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Overview

Let me start with an apology to editor and authors: this has taken far too long to
complete, global pandemics or otherwise.

This paper addresses how to adapt ice sheet / ice shelf flow models to situations in
which overall force balance cannot be satisfied momentarily. Clearly this is not something
that occurs for any extended periods of time in an ice sheet or ice shelf, but causes
significant problems when it does: the Stokes flow equations that underpin most models
for ice sheet and ice shelf flow have no solution when force balance is violated temporarily,
since they omit inertial terms.

The obvious situation in which violation of force balance can occur is when an ice
sheet that contains no grounded portion within the model domain experiences an abrupt
calving event, removing part of the ice and causing an imbalance between buoyancy forces
and weight of the ice. When I say ‘contains no grounded portion’, I really mean, ‘is not
subject to a Dirichlet or Robin condition constraining vertical velocity on any part of
the boundary’; in the computational set-up in the paper, the left-hand boundary of a
block of ice is ‘attached’ to an unmodelled ice shelf by prescribing horizontal velocity and
vanishing vertical shear stress σzx; one could envisage ensuring force balance by altering
the latter condition to account for some sort of vertical drag that is dependent on vertical
velocity as a regularization (as a friction law, effectively), but that is beside the point.

The paper correctly (and importantly) makes the point that ice shelf models need to
be cognizant of the fact that force balance violation is a real possibility, and that the
omission of inertial terms leads to an ill-posed model. (I have a few things to add on
ill-posedness shortly. There are different ways in which a model can be ill-posed and
the distinction between them is important, in my opinion.) The authors also show that
retaining the inertial term (specifically, the time derivative of velocity) fixes the problem.
However, in order to maintain a stable time stepping scheme for large time steps, the
retention of an additional stabilizing term due to Durand et al (2009) that mimics a fully
implicit time step is necessary.

This is a useful contribution to the literature and should be published. I have a few
comments on presentation and a few issues that could do with clarification, mostly at
the authors’ discretion. I apologize if I take some time describing these. It seems to be
my habit to drone on about things that few others care about so feel free to ignore any
or all of what follows,

1. The most important concept that could be clarified for the reader is the notion
of ill-posedness, which also needs to be distinguished from the effective stiffness of
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the problem that Durand et al (2009) were solving, which led them to invent their
stabilizing ‘sea spring’ mechanism.

The problem in Durand et al’s paper is perfectly well posed so long as there is con-
tact with bedrock somewhere, and the normal stress exceeds water pressure on that
contact area. In that case, a Dirichlet condition on normal velocity applies there,
while the friction law provides a nonlinear Robin condition on tangential velocity
(and hence on horizontal velocity if the bedrock boundary is not vertical every-
where). These conditions ensure mathematically that the Stokes flow problem has
a unique solution that depends continuously on ‘the data’ (things like the boundary
conditions), making the flow problem well-posed in the usual sense. There is an
ample literature on well-posedness of the Stokes equations (going back to Ladzhen-
skaya in the 1960s) and the fact that pure stress conditions can lead to solvability
conditions similar to the solvability condition for a pure Neumann conditions on a
Poisson equation are well known in the pde literature, though I wouldn’t be able
to give you the ‘original’ citation for this. More on this shortly however.

The problem in Durand et al’s work is that despite a formally continuous depen-
dence on the data, the problem is extremely sensitive to slight deviations in vertical
position relative to the one the ice shelf ‘wants’ to adopt. In other words, the prob-
lem is poorly conditioned or stiff, which is not quite the same as ill-posed.

Effectively, at leading order, Durand et al are modelling a long viscous beam, which
permits extremely large vertical velocities if the lower ice surface does not adopt a
very specific shape that is close to hydrostatically supported (though not exactly
hydrostatically supported). Their real interest is not in solving the approach to
that position, which requires very short time steps, but in modelling the much
slower evolution of ice thickness due to horizontal flow. The ‘sea spring’ is indeed
an ingenious way to dampen the vertical motions due to the the beam-like nature
of the shelf (effectively, by providing the viscous analogue of a Winkler foundation
in elastic beam theory).

Importantly, the sea spring is not intended to deal with a situation where force
balance is violated, and I think it is important to make that point. I doubt whether
the original authors had even considered that scenario.

