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Abstract  26 

 CloudSat estimates that 1773 cubic km of snow falls, on average, each year over the world’s mountains. This 27 

volume of snow amounts to five percent of the volume of snowfall accumulations globally. This study provides a 28 

synthesis of mountain snowfall estimates over the four continents containing mountains (Eurasia, North America, 29 

South America and Africa), comparing snowfall estimates from a new observation-based dataset to similar snowfall 30 

estimates from four reanalyses: Modern-Era Retrospective analysis for Research and Applications (MERRA), 31 

MERRA-2, Japanese 55-year Reanalysis (JRA-55) and European Center for Medium-Range Weather Forecasts Re-32 

Analysis (ERA-Interim). Globally, the fraction of snow that falls in the world’s mountains is very similar between all 33 

these independent datasets (4-5%), providing confidence in this estimate. The fraction of mountain snowfall for the 34 

different continents is also very similar between the different datasets. However, the magnitude of snowfall estimates 35 

differs substantially globally and for each continent. The consensus in fractions and the dissimilarities in magnitude 36 

could indicate that large-scale forcings are similarly represented in the five datasets while at smaller scales there might 37 

be large discrepancies.  38 
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1. Introduction 52 

  The advent of satellite-borne instruments capable of detecting falling snow and of reanalysis products that 53 

diagnose snowfall have made possible a global examination of how snowfall is distributed and its contribution to 54 

atmospheric and surface processes. Falling snow transfers moisture and latent energy between the atmosphere and 55 

the surface. Snow impacts the surface radiant energy transfer by modifying albedo and emissivity. Accumulated 56 

snow can also act as a thermal insulator that modifies sensible heat fluxes and how the response of surface 57 

temperature responds to changes in atmospheric conditions. Furthermore, it acts as a surface water storage reservoir 58 

(Rodell et al., 2018), providing seasonal runoff that provides fresh water supplies for both human populations and 59 

water-dependent ecosystems. Billions of people around the world depends on these resources. These water supplies 60 

are recognized as being at risk from climate change and rising global temperatures (Barnett et al., 2005; Mankin et 61 

al., 2015).  62 

 63 

Precipitation gauge measurements of snowfall for meteorological and hydrological purposes provide valuable 64 

data but have historically suffered shortcomings related to spatial sampling and gauge performance (Kidd et al., 2017). 65 

Shortcomings in the accuracy of such measurements and methods to improve that accuracy have been the focus of a 66 

number of studies (Goodison et al., 1998; Kochendorfer et al., 2018). Beyond accuracy issues, these gauge networks 67 

are necessarily of limited spatial coverage potentially biasing climatologies over large domains. Coverage of ocean 68 

regions is not possible. Over land, gauges tend to be located near inhabited areas, leading to spare or nonexistent 69 

coverage in more remote locations (Groisman and Legates, 1994). These remote locations include areas such as the 70 

high latitudes and mountains, where snowfall can be the dominant form of precipitation. Even when these areas have 71 

relatively dense gauge networks such as the CONUS (Contiguous United States) mountains, gridded datasets have 72 

their limitations, most notably gauge under catchment issues and large snowfall accumulation gradients in complex 73 

terrain that are often insufficiently sampled by existing in situ networks  (Henn et al., 2018).  74 

 75 

Given these shortcomings in snowfall surface observations, studies on snowfall in remote locations commonly 76 

rely on reanalyses (e.g. Bromwich et al., 2011). Reanalyses utilize numerical weather prediction models to integrate 77 

observations of large-scale geophysical fields (e.g., temperature and water vapor). One strength of reanalysis datasets 78 

is their continuous spatial and temporal coverage. However, the veracity of reanalysis snowfall datasets depends 79 
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strongly on the underlying model and the assimilated datasets, which often exhibit systematic and varied biases (Daloz 80 

et al. 2018). In addition, their low spatial resolutions can be a limitation especially in regions of complex topography 81 

and reanalyses should therefore be used with caution. For example, Wrzesien et al. (2019) showed that reanalyses 82 

have large biases in terms of snow water equivalent (SWE) over North America but their representation of snowfall 83 

is more realistic. In this current study, four reanalysis datasets will be examined: Modern-Era Retrospective analysis 84 

for Research and Applications (MERRA), MERRA-2, European Centre for Medium-Range Weather Forecasts 85 

