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Abstract 

Local-scale variations in snow density and layering on Arctic sea ice were characterized using a combination of traditional 

snow pit and SnowMicroPen (SMP) measurements. In total, 14 sites were evaluated within the Canadian Arctic Archipelago 

and Arctic Ocean on both first (FYI) and multi-year (MYI) sea ice. Sites contained multiple snow pits with coincident SMP 

profiles as well as unidirectional SMP transects. An existing SMP density model was recalibrated using manual density cutter 15 

measurements (n=186) to identify best-fit parameters for the observed conditions. Cross-validation of the revised SMP model 

showed errors comparable to the expected baseline for manual density measurements (RMSE=34 kg m-3 or 10.9%) and strong 

retrieval skill (R2=0.78). The density model was then applied to SMP transect measurements to characterize variations at 

spatial scales of up to 100 m. A supervised classification trained on snow pit stratigraphy allowed separation of the SMP 

density estimates by layer-type. The resulting dataset contains 58,882 layer-classified estimates of snow density on sea ice 20 

representing 147 m of vertical variation and equivalent to more than 600 individual snow pits. An average bulk density of 310 

kg m-3 was estimated with clear separation between FYI and MYI environments. Lower densities on MYI (277 kg m -3) 

corresponded with increased depth hoar composition (49.2%), in strong contrast to composition of the thin FYI snowpack 

(19.8%). Spatial auto-correlation analysis showed layered composition on FYI snowpack to persist over long distances while 

composition on MYI rapidly decorrelated at distances less than 16 m. Application of the SMP profiles to determine propagation 25 

bias in radar altimetry showed the potential errors of 0.5 cm when climatology is used over known snow density.  

1 Introduction 

The stratified nature of snow on sea ice provides a detailed history of interacting geophysical processes and synoptic-scale 

input. From its deposition on new ice, to melt in summer, these interactions are dynamic, leading to spatiotemporal 

heterogeneity at multiple scales. For large portions of the Arctic, early season cyclones drive rapid accumulation followed by 30 
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sustained periods of cold air temperatures and high winds (Webster et al., 2018). The resulting snowpack is characteristically 

shallow and subject to sustained temperature gradient metamorphism. Contrasting layers associated with these conditions, 

namely wind slab and depth hoar, form distinctive features of the winter snowpack (Sturm and Holmgren, 2002). Sequential 

precipitation and wind events contribute to layered complexity where mass is lost to open water (leads, polynyas), mixed-

phase precipitation occurs (melt, ice features), or ice topography acts as an obstruction (drifts and dunes). Although structural 35 

similarities exist at synoptic scales (e.g. Warren et. al., 1999), few studies have quantified local-scale variability on Arctic sea 

ice (10 m2; Iacozza and Barber, 1999; Sturm et al., 2002, Sturm et al., 2006) where layered snow strongly modulates optical 

and thermal properties at the surface (Ledley et al. 1991; Wu et al., 1999). 

 

Accurate remote sensing observations of sea ice are dependent on spatially distributed knowledge of snow mass (a function of 40 

thickness and density). For example, snow thickness represents a significant source of uncertainty in altimetry where isostasy 

is assumed for retrievals of sea ice thickness (Tilling et al., 2016; Kwok et al., 2019). Radar altimetry estimates of sea ice 

freeboard must also account for variations in snow density to determine an effective speed of propagation within the medium 

(Giles et al., 2007; Kwok et al., 2011). It is therefore of interest to develop objective representations of snow on sea ice to 

quantify potential errors and constrain models. In situ studies form the basis of these representations (Barber et al., 1995; 45 

Warren et al., 1999; Sturm et al., 2002, Kwok and Haas, 2015) and are often extended spatially in model or satellite-based 

products (Kurtz et al., 2011; Lawrence et al., 2018; Liston, et al., 2018; Petty et. al., 2018). Given short length scales of 

variability, application of these approximations must be handled carefully where errors vary with vertical or horizontal 

resolution (Kern et al., 2015; King et al., 2015). Additionally, where basin scale inputs are required, recent changes to the 

Arctic climate system call into question how representative legacy snow climatologies are for current conditions (Kwok and 50 

Cunningham, 2008; Laxon et al., 2013; Webster et al., 2014). 

 

Although there is a need for enhanced representation of snow on sea ice, detailed in situ characterization can be challenging 

and costly to execute. Traditional snow pits are restricted to a single vertical dimension and require trained operators (i.e. Fierz 

et al., 2009). Adjacent snow pits or multiple profiles can be arranged to enhance horizontal dimensionality, but are cumbersome 55 

to execute at scale (Benson and Sturm, 1993; Sturm and Benson, 2004). In many cases, a trade-off between horizontal and 

vertical resolution is necessary to balance available time with spatial coverage. Recently, penetrometer measurements with the 

SnowMicroPen (SMP; Schneebeli and Johnson, 1998) were used to address this problem, providing a novel method to rapidly 

characterize snow structural properties including density (Proksch et al., 2015). The SMP provides milimeterm-scale 

mechanical measurements which can be linked to vertical snow structure through modeling of the penetration process 60 

(Marshall and Johnson, 2009; Löwe and van Herijnen, 2012). Taking less than a minute to complete a single vertical profile, 

there is potential to apply the SMP to snow on sea ice to provide detailed information for radiative transfer or mass balance 

applications at multiple scales. 
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In this study, we quantify local-scale variation of snow properties on Arctic sea ice using a combination of snow pit and SMP 65 

measurements. SMP profiles are used to extend traditional snow pit analysis to characterize variations in density and 

stratigraphy at spatial scales of up to 100 m. We validate the SMP density model of Proksch et al. (2015) at sites within the 

Canadian Arctic Archipelago (CAA) and Arctic Ocean (AO) where adjacent density cutter profiles were collected on first- 

and multi-year sea ice (FYI and MYI). The SMP density model is recalibrated using snow pits to identify best fit parameters 

for the observed conditions. Traditional snow pit stratigraphy is then used to train a supervised SMP classifier, facilitating 70 

evaluation of density by layer-type. The calibrated density model and layer-type classifier are applied to an independent set of 

613 SMP profiles to discuss snowpack length scales of variability on Arctic sea ice. Finally, we apply the SMP derived 

properties to an altimetry application, discussing propagation of errors as related to the observed snow structure. 

2 Data and methods 

2.1 Study areas and protocols 75 

The measurements utilized in this study were acquired during two April field campaigns conducted near the time of maximum 

snow thickness (Figure 1). The snow measurements coincided with NASA Operation IceBridge (OIB; 17 April 2016) and 

ESA CryoVEx (26 April 2017) flights, aimed at improving understanding of inter-annual variability of Arctic snow and sea 

ice properties. The snow measurements discussed here support local-scale analysis, fundamental to quantifying remote sensing 

errors and linking physical processes at larger spatial scales.  80 

 

The first measurement campaign took place near Eureka, Nunavut, Canada on landfast ice in the CAA (80.0°N 85.9°W; Figure 

1a). Snow property measurements were collected over a 9-day period between 8 April 2016 and 17 April 2016 within Eureka 

Sound and Slidre Fjord. Sea ice near Eureka was principally landfast FYI with embedded floes of MYI imported from the 

Arctic Ocean via Nansen Sound. Similar to conditions reported in King et al. (2015), FYI near Eureka formed as large level 85 

pans with limited deformation. Imported MYI was rough in comparison and heavily hummocked from exposure to previous 

melt (Figure 1b). Mean ice thickness was 2.18±0.10 for FYI and 3.10±0.66 for MYI evaluated near Eureka (± indicates 

standard deviation). Measurements at Eureka were grouped by sites (250 x 100 m) with similar surface condition as determined 

from visual inspection of RADARSAT-2 imagery (Figure 1b). At Eureka, a total of 8 sites were completed with 6 on FYI and 

2 on MYI (Table 1). The average distance between sites was approximately 15 km which were accessed via snowmobile from 90 

the Environment and Climate Change Canada Eureka Weather Station.  

