by reintroducing the acceleration term to the Stokes flow approximation. The acceleration term

regularizes the solution for small time step sizes and provides consistent solutions for all time steps.
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