Without Dirichlet or Robin conditions constraining both velocity components (keep-
ing things in two dimensions throughout this discussion), between one and three
solvability conditions arise for a Stokes flow problem. In the scenario outlined in
the paper, horizontal velocity is constrained at the inflow boundary on the left,
so the only solvability condition winds up being the one that says that the net
vertical component of force on the shelf must be zero. If one were to replace the
left-hand inflow boundary with another free ‘cliff’ on which only stress conditions
apply analogously to the right-hand boundary, we would get an iceberg, subject
to not one but two more solvability conditions: in that case, we would also need a
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zero net horizontal component of force and a vanishing net torque.

Mathematically, this is tied up with the fact that the Stokes operator is invari-
ant under the addition of a rigid body motion r (a combination of a constant
velocity and a rotational velocity) to the velocity field u, and the number of uncon-
strained degrees of freedom permitted by the boundary conditions is the number
of solvability conditions that arise: in the example in the paper, the horizontal
and rotational degrees of freedom in the rigid body motion are constrained by the
Dirichlet condiition on on the horizontal velocity component, so we only get one
solvability condition, associated with vertical force balance and corresponding to
the vertical component of the constant part of r.

As I mentioned already, there is an extensive literature that proves that net force
and torque balance conditions that are not automatically taken care of by the
boundary conditions provide not only necessary but sufficient conditions for the
existence of solutions.

When these conditions are not satisfied (e.g., in the present paper, force balance in
the vertical may not be satisfied), then well-posedness fails at the first hurdle: there
is no solution at all. The sea spring does not solve this problem, as the authors
discover: the solution to the Stokes flow problem with no intertial term and only
the sea spring stabilizing boundary conditions becomes intrinsically dependent on
time step size δt, and therefore has no continuum limit as δt → 0. This is where
something like the approach in the present paper is necessary.

There is a more subtle ill-posedness that the sea spring mechanism by itself can
help mitigate. Ill-posedness requires not only existence, but also uniqueness. When
force and torque balance conditions are satisfied, there is a solution, but it is not
unique: you can in principle add any rigid body motion permitted by the boundary
conditions and still obtain a solution (in the case described by the paper , the
permitted rigid body motion is purely a vertical velocity, for an iceberg it would
be an arbitrary rigid body motion).

In reality of course the motion of a chunk of ice is not indeterminate when force
and torque balance are satisfied, and yet you do not need to appeal to intertial
terms to figure out what the velocity field is (as the authors here point out, doing
so on its own is a bad idea if you want to take long time steps, so retaining inertial
terms may not even be a practical solution to the problem).

Given a solution v to the Stokes flow problem in which force and torque balance
satisfied, you can figure out what rigid body motion you need to add by requiring
that the displaced ice surface after the next time step is still such that force and
torque balance are satisfied after that time step. Assuming for simplicity for the
moment that a forward Euler step is used and that the boundary conditions on
the boundary are in the form σ · n = f b(x, z) all along the boundary (so there
are only Neumann conditions), this amounts to finding a rigid body motion r =
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r0 + ω(−z,−) with constant-in-space r0 an ω such that the domain boundary
∂Ω(t+δt) obtained by translating every pointX(t) = (X(t), Z(t)) on the boundary
to the corresponding new position

X(t+ δt) = X(t) + v(X(t))δt+ r0δt+ ω(−Z(t), X(t))δt

satisfies ∫
Ω(t+δt)

ρg dΩ +

∫
∂Ω(t+δt)

f b dΓ = 0

and ∫
Ω(t+δt)

x× ρg dΩ +

∫
∂Ω(t+δt)

x× f b dΓ = 0,

where x = (x, z) and Ω(t) is the ice domain at time t. This amounts to three
conditions (the last is really a scalar condition for a two-dimensional domain), suf-
ficient in principle to find the three constants that define r: the two components
of the constant vector r0 and the angular velocity ω.1 The case where the horizon-
tal velocity is already constrained by a Dirichlet condition as in the paper works
analogously.

The method proposed above is not quite the same as the sea spring (since there
the constraint of force balance being satisfied after the next time step is built into
the Stokes solver, rather than requiring a post-processing step to find the rigid
body motion required to ensure force balance on the next time step), but the two
approaches are close to each other.