 

A second campaign in April 2017 focused on the characterization of MYI in the Arctic Ocean (AO; Figure 1a). A Twin Otter 

aircraft was used to access sites west of the Geographic North Pole from Alert, Nunavut, Canada along a CryoSat-2 track (see 

Haas et. al, 2017). Measurements were carried out at 6 sites spanning 83.4°N and 86.3°N between 11 April 2017 and 13 April 95 

2017 (Figure 1a). In contrast to the Eureka campaign, the AO sites traversed an extensive region of MYI with thickness 
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consistently greater than 3 m (Haas et. al, 2017). However, with limited time at each landing site, areas characterized were 

much smaller than at Eureka. The average distance between sites for Alert was 175 km, spanning a large gradient of ice 

conditions.  

2.2 Snow pit measurements 100 

The Eureka and AO campaigns had common goals to (1) collect adjacent snow pit and SMP profiles and (2) extend 

characterization from single, local snow pits to larger horizontal scales using SMP transects. As such, the common core of the 

measurement protocol were standard snow pits used as reference. For Eureka, an average of three snow pits were excavated 

per site (total n=20) and a single snow pit was completed per landing for the AO campaign (total n=6). Once excavated, 

stratigraphy was interpreted via visual inspection and finger hardness tests. Heights of the interpreted layers were marked on 105 

the pit face and recorded. A 2-mm comparator card and 40x field microscope were used to classify each layer by standardized 

grain type as described in Fierz et al. (2009). Samples were then broadly categorized as rounded (integrating RGwp, RGxf 

grain types), faceted (FCso, FCsf), or depth hoar (DHcp, DHch), descriptive of predominate metamorphic processes. Trace 

amounts of recent snow were integrated into the rounded classification of some layers because of surface decomposition and 

wind rounded grain-type mixtures (i.e. DFbk). 110 

 

Snow pit density was measured as continuous vertical profiles between the air-snow and snow-ice interfaces with a 100-cm3 

Taylor-LaChapelle cutter (75 g; Figure 2a). Extracted samples were weighed in situ with a shielded A&D EJ-4100 digital scale 

(±0.01 g accuracy). Measurements were rejected where the cutter could not be properly filled, such as in the presence of 

horizontal ice features or fragile microstructure. Previous studies have shown box-style cutter measurements to agree within 115 

9% of high-certainty laboratory experiments (Proksch et al., 2016), however due to potential errors of omission from sample 

rejection, layer specific bias may be present. 

2.3. SnowMicroPen (SMP) measurements 

A single 4th generation SnowMicroPen (SMP) developed by Schneebeli and Johnson (1998) was used to measure profiles of 

penetration force (F). Operating at a constant speed of 20 mm s-1, the high-resolution force transducer of the SMP was driven 120 

vertically through the snowpack. The resulting profiles contained ~250 measurements of F per millimeter, with a maximum F 

of 45 N and resolution of 0.01 N. Given high surface hardness, a rigid metal mount was required to stabilize the sensor and 

prevent rebounding on initial penetration (Figure 2a). To preserve the penetrometer from impact with the ice surface, maximum 

penetration was set 1 cm shorter than the adjacent snow thickness. Coincident SMP profiles at were made at 26 snow pit 

locations to evaluate derived estimates of snow density (Table 1). Maintaining a horizontal separation of 10 cm, profiles were 125 

located behind the snow pit wall in proximity to the manual cutter profile. After each profile, a snow depth probe was inserted 

into the SMP path to measure any unresolved thickness. The location of each profile was recorded with the GPS onboard the 

SMP (±5 m accuracy). 
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In addition to profiles at snow pit locations, SMP transects was were established to characterize spatial variability (n=614; 130 

Table 1). For Eureka, multi-scale sampling was applied where unidirectional sets of 10 profiles were separated at distances of 

0.1, 1, and 10 m, in sequence (Figure 1c). Where time permitted, additional profiles were completed with 1 m spacing adjacent 

to the primary transect. An average of 69 SMP profiles were collected per site near Eureka (total n=550). It was not possible 

to execute an identical sampling strategy for AO sites due to time constraints. Instead, a single set of 10 profiles were spaced 

1 m apart, parallel to the snow pit wall. An average of 11 profiles were made per site for the AO campaign (total n=63). 135 

3. Snow density and layering on sea ice from SMP profiles 

3.1 Basis for estimation of snow density from penetrometry 

The SMP force signal, F, can be linked to physical properties of the snowpack though modeling of the penetration process, 

and related to density with an empirical model (Proksch et al, 2015). To do so, the fluctuating force signal measured by the 

SMP can be interpreted as the superposition of spatially uncorrelated ruptures and deflections (Marshall and Johnson, 2009). 140 

Conceptualised as a one-dimensional shot-noise process, Löwe and van Herwijnen (2012) reinterpret this relationship to 

compute estimates of microstructural length scale (L) without the need for a priori knowledge of snow structure. The derived 

quantity L represents an idealized distance between two rupturing elements of the snow structure. Proksch et al. (2015; 

hereafter P15), building on the work of Pielmeier (2003), relate the microstructural property L and median penetration force 

(𝐹̃) to snow density through a bilinear regression using the following equation: 145 

 

𝜌smp = a + b𝑙𝑛(𝐹̃) + c𝑙𝑛(𝐹̃)𝐿 + d𝐿  (1) 

 

where the coefficients (a, b, c, and d) were calibrated against micro-computed tomography (uCT) in alpine, Arctic, and 

Antarctic environments (Table 2). Detailed methodology regarding the two-point correlation function used to compute L and 150 

other relevant parameters can be found in Löwe and van Herwijnen (2012).  

3.2 Processing of SMP profiles for snow on sea ice 

Prior to generating estimates of snow density, a series of pre-processing steps were applied to minimize SMP measurement 

uncertainty. First, profiles penetrating less than 90% of the measured snow thickness were removed from analysis to minimize 

vertical errors of omission. Force profiles were then evaluated to isolate signal artifacts by applying a minimum noise threshold 155 

of 0.01 N following Marshall and Johnson (2009). Signals below the threshold were removed and linear interpolation was 

applied to infill. Once filtered, 𝐹̃ and L were computed following Löwe and van Herwijnen (2012), using applying  a moving 

window of 5 mm with 50% overlap to meet an assumption of spatial homogeneity. Estimates of density (ρ𝑠𝑚𝑝) were then 
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calculated by applying 𝐹̃ and L in Eq. (1) with an appropriate set of coefficients. The resulting data are geo-located vertical 

profiles of ρ𝑠𝑚𝑝 at 2.5 mm vertical resolution.  160 

 

Small-scale lateral variations in stratigraphy made validation of ρ𝑠𝑚𝑝  challenging where the reference snow pits were 

physically displaced. For example, pinching or expansion of layers from variations in ice topography at sub-meter scales could 

lead to large differences in compared density. Adapting an approach similar to Hagenmuller and Pilloix (2016), a matching 

process was applied to compensate for layered differences between the target and reference snowpack. To initiate the process, 165 

first-guess estimates of ρ𝑠𝑚𝑝 were made with the P15 coefficients for profiles at snow pit locations. Derived profiles were then 

divided into arbitrary 5 cm layers and scaled randomly in thickness. Individual layers were allowed to erode or dilate by up to 

75% of the original thickness, contributing towards a total permitted change of 10% per profile. A large number of scaling 

permutations were generated for each SMP profile using a brute force approach (𝑛 = 1 × 104). Estimates of ρ𝑠𝑚𝑝 were then 

extracted from the scaled profiles within the 3-cm height of the each density cutter measurements and averaged. Best-fit 170 

alignment was selected where root mean square error (RMSE) was minimized between the thickness scaled ρ𝑠𝑚𝑝 profiles and 

snow pit observed density.  