(ECMWF) interim reanalysis (ERA-Interim) and Japanese 55-year Reanalysis (JRA-55).  86 

 87 

As an alternative to reanalyses, snowfall rates can now be assessed using satellite observations (with sufficient 88 

spatio-temporal coverage) provided by CloudSat’s Cloud Profiling Radar (CPR). CloudSat observations, nearly 89 

continuous since 2006 (Stephens et al., 2002, 2008), have been applied to produce near-global estimates of snowfall 90 

occurrence and intensity (Liu 2008; Kulie and Bennartz, 2009; Wood and L'Ecuyer, 2018). The resulting datasets have 91 

been examined extensively from local to global scales (Liu 2008; Kulie and Bennartz, 2009; Hiley et al., 2011; Palerme 92 

et al., 2014; Smalley et al., 2015; Chen et al., 2016; Behrangi et al., 2016; Norin et al., 2015; Milani et al., 2018). 93 

CloudSat has substantially extended the spatial extent of precipitation measurements compared to existing gauge or 94 

radar networks. In particular, these instruments have greatly enhanced the observations of light precipitation including 95 

snowfall over oceans, over remote high latitude regions and over inaccessible land areas (e.g., Behrangi et al., 2016; 96 

Milani et al., 2018; Smalley et al., 2015; Norin et al., 2017).  97 

 98 

However, satellite-based retrievals also have inherent uncertainties related, for example, to their limited 99 

temporal coverage. For instance, they might miss some heavy events such as atmospheric rivers in Western North and 100 

South America (Ralph et al., 2005; Neiman et al., 2008; Viale and Nunez, 2011). Therefore CloudSat snowfall 101 

retrievals have been extensively assessed against a wide range of independent ground-based measurements. Hiley et 102 

al. (2011) seasonally compared CloudSat snowfall estimates with Canadian surface gauge measurements, showing 103 

better results for higher versus lower latitudes - especially lower latitude coastal sites. They speculated that latitudinal 104 

comparison differences might be due to CloudSat sampling (more observations at higher latitudes), snow 105 

microphysical differences associated with warmer snow events that could affect CloudSat estimates (e.g., wetter snow, 106 

rimed snow, and/or mixed phase precipitation), or precipitation phase identification issues associated with snow events 107 
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in the 0-4C temperature range. CloudSat’s 2C-SNOW-PROFILE (2CSP) product also displayed excellent light 108 

snowfall detection capabilities when compared against the National Multi-Sensor Mosaic QPE System (NMQ) dataset, 109 

a hydrometeorological platform, which assimilates different observational network, but CloudSat did not produce 110 

higher snowfall rates as frequently as NMQ (Cao et al., 2014). Further comparisons between CloudSat and the 111 

National Centers for Environmental Prediction (NCEP) merged NEXRAD and rain gauge Stage IV dataset illustrated 112 

consistent CloudSat-Stage IV performance when near-surface temperatures are below freezing (Smalley et al., 2014). 113 

The CloudSat 2CSP product was also compared to a ground-based radar network in Sweden, showing consistent 114 

agreement in the 0.1 – 1.0 mm h-1 snowfall rate range (Norin et al., 2015). However, 2CSP snowfall rate counts were 115 

lower above the 1 mm h-1 threshold. 2CSP retrievals have also been rigorously compared to ground-based profiling 116 

radars in Antarctica, with CloudSat outperforming ERA-Interim grid-averaged results when MRR-derived retrievals 117 

are used as a reference dataset (Souverijns et al., 2018). Comparisons between CloudSat and existing reanalysis 118 

datasets are however scarce, and mostly limited to the Poles (Palerme et al., 2014, 2017; Milani et al., 2018; Behrangi 119 

