
Responses to Referee comments by Christian Schoof on “Brief communication: Time step 
dependence (and fixes) in Stokes simulations of calving ice shelves” by Brandon Berg and 
Jeremy Bassis 
 
We thank Christian Schoof for his feedback on this manuscript. Our responses to comments are 
given below, with original recommendations/points in black and responses in red. When 
referenced, line numbers refer to the revised manuscript. 
 
Major Recommendations: 
 
We thank the reviewer for his comments and suggestions.  We have incorporated most of the 
reviewers' excellent suggestions in the manuscript.  We have vacillated slightly in our preferred 
terminology between ill-posed and stiff before settling on “unphysical” for reasons that are 
described in more detail in response to specific reviewer comments.   
 
I would make clear the distinction between the poorly condition Stokes flow problem in Durand 
et al and the two flavours of actual ill-posedness seen when your boundary conditions permit 
force and/or torque balance to fail. It won’t hurt to allude to the latter, even though I don’t 
imagine many people are trying to solve Stokes flow problems for icebergs — you never know. 
It would also be reasonable to say that the sea spring mechanism (probably) works well for the 
second version of the actually ill-posed case, where big departures from equilibrium need never 
occur. 
 
This is a good point.  Our emphasis here was really on pointing out that when the geometry 
evolves rapidly, as is the case for an iceberg calving event, the sea-spring method becomes 
problematic and can lead to numerical problems.  And when these numerical inaccuracies are 
combined with, for example, stress based calving criteria, there is the possibility of introducing 
purely numerical calving instabilities.  However, under most circumstances, the sea-spring 
method remains satisfactory.  This is better emphasized in lines 69-76.   
 
We have added additional text to clarify the fact that, for our choice of boundary conditions, 
global force and torque balance are not necessarily satisfied leading to an ill-posed problem 
(lines 54-56, lines 110-114).  However, if we consider fixed velocity (Dirichlet) boundary 
conditions over a portion of the domain, there is no rigid body motion (translation or rotation) 
that can be added to the ice shelf.  In this case we can still obtain large velocities that are time 
step dependent using the sea-spring method when the geometry departs significantly from 
hydrostatic equilibrium over a portion of the domain.   
 
Starting with a geometry that exactly satisfies global and local force/torque balance and then 
introducing small changes to that geometry can result in large changes to the velocity.  This is 
what we think the reviewer calls “stiff” or poorly conditioned.  Small changes in the initial 
conditions (i.e. position of the ice water interface) lead to large changes in the velocity 
solution. This can be partly cured by adding, say, a quadratic drag force due to the water, as the 
reviewer notes.  However, for realistic drag coefficients, this still results in exceptionally large 
velocities.  In fact, for configurations that we tested, the velocities can exceed the speed of 
sound!  Because of this and because of the fact that we wish to avoid any confusion between 
“ill-posed”, “ill-conditioned”, and “stiff”, we have decided to rephrase and call this behavior 
“unphysical”.  We believe this captures the numerical issue accurately and avoids introducing 
additional jargon that glaciologists might not be as familiar with.   
 



The paper says ‘However, as we shall show, this assumption is problematic for applications 
where the ice departs from hydrostatic equilibrium.’ I’d circle back to this at some point and point 
out that things may not be quite so dramatic as to say that the Stokes equations have nothing to 
say about what happens during these ‘inertial’ events; they do, but in modified form. I think this 
will also tie in to the discussion of how to formulate the inertial term in discrete form, see again 
under ‘minor points’ below. 
 
As stated above, if we consider fixed velocity (Dirichlet) boundary conditions over a portion of 
the domain, there is no rigid body motion (translation or rotation) that can be added to the ice 
shelf and we still obtain large velocities that are time step dependent using the sea-spring 
method. The large velocities are tied to the bending of the ice that occurs in response to 
removal of ice at the calving front.  As the reviewer notes, this is because the problem is “stiff”. 
 
But to simplify our discussion, we have removed equation (8) and the accompanying text 
regarding the separation of the velocity into viscous and uplift components. Instead, we focus on 
highlighting the “stiffness” of the problem and how small changes to the ice-ocean boundary 
location can cause large changes in the solution. In this way, we emphasize the importance of 
carefully treating the hydrostatic uplift without commenting on the exact nature of the 
decomposition of viscous and rigid body motion. However, we do add text in the manuscript 
stating that such a decomposition may be possible (lines 110-114).  
 