 

Figure 3 shows an example of the matching process where a basal snow feature on MYI was poorly aligned between the first 

guess estimates of ρ𝑠𝑚𝑝 and snow pit measurements. The profile was divided into 12 layers (Figure 3a) and scaled to identify 175 

best fit parameters for each layer (Figure 3b). An overall stretch of 6.5% was applied through the matching process, minimizing 

RMSE (54 kg m-3) and improving correlation (R=0.83) in the example profile. Matching applied to all SMP profiles at snow 

pit locations resulted in a mean vertical absolute scaling of 7.4% or 1.7 cm. 

3.3. Calibration of the SMP snow density model on sea ice 

Once aligned, estimates of ρ𝑠𝑚𝑝 were compared against in situ snow pit densities to quantify retrieval skill. An evaluation of 180 

the P15 parametrized density model is shown in Figure 4, including measurements from all 26 snow pit locations (n=196). 

Estimates of ρ𝑠𝑚𝑝 were biased high relative to the snow pit reference with a large RMSE of 124 kg m-3 (Table 2). The observed 

bias increased with density, leading to unrealistic overestimates for wind slab-classified samples (165 kg m-3 RMSE). 

Conversely, errors were lowest for low-density depth hoar (96 kg m-3 RMSE). Comparing estimates from the two campaigns, 

Eureka had a higher RMSE (135 kg m-3) then than measurements at AO sites (98 kg m-3), but the discrepancy was related to 185 

lower overall density reported on MYI rather than campaign specific bias. 

 

Despite a 41% RMSE, the P15 parametrized estimates of ρsmp were well correlated with snow pit measurements (R2=0.72; 

p<0.01; Table 2). An ordinary least squares (OLS) regression was used to recalibrate P15 where snow pit measurements were 

available as reference. Values of 𝐹̃ and L identified in best-fit scaling of the SMP profiles were used in the regression, along 190 
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with the corresponding density cutter measurements. A 10-fold cross-validation was applied where inputs were divided into 

roughly equal groups and used to train the regression with all but a single fold which was reserved for testing. Test-train 

permutations were iterated until each fold had been used independently in testing to minimize sampling bias. Coefficients were 

averaged across fold combinations and reported with RMSE and R2 in Table 2.  

 195 

Calibrated with the snow pit densities, retrieved coefficients of the regression differed substantially from P15 but remained 

identical in R2 (Table 2). Applying the revised coefficients (referred to as K2019a), RMSE was reduced to 41 kg m-3 or 13% 

of the observed mean. Previously observed P15 bias was also minimized with no significant trend in residuals (0.1 kg m-3). 

Given that the profiles used to evaluate model skill were physically displaced, it was unlikely that all matched comparisons 

were strong candidates for the recalibration. As such, a revised set of coefficients were prepared where outliers defined as the 200 

95th percentile of absolute error in the initial comparison were removed from the regression (>85 kg m-3; n = 10). Data 

associated with these outliers were few in number and primarily associated with layer boundaries on FYI. Regression of the 

constrained input (K2019b; Figure 4b) showed small differences in the retrieved coefficients (Table 2) along with improved 

skill (R2=0.78; 34 kg m-3). 

 205 

To evaluate dependency of the regression parameters, their respective relationships with observed snow density are shown in 

Figure 5. Median force (F̃), once log-transformed, was well correlated with density in the combined ice surface and campaign 

dataset (R=0.76; Figure 1a). However, the observed relationship with F̃ weakened for samples collected on MYI (0.69 R), in 

particular those as part of the Eureka campaign (R=0.46). In contrast, the microstructural parameter L remained well correlated 

with density regardless of ice type or campaign (R<-0.76; Figure 1b). In all coefficient parametrizations (P15 and K2019) the 210 

dependent variables and interaction term were found to be significant in the OLS regression. Although some dependency on 

snow conditions with respect to ice type were apparent, the K2019b parametrization was applied globally as the relationship 

was unlikely to be driven by ice type but rather as some function of ice surface roughness which was unaccounted for in this 

study.  

3.4 Classification of SMP density profiles by layer-type 215 

To quantify the stratigraphic variability of snow density, a support vector machine (SVM) was implemented to partition the 

SMP density profiles by layer-type (Cortes and Vapnik, 1995).  SVMs apply hyperplanes in high-dimensional space to separate 

classes by maximizing distance from support vectors (i.e. a hyperplane which best delineates the nearest data pairs between 

classes). Automated learning methods have previously been applied to support classification of SMP profiles (e.g. Havens et 

al., 2012) and are well suited to rapidly process the available transect data. Learning methods for SVM classification were 220 

adapted from Scikit-learn (Pedregosa et al., 2011) and trained on snow pit (layer-type) and SMP (F̃, 𝐿, Penetration depth) 

information extracted according the Sect. 3.2 procedures. Applying a linear kernel, the classifier was 10-fold cross-validated 

similar to the OLS regression, however, sampling was stratified to ensure a minimum of 10 samples per layer-type class in 
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each fold. Classified estimates from each profile were smoothed with a median window to remove thin layers with thickness 

less than 1 cm (window size=5). Cross-validated results of the SVM classifier are presented in Table 3 as a confusion matrix. 225 

Accuracy, defined as the percentage of true positive or true negative predictions, was 76% overall when compared against the 

snow pit reference samples. Layer-type specific accuracy was comparable for rounded and faceted types (76%) and improved 

for depth hoar (82%). Misclassification errors were highest for rounded types, where samples were most often confused for 

faceted types (24%). 

 230 

Figure 6 shows an example of a classified SMP profile compared against snow pit observed stratigraphy on MYI near Eureka. 

Trained against a generalized layer-type classification scheme, the methodology is incapable of identifying inter-layer 

variations apparent in the manual snow pit observations. However, by identifying major transitions, the classified profile can 

be used to quantify differences in layered composition observed across both ice type and campaign. Moreover, by counting 

the number of transitions between layer-type classifications an approximate count of snowpack layers can be made.  235 

4 Variability of snow density and layering on sea ice 

4.1 Snow pits 

Central to the density model evaluation was the acquisition of a limited number of high-certainty snow pits (n=26). Each served 

as a density reference for the SMP calibration but also provided baseline information on stratigraphy to frame the transect 

analysis. By the April timing of the campaigns, evidence of wind redistribution and temperature gradient metamorphism were 240 

widespread, characteristic of late winter Arctic snowpack. Mean thicknesses of the snow pits were 20.8±6.1 and 38.0±12.7 cm 

for FYI and MYI, respectively. Stratigraphic complexity was apparent on MYI where 7 layers were present on average as 

opposed to 4 on FYI. Bulk density of snow pits on FYI (320±33 kg m-3) was higher in comparison to MYI (300±36 kg m-3), a 

function of limited variation in ice surface topography on the level FYI near Eureka. 

 245 

Consistently across snow pits, density was highest in proximity to the air-snow interface where rounded grain-types were 

prevalent. Commonly known as wind slab, these layers were a product of mechanical wind rounding and subsequent sintering. 

Corresponding grain classifications were mainly wind packed (RGwp) or faceted rounded (RGxf) types. Density of the wind 

slabs were comparable between ice environments and campaigns with an average of 375±49 kg m-3 (Table 43). Lower density 

slab features occurred where wind-broken precipitation (DFbk) was inter-mixed with the smaller mechanically rounded grains. 250 

For example, at Alert sites 6 and 8, ~3 cm of decomposing precipitation was present at the air-snow interface leading to lower 

surface densities (~222 kg m-3). In general, these so-called soft slab features were more common on MYI where rough ice 

features buffered wind blown snow efficiently. 
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Layers below the surface slab were similar in appearance but inspection of the grains revealed tightly packed facets. Distinct 255 

in microstructure, these former wind slabs showed clear signs of kinetic growth while maintaining a well bonded structure. 

