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Abstract. We compare the mass budget of the Arctic sea ice for 14 models submitted to the latest Climate Model 25 

Inter-comparison Project (CMIP6), using new diagnostics that have not been available for previous model inter-

comparisons. Using these diagnostics allows us to look beyond the standard metrics of ice cover and thickness, to 

compare the processes of sea ice growth and loss in climate models in a more detailed way than has previously 

been possible.  

For the 1960-89 multi-model mean, the dominant processes causing annual ice growth are basal growth and frazil 30 

ice formation, which both occur during the winter. The main processes by which ice is lost are basal melting, top 

melting and advection of ice out of the Arctic. The first two processes occur in summer, while the latter process 

is present all year. The sea-ice budgets for individual models are strikingly similar overall in terms of the major 

processes causing ice growth and loss, and in terms of the time of year during which each process is important. 

However, there are also some key differences between the models. The relative amounts of frazil and basal ice 35 

formation varies between the models. This is, to some extent at least, attributable to exactly how the frazil growth 

is formulated within each model. There are also differences in the relative amounts of top and basal melting.  

As the ice cover and mass decline during the 21st century, we see a shift in the timing of the top and basal melting 

in the multi-model mean, with more melt occurring earlier in the year, and less melt later in the summer. The 

amount of basal growth in the autumn reduces, but the amount of basal growth later in the winter increases due to 40 

the ice being thinner. Overall, extra ice loss in May-June and reduced ice growth in October-November is partially 

offset by reduced ice melt in August and increased ice growth in January-February. For the individual models, 

changes in the budget components vary considerably in terms of magnitude and timing of change. However, when 

the evolving budget terms are considered as a function of the changing ice state itself, behaviours common to all 
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the models emerge, suggesting that the sea ice components of the models are fundamentally responding in a 45 

broadly consistent way to the warming climate. 

Additional results from a forced ocean-ice model show that although atmospheric forcing is crucial for the sea ice 

mass budget, the sea ice physics also plays an important role.  

 

1. Introduction 50 
 

Sea ice is a key component of the climate system, and the observed decline in Arctic ice cover provides a very 

visible indicator of climate change. Between 1979 and 2018, Arctic September sea ice extent has declined at a 

rate of nearly 13% per decade (IPCC, 2019). The ice has also thinned, and there has been a transition to a greater 

coverage of younger ice: the proportion of Arctic ice cover that is more than 5 years old decreased by 90% between 55 

1979 and 2018 (Kwok, 2018; Stroeve and Notz, 2018; IPCC, 2019). The ice also moves more quickly (Olanson 

and Notz, 2014). 

Global coupled climate models are the most comprehensive tools that we have for predicting how the Arctic ice 

will change in the future, as they can represent a range of processes that control the seasonal cycle of ice growth 

and melt, and so have the potential to represent the changing nature of the ice itself.  However, model projections 60 

show a wide spread in the rate of ice decline, both during the period for which we have observations, and also into 

the future as we move towards a seasonally ice-free Arctic (Massonnet et al. 2012; Notz and Stroeve, 2016; SIMIP 

community, 2020).  

Some of this spread is an inevitable consequence of the internal variability of the climate system, and the 

uncertainly in future forcing. For example, Jahn et al. (2016) find that internal variability causes an  uncertainty 65 

of 21 years in predicting the year in which the Arctic first becomes seasonally ice-free using a large (40 member) 

ensemble of model runs, with an additional uncertainty of 5 years due to scenario uncertainty.  However, some 

spread is likely to be due to differences between the model’s representation of the sea ice and other components 

of the climate system. Spread may also arise from differences in initial conditions (Hawkins and Sutton, 2009; 

Melia et al., 2015). 70 

 For previous model inter-comparisons (CMIP3 and CMIP5), primarily only changes in ice extent, volume (or 

mass), and ice motion (Tandon et al. 2018, Rampal et al., 2011) have been considered, as these quantities are 

readily available as model output that can be compared directly to one another, and to observational or reanalysis 

references. However, there is an increasing appreciation that in order to understand the reasons for differences in 

projections of ice state, we need to be able to look ‘behind the scenes’ to understand the balance of different 75 

processes that drive the evolving ice state, and how these change as the ice declines.  

For the CMIP3 models, Holland et al. (2010) calculated the changes in ice mass due to melt, growth and 

divergence using monthly mean model values of ice thickness and velocity. They found an appreciable variation 

in the size and relative importance of changes in these budget components between the models as the sea ice 

declines. For individual models, diagnostics may be available that allow a more comprehensive decomposition of 80 

the model budget. For example, Keen and Blockley (2018) studied changes in the volume budget of the Arctic 

sea ice in a CMIP5 model under a range of forcing scenarios, considering both annual and seasonal changes in 

the individual processes causing ice growth and loss.  

For the latest generation of sea ice models (the CMIP6 models), a Sea-Ice Model Intercomparison Project (SIMIP) 

has been established, which has defined a comprehensive set of diagnostics allowing the intercomparison of the 85 

https://doi.org/10.5194/tc-2019-314
Preprint. Discussion started: 19 February 2020
c© Author(s) 2020. CC BY 4.0 License.



3 
 

mass, energy and freshwater budgets of the sea ice (Notz et al., 2016). In this study we use these new diagnostics 

to present a first intercomparison of the mass budget of the sea ice for 14 of the CMIP6 models. Note that this is 

a subset of the CMIP6 models, just including those for which the required outputs were available. We first look 

at the mean mass budget for a reference period, to determine the similarities and differences between the model 

budgets during a period with relatively little change in the ice state. We then consider how the budgets change as 90 

the ice declines during the 21st century, and how changes in the budget components relate to changes in the ice 

state and the global temperature.  

In Sect. 2 we describe the models and forcing scenarios used, and in Sect. 3 we intercompare the modelled ice 

area and mass. In Sect. 4 we consider the mean mass budget during a reference period, and in Sect. 5 we investigate 

how the budget evolves during the 21st century. In Sect. 6 we summarise and discuss our results.  95 

 

2. Models and methodology 

 

In this study we analyse data from 14 CMIP6 models, originating from 8 different modelling centres. We also 

analyse data from 3 configurations of the NEMOCICE ocean-sea ice model forced by atmospheric reanalysis, 100 

which has a similar formulation to one of the CMIP6 models used in this study (HadGEM3-GC3.1-LL). These 

models, and the data provided from each, are listed in Table 1.  Key details about the formulation of each model 

are summarised in Table 2, with a brief description of each in Appendix A.  For each model, the ice area and mass, 

and the area weighted monthly-mean ice mass budget terms were calculated over the domain shown in Fig. 1, 

covering the Arctic Ocean Basin (Central Arctic plus the Beaufort, Chukchi, East Siberian, Laptev, Kara Seas) 105 

and the Barents Sea. Unless otherwise stated, all results shown in the paper are integrals over this analysis region 

and so do not represent the entire Northern Hemisphere ice-covered region, especially in winter. Multi-model 

means are calculated by first averaging all the realizations for each individual model (where appropriate), and 

then averaging the resulting ensemble-means. The mass budget terms are defined in Appendix E of Notz et al. 