et al., 2016). Together, these independent analyses provide confidence that CloudSat observations may deliver realistic 120 

accumulations on seasonal scales. The CloudSat snowfall dataset has also been proven useful for isolating distinct 121 

modes of snowfall variability on global scales. For instance, over-ocean convective snow has been comprehensively 122 

studied using CloudSat products (Kulie et al., 2016; Kulie and Milani, 2018). CloudSat also exhibits enhanced 123 

snowfall observational capabilities in mountainous regions compared to ground-based radar networks, partially due 124 

to scanning radar beam blockage issues (Smalley et al., 2014). 125 

 126 

In spite of the noted shortcomings in snowfall datasets from gauge, radar and reanalyses, mountain snowfall 127 

has not yet been thoroughly studied using multiple reanalyses and the CloudSat data set. In this study, we derive 128 

mountain snowfall from five datasets (CloudSat 2CSP, MERRA, MERRA-2, ERA-Interim and JRA-55) to answer 129 

the following questions:  130 

1. How much snow falls on the World’s mountains? 131 

  2. What percentage of continental snow falls on mountainous regions?  132 

Given the challenges in retrieving snowfall from single-frequency radar observations, especially in complex terrain, 133 

the CloudSat estimates are not treated as the “reference” dataset, though we note that they are the only estimates 134 

derived directly from observations. All five sources are treated as providing valid independent estimates of the fraction 135 
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of snow that falls in mountainous regions to document the current state of knowledge in this field. The next section 136 

presents the different datasets employed in this study, as well as methodological information such as the mountain and 137 

continental masks. Section 3 compares mountain snowfall fraction and magnitudes between the different datasets 138 

while the following section, Section 4 discusses the differences in absolute magnitude of snowfall estimates. Finally, 139 

Section 5 summarizes the results of this study and offers concluding remarks.  140 

 141 

2. Data and Methodology 142 

2.1 Satellite observations    143 

The nadir-pointing CPR onboard NASA’s CloudSat satellite is the first spaceborne W-band (94-GHz) radar. 144 

CloudSat’s high inclination orbit (98o) provides a unique coverage of observed global snowfall (Kulie et al., 2016). In 145 

addition to providing near-global sampling, the CPR has a minimum detectable radar reflectivity of approximately -146 

29 dBZ and is consequently sensitive to lighter precipitation events (Tanelli et al., 2008). The CPR has a fixed field 147 

of view pointed at near-nadir and measures over a spatial resolution of approximately 1.7 km along-track and 1.4 km 148 

cross-track (Tanelli et al., 2008). The orbit is such that CloudSat revisits particular locations every 16 days. While this 149 

observing strategy limits sampling on short time-scales, CloudSat has observed more than 120 million snowing 150 

profiles over its 10+ year mission providing a rich dataset from which to derive snowfall frequency and cumulative 151 

snowfall over the large domains analyzed here.  152 

 153 

CloudSat’s 2CSP snowfall product, version R04 (Wood et al., 2013), provides estimates of instantaneous 154 

surface snowfall rates (S) for each of these pixels derived from the observed vertical profiles of radar reflectivity (Z). 155 

For this work, the data are spatially gridded onto a 1ox3o (lat/lon) grid to ensure robust sampling by the narrow 156 

CloudSat ground track. This means that the satellite data are sampled onto the spatial grid desired and then averaged 157 

within each grid. The product derives instantaneous data twice per month from an optimal estimation (Rodgers, 2000) 158 

retrieval applied to individual reflectivity profiles to obtain vertical profiles of snow microphysical properties. Ground 159 

clutter affects radar bins nearest the surface, so the retrieval is applied only to the clutter-free portion of the profile, 160 

i.e., that portion of the profile that is above the extent of likely ground clutter effects, typically about 1.2 km over land. 161 