Density of the mid-pack faceted layers were comparable to the surface features for the AO campaign (380 kg m-3) but were 

slightly lower for Eureka (287 kg m-3). At the base of the snowpack were multiple layers of large diameter depth hoar, texturally 

distinct from the overlying slab and faceted layers. Microstructure of the depth hoar was characterized by weakly bonded cups 

(DHcp) at times clustered as large chained units (DHch). The unconsolidated structure of the depth hoar was fragile, often 260 

collapsing when inspected by touch or tool. Density of the depth hoar layer was consistently lowest, with a small range of 

observed variability (Table 43).  

4.2 SMP profiles 

Despite layered similarity, it was difficult from snow pits alone to directly compare proportional composition or determine 

process scales over which structural correlations might persist. The SMP transects presented a unique opportunity to extend 265 

analysis beyond the point-scale and link layers between snow pits by drastically increasing the number and spatial diversity of 

profiles. Once processed, the SMP profiles collected on sea ice provided 58,882 estimates of snow density, representing 

approximately 147 m of vertical variation. Each profile also contained estimates of proportional composition by layer-type 

though automated classification, facilitating layer density comparisons and spatial analysis.  

 270 

Figure 7 shows the aggregated results of the SMP transect profiles where snow density measurements were separated by ice 

surface and layer type. Separated by ice type (FYI and MYI), bulk densities (vertically integrated) are represented in two 

overlapping but distinct distributions (Figure 7a). Profiles collected on FYI, and therefore exclusively near Eureka, formed a 

negatively slightly left-skewed distribution with mean density of 327±42 kg m-3 (n=402). In contrast, densities on MYI were 

positively right-skewed with a mean of 277±30 kg m-3 (n=211). Separating the MYI profiles by campaign shows small 275 

differences between Eureka (272±27 kg m-3, n = 148) and the AO (290±31 kg m-3, n=63). However, these differences were 

small in comparison to the larger shift between MYI and FYI. Overall, the opposing skew shows a clear shift in snow density 

by ice surface type for the observed domains independent of campaign. 

 

Given that all profiles were classified by layer-type (see Sect. 3.3), it was also possible to evaluate distributions of density 280 

separately for rounded, faceted, and depth hoar features (Figure 8; Table 54). Composition of the thin Eureka FYI snowpack 

(18.1±8.8 cm) was primarily faceted, represented by 50.0±18.1% of total thickness on average. Measurements classified as 

faceted had on average a density of 336±43 kg m-3, forming a negatively left-skewed distribution (Figure 8c8). Rounded layers 

in proximity to the air-snow interface were thinner, accounting for 30.2±15.0% of total thickness (Figure 8), with a mean 

density of 352±51 kg m-3, also represented in a negatively left-skewed distribution (Figure 7b8). At the base of the snowpack 285 

on FYI, depth hoar was both the smallest fractional component (19.8±18.4 %; Figure 8) and had the lowest mean density 

(248±27 kg m-3; Figure 7d).  
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Composition on MYI shifted towards a larger proportion of depth hoar (49.2±16.3%) within the overall thicker snowpack 

(34.7±16.8 cm). Density of the depth hoar on MYI was comparable to FYI with means of 247±15 and 257±18 kg m-3 for the 290 

Eureka and AO sites, respectively. Mid-pack faceted layers were well represented at 35.5±13.7%, albeit with lower density 

overall at 301±43 kg m-3 and notable decreases at Eureka (294± 41 kg m-3). Layers classified as rounded composed the 

remainder of the volume at 15.3±8.5%. The fractional density distribution of rounded layers on MYI was bimodal (Figure 87), 

corresponding with the presence of decomposing precipitation in mixed-type layers. Mean density of rounded layers on MYI 

were on average 291±65 kg m-3 with slightly higher densities observed at AO sites (306±67 kg m-3) over Eureka (285±63 kg 295 

m-3). 

 

As a proxy for the number of observed layers, transitions between layer-type classifications were summed for each profile. 

Figure 9 shows probability densities associated with layer-type transitions separated by ice type. As in the snow pits, 

stratigraphic complexity was greater on MYI with an average of 6.9 layer-type transitions as opposed to 4.5 on for FYI. Of the 300 

transitions, those associated with faceted layers on MYI were most prevalent with an average of 2.9 per profile. Faceted 

transitions on FYI were fewer in number at 1.9 on average. Depth hoar layers were 2.8 on average for MYI and 1.5 for FYI. 

Finally, in both environments the average number of rounded transitions was 1.1 with no more than 3 transitions identified in 

any profile. 

 305 

4.3 Length scales of variability 

Large standard deviation relative to most layer-type fractions indicated strong stratigraphic variability within the SMP transect 

dataset. Given that these variations are driven at local-scales by ice topography and weather (wind and precipitation), it can be 

expected that structural similarities persist at some process scale. To evaluate differences in length scale, estimates of sp atial 

auto-correlation for layer-type composition were computed using Moran’s I (Moran, 1950): 310 

 

𝐼(𝑑) = 

1

𝑤
∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥̅)(𝑥𝑗 − 𝑥̅) 

𝑛

𝑗=1

𝑛

𝑖=1

  
 

(2) 

 
1

𝑛
∑(𝑥𝑖 − 𝑥̅)

𝑛

𝑖=1

 

 

where 𝑥 are rounded, faceted or depth hoar volume fractions at locations 𝑖 and 𝑗 displaced at a lag distance of 𝑑. Equation (2) 

was evaluated for pairs of profiles separated by 𝑑 from 1 to 100 m in 1 m increments for each layer-type. To compensate for 

geo-location errors, a tolerance of ±5 m was applied to 𝑑, corresponding with GPS accuracy of the SMP. Weighting (𝑤) of 315 
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Eq. (2) takes on a value of 1 when pairs were displaced at 𝑑 ± 5 m and 0 otherwise. On average, 412 pairs were evaluated per 

lag of d on FYI and 333 on MYI. The resulting spatial auto-correlation analysis of snowpack fractional composition is 

presented in Figure 10. At scales beyond 100 m the number of profile pairs were limited given the ~250 m length of each site 

and are therefore not presented. 

 320 

On FYI, all layer-types showed similar trending in auto-correlation with distinct minimums spaced at approximately 40 m 

(Figure 10). After an initial decline, depth hoar fraction on FYI remained moderately correlated at scales of 100 m and also 

was the strongest of the layer-type correlations (R=0.70 at 52 m). While the magnitude of the remaining rounded and faceted 

fraction layer-type correlations were lower, spatial trends on FYI were highly correlated with each other. In contrast, 

correlations dropped quickly on MYI for all layer-types and remain low at scales of 100 m (Figure 10). Faceted-type layer 325 

fraction maintained spatial correlation for the longest period on MYI, but reached 0 at only 16 m. The result suggests spatial 

persistence of layered features on FYI beyond the available data. In contrast, strong variations in snow structure on MYI at 

short scales indicate the presence of distinct drivers and variability absent on the level FYI near Eureka. 