(2016), and summarised here for completeness:  110 

• Basal growth: ice growth at the base of existing ice. 

• Frazil ice formation: ice formation in supercooled open water. 

• Top melt: melting at the top surface of the ice. 

• Basal melt: melting at the base of the ice.   

• Lateral melt: melting at the sides of the ice. 115 

• Snowice: ice formation due to the transformation of snow to sea ice. 

• Evapsubl: the change in ice mass due to evaporation and sublimation.  

• Advection: the change in ice mass due to ice being advected into or out of the analysis domain.  

 

The monthly mean data was calculated for the period 1960-2100 from model integrations using the CMIP6 Hist 120 

forcing scenario for the period 1960-2014, and SSP5-8.5 thereafter (Gidden et al, 2019). The SSP5-8.5 scenario 

was primarily chosen because for the majority of participating modelling centres this was the first scenario to be 

run, but it also has the advantage of being the scenario with the highest warming signal, so that we see relatively 

large changes in the ice state and the budget terms during the 21st century.  

 125 
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In order to better understand the relative roles of atmospheric forcing and sea ice model physics, results from three 

forced ocean-ice simulations are also included. All of them use the same ocean and sea ice models as the UK 

CMIP models (HadGEM3-GC31-LL, HadGEM3-GC31-MM and UKESM1-0-LL), with changes to both the 

parameter settings and the atmospheric forcing datasets. Further details of the settings and forcings used can be 

found in Table 3.  130 

 

We also compare the modelled ice state with a number of observational and reanalysis datasets. We calculate the 

ice area over our analysis domain (Fig. 1) using monthly mean values from 3 observational products: 

• The second version of the global sea-ice concentration climate data record (OSI-450) from the European 

Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean Sea Ice Satellite 135 

Application Facility (http://osisaf.met.no/p/ice/ice_conc_cdr_v2.html, OSI-SAF, 2017; Lavergne et al., 

2019). 

• The first and second versions of the Met Office Hadley Centre's sea ice and sea surface temperature data 

set: HadISST1.2 (https://www.metoffice.gov.uk/hadobs/hadisst/, Rayner et al., 2003) and HadISST.2.2 

(https://www.metoffice.gov.uk/hadobs/hadisst2/, Titchner and Rayner, 2014). 140 

For ice mass we use monthly mean sea-ice thickness from the Pan-Arctic Ice-Ocean Modeling and Assimilation 

System (PIOMAS) (http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/, Zang and 

Rothrock, 2003) to calculate the ice volume, which is then converted to mass using the constant value of 917 kg 

m-3 for the ice density used in PIOMAS. While this is not an observational dataset, it provides a useful reference 

as it has been well studied and validated against observations (for example Stroeve et al., 2014, Wang et al., 2016). 145 

 

3. Model inter-comparison of mean sea ice state 

 

We first compare the ice area and mass simulated by the different models. We consider the seasonal cycle for the 

period 1990-2009, in order to compare model results to present-day observations and the PIOMAS reanalysis. We 150 

also consider the evolution of the ice area and mass from 1960 to 2100, so that we can put the budget changes into 

context. Note that the values of ice area and mass shown here, both for the models and observational datasets, are 

values for the Arctic domain shown in Fig. 1, and do not represent the whole ice-covered region.  

 

3.1 1990-2009 seasonal cycle 155 
 

During the period 1990-2009, there is a spread of 0.7 million km2 in the March ice area simulated by the models 

(Fig. 2a). Despite the winter ice cover being bounded to some extent by the analysis region, the modelled values 

range from 8.4 to 9.1 million km2, compared with a range of 8.2 to 8.7 million km2 for the three observational 

datasets. The observational range as quoted here is the spread in the +/- 1 standard deviation limits for the three 160 

datasets. In September we see a much larger spread in modelled ice area (3.4 million km2), although most models 

fall within +/- 1 standard deviation of at least one of the datasets, which show a greater interannual variability for 

September than for March.  One model in particular (NCAR_CESM2_CAM) has an especially large seasonal 

cycle and low ice area in September, possibly because of its relatively low ice mass (Fig 2b and discussed below). 

The magnitude of the modelled seasonal cycle in ice area varies between 3.2 and 6.0 million km2. The 165 

observational datasets have their minimum ice area in September, and while 4 of the models clearly capture this, 

the remainder have their seasonal minimum in August or have August and September values that are very similar. 
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The models that have a minimum sea ice area in August all include the NEMO ocean model, and later we will see 

that the forced ocean-ice simulations (which use NEMO) also have their minimum sea ice area in August.    

There is a large spread in modelled values of the ice mass, with the differences between models being much larger 170 

than the variability suggested by the PIOMAS reanalysis for all months (Fig. 2b). For example, in March the 

PIOMAS range (+/- 1 standard deviation) is 16x103 to 20x103 Gt, while the CMIP6 model values range from 

13x103 to 29x103 Gt. While there are some differences in the magnitude of the seasonal cycles of ice mass, this is 

not as pronounced as it is for the ice area as the model spread in ice mass is relatively consistent all year. The 

magnitude of the seasonal cycle ranges from 8.1 x103 to 12.1x103 Gt, compared to the value of 10.1x103 Gt for 175 

the PIOMAS reanalysis.  All models have their seasonal maximum ice mass in May, and minimum in September, 

consistent with the PIOMAS reanalysis. The models with the largest ice mass tend to be those with the smallest 

seasonal cycle in sea ice area, and vice versa. This is probably because a model with a smaller mass of sea ice is 

likely to have relatively thin ice, and so more ice cover would be lost for a given reduction in ice mass.  

 180 
3.2 Evolution from 1960 to 2100 

 

The models show a wide range of rates of decline in both March and September ice area (Fig. 3a). For example, 

the date at which the September ice area first falls below 1 million km2 varies from 2019 to 2062 overall, although 

it is between 2025 and 2040 for the majority of models. By the end of the 21st century, all the models have 185 

completely lost their September ice cover. The evolution in March ice area starts to show a divergence between 

the models from about 2040, increasing significantly from about 2070. Many models show a steepening in the 

rate of decline of March ice area later in the 21st century, after their summer ice cover has melted out. Bathiany et 

al. (2016) found a similar steepening in the rate of winter decline for CMIP5 models. By the end of the 21st century 

there is a large spread in modelled March ice area: the fraction of ice area lost relative to 1960-89 ranges from 8% 190 

to 90%.  