Surface snowfall rate is estimated as the rate in the lowest clutter-free radar bin. The cumulative snowfall presented 162 

here are, thus, not true surface snowfall rates. Clutter also limits CloudSat’s ability to detect shallow snow events or 163 
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capture strong variations in snow profiles near the surface (Maahn et al, 2014; Souverijns et al, 2018; Palerme et al, 164 

2017). While this introduces uncertainty in the snowfall estimates presented here, the analysis of ground-based 165 

vertically-pointing radar in mountainous regions by Maahn et al. (2014) show that the effects of this observing system 166 

limitations are somewhat compensated by the competing effects of evaporation and undetected shallow snowfall. It 167 

should also be noted that on November 1 2011, there was a change in CloudSat’s operating mode, leading to daytime-168 

only operations, which can lead to some uncertainty in the snowfall estimates.  169 

 170 

Snow and rain are discriminated based on the CloudSat 2C-PRECIP-COLUMN product (Haynes et al., 171 

2013), which applies a melting layer model driven by the ECMWF analyses temperature profiles. Snow particles are 172 

assumed to melt following the model of melted mass fraction described by Haynes et al. (2009). All profiles with 173 

melted fractions less than about 15% at the surface are considered snowing. Those with melted fractions greater than 174 

90% are considered raining. Melted/frozen fractions between 15-90% are labeled “mixed” category considered to be 175 

a catch-all uncertainty for profiles that cannot be unambiguously classified as rain or snow using W-band reflectivity 176 

alone. Only snowing profiles are considered in this study.  177 

 178 

2.2 Reanalyses 179 

 This study also considers four modern reanalyses: MERRA, MERRA-2, ERA-Interim and JRA-55. MERRA 180 

(Rienecker et al., 2011; 0.67° x 0.5° x 42 levels) uses the Goddard Earth Observing System version 5 (GEOS-5) and 181 

the data assimilation system (DAS). MERRA-2 (Gelaro et al., 2017; Bosilovich et al., 2015; 0.635° x 0.5° x 42 levels) 182 

was recently introduced to replace MERRA. ERA-Interim (Dee et al., 2011; 0.75° x 0.75° x 37 levels) is developed 183 

by the European Center for Medium Range Forecasts (ECMWF). ERA-Interim replaced the previous reanalysis 184 

dataset from the ECMWF, ERA-40. The Japanese Meteorological Agency (JMA) has recently developed their second 185 

reanalysis dataset after JRA-25: JRA-55 (Kobayashi et al., 2015; 0.56° x 0.56° x 60 levels). Both MERRA (Rienecker 186 

et al., 2011) and MERRA-2 (Gelaro et al., 2017) use 3D variational assimilation systems, where JRA-55 (Kobayashi 187 

et al., 2015) and ERA-Interim (Dee et al., 2011) use 4D. The spatial and temporal modeling of snowfall alone is 188 

different in these reanalyses, as are some of the physical mechanisms within. The MERRA-2 reanalysis assimilates 189 

an updated version of the GEOS-5 atmospheric model. Reichle et al. (2017) showed that the snow amounts are 190 

generally better represented in MERRA-2 than MERRA. However, MERRA-2 precipitation has a known deficiency 191 
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over high topography due to issues in categorizing precipitation mode as large-scale instead of convective (Gelaro et 192 

al., 2017). The results from these previous studies make the comparison between MERRA and MERRA-2 particularly 193 

interesting in this case. JRA-55 assimilates the same observations that were used for the predecessor to ERA-Interim, 194 

ERA-40, as well as archived observations from JMA. Both JRA-55 and ERA-Interim use their own forecast models.  195 

 196 

 All datasets used in this study are bilinearly interpolated from their native resolution to match the 1ox3° (lat 197 

x lon) grid of CloudSat. The data are examined over the time period 2007-2016 with a monthly temporal resolution. 198 

The production of MERRA data ended in February 2016, as MERRA-2 is now the preferred dataset while CloudSat 199 

started in 2007.  200 

 201 

2.3 Masks and definitions  202 

Snowfall estimates from all sources are partitioned between the different continents using the “continental 203 

mask” shown in Figure 1a. The continental mask was first used in L’Ecuyer et al. (2015). Then, the mountain and 204 

non-mountain regions are separated using the “mountain mask” presented in Figure 1b. Based on the Kapos et al. 205 