Recommendation: I would make clear the distinction between the poorly condi-
tion Stokes flow problem in Durand et al and the two flavours of actual ill-posedness
seen when your boundary conditions permit force and/or torque balance to fail. It
won’t hurt to allude to the latter, even though I don’t imagine many people are
trying to solve Stokes flow problems for icebergs — you never know. It would also
be reasonable to say that the sea spring mechanism (probably) works well for the
second version of the actually ill-posed case, where big departures from equlibrium
need never occur.

2. As a sort of brief follow-on from the first point and the role of rigid body motions,
this point concerns the discussion about the validity of the Stokes equations. If
you use the non-dimensionalization procedure that is usually used to justify the
Stokes equations from the Navier-Stokes equations for the case you are looking at
here (failure of force balance, or potentially force and torque balance), you do not

1There is a caveat in the sense that the horizontal motion of an iceberg will remain indeterminate
even with this additional constraint requiring force and torque balance after the next time step, because
horizontal force balance will be satisfied trivially (identically) if the boundary force f b is given by
buoyancy, so an additional constraint such as zero mean velocity would be necessary.
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really conclude that the Reynolds number has suddenly become O(1) or large and
therefore the full Navier-Stokes equations must be solved.

Instead, what you find is that you end up having to decompose the velocity field
into two parts. I’ll spare you the bit where I dress this up with mathematics and
just describe what happens. The first part is a rigid body motion whose evolution
is controlled by Newton’s second law using the net force on the chunk of ice, and by
the equivalent of Newton’s second law for the evolution of angular momentum. The
magnitude of this first part is much larger than the second part, so the motion of
the chunk of ice as it settles into a new position in which force and torque balance
are satisfied is simply that of a rigid block (intuitively obvious, i guess).

The second part is the solution of a Stokes flow problem, sans inertial terms, and
this second part controls internal stresses during the settling process (if those are
the main concern, which I think they are). Call this second part of the velocity
the viscous velocity. The Stokes flow problem for the viscous velocity has the same
boundary conditions as the original Navier-Stokes problem, but the body force is
amended by subtracting the inertial terms generated by the rigid body motion.
This ensures apparent force and torque balance in the problem for the viscous
velocity, although if you want the viscous velocity to be unique (not particularly
relevant since the motion is controlled by the rigid body motion and the viscous
stresses are unique) you have to add something like requiring that the mean of the
viscous velocity and the mean rotation due to the viscous velocity vanish.

In other words, you have

u = r(x, z, t) + v(x, z, t)

with |bmr a rigid body motion

r = r0(t) + ω(t)(−z, x), ,

where r0 and ω depend on time but not position. The ratio |v|/|r| scales as Re,
the Reynolds number that one would normally compute from the viscous velocity
scale for the size of the applied body and surface forces. As a result a boundary
point X(t) on ∂Ω(t) evolves as

dX

dt
= r(X(t)).

because v is tiny compared with r: while force balance is violated, the ice domain
moves as a rigid body. Assuming for simplicity again that stress σ ·n = f b(x, z) is
specified everywhere at the boundary, the rigid body motion satisfies∫

Ω(t)

ρ dV
dr0

dt
=

∫
Ω

ρg dV +

∫
∂Ω

f b dΓ,

d

dt

∫
Ω(t)

ρx× r dV =

∫
Ω

x× ρg dV +

∫
∂Ω

x× f b dΓ,
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where the second equation can be cast in terms of the sum of a moment of intertia
(that is constant due to the volume Ω(t) moving as a rigid body) times dω/ dt
and the time derivative of the moment of inertia associated with the barycenter
of Ω(t), which can be written in terms of the time derivatives of r0 and ω. In
short, the current position and orientation of the rigid body Ω(t) uniquely defines
the derivatives of r0 and ω, while r0 and ω determine the change of position and
orientation of Ω(t) — basic non-continuum mechanics, if you will.

The viscous velocity v by contrast satisfies the modified Stokes flow problem

∇ · v = 0

0 = ∇ · τ (v)−∇p+ ρg − ρ
(
∂r

∂t
+ r · ∇r

)
on Ω(t), subject to (τ (v) − pI) · n = f b on ∂Ω(t), where τ (v) is the viscous
relationship between deviatoric stress and velocity, p is pressure and I the identity
tensor. The construction here ensures that the relevant force and torque balance
relationships for v are automatically satisfied, while r can be solved for a priori,
so the fictitious force term in the momentum balance equation is known before v
is solved for.