There are large differences between the models in terms of the evolution of their ice mass (Fig. 3b). Between 1960 

and 2030, some models show an ongoing decline in ice mass, others have a period where the ice mass remains 

relatively stable before it starts to decline, and a few models show an increase in ice mass before the decline. By 

the 2030s the models have a much lower spread in values of ice mass, with a range of 8.7 x103 Gt, compared to 195 

16.4 x103 Gt during the reference period 1960-89. By this stage there is very little mass of summer ice remaining, 

and so the winter ice mass is limited to the amount that can grow during a single season. Some models show a 

distinctive slowing in the rate of decline of ice mass later in the 21st century, whereas other models show a more 

uniform rate of decline.  

 200 
3.3 Ice state in global context  

 

To help put the ice state and its evolution in a wider context, we consider the evolution of global-mean near-

surface temperature for the models (Fig. 4a). By the end of the 21st century, the warming relative to the 1960-89 

mean ranges from 3.9 to 7.2 degrees. Models with a larger decrease in March ice area by the end of the 21st century 205 

tend to be those with the larger temperature increase. Previous studies have found a linear relationship between 

sea ice area and global-mean temperature for example Winton (2011), Mahlstein and Knutti (2012), Stroeve and 

Notz (2015), and Rosenblum and Eisenman (2017), and this is also the case for the CMIP6 models considered 

here (Fig. 4b). 
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4. Mean sea ice mass budget for 1960-1989 

 

We now consider the mass budget of the Arctic sea ice, as defined in Sect. 2 and also in Notz et al. (2016). We 

start by looking at the model data for a reference period 1960-89, chosen as a time when the ice cover and mass 215 

is relatively stable. We first consider the multi-model mean budget, and then look at the differences between 

models.   

 

4.1 Multi-model mean 

 220 
Figure 5a shows the budget terms for the mass budget of the Arctic sea ice, averaged over the analysis region 

shown in Fig. 1, for the multi-model mean for the reference period 1960-89. The black line shows the total amount 

of ice growth or loss each month, with net ice loss occurring from May to September, and net ice growth from 

October to April. Most of the increase in ice mass results from growth at the base of existing ice, which occurs 

between September and May and represents 81% of the total annual ice growth (Fig. 5b). Frazil ice formation in 225 

open water accounts for 18%, with the small remainder due to snow-ice formation.  Most of the ice loss occurs 

during the summer, with 51% of the annual mean ice loss caused by basal melting due to heat from the ocean, and 

24% by melt at the ice surface (Fig. 5b). The monthly maximum ice melt occurs in July, with both top and basal 

melt peaking at this time, and the basal melt continues further into the late summer that the top melt (Fig. 5a).  Ice 

lost by advection out of the region accounts for 20% of the total (Fig. 5b), and this is likely to be dominated by 230 

loss through the Fram Strait. The advective ice loss occurs all year, and although it is greater during the winter 

than the summer, the magnitude of the seasonal cycle is far smaller than that for either the top or basal melting 

(Fig. 5a). 

 

In summary, for the 1960-89 multi-model mean the dominant process causing ice growth is basal ice growth, 235 

followed by frazil ice formation, and the dominant processes causing ice loss are basal melting, top melting and 

advection out of our analysis region.  

 

4.2 Inter-comparison of the CMIP6 models 

 240 
Figures 6 and 7 show the annual means and seasonal cycles of the budget terms for each individual model. Note 

that some models do not generate all the terms, and some models have terms missing (see Table 1).  It is striking 

to see how similar the model budgets are, at least in a broad sense.  For example, in all the models we see: 

● more basal ice growth than frazil ice formation (although the amounts are nearly even for MRI-ESM2) 

(Fig. 6),  245 

● virtually no ice growth between June and August (Fig. 7), 

● more basal melting than top melting (although the difference is small for the UK models and 

CSIRO_ACCESS-CM2) (Fig .6), 

● a maximum in ice melting in July, with a peak in both top melting and basal melting (Fig. 7), 

● basal melt continuing later into the autumn than top melting (Fig. 7),      250 

● and a relatively symmetric seasonal cycle centred around the maximum net ice loss in July. 

However, there are also some notable differences between the model budgets, which we describe below.  
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Ice growth 

The ratio between basal ice growth and frazil ice formation varies significantly between the models. For example, 255 

for both the GFDL models almost all the annual ice growth is due to basal ice growth, whereas for the MRI-

ESM2.0 model 53% of the annual growth is due to basal growth, and 46% to frazil ice formation. This different 

partitioning appears to relate to specific settings within the sea ice model, in particular the minimum thickness of 

frazil ice that is allowed to form. In the GFDL models there is no minimum thickness imposed, and so the models 

can grow arbitrarily thin frazil ice. Hence the frazil ice may transition to congelation growth more quickly than in 260 

other models. MRI-ESM2.0 has a minimum frazil thickness of 20cm, which is the highest value of the models 

considered here. Additionally, this model has a maximum ice cover set (0.98), so there is always some open water 

where frazil ice can form. In general, the models with a larger minimum frazil thickness tend to have a higher 

proportion of frazil ice formation.  

If we consider the total amount of winter ice growth (here taken as the sum of the frazil and basal growth terms), 265 

the spread in modelled values is 3.8x103Gt, compared to the larger range of 5.8x103 Gt for the basal growth alone.  

The month in which the amount of frazil ice formation peaks varies from October (UK models and 

CSIRO_ACCESS-CM2) through November (EC-Earth3 and EC-Earth3-Veg) to December for the remaining 

models. The amount of basal growth peaks in December for most of the models.  

 270 

Ice melt 

The relative amount of basal and top melting also varies considerably between the models, with top melting 

ranging from 28% to 91% of the amount of basal melt (Fig. 6). The UK models (HadGEM3-GC31-LL, 

HadGEM3-GC31-MM and UKESM1-0-LL) together with CSIRO-ACCESS-CM2 have almost as much ice lost 

by top melting as by basal melt, in contrast to the other models which have considerably more basal melt than top 275 

melt (Fig. 6). The UK and CSIRO models have common atmosphere and sea ice components.  The models agree 

very well on the amount of top melting late in the season (Aug-Sep). However, the onset of melt (May-June), and 

peak in melting in July shows much more variability (Fig. 7). This is consistent with the former being mainly 

related to the solar zenith angle, whereas the latter is also related to other factors like ice/snow surface temperature 

and surface albedo. Six out of the 14 models have more top melting than basal melting in July (Fig. 7), and these 280 

are the models with most top melting overall (Fig. 6).  Some models have a fairly symmetrical peak in basal 

melting (for example the UCLouvain models and also the NCC_NorESM2-LM model.), whereas some have a 

more pronounced ‘tail’ of melt further into autumn (for example MRI_ESM2.0, GFDL).  