5. Implications for radar propagation in snow on sea ice 

In the context of radar altimetry and sea ice freeboard retrievals, errors related to snow density can be described as a propagation 330 

bias where speed of the interacting wave is reduced in snow (Kwok et al., 2011). Without accounting for this reduction, radar 

measured distance to the a ice surfacescattering horizon may be overestimated, or in a retrieval, underestimate the height of 

the sea ice freeboard if the primary scattering horizon is assumed to be the ice surface. Established empirical relationships with 

permittivity (i.e. Ulaby et al., 1986) can be leveraged to quantify reductions in wave speed (𝑐𝑠): 

 335 

𝑐𝑠 = 𝑐(1 + 0.51 𝜌𝑠 )−3/2 (3) 

 

where 𝜌𝑠 is observed or modeled snow density. Estimates of path length difference (𝛿𝑝) relative to propagation in free space 

can then be computed with respect to variations in snow thickness (ℎ𝑠) as in Tilling at al. (2018): 

 

𝛿𝑝 =  ℎ𝑠 (
𝑐

𝑐𝑠

− 1) (4) 

 340 

Utilizing these equations, differences in propagation bias were evaluated for two scenarios where snow density was (1) 

determined from climatology and (2) parametrized from SMP measurements. The first configuration mirrors common practice 

in radar altimetry where the two-dimensional quadratic of Warren et al. (1999) was used to compute bulk density based on 

location and month. The second configuration leverages the high vertical resolution of the SMP profiles to approximate 
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variations in wave propagation at the mmmillimeter-scale. One-way path length difference from the SMP (𝛿𝑝
SMP ) was 345 

calculated as the summation of 𝛿𝑝 for each 2.5 mm vertical estimate. In both scenarios, height of the snowpack (ℎ𝑠) was 

defined as SMP total penetration and 𝛿𝑝 was evaluated at each profile location. 

 

Given the small geographic extent of the Eureka campaign, climatological estimates of snow density predicted no spatial 

variability with a mean of 298 kg m-3.  This was unsurprising given that the Warren et al. (1999) estimates are generally 350 

considered invalid within the CAA due to a lack of observations in the region. As such, a static value of 300 kg m-3 was applied, 

representative of a typical static parametrization used in altimetry studies (e.g. Tilling et al., 2016). For AO sites, climatological 

estimates fell within a narrow range between 317 to 321 kg m-3, across a nearly 3° difference in latitude. From climatology, 

the average reduction in wave speed relative to free space (𝑐𝑠/𝑐̅̅ ̅̅ ̅̅ ) was estimated to be 0.809 for Eureka and 0.799 for AO sites.. 

With little variability in density, 𝛿𝑝 was driven strongly by snow thickness, where longer physical paths lead to larger delays 355 

(Figure 11a). As a result, predicted bias was greatest on MYI North of Alert (9.2 cm), despite slower expected propagation 

within the higher-density Eureka snowpack. 

 

For the second scenario, average wave speeds relative to free space remained similar for Eureka (0.803) but were increased 

for AO profiles (0.815). Estimates of propagation bias computed with an explicit representation of density (𝛿𝑝
SMP) showed 360 

limited sensitivity to the observed variations (Figure 11a). At ℎ𝑠 corresponding with the Eureka FYI mean (18.2±1 cm) the 

spread in 𝛿𝑝
SMP was approximately 2.3 cm with an average propagation bias of 4.7 cm. Conversely, for AO sites (39.7±1 cm) 

the spread in 𝛿𝑝
SMP increased to 3.8 cm with a mean propagation bias of 9.3 cm. To quantify errors related to the use of 

climatology over in situ observations, the two scenarios were differenced (𝛿𝑝
w99- 𝛿𝑝

SMP; Figure 11b). Assuming 𝛿𝑝
SMP as truth, 

potential errors on FYI ranged from -4.0 to 2.6 cm with a mean of 0.5±0.6 cm. On MYI, where densities were generally lower, 365 

the mean difference was -0.5±0.8 cm, spanning a small range of -2.5 to 2.3 cm. Errors on MYI between the AO and Eureka 

campaigns were in close agreement with means of -0.5±0.7 and -0.2±0.9 cm, respectively. 

6. Discussion 

Considerable skill was demonstrated in SMP retrievals of snow density by Proksch et al. (2015) but there had been no previous 

application on sea ice or in environments with a comparable snowpack dominated by wind slab and depth hoar. Evaluation of 370 

the P15 coefficients at 26 snow pits on sea ice showed a strong positive bias in SMP derived density compared to manual 

density cutter measurements. As a technical limitation, Proksch et al. (2015) noted that future hardware revision of the SMP 

would necessitate recalibration due to differences in signal digitization. The P15 results appear to confirm this limitation which 

was addressed with an OLS regression of the coincident density cutter measurements and SMP profiles. The recalibrated 

coefficients showed errors 10.9% of the observed mean when evaluated across a selected set of reference measurements (34 375 
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kg m-3, n=185). This was comparable to the P15 reported error (10.6%), and within the range of the reported skill (R2=0.64-

0.80). Differences in error between ice environments and campaigns were nominal (<4 kg m-3), demonstrating confidence in 

the application of a globally optimized set of coefficients. 

 

Observed errors in the snow density may be accounted for by limitations in the snow pit and SMP procedures. First, density 380 

cutter measurements used as reference, as opposed to high-certainty micro-CT, include baseline errors of up to 8% (Proksch 

et al., 2016). Sampling in depth hoar was a particular challenge where insertion of the cutter lead to collapse of the fragile 

microstructure. Evaluation of depth hoar was further complicated by low signal-to-noise where weakly bonded grains produced 

little variation in the SMP measured force. As a result, errors associated with depth hoar (14.0%) were greater than rounded 

(10.7%) or faceted (8.6%) layers. Errors associated with the higher density slab features may also be present due to 385 

unaccounted interactions between failing elements in the penetration model (Löwe and van Herwijnen, 2012). Representing 

two extremes, wind slab and depth hoar presented challenging retrieval scenarios, however the errors appears consistent with 

those expected from manual density cutter measurement and previous study. 

 

Differences between the two ice type environments (MYI and FYI) showed median force (F) to be an unreliable predictor of 390 

snow density, particularly on MYI (Figure 5). This was consistent with Marshall and Johnson (2009) who first identified 

environment specific sensitivity of the SMP force leading Proksch et. al. (2015) to include the microstructural term L in the 

empirical model. The relationship between L and snow density was found to be independent of ice environment or campaign, 

acting to balance the retrieved density where signal-to-noise was poor. Limiting the regression inputs in Sect. 3.3 to profiles 

collected only on MYI shows the strong influence of L where retrieved coefficients place increased weight on microstructure 395 

(+42%). The observed dependencies were unlikely to be driven by ice type but rather by associated differences in ice 

topography and therefore retained snow structure. Differences in snow structure were clear between the two ice environments, 

however quantitative evaluation of how ice topography might be used to further refine coefficients in Eq. (1) was beyond the 

scope of this work and will require measurements in deformed FYI environments. 

 400 

An average bulk density of 310±37 kg m-3 was measured across all profiles included in this study (n=615). Separated by ice 

type, contrasting distributions were presented where density on the wind swept FYI was typically greater (Figure 7a). Despite 

separation by a full year, and hundreds of kilometers, the MYI measurements from the AO and Eureka sites were similar in 

bulk density at 289 and 272 kg m-3, respectively. Evaluation of the snowpack structure showed depth hoar composition to be 

a driver of reduced density on MYI relative to FYI. At the local scales, melt ponds and hummocks on MYI serve to trap larger 405 

amounts of snow earlier in the season (Radionov et al., 1996, Sturm et al., 2002). Coupled with strong temperature gradients, 

favourable conditions for the development of a substantial depth hoar layer were common to most MYI sites. Ice topography 

control on the internal structure of the snowpack, and ultimately bulk density, was also apparent in the length scale analysis 

(Figure 10). Rapid decorrelation of layered structure on MYI suggested that the hypothesised ice topography interactions 
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occurred on relatively short length scales, driving high spatial variability particularly in depth hoar. In contrast, where large 410 

smooth floe were typical for Eureka, covariance of the layer composition on FYI persisted over large distances (>100 m). The 

observed variations showed a periodicity common to length scales associated with snow dunes or interactions between drifted 

elements (Sturm et. al, 2002; Moon et al., 2019). In the future it would be instructive to evaluate how information on surface 

roughness can be used to constrain understanding of internal snowpack structure between ice type environments where clear 

contrast exists. 415 

 

A limited number of studies were available to place the observed stratigraphy in the context of other Arctic regions. 