Minor Points: 
 
I would probably make a bit clearer how boundary conditions are important in determining 
whether an actual ill-posedness can occur in the sense of there being no solution to the Stokes 
flow problem. As the extended discussion above indicates, the partial Dirichlet conditions in the 
present paper ensure there is no issue of torque or horizontal force imbalance, but it others may 
run into these issues in their own research, and look to apply the method developed here. Also, 
as indicated in the second paragraph of this review, there may be other tricks to ensuring force 
balance. 
 
We have added text to clarify this.  In particular, we have noted that adding global constraints on 
force and torque balance is possible (lines 110-114).  We do, however, note that because ice 
breaks, global force and torque balance would have to be considered on each intact segment 
and this becomes increasingly challenging to efficiently identify and manage.  Hence, our 
solution of simply including the acceleration directly into the Stokes equations becomes a more 
practical solution.  As noted in our previous response, we have also shifted our terminology to 
“unphysical” because unphysically large velocities are still possible when drag is included.   
 
The decomposition in equation (8): for a sea spring model, I don’t think you can argue that the 
sea spring term u(x, z)δt simply causes an additive term ∆zuplift/δt… 
 
We have streamlined and simplified this section and have eliminated this equation and 
explanation. We now focus on the “stiff” nature of the problem rather than a specific 
decomposition into viscous and uplift components.  
 

 

 



Notation: there is quite a bit of randomness about which quantities are in boldface and which 
are not, especially when it comes to tensors (σ versus ε and I?). Make it consistent to please the 
eye. . . 
 
Notation has been changed so that both vectors and tensors are all in boldface. 
 
The ‘/2’ should probably be inside the square root in the definition of the invariant εe just after 
equation (4) 
 
Error has been fixed. 
 
Writing u(∆t) on the left-hand side of (8) is confusing as u has a well-defined meaning as the 
continuum solution of the Navier-Stokes problem as a function of (x, z, t), so changing the 
arguments of that function haphazardly to ∆t is bad form (and actually confused me quite a bit). 
For starters, the quantity on the left isn’t u but a numerical approximation to it, solving a modified 
problem, so give it a different symbol, and be clear why you are using the ∆t argument on the 
left (your numerical algorithm thus constructed leads to a solution that turns out to depend on ∆t, 
whereas you would want it not to be dependent on ∆t.  
 
We have eliminated Equation (8) in response to other comments by the reviewer. 
 
The numerical form of the acceleration term in equation (9): this is defensible when you have no 
rotational degrees of freedom in the rigid body motion, because the advection term for 
momentum u · ∇u is dominated by r · ∇r (see point 2 above), and in the absence of a rotational 
degree of freedom, ∇r = 0 so the advection term goes away. As soon as there is rotation, this is 

no longer true, and you are wel advised to retain the full inertial term ∂u/∂t + u · ∇u. I realize that 
the present paper does not allow for that possibility, but I think it is worth mentioning.  
 
In our model, we are using an Arbitrary Langrangian Eulerian (ALE) formulation, which updates 
all mesh coordinates at every time step based on the velocity field.  This led us to use the 
material derivative in Equation (9).  But we have added text to clarify the fact that even in a 
Eulerian reference frame we could neglect the u · ∇u term because the velocity field does not 
contain a rigid body rotation (lines 117-118). We have also added text explicitly stating we are 
using an ALE formulation (lines 90-92). 
 
Again, equation (9): I am actually not clear how you imagine you are computing this in a 
‘Lagrangian frame’ to begin with, since you are solving, in discrete terms, an elliptic equation (or 
a parabolic equation with a backward Euler step, which is the same thing); if you genuinely are 
using a Lagrangian transformation here, please be explicit and speciifc. In terms of 
implementation, the reduced acceleration term in equation (9) is my biggest concern, even if I 
believe it to be leading-order correct (in the Reynolds number, see above) for the vertical-
motion-only case discussed in the paper. 
 
We are not quite sure that we understand the reviewer’s question. In our implementation, we 
are solving a parabolic equation with a backward Euler step.  The update to the ice geometry is 
done using a fully Langrangian formulation in which we update the mesh coordinates at every 
time step.  Of course, we do need an initial condition for particle velocities.  For the initial 
condition on velocity to use in the backward Euler step, we choose a uniform velocity field equal 
to the inflow velocity in the horizontal direction and zero in the vertical direction. The choice of 
zero initial velocity in the vertical direction is motivated by the experimental design, in which we 



imagine an ice shelf that is initially perfectly at hydrostatic equilibrium, and thus should have 
nearly zero vertical velocity before calving.   We have added text to section 4 of the manuscript 
to clarify the precise initial condition on velocity (lines 118-121). 
 