 

Ice advection 285 

All the models show a net advection of ice out of the analysis region (Fig. 6). This is likely to be dominated by 

export through the Fram Strait. The net ice loss by advection varies from 1.8x103 to 3.7x103 Gt per year between 

the models and comprises between 15% and 30% of the total annual ice loss. There is no strong agreement between 

models as to how this export varies during the year. One model (CSIRO_ACCESS-CM2) has a distinctive 

seasonal cycle with most of the ice export occurring between October and April, and net ice import during July. 290 

Several of the remaining models have a minimum net export of ice in August, but overall there is considerable 

variability between the models in terms of the amount and timing of the annual ice export.  
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5. Projections of the sea ice mass budget during the 21st century  295 
 

We now consider how the mass budget of the CMIP6 models changes during the 21st century as the ice cover and 

mass declines, and the environment warms. Figure 8 shows the evolution of the annual mean budget terms for 

each model. Again, it is reassuring to see many similarities in the behaviour of the different models. For all models 

the magnitude of each component tends to decrease with time, consistent with the reducing mass of the ice.  300 

Models with larger changes in the budget components tend to be those with larger reductions in the ice mass. The 

amount of ice lost by advection tends to decrease relatively quickly compared to the decline in ice growth and 

melt, and models with a more rapid decline in basal ice growth tend to also have a more rapid decline in top and 

basal melt. Broadly speaking, for each model the relative amount of basal and top melting tends to persist: for 

example, models with considerably more basal melt than top melt during the reference period still show this 305 

towards the end of the 21st century. Some of the budget components initially increase in magnitude, before 

declining later in the integration. We will now consider each of the larger budget components in turn, and in 

particular how the ice state itself impacts the evolution of each budget term  

 

Basal ice growth 310 

Overall, all the models show a gradual decrease in the total amount of basal ice growth as the climate warms (Fig. 

8). For a few models, for example UKESM1-LL, there is initially a slight increase in basal ice growth before the 

decline. As the climate warms, all the models initially show an increasing amount of basal ice growth per unit 

area of ice, consistent with the ability of thinner ice to grow more quickly than thicker ice (Fig. 9a). Later, as the 

warming continues, the basal growth per unit area of ice decreases as the rising temperatures act to suppress the 315 

ice growth (Fig. 9a).  The evolution of the total amount of basal growth seen in Fig. 8 arises from a combination 

of the ‘in situ’ changes of Fig. 9a, modified by the fact that the area of sea ice over which basal growth can occur 

is itself decreasing. Models with the largest decline in basal ice growth by the end of the 21st century tend to be 

those with the larger decline in winter ice cover, and Figures 11a and 11b show that there is a robust relationship 

common to all the models between the change in the mass of basal growth and both the ice area and ice mass.  320 

 

Frazil ice formation 

As the climate warms, many models initially show a small increase in the total amount of frazil ice formation 

relative to the 1960-89 reference period (Fig. 10a). This is probably because as the ice area declines there is a 

greater area of open water in which frazil ice can form. Eventually the amount of frazil ice formation reaches a 325 

maximum, then starts to decline until by 2090s all the models have less frazil ice formation than they did during 

1960-89. This is consistent with the ocean warming so that an increasing area of the ocean either no longer falls 

below the freezing temperature or does so for a shorter period of the year. The timing of the changes in frazil ice 

formation varies considerably between the models. For example, the decade in which the amount of frazil ice 

formation becomes consistently less than the reference value varies from the 2030s to the 2080s. 330 

 

Top melting 

All the models show an initial increase in the total amount of ice melted at the top surface relative to 1960-89, 

which continues until at least the 2030s for the majority of models. (Fig. 10b). As the warming continues, this 

reverses as the surface area of the ice reduces, so that the total amount of top melt declines. Towards the end of 335 
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the 21st century, all models have less annual total top melt than they did during the 1960-89 reference period. The 

timing of the maximum amount of top melt varies between the models (Fig. 10b) and is related to the rate of 

decline of the ice area (Fig. 11c). The amount of top melt per unit area of the ice increases for all the models (Fig. 

9b) and continues to increase later into the 21st century than the total melt term does. (Figs. 9b and 10b). Towards 

the end of the 21st century, the top melt per unit area starts to decrease (Fig. 9b), presumably because the ice cover 340 

that remains is restricted to relatively high latitudes, and so receives less solar radiation. Again the exact timing 

of this varies between the models.  

 

Basal melting 

For many of the models, the total amount of basal melting each year starts to increase as the climate warms (Fig. 345 

10c), then decreases later in the integration as the ice cover shrinks. The GFDL models and the MRI model initially 

show little change in the total basal melt, which then decreases later in the integration. By the end of the 21st 

century all the models lose less ice each year by basal melting than they did during the reference period. The time 

at which the total amount of basal melt starts to decrease is related to the ice area (Fig. 11d), with a maximum 

about of basal melt occurring for an annual mean ice cover of approximately 6 million. Per unit surface area of 350 

the ice, all the models show an ongoing increase in basal melt throughout the 21st century as the ocean warms 

(Fig. 9c), with a greater increase seen in the models with larger reductions in winter ice cover.   

 

Ice advection  

For all the models, the amount of ice lost by advection declines relatively quickly compared to the other terms 355 

(Fig. 8). By the 2040s the majority of models lose less than 1.0x103 Gt of ice each year by advection. The amount 

of advective ice loss is strongly related to the change in ice mass (Fig. 11e).  

 

Thus far we have only considered how the annual mean budget components evolve, but of course there are changes 

to the seasonal cycle of the budget components as well.  Figure 12 shows how the seasonal cycle of the multi-360 

model mean budget has changed by the 2040s. The timing of the top and basal melting has shifted, with more 

melt occurring earlier in the year (especially during June), and less later in the summer (especially during August).  

The amount of basal growth in the autumn reduces, but there is increased basal growth later in the winter 

associated with the thinner ice in this time period. Overall, extra ice loss in May-June and reduced growth in 

October-November is partially offset by reduced ice melt in August and increased ice growth in January-February.  365 

      

In summary, there are a number of factors affecting how each budget component changes as the climate warms, 

including the changing atmospheric and oceanic forcing, and also the ice state itself, especially the ice area. For 

some of the budget components, initial increases due to changes in forcing are later offset by the declining ice 

area.  370 

 

 

6. Discussion and conclusions 

 

We have compared the mass budget of the Arctic sea ice for 14 CMIP6 models, using new diagnostics not 375 

available for previous model inter-comparison studies (Notz et al., 2016). In common with CMIP3 and CMIP5 
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models, the CMIP6 models we have analysed here show a large spread in their ice area and mass, both during a 

‘present day’ evaluation period, and also as the ice declines during the 21st century (SIMIP community, 2020).  