Measurements collected during N-ICE2015 (Merkouriadi et al., 2016) in the Atlantic sector of the Arctic Ocean described a 

predominantly faceted composition on FYI (48%) and second-year ice (54%). Although the data presented in this study 

contains no second year ice, the FYI faceted composition is in agreement, as are bulk densities in the relatively flat and wind 420 

swept environments. Faceted layers observed in both campaigns originated as surface slabs, buried by successive winter 

storms. With density and hardness comparable to the overlying wind slab, the differentiating factor in evolution was length of 

exposure to strong temperature gradients (Derksen et. al, 2009; Domine et. al., 2012). Snow pits consistently had measured 

temperature gradients sufficient for kinetic grain growth on FYI (25.7 C m-1 on average; Colbeck 1983). While these layers 

had not fully converted to depth hoar due to high initial density (Akitaya, 1974), the larger faceted crystals were texturally 425 

distinct, separating the wind slab from depth hoar. Improved understanding of how these faceted layers evolve at larger scales 

may be important in remote sensing or thermodynamic applications as they contribute enhanced scattering and reduced thermal 

conductivity relative to their wind slab origin types. 

 

Snow stratigraphy reported during SHEBA in the Beaufort Sea (Sturm et al., 2002) showed greater wind slab composition 430 

overall (42%), although this varied considerably with ice surface roughness. Analysis during SHEBA suggested that increased 

wind slab fraction was associated with smoother ice classes and therefore thinner snowpack. Similar observations inferred 

from the SMP profiles showed fractional composition by wind slab to increase by 46% on FYI over MYI because surface 

roughness conditions were much smoother. At small-scales, portions of slab and hoar approached parity during SHEBA where 

precipitation was intercepted earlier and retained within hummocks. Consolidating the wind slab and faceted layer 435 

classifications on MYI, the SMP derived composition was also roughly equal when compared to depth hoar (52% for AO and 

51% for Eureka). In the case of both N-ICE2015 and SHEBA, direct comparison of the snowpack composition is difficult due 

to different measurement protocols, but common themes regarding the influence of ice topography on snowpack stratigraphy 

were clear. 

 440 

Applying the SMP measurements to compute differences in radar propagation showed small differences compared the use of 

climatological density. In comparison to the Warren et al. (1999) climatology, density on MYI in the AO was approximately 

10% lower, insufficient to drive strong uncertainty in radar derived freeboard. Amongst the SMP derived parameters, 
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penetration bias most greatly influenced by fractional composition by rounded-type layers (R=-0.73) on both FYI and MYI. 

High surface densities resulted in wave speeds 3% slower than the remaining snowpack, having the most significant impact 445 

with respect to increased proportion. However, the overwhelming influence on the propagation bias in this study remains 

snowpack thickness (R=0.97).  

 

Although the result regarding density uncertainty in radar altimetry suggests that use of constants to represent density may be 

sufficient, several issues persist that should be addressed prior to making a conclusion. First, the work of Nandan et al. (2017) 450 

demonstrated that penetration is negatively impacted by the presence of brine within the snow volume on FYI. In section 5, 

the role of salinity was not addressed for profiles on FYI and is likely to be a much larger and inverse uncertainty. Second, 

snow conditions evaluated in this study were dry and thus do not consider variations in scattering horizon that can be attributed 

to temperature or wetness (Willatt et al., 2011). Finally, in addition to density, Proksch et al. (2015) demonstrated the ability 

to retrieve snow microstructural properties from SMP signals. Lacking a reference for calibration, microstructural quantities 455 

were not evaluated as part of this study but in the future could be used to address waveform uncertainty corrected in some 

products (Ricker et al., 2014).   

7. Conclusions 

The recent shift towards younger Arctic sea ice (Maslanik et al., 2011) along with increased winter precipitation (Zhang et al., 

2019) are likely to drive variations in snow structure whose full characterization will require a combined in situ, model, and 460 

remote sensing framework. Combinations of lidar and radar altimetry have been used to estimate snow depth on sea ice from 

space but no remote sensing methods are yet available to directly characterize density (Kwok and Markus, 2018; Lawrence et 

al., 2018). As such, in situ and model support are critical to fully address spatiotemporal variations in snowpack properties 

including mass and permittivity. The ability to rapidly collect SMP profiles across a broad set of features is attractive in this 

regard. Where a single snow pit represents only a snapshot of potential configuration, multiple SMP profiles can be leveraged 465 

to generate snow property distributions. Such data are highly desirable as they minimize or remove entirely, subjective bias 

introduced by operator decision or skill. This may allow meaningful parametrization of models with the intention of 

transferring local-scale campaign based analysis to larger domains. Although application of the SMP on sea ice shows great 

potential to meet this need, it does not replace standard snow pit methods required to frame more specific or larger-scale 

analysis.  470 

 

The SMP transect analysis demonstrated contrasting controls on snow density and layering specific to ice type and depositional 

environment. While snowpack structure of level FYI appears to persist at scales beyond 100 m, snow on MYI was highly 

variable at distances beyond 20 m. The role of ice topography and snow thickness variations as hypothesized drivers of these 

differences should be studied in further detail to assess if variations in snowpack structure can be inferred from knowledge of 475 
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the ice surface itself. Such information would be valuable for remote sensing of sea ice studies where snowpack variations 

stand as a critical uncertainty. 

 

The spatially distributed mm-scale estimates of snow density and layering introduced in this study provide novel information 

on multi-scale variability in Arctic sea ice covered domains. We hope these measurements will be relevant for applications 480 

beyond the altimetry case study discussed here such as in model development (Petty et al., 2018; Liston et al., 2018; Landy et 

al., 2019) and to assist in the definition of future satellite candidate missions including the Copernicus polaR Ice and Snow 

Topography Altimeter (CRISTAL; Kern et al., 2020). 
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Tables 

Table 1: Summary of measurements completed as part of the Eureka (E) and Arctic Ocean (A) campaigns. 

Site Details Location [DD] Measurements [#] 

ID Type Date Latitude Longitude Pits  SMP Profiles 

A2 MYI 11/04/2017 83.9834 -66.3509 1 12 

A3 MYI 11/04/2017 83.4421 -64.4156 1 12 

A5 MYI 13/04/2017 84.8578 -69.7044 1 12 

A6 MYI 13/04/2017 85.4446 -73.4211 1 12 

A7 MYI 12/04/2017 83.4421 -64.4154 1 4 

A8 MYI 12/04/2017 86.1987 -79.3859 1 12 

E1 FYI 08/04/2016 79.9629 -86.0019 3 31 

E2 FYI 09/04/2016 79.9944 -86.4462 3 41 

E3 FYI 10/04/2016 80.0785 -86.7794 3 70 

E4 FYI 11/04/2016 79.8440 -86.8051 3 70 

E5 MYI 13/04/2016 79.9829 -86.2933 3 85 

E6 FYI 14/04/2016 80.0211 -86.7856 3 92 

E7 FYI 15/04/2016 79.9716 -86.7909 3 100 

E8 MYI 17/05/2016 79.8135 -86.8083 2 63 

 675 

 

Table 2: Model coefficients for Eqn. (1) as originally defined in Proksch et al. (2015; P15) and recalibrated as part of this study to 

estimate snow density sea ice (K2019). 

  Regression Coefficients Metrics 

Set Samples [#] a (kg m-3) b (N-1) c (N-1 mm-1) d (mm-1) RMSE [kg m-3] R2 

P15 196 420.47 102.47 -121.15 -169.96 130 0.72 

K2019a 196 315.61 46.94 -43.94 -88.15 41 0.72 

K2019b 186 312.54 50.27 -50.26 -85.35 34 0.78 

 

Table 3: Normalized confusion matrix for the support vector machine (SVM) layer type classification of SMP profiles compared 680 
against known snow pit samples. Results were 10-fold cross validated and samples were stratified to ensure a minimum of 10 

samples per layer-type class in each fold. 