This is similar to what is alluded to in equation (8) in the paper (more on that
below), but not the same, since you can effectively solve for the rigid body motion
(∆zuplift/∆t) and the viscous velocity separately, but that is not how the algorithm
in the paper works. I just think it is worth pointing out somewhere that a con-
struction of this kind is possible, which retains the idea of a Stokes flow describing
the stress even as inertial effects kick in: in particular, the inertial motion is inde-
pendent of rheology and viscous stresses, so long as the latter do not cause further
domain changes by fracturing (they do not by causing viscous deformation of the
ice body, that is far too slow, see the point about the ratio between the velocity
magnitudes above).

As a side note, I think equation (8) is misleading if one were ever to try to allow
rotational inertial motions, more on that under ‘minor points’ — the clue is in the
form of the fictitious force term above.

Recommendation: The paper says ‘However, as we shall show, this assumption
is problematic for applications where the ice departs from hydrostatic equilibrium.’
I’d circle back to this at some point and point out that things may not be quite
so dramatic as to say that the Stokes equations have nothing to say about what
happens during these ‘inertial’ events; they do, but in modified form. I think this
will also tie in to the discussion of how to formulate the inertial term in discrete
form, see again under ‘minor points’ below.

Minor points
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• I would probably make a bit clearer how boundary conditions are important in
determining whether an actual ill-posedness can occur in the sense of there being
no solution to the Stokes flow problem. As the extended discussion above indicates,
the partial Dirichlet conditions in the present paper ensure there is no issue of torque
or horizontal force imbalance, but it others may run into these issues in their own
research, and look to apply the method developed here. Also, as indicated in the
second paragraph of this review, there may be other tricks to ensuring force balance.

• The decomposition in equation (8): for a sea spring model, I don’t think you can
argue that the sea spring term u(x, z)δt simply causes an additive term ∆zuplift/δt
As a simpler example, consider a Neumann condition in a Poisson equation

−∇2u =f on Ω

∂u

∂n
=gn on ∂Ω

and call the solution of this problem uvisc. Then modify (regularize?) the boundary
condition as

∂u

∂n
+ cuδt = gn

To the best of my knowledge, the solution to the modified problem cannot be
written (as a function of δt!) in the form

u = uvisc +
u′

δt
,

which is effectively what equation (8) is saying, albeit for a more complicated elliptic
problem.

• Notation: there is quite a bit of randomness about which quantities are in boldface
and which are not, especially when it comes to tensors (σ versus ε and I?). Make
it consistent to please the eye. . .

• The ‘/2’ should probably be inside the square root in the definition of the invariant
εe just after equation (4)

• Writing u(∆t) on the left-hand side of (8) is confusing as u has a well-defined
meaning as the continuum solution of the Navier-Stokes problem as a function of
(x, z, t), so changing the arguments of that function haphazardly to ∆t is bad form
(and actually confused me quite a bit). For starters, the quantity on the left isn’t
u but a numerical approximation to it, solving a modified problem, so give it a
different symbol, and be clear why you are using the ∆t argument on the left (your
numerical algorithm thus constructed leads to a solution that turns out to depend
on ∆t, whereas you would want it not to be dependent on ∆t.
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• The numerical form of the acceleration term in equation (9): this is defensible when
you have no rotational degrees of freedom in the rigid body motion, because the
advection term for momentum u · ∇u is dominated by r · ∇r (see point 2 above),
and in the absence of a rotational degree of freedom, ∇r = 0 so the advection term
goes away. As soon as there is rotation, this is no longer true, and you are well-
advised to retain the full inertial term ∂u/∂t + u · ∇u. I realize that the present
paper does not allow for that possibility, but I think it is worth mentioning.

• Again, equation (9): I am actually not clear how you imagine you are computing
this in a ‘Lagrangian frame’ to begin with, since you are solving, in discrete terms,
an elliptic equation (or a parabolic equation with a backward Euler step, which is
the same thing); if you genuinely are using a Lagrangian transformation here, please
be explicit and speciifc. In terms of implementation, the reduced acceleration term
in equation (9) is my biggest concern, even if I believe it to be leading-order correct
(in the Reynolds number, see above) for the vertical-motion-only case discussed in
the paper.

Christian Schoof, University of British Columbia
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