 

One of the most striking results of this study is the broad agreement between the mean mass budget of the 380 

individual models, both in terms of the dominant processes, and also the time of year when each process is 

important. For the multi-model mean, the dominant processes causing annual ice growth are basal ice growth 

(~80%) and frazil ice formation (~20%), which both occur during the winter. The dominant processes by which 

ice is lost are basal melting (~50%), surface melting (~25%) and advection of ice out of the Arctic (~20%). The 

two first processes occur in summer, while the latter process is present all year long.  385 

 

For the individual models, the relative amount of frazil and basal growth varies considerably. The ratio between 

the two is related to the details of how the frazil ice formation is defined within each model, and in particular to 

the minimum thickness of frazil ice. Models that can form thicker frazil ice tend to have a greater proportion of 

their ice growth defined as frazil ice. When the frazil and basal ice growth terms are combined, there is less spread 390 

between the models. The relative amounts of top and basal melt also vary between the models. A number of 

factors are likely to contribute to this, including the melt pond formulation, the radiation scheme and the 

atmospheric forcing. It has not proved possible in this study to identify a common factor to explain the differences 

in the ratio of top and bottom melting.  

 395 

The mean mass budget is influenced by both the sea ice physics, and also the atmosphere and ocean forcing. By 

comparing CMIP6 models we are effectively varying all these factors at once, so we also include here some budget 

data for three integrations using a forced ocean-ice model with the same sea ice and ocean components as the 

HadGEM3-GC31-LL model. Using this forced model, we can look at the impact of changing sea ice physics or 

atmospheric forcing alone (Table 3). It is noteworthy that the default forced simulation differs strongly from the 400 

HadGEM3-GC31-LL simulation despite the same sea ice settings (Fig. 13). In contrast to HadGEM3-GC31-LL, 

sea ice mass and area are smaller in the forced simulation than in PIOMAS, and HadISST and OSI-SAF 

respectively. The stronger bottom and surface melt in the forced simulation (Fig. 14 a and b) leads to a stronger 

annual cycle and smaller sea ice area during summer (Fig. 13a). This suggests that the interaction with the 

atmosphere is responsible for the overestimation of sea ice mass in HadGEM3-GC31-LL. Applying sea ice 405 

physics which results in improved sea ice evolution in a stand-alone sea ice simulation (Schroeder et al., 2019), 

reduces the basal melt (Fig. 14c) and slightly increases the late winter basal growth (not shown), which in turn 

increases sea ice area and mass (Fig. 13). Applying DFS atmospheric forcing instead of CORE forcing increases 

the top melt and decreases the basal melt, resulting in higher sea ice area and mass. These comparisons 

demonstrate that both model sea-ice physics and atmospheric forcing are important in driving the differences 410 

among models in the sea ice mass budget. 

 

We have also looked at how the mass budget changes as the climate warms during the 21st Century. For the multi-

model mean, the timing of the top and basal melting shifts, with more melt occurring earlier in the year (especially 

during June), and less melt later in the summer (especially during August).  The amount of basal growth in the 415 

autumn reduces, but there is increased basal growth later in the winter associated with the thinner ice in the future 
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projections compared to the present. Overall, extra ice loss in May-June and reduced growth in October-November 

is partially offset by reduced ice melt in August and increased ice growth in January-February.  

 

Comparing the responses of the individual models, the timing and magnitude of change in the mass budget 420 

components varies considerably.  We have seen that there are a number of factors affecting how each budget 

component changes as the climate warms, including the changing atmospheric and oceanic forcing, and also the 

ice state itself, especially the ice area. However, when considered as a function of the changing ice state itself, 

common behaviours emerge, which suggests that the mass budgets of the models are fundamentally responding 

in a broadly consistent way to the warming climate. 425 

 

The fact that the sea ice budgets are similar in these CMIP6 models, but sea ice area and volume are not, makes a 

case that the current biggest issue for climate change studies is not the sea ice physics but the atmospheric forcing. 

On the other hand, it is not necessarily the case that the degree of similarity in the mass budget of these CMIP6 

models is a good thing. From table 2 we see that sea ice model diversity is quite poor in these models, and it could 430 

be argued that we are not sampling enough uncertainly in sea ice physics. For example, none of these models use 

the most recent rheology or thermodynamic developments. Ideally, we would be able to compare both the 

modelled ice state and the budget components against observational datasets, to assess whether models are able 

to generate the correct ice state for the correct reasons. While some validation of the underlying processes that 

determine the ice area is possible (for example Holmes et al, 2019), this remains more difficult for the mass budget 435 

terms.  

 

In summary, new diagnostics available for CMIP6 models have allowed a more detailed inter-model comparison 

of the Arctic sea ice mass budget than has previously been possible. This study has provided a first comparison 

of these diagnostics for a subset of the CMIP6 models by comparing budget terms integrated over the Arctic 440 

Ocean. As more CMIP6 model data becomes available, it would be good to examine the budget of a wider range 

of models. Further work could also include a comparison of the mass budget of snow on sea ice, an investigation 

into the spatial distribution of the ice and snow budget terms, and a linking of the budget changes to changes in 

the wider climate, both in the Arctic and beyond. 

 445 
 

Appendix A: Model descriptions 

 

Here we provide a brief summary for the CMIP6 models used in this study. Further details can be found in the 

cited references. 450 

 

AEMET_EC-Earth3 and SMHI_EC-Earth3-Veg 

EC-Earth is an Earth System Model that comprises coupled component models for atmosphere, ocean, sea ice and 

land (Hazeleger et al., 2012). Both versions used in this study, namely EC-Earth3 and EC-Earth3-Veg, have the 

same model configuration for atmosphere, ocean and sea ice. Besides, EC-Earth3-Veg has also an interactive 455 

vegetation module. The atmosphere component is represented by the Integrated Forecasting System (IFS), cycle 

36r4, of the European Centre for Medium-Range Weather Forecasts (ECMWF). The atmospheric grid is T255L91 

with a nominal horizontal resolution of about 100km. IFS contains 91 vertical levels in hybrid coordinates, in 
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which its highest vertical level reaches up to 0.01 hPa and, therefore, is a stratosphere resolving atmospheric 

model. 460 

The EC-Earth’s ocean component is represented by the version 3.6 of NEMO (Madec, 2016) using the 

ORCA1L75 grid defined by a tripolar grid with poles placed at Northern America, Siberia, and Antarctica. It has 

a horizontal resolution of about 1 degree and 75 vertical levels, 8 of them being placed in the first 10 m of the 

water column. The ocean component includes the version 3 of the Louvain-la-Neuve sea ice model (LIM3; 

Rousset et al., 2015). LIM3 is a dynamic-thermodynamic model that accounts for a prognostic sea ice thickness 465 

scheme (Thorndike et al., 1975; Lipscomb, 2001) defined by 5 thickness categories. LIM3 applies the elastic-

viscous-plastic (EVP) rheology for ice dynamics and also uses the ORCA1L75 grid. The sea ice model 

thermodynamics is characterized by an energy-conserving halo-thermodynamic scheme (Bitz and Lipscomb, 

1999) with 2 ice layers and 1 snow layer, for which the snow conductivity term is set to 0.27 W m-1 K-1. The 

surface albedo depends on the ice surface temperature, ice thickness, snow depth, and cloudiness. The radiation 470 

absorbed by the ice follows Beer’s law and does not infiltrate into the snow. LIM3 does not account for the lateral 

melting. Melt-ponds are not included in the sea ice model. The coupling between the atmosphere and ocean-sea 

ice components is performed using the OASIS3 coupler. 