 Observed 

 Rounded Faceted Hoar 

Rounded 0.76 0.24 0.00 
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Faceted 0.09 0.76 0.15 

Hoar 0.00 0.18 0.82 

 

 

Table 43: Mean density cutter measurements from snow pits separated by layer type and campaign. 685 

 Pits [#] Density FYI [kg m-3 (#)] Density MYI [kg m-3 (#)] 

Campaign FYI MYI Rounded Faceted Depth hoar Rounded Faceted Depth hoar 

Eureka 17 3 375 (19) 357 (46) 232 (36) 381  (6) 287 (24) 218 (10) 

Arctic Ocean 0 6 -       (0) -       (0) -       (0) 373  (4) 380 (18) 275 (38) 

Combined 17 9 375 (19) 357 (46) 232 (36) 375  (10) 343 (42) 249 (48) 

 

 

 

Table 54: Snow density and layering derived from SMP profiles at each field campaign site using Eqn. (1) and the automated 

classification procedures described in Sect. 3.4. 690 

Site SMP derived properties SMP derived composition 

ID 

 

Type Penetration  

[cm] 

Density  

[kg m-3] 

Rounded  

[%] 

Faceted  

[%] 

Hoar  

[%] 

A2 MYI 44.2 289 11.3 36.8 51.9 

A3 MYI 33.6 302 20.3 42.5 37.2 

A5 MYI 39.2 326 11.8 60.8 27.4 

A6 MYI 34.5 267 14.0 29.1 56.9 

A7 MYI 34.7 279 12.7 14.8 72.5 

A8 MYI 45.4 272 8.2 20.6 71.2 

E1 FYI 13.8 364 38.2 53.7 8.1 

E2 FYI 17.3 346 31.6 59.0 9.4 

E3 FYI 15.9 342 39.1 52.1 8.8 

E4 FYI 20.2 285 23.3 33.1 43.6 

E5 MYI 32.5 279 15.4 36.2 48.4 

E6 FYI 15.4 336 34.1 57.6 8.3 

E7 FYI 22.4 309 22.3 48.5 29.3 

E8 MYI 32.4 268 17.4 33.1 49.5 
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Figures 

 

Figure 1: Overview of the Eureka and Arctic Ocean (AO) snow on sea ice campaigns (a). Unidirectional SnowMicoPen (SMP) 

transects were collected at multiple sites to evaluate spatial variability of snowpack properties (b; Eureka MYI site shown) with sets 

of 10 profiles separated at distances of 0.1, 1, and 10 m, in sequence (c). Co-located SMP profiles were collected at all snow pit 695 
locations to calibrate the SMP density model of Proksch et al. (2015). Background of (b) shows RADARSAT-2 imagery near Eureka 

where bight returns indicate rough multi-year ice. RADARSAT‐2 Data and Products © MacDonald, Dettwiler and Associates Ltd. 

(2019). All Rights Reserved. RADARSAT is an official trademark of the Canadian Space Agency. 

 

 700 

Figure 2: Photo of typical SMP and snow pit measurements on MYI (a) and sketch of the sampling procedure (b). Manual density 

measurements (3-cm height) were collected as continuous profiles between the air-snow and snow-ice interfaces (IF). SMP profiles 

were compiled 10 cm behind the pit face at each site. A rigid mount was used to stabilize the SMP while penetrating hard surface 

slabs (a). 

 705 
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Figure 3: SMP processing steps where first guess estimates of 𝛒𝒔𝒎𝒑 (a; black lines) are used to improve alignment with snow pit 

measurements of density (b; red lines) prior to recalibration and computation of final estimates (c). To begin alignment SMP profiles 

are divided into arbitrary 5 cm layers (dotted lines) and scaled randomly in thickness. Best fit alignment is selected where RMSE 710 
between the SMP estimates and snow pit measurements are minimized. The matching process accounts for differences in the target 

snowpack due to the 10 cm separation between profiles. The example shown is for Eureka site 5 on MYI. 
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Figure 4: Evaluation of the original SMP density model of Proksch et al. (2015) (P15; a) and recalibrated coefficients for snow on 

sea ice (K2019b; b). Retrieved distributions are shown for the P15 (b) and K2019b (d) parameterizations of Eqn. 1 with a common 715 
bin size of 20 kg m-3. In all cases, the reference measurements are manual density cutter measurements of snow density.  
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Figure 5: Comparison of the SMP regression parameters and corresponding snow pit observed density. Parameters include log-

transformed median force (𝒍𝒏(𝑭̃), a), microstructure length scale (𝑳, b) and an interaction term (𝒇̃𝑳, c). Relationships are separated 720 
by ice type (FYI and MYI). 

 

 

Figure 6: Automated layer-type classification of a SMP profile collected on sea ice where colours indicate classification result. 

Horizontal dashed lines indicate heights of snow pit observed stratigraphic layers at the same location. Snow layer classification 725 
follows standardized colours and symbols described in Fierz et al., (2009). 

 

 



27 

 

 

Figure 7: Bulk density (vertically integrated) derived from SMP profiles on first year (FYI, n = 402) and multiyear (MYI, n = 211) 730 
sea ice (a). Automated profile classification was used to separate the high vertical resolution (2.5 mm) estimates of snow density and 

produce layer-type distributions for rounded (b), faceted (c)m and depth hoar (d) classes. 

 

 

Figure 8: Fractional snowpack composition by rounded, faceted, and depth hoar layers from the SMP profiles on first year (FYI) 735 
and multiyear (MYI) sea ice. Classification methods for the SMP are described in Sect. 3.4. 
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Figure 9: Distribution of the number of snowpack layers as derived from the SMP transect profiles. Transitions between layer-types 740 
from the automated SMP profile classifications are used as a proxy for traditional snow pit layer counts. 

 

 

 

Figure 10: Spatial auto-correlation of snowpack fractional composition by layer-type on FYI and MYI as estimated from classified 745 
SMP profiles. Dotted lines show assumed correlation at length scales less than 1 m where geolocation uncertainty of the profiles 

precludes analysis. 
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Figure 11: Changes in estimated radar propagation bias (𝜹𝒑; a) relative to snow thickness (𝒉𝒔) based on density estimated from 750 

climatology (𝜹𝒑
w99) and measured from SMP profiles (𝜹𝒑

SMP). The two sets of estimates were subtracted to show potential errors 

associated with the use of climatology over known snow densities (b). 
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Response to reviewer #1 755 

General comments: This paper presents the snow pit and SnowMicroPen measurements over sea ice to recalibrate the SMP 

density model. The calibrated snow density and machine learning-based layer classification are combined to estimate density 

and length scale of variability differences in the composition of snow layers. Such density model and data are highly valuable 

in sea ice altimetry application as mentioned by authors. This in situ and model work are important in snowpack properties 

analysis and will draw wide interests from the community. This article is well-written and easy to follow. 760 

Thank you for your review and helpful suggestions to improve the paper. We have made changes throughout section 

3.2 to improve our description of how the SMP and density cutter measurements were compared. We have also revised 

some of the statistical descriptions as suggested. Inline responses to suggestions and questions are provided in bold 

below. 

 765 

My major comments are as follows: Section 3.2 about how to estimate density form SMP profile is not quite clear to me in P6, 

L168 ‘Estimates of _smp were then extracted...’. From my understanding, what you are doing here is more like getting the 

original 5cm-thickness _smp profile scaled according to perturbed thickness inn individual layer. What do you mean by 

“average the scaled profiles within 3-cm height of cutter measurements”?  

Once the SMP profiles are scaled we simply take the corresponding SMP values at the same height of each density 770 

cutter measurement. Because the density cutter is 3-cm in height we average the much higher resolution SMP estimates 

to make a 1:1 comparison. There is scope in the future to optimize how this comparison is made but we have not 

completed an extensive evaluation here. We modified the sentence on line L169 to make clear what is being averaged.  