(2000) definition, grid cells are classified as mountainous based on elevation, slope, and local elevation range. The 206 

original mask was produced using the USGS GTOPO30 digital elevation model, with a spatial resolution of 30 arc-207 

seconds (~1 km). Our version of the mountain mask has been aggregated to 1°x3° (lat/lon) grid to match the spatial 208 

resolution of the gridded CloudSat 2SCP. The combination of these two masks is used to subdivide the snowfall 209 

estimates over the four continents that contain mountains: North America, South America, Eurasia and Africa.  210 

 211 

In this article, total mountain snowfall is equal to the cumulative snow falling over North America, South 212 

America, Africa and Eurasia. Greenland and Antarctica are considered as ice sheets and therefore do not qualify as 213 

continents with mountains. Global snowfall is the cumulative snow falling over all lands in the world, which includes 214 

the four continents already cited plus Greenland, Australia and Antarctica.  215 

 216 

3. Mountain snowfall estimates in CloudSat observations and reanalyses 217 

3.1 Global spatial distribution of mountain snowfall 218 
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Table 1 shows the snowfall estimates for mountain and non-mountain snowfall for CloudSat and the 219 

reanalyses, over each continent and globally. According to CloudSat observations, 1773 cubic km of snow falls over 220 

global mountains per year. This number is an average over the volume of snow falling during the time period from 221 

2007 to 2016. From CloudSat estimates, 5% of global snowfall is within mountainous areas. To understand where the 222 

snow is falling, Figure 2a presents the geographical distribution of the mountain snowfall estimates in CloudSat. As 223 

expected, in all datasets a majority of the mountain snow falls in the Northern Hemisphere (Himalayas and Rockies; 224 

95-99%), with little snowfall (<5%) in the Southern Hemisphere.  225 

 226 

In the reanalyses, while the amount of snow falling over the mountains varies depending on the dataset 227 

examined, the fraction of snow within the mountains is similar across all datasets. MERRA and MERRA-2 global 228 

mountain snowfall estimates are close to CloudSat with 1763 cubic km per year and 1891 cubic km per year, 229 

respectively, while ERA-Interim and JRA-55 show much lower amounts, with 1041 cubic km per year and 489 cubic 230 

km per year, respectively. The systematically lower mountain snowfall estimates in ERA-Interim and in JRA-55, as 231 

well as the tendency for MERRA-2 to produce higher mountain snowfall rates over some continents will be further 232 

discussed below. In spite of these differences, the geographical distribution of mountain snowfall is similar between 233 

CloudSat and all the reanalyses (Fig. 2). It is encouraging that the fraction of snow falling in the mountains occupies 234 

a narrow range from 4% for MERRA’s reanalyses and JRA-55 to 5 % for ERA-Interim and CloudSat. This good 235 

agreement between the different datasets (Table 1) allows us to state with some confidence that 5% of all continental 236 

snow falls in the mountains globally.  237 

 238 

3.2 Contribution of mountain snowfall to continental snowfall 239 

Table 1 also shows the contribution of mountain snowfall to total snowfall for CloudSat and each reanalysis 240 

over each continent. To get a better sense of the contribution of orography to snowfall, the percentage of mountainous 241 

grid points over each continent is provided in the last column of the table. Eurasia has the highest fraction of 242 

mountainous grid boxes with 33% of its grid boxes considered as mountains. North and South America have a quarter 243 

of their grid boxes covered with mountains and only 14% of the African continent is considered mountainous. The 244 

contribution of mountain snowfall does not vary substantially between continents. For Eurasia, South America and 245 

Africa, it is around 10 % while for North America it represents around 5% of the snow falling over the continent. Over 246 
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all the continents, the agreement between the reanalyses and CloudSat observations is very good with differences 247 

under 4%.  248 

 249 

Coherently with the previous section, the magnitude of