For both EC-Earth3 and EC-Earth3-Veg, the H-TESSEL scheme, cycle 36r4 (same as IFS), is used for the land 

surface (van den Hurk et al., 2000). H-TESSEL is also based on the T255L91 grid and has 8 horizontal tiles used 475 

in the land surface/exchange scheme. In addition, EC-Earth3-Veg comprises the version 4 of the Lund-Potsdam-

Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model (Smith et al., 2014). As the 

atmospheric and ocean-ice components, H-TESSEL has a 45-minute time step, while LPJ-GUESS has a 1-day 

time step. 

 480 

CanESM5 

The CanESM5 model (Swart et al., 2019) uses the CLASS-CTEM3.6 land surface model and the CanAM5 

atmospheric model at T63 spectral resolution (approx. 2.8 degrees) and with 49 vertical levels. These are coupled 

to the NEMO 3.4.1 model, with 45 vertical levels, and the LIM2 sea ice model (Madec, 2016; Fichefet and 

Morales Maqueda, 1997) at 1 degree horizontal resolution. 485 

The sea ice model component uses the elastic-viscous-plastic (EVP) rheology and melt-ponds are parameterised 

as a function of surface temperature with a fraction ranging between 0 and 25% of the ice cover. 

 

 

CESM2-CAM and CESM2-WACCM  490 

The CESM2 models are built from the CESM2.1 configuration described in Danabasoglu et al. (2019). It uses the 

CAM6 atmosphere model and the CLM5 land surface model at nominal 0.9 x 1.25 degree resolution, coupled to 

the POP 2.0.1 ocean and the Los Alamos sea ice model (CICE) at nominal 1 degree (gx1) resolution. 

The sea ice model component is based upon version 5.1.2 of the CICE sea ice model of Hunke et al. (2015). The 

CICE model uses a prognostic ice thickness distribution (ITD) with five thickness categories. The standard CICE 495 

elastic–viscous–plastic (EVP) rheology is used for ice dynamics. The model uses mushy-layer thermodynamics 

and prognostic sea ice salinity (Turner et al., 2013) configured with 8 layers of ice and 3 of snow.  
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Radiation is calculated using the delta-Eddington scheme of Briegleb and Light (2007), with melt-ponds modelled 

on level, undeformed ice, as in Hunke et al. (2013). 

 500 

CSIRO_ARCCSS_ACCESS-CM2 

The CSIRO_ARCCSS_ACCESS-CM2 uses atmosphere and sea mode components derived from the HadGEM3-

GC3.1 models – including the MetUM atmosphere, using the Global Atmosphere 7.1 (GA7.1) configuration of 

Walters et al. (2017), and the Global Sea Ice 8.1 (GSI8.1) configuration of the CICE sea ice model described in 

Ridley et al. (2017). These are combined with version 2.5 of the CABLE land surface model and version 5.1 of 505 

the MOM ocean model. 

As for the HadGEM3-GC3.1 models, the sea ice model component is based upon version 5.1.2 of the CICE sea 

ice model (Hunke et al., 2015), using five thickness categories and the standard elastic–viscous–plastic (EVP) 

rheology. The model uses the Bitz and Lipscomb (1999) multi-layer vertical thermodynamics with 4 layers of ice 

and 1 of snow. Atmosphere-ice coupling is performed separately for each ice thickness category using the method 510 

of West et al., (2016). 

Radiation is calculated using CICE’s “default” CCSM3 scheme (see Hunke et al., 2015) which uses separate 

albedos for visible (< 700 nm) and near-infrared (> 700 nm) wavelengths for both bare ice and snow. The scheme 

has been ported into JULES where the surface exchanges are calculated. Prognostic melt ponds are included using 

the CICE topographic melt pond formulation of Flocco et al. (2010). Melt pond evolution is calculated in CICE 515 

with pond fraction and depth being passed through the coupler for use within the surface exchange scheme 

(albedo). 

 

GFDL-CM4 and GFDL-ESM4 

The GFDL-CM4 and GFDL-ESM4 models use the AM4.0 atmosphere/land model as documented in Zhao et al. 520 

(2018) with 100km horizontal resolution. CM4 has 33 vertical atmospheric levels whereas ESM4 has 49 vertical 

levels. These are coupled to the ocean and sea ice models MOM6 and SIS2, which are run under the OM4.0 

configurations described in Adcroft et al. (2019). CM4 and ESM4 use nominal 0.25 and 0.5 degree horizontal 

ocean and sea ice resolutions, respectively. Both models have 75 vertical ocean layers. The CM4 model is 

documented in Held et al. (2019). 525 

The SIS2.0 sea ice component used in both GFDL-CM4 and GFDL-ESM4 models is documented in Adcroft et 

al. (2019). 

 

HadGEM3-GC31-LL and HadGEM3-GC31-MM 

The HadGEM3-GC31 models use the Global Coupled configuration 3.1 (GC3.1) of the HadGEM3 model 530 

introduced by Williams et al. (2017). This model comprises the MetUM atmosphere and JULES land models 

using the Global Atmosphere 7.1 (GA7.1) and Global Land 7.0 (GL7.0) configurations documented by Walters 

et al. (2017). These are coupled to the NEMO ocean and CICE sea ice models using the Global Ocean 6.0 (GO6.0) 

and Global Sea Ice 8.1 (GSI8.1) configurations described respectively by Storkey et al. (2017) and Ridley et al. 

(2017). Coupling between the atmosphere-land and ocean-sea ice components is performed every hour using the 535 

OASIS3 MCT coupler. 

https://doi.org/10.5194/tc-2019-314
Preprint. Discussion started: 19 February 2020
c© Author(s) 2020. CC BY 4.0 License.



14 
 

The HadGEM3-GC31-MM model horizontal resolution is N216 for the atmosphere and land (~60 km in 

midlatitudes) and 0.25 degree (ORCA025) for the ocean and sea ice. Sea ice model resolution in the Arctic ranges 

between 9 km and 15.5 km with an average value of around 12.5 km. Meanwhile the HadGEM3-GC31-LL model 

horizontal resolution is N96 for the atmosphere and land (~135 km in midlatitudes) and 1 degree (ORCA1) for 540 

the ocean and sea ice. Sea ice model resolution in the Arctic ranges between 37 km and 62.5 km with an average 

value of around 50.5 km. Both HadGEM3-GC31 models use 85 vertical levels in the atmosphere and the ocean 

components use 75 vertical levels with 8 levels in top 10m. 