 

What does it mean by: “Another 6cm window moving averaging”?  775 

We hope that the above response clarifies how the matching process was applied. However, we have not discussed a 6 

cm moving average and are unsure which lines this comment is referring to.  

 

P6, L180 and Figure 4, when you compare the density, do you compare each layer mean snow pit density and all SMP profiles 

estimation at that layer in one site?  780 

Comparisons described here were between each density cutter measurement and the mean of the SMP estimates within 

their corresponding 3-cm height. Effectively each point in Figure 4 represents a single density cutter measurement. 

We’ve made small improvements to the text in an attempt to make this clear. 

 

I noticed that in Eureka, one site has 2 or 3 pits (the distances between these pits are under 100m), how to divide the SMP 785 

measurements for these pits if SMP shave the same distance between two sites?  

This is correct, not all sites have the same number of pits, and at times, they are unequally spaced. Placement of the 

snow pits was structured to characterize inter-site variability but the distance between each was not considered as part 
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of our analysis. All analysis of spatial variability used the distance between SMP profiles (GPS located). We relied on 

large SMP data volumes rather than strict spacing of profiles to understand scales between 0 and 100 m. 790 

 

In section 3.4, when you use SVM to classify the snow layer’s type, with 75% accuracy, have you tried other machine learning 

methods and have you tried other non-linear kernels except for the linear one? What is the accuracy in other methods, and 

what are the potential limitation of such methods in classifying snow properties?  

Thank you for highlighting this important area of future work. We chose to apply a linear kernel with the SVM to limit 795 

complexity and focus on broader aspects of the density analysis. There are certainly non-linear divisions within the 

parameter space which the hyperplanes fail to delineate, limiting accuracy. To apply a non-linear kernel would require 

an extensive evaluation of the hyper-parameters which we feel is beyond the scope of this work. The work of Havens et 

al., (2012) stands as a strong example that enhanced SMP classification methods can be applied to improve accuracy. 

We hope to conduct an extensive assessment of other classification methods in future work. 800 

 

P7, L219, what is the vertical resolution when snowpit and SMP measurements are both trained considering their vertical 

resolutions are different. Also, I am very curious about the results when further adding ice type information in the training.  

Adding ice type information resulted in a small improvement of ~2% accuracy. The example we created will remain in 

our revised public code for reference. We chose not to use this configuration as ice type as ancillary information is not 805 

directly available from the SMP. 

 

P9, L268, ‘Profiles collected on FYI, and therefore exclusively near Eureka...’. Do you mean in Figure 7(a), over FYI, the 

distribution is negatively skewed? But from the figures, the density seems positively skewed over FYI. Also, the following 

sentence ‘In contrast, densities on MYI were positively skewed...’. Please check it.  810 

We have revised wording throughout the paper to use left- or right-skewed instead of negative or positive. The 

distribution in question is now described as left-skewed (Statistical skew of -0.41). 

 

P9, L277, ‘Measurements classified as faceted had on average a density...’.Figure 8c is over depth hoar not faceted and the 

distribution is not negatively skewed. 815 

Thank you for noting the incorrect label, we have corrected this. See our previous comment regarding skew. 

 

How to quantify the density uncertainty/error from the SMP density model in consideration of application on altimetry studies? 

Errors quantified in the study showed the SMP to be comparable to those expected from manual density cutter 

measurements. We hope to use this information to build a more comprehensive analysis of errors involved in altimetry 820 

of sea ice. However, we do not have any specific conclusions at this point on how best to address uncertainty when 

applying the SMP to altimetry studies. 
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Specific comments: P2, L50, ‘Laxon et al. 2013’ should be ‘Laxon et al., 2013’ P9,L271, ‘However, these difference...’ should 

be ‘However, these differences’ P13, L381,‘however the errors appears’ should be ‘however the errors appear’ 825 

Thank you for noting these errors. Each has been revised as suggested. 

 

 

Response to Reviewer #2 

This manuscript addresses the spatial variation in the density of snow on sea ice through use of an extensive in-situ dataset 830 

from SMP and density-cutters. The paper is well written and highly rigorous; I believe it makes a significant contribution to 

the study of snow on sea ice and I recommend it for publication in The Cryosphere after some minor changes and clarifications.  

On a side note, it was particularly pleasing to see the authors publishing their data and analysis code in an interactive, 

browser-based environment. As well as making the research output easier to review, it is likely to add to the impact of the 

work. 835 

Thank you for your review and comments to improve the quality of the manuscript. We sincerely hope that the methods 

and code presented here can be made better through community application and adaptation. Thank you for your note 

regarding our efforts to ensure reproducible and open science. 

 

L57: “were used to address this problem” 840 

Corrected as suggested. 

 

L58/339/471: Perhaps ‘mm-scale’ should be replaced with ‘milimeter-scale’ for readability. 

We have made the units explicit as suggested. 

 845 

L129: “SMP transects were established” 

Corrected as suggested. 

 

L184: “Eureka had a higher RMSE ...than measurements at AO sites” 

Corrected as suggested. 850 

 

You’ll presumably update your coefficient names to reflect the year of publication (K19a→K20a) in the final copy. 

 

Updated throughout to reflect the current year. 

 855 

L223: I think the reporting of the classifier’s accuracy evaluation could be reworded for clarity. Presumably the ‘prediction 

accuracy of 76%’ means that 76% of the samples were assigned the correct layer type? Or does it mean that of the bulk layers 

that it identified (e.g. depth hoar, slab etc), they were right 76% of the time?  

 

Added text to clarify what accuracy means (True positive or true negative predictions on line 224). We have also added 860 

an evaluation of errors by layer type and reported classification errors as a confusion matric (Table 3).  

 

Since the SMP makes measurements of F & L a couple of hundred times per mm, then does your classifier make a classification 

of the snow type with similar frequency, or is it as the frequency of your 2.5 mm density estimates? Or does it just identify 

boundaries between layers of different snow type? 865 
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The classifier is trained on the 3-cm averaged SMP data extracted at the height of each density cutter measurement. 

We added text to make it clear that the classifier was applied at vertical resolution of the SMP despite training on 

density cutter averages. 

 870 

I think it would also be particularly valuable to break down the performance by layer-type. The average was 76%, but did the 

classifier do a better job of identifying different types? Were there some types that were particularly hard to identify? 

 

Agreed, see previous response regarding the introduction of the confusion matrix. 

 875 

L326: As you subsequently mention, the primary scattering surface for radar altimetry may not be the ice surface. As such, I 

think this should be rephrased as ‘radar measured distance to the primary scattering horizon may be overestimated’. On that 

note, I think you should mention explicitly in this section that calculations ofδp assume (in line with convention for radar 

altimetry) that the ice surface is the dominant scattering horizon.• 

 880 

Agreed, more careful wording was needed to acknowledge penetration uncertainty. We’ve modified the text to establish 

that our assumption is that the primary scattering interface is the ice surface. See further points below where additional 

details have been added on why that assumption may be invalid. 

 

L327: This reference is now quite challenging for many readers to track down, I suggest updating tothe more recent edition: 885 

Ulaby and Long (2014).• 

 

Thanks for your suggestion but we have kept the original given differences in authorship. 

 

L332: I think it would be good to cite this equation (as it’s reported differently in some literature),consider Tilling et al. (2018) 890 

or Mallett et al. (2020). 

 

A reference to Tilling et al. (2018) has been added as suggested to establish linage. 

 

L444: Consider pointing out in this section that as well as brine over FYI, morphological features in the snow or higher snow 895 

temperatures (Willatt et al., 2011) may also raise the primary scattering horizon, limiting the applicability of your path 

difference calculation. 

Yes, important to mention this even if assumed. We added a point to clarify that snow conditions were dry and 

temperature was not considered. We will leave the final sentence as is using microstructure to address the influence of 

layering. 900 

 