The sea ice model component is based upon version 5.1.2 of the CICE sea ice model of Hunke et al. (2015). The 

CICE model uses a prognostic ice thickness distribution (ITD) with five thickness categories. The standard CICE 545 

elastic–viscous–plastic (EVP) rheology is used for ice dynamics (Hunke et al., 2015). The model uses the Bitz 

and Lipscomb (1999) multi-layer vertical thermodynamics with 4 layers of ice and 1 of snow. 

Atmosphere-ice coupling is performed separately for each ice thickness category using the method of West et al., 

(2016). Surface exchanges over sea ice are calculated as part of the JULES surface exchange scheme; sea ice top-

layer temperature, thickness, and conductivity are passed to JULES from CICE with conductive and top-melting 550 

fluxes being passed back to CICE (see Ridley et al., 2017; West et al., 2016). 

Radiation is calculated using CICE’s “default” CCSM3 scheme (see Hunke et al., 2015) which uses separate 

albedos for visible (< 700 nm) and near-infrared (> 700 nm) wavelengths for both bare ice and snow. The scheme 

has been ported into JULES where the surface exchanges are calculated. Prognostic melt ponds are included using 

the CICE topographic melt pond formulation of Flocco et al. (2010). Melt pond evolution is calculated in CICE 555 

with pond fraction and depth being passed through the coupler for use within the surface exchange scheme 

(albedo). 

There are several minor differences between the LL and MM resolution version of HadGEM3-GC3.1, which are 

displayed in Table 2 of Roberts et al. (2019). 

 560 

 

MRI-ESM2 

The MRI-ESM2 model uses version 3.5 of the MRI-AGCM atmosphere/land model at TL159 (approximately 120 

km) horizontal resolution with 80 vertical levels. The ocean and sea ice are modelled using version 4.4 of the 

Meteorological Research Institute Community Ocean Model (MRI.COM; Tsujino et al., 2017) using a 1 degree 565 

resolution tri-polar grid. 

The sea ice model component uses a prognostic ITD with 5 thickness categories and uses the elastic-viscous-

plastic rheology of Hunke and Dukowicz (1997). Sea ice thermodunamics are performed following Mellor and 

Kantha (1989) using 1 layer of ice and a zero-layer snow scheme. Radiation is performed using the ‘default’ CICE 

CCSM3 described in Hunke et al. (2015). Lateral melting is not modelled in MRI-COMv4 and so lateral melting 570 

is considered part of basal melting. 

 

NorESM2-LM and NorESM2-MM 

NorESM2 is built on the structure and many of the components in CESM2.1 as described in Danabasoglu et al. 

(2019), but with varying degrees of modification as detailed by Seland et al (in prep). The NorESM2-LM and 575 

NorESM2-MM versions of the model differs in atmospheric horizontal resolution, 2 degree vs 1 degree nominal 
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resolution, respectively. In addition, some changes in tuning between the setups was necessary to have stable 

control climates.  

The atmospheric model in NorESM2 (NorCAM6) is based on CAM6 but has undergone several modifications 

both with respect to aerosol-radiation-cloud interaction (Kirkevåg et al. 2013; 2018) as well as changes in energy, 580 

momentum and flux. The land model CLM5 is close to the version in CESM2.1, and the river transport model 

Mosart is identical to the version found in CESM2.1. The ocean model BLOM and ocean-biogeochemistry model, 

HAMOCC, are upgraded versions of the components found in NorESM1 (Bentsen et al, Iversen et al, 2013). The 

ocean model and ocean– sea ice configuration are described in detail in Bentsen et al (in prep).  

The sea ice model component is based upon version 5.1.2 of the CICE sea ice model of Hunke et al. (2015). The 585 

NorESM2-specific changes includes effects of wind drift of snow into ocean following Lecomte et al (2013) as 

described in Bentsen et al. (in prep), and a zenith angle-based time average of albedo.  

The CICE model uses a prognostic ice thickness distribution (ITD) with five thickness categories. The standard 

CICE elastic–viscous–plastic (EVP) rheology is used for ice dynamics (Hunke et al., 2015). The model uses 

mushy-layer thermodynamics and prognostic sea ice salinity (Turner et al., 2013) configured with 8 layers of ice 590 

and 3 of snow.  

Radiation is calculated using the delta-Eddington scheme of Briegleb and Light (2007). Melt ponds are modelled 

on level, undeformed ice, as in Hunke et al. (2013). 

 

UKESM1-0-LL 595 

The UKESM1-0-LL model is the first version of the United Kingdom Earth System Model. UKESM1-0-LL uses 

the coupled climate model HadGEM3-GC31-LL as its physical core, with the following components interactively 

coupled: terrestrial carbon and nitrogen cycles, including dynamic vegetation and representation of agricultural 

land use change; ocean biogeochemistry (BGC) with prognostic diatom and non-diatom concentrations and a 

unified troposphere-stratosphere chemistry model, tightly coupled to a multi-species modal aerosol scheme. 600 

The model resolution – both vertical and horizontal – and details of the sea ice and ocean components of 

UKESM1-0-LL are otherwise identical to that of HadGEM3-GC31-LL described above. 

The UKESM1-0-LL model is described further in Sellar et al. (2019). 
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Tables 
 850 

  No of 
integrations 

 

Model Name Modelling Centre Hist SSP58.5 Notes 

HadGEM3-GC31-LL Met Office 4 4  

HadGEM3-GC31-MM Met Office 4 4  

UKESM1-0-LL Met Office 12 5  

EC-Earth-3 UCLouvain/AEMET 1 1  

EC-Earth3-Veg UCLouvain/SMHI 1 1 Missing terms: lateral melt 
and dynamics 

MRI-ESM2 MRI 5 1 No explicit lateral melt 
term 

CESM2-CAM NCAR 11 2  

CESM2-WACCM NCAR 3 2  

GFDL-CM4 GFDL 1 1 No explicit lateral melt 
term 

GFDL-ESM4 GFDL 1 1 No explicit lateral melt 
term 

CSIRO_ARCCSS_ACCESS-CM2 CSIRO 1 1  

NorESM2-LM Met Norway 3 1  

NorESM2-MM Met Norway 1 1  

CanESM5 ECCC 3 3 Missing terms: frazil, 
lateral melt, evapsubl, 
dynamics. 

NEMOCICE_CORE_default CPOM 1  Forced ocean-ice model 
(so no scenario data) NEMOCICE_CORE_CPOM-

CICE 
CPOM 1  

NEMOCICE_DFS5.2_CPOM-
CICE 

CPOM 1  

 

Table 1: List of models and modelling centres participating in this study. Where two modelling centres are shown, 
the 1st analysed the model outputs, and the 2nd performed the model integrations. 
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Atmospheric forcing:

Atmospheric forcing dataset CORE II CORE II DFS5.2 MetUM coupled

Atmospheric forcing resolution ~200km ~200km ~80km ~135km (N96)

Atmospheric forcing frequency 6 hourly 6 hourly 6 hourly 3 hourly

Sea ice model physics:

Rheology EVP EAP EAP EVP

Sea ice conductivity

"default" (Maykut 

and Untersteiner, 

1971)

"bubby brine"

(Pringle et al., 

2007)

"bubby brine"

(Pringle et al., 

2007)

"default" 

(Maykut and 

Untersteiner, 

1971)

Sea ice emissivity 0.95 0.976 0.976 0.95

Melt pond max fraction 

(rfracmax) 85% 50% 50% 85%

Blown snow scheme None Schroeder  et al.   Schroeder  et None  
 
 
 860 

Table 3: Relevant information describing the CPOM NEMO-CICE forced models used in this study. Including 
details of the atmospheric forcing datasets used and the changes in the CICE sea ice physics used in the 
different simulations. Also included is the HadGEM3-GC3.1-LL model for reference. All physics options not 
included in this table – including those shown in Table 2 above – are identical to the HadGEM3-GC3.1-LL model. 
CORE II is the CORE2 surface forcing data set of Large and Yeager (2009), whilst DFS5.2 is the Drakkar forcing 865 
set of Dussin et al. (2016). For rheology: EVP is the Elastic-Viscous-Plastic scheme of Hunke and Dukowicz 
(1997); EAP is the Elastic-Anisotropic-Plastic scheme of Tsamados et al (2013). The melt-pond max fraction term 
(rfracmax) determines the maximum fraction of melt-water added to the ponds within the Flocco et al. (2012) 
‘topographic’ prognostic melt-pond scheme. 
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Figures 

 
 

 
 875 
Figure 1: Analysis domain. The domain is defined using the NSIDC Arctic regional masks 
(https://nsidc.org/data/polar-stereo/tools_masks.html#region_masks), where we include the 
following regions: Central Arctic Ocean, Beaufort Sea, Chukchi Sea,  East Siberian Sea, Laptev Sea, 
Kara Sea and Barents Sea.  
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 885 

 
 
Figure 2:  Seasonal cycles of (a) ice area and (b) ice mass for the reference period 1990-2009, for the 
CMIP6 models. Where more than one model integration is available, the values are ensemble means.  
Also shown is data for the same periods for (a) the HadISST1.2 (Rayner et al., 2003), HadISST.2.2 890 
(Titchner and Rayner, 2014) and OSI-SAF (OSI-SAF, 2017) observational datasets, and (b) PIOMAS 
reanalysis (Zhang and Rothrock, 2003) for the same period. The shaded regions show +/- 1 standard 
deviation in the monthly values. 
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 895 
 

 
Figure 3: Evolution of (a) March and September ice area and (b) March ice mass for the CMIP6 
models. Also shown is (a) the mean of the HadISST1.2 (Rayner et al., 2003), HadISST.2.2 (Titchner and 
Rayner, 2014) and OSI-SAF (OSI-SAF, 2017) observational datasets, and (b) the PIOMAS reanalysis 900 
(Zhang and Rothrock, 2003). 
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 905 
Figure 4: (a) Evolution of annual-mean global-mean near-surface temperature. Values are relative to 
1960-89 for each model. (b) Scatter plot of annual mean ice area vs annual-mean global-mean near-
surface temperature for each model.  
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Figure 5: Components of the Arctic sea ice mass budget for the multi-model mean. Values are 
summed over the region shown in Fig. 1, for the period 1960-89. For each budget component, values 915 
are calculated by averaging the ensemble mean for each model with a non-zero value of the 
component. (a) Seasonal cycle of monthly mean values, (b) annual mean values. The shaded regions 
show +/- 1 standard deviation in the modelled values.  
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Figure 6: Components of the annual mean Arctic sea ice mass budget for each model. Values are 
summed over the region shown in Fig. 1, for the period 1960-89. Note that the total will only be close 
to zero for models with no missing budget terms. 
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Figure 7: Seasonal cycles of monthly mean components of the Arctic sea ice mass budget for each 
model. Values are summed over the region shown in Fig. 1, for the period 1960-89.  
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Figure 8: Evolution of annual mean components of the Arctic sea ice mass budget for each model. 
Values are summed over the region shown in Fig. 1. 
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 945 
Figure 9: Evolution of anomalies relative to the 1960-89 mean of selected annual mean components 
of the Arctic sea ice mass budget, per unit area of the remaining ice, for all the models. Values are 
summed over the region shown in Fig. The units are Gtx103 year-1 km-2.  (a) Basal growth (b) Top Melt 
(c) Basal melt 
 950 
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Figure 10: Evolution anomalies relative to the 1960-89 mean of selected annual mean components of 
the Arctic sea ice mass budget for all the models. Values are summed over the region shown in Fig. 1. 
The units are Gtx103 year-1.  (a) Frazil ice formation (b) Top Melt (c) Basal melt 
 955 
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Figure 11: Selected annual mean components of the Arctic sea ice mass budget for all the models, 
plotted against ice state. All values are summed over the region shown in Fig. 1. The budget 960 
components are anomalies relative to the 1960-89 mean, with units of kg year-1 (a) Basal growth vs 
ice mass (b) Basal growth vs ice area (c) Top melt vs ice area (d) Basal melt vs ice area (e) Advection 
vs change in ice mass (relative to 1960-89). 
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Figure 12: Seasonal cycles of components of the Arctic sea ice mass budget for the multi-model 
mean. Values are summed over the region shown in Fig. 1. For each budget component, the multi-
model mean is calculated by averaging the ensemble means for each model with data for that 
component. (a) Cycles for 1960-89 (faint) and 2040-90 (bold) (b) Difference (2040-49 – 1960-89). 970 
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Figure 13:  Seasonal cycles of (a) ice area and (b) ice volume for the reference period 1990-2009 
budget, for the forced ocean-ice runs (Table 3), plus HadGEM3-GC31-LL. Where more than one model 975 
integration is available, the values are ensemble means.  Also shown is data for the same periods for 
(a) the HadISST1.2 (Rayner et al., 2003), HadISST.2.2 (Titchner and Rayner, 2014), and OSI-SAF (OSI-
SAF, 2017) observational datasets, and (b) PIOMAS reanalysis (Zhang and Rothrock, 2003) for the 
same period. The shaded regions show +/- 1 standard deviation in the monthly values. 
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Figure 14: Components of the annual mean Arctic sea ice mass budget for the forced ocean-ice runs, 
plus HadGEM3-GC31-LL. Values are summed over the region shown in Fig. 1, for the period 1960-89.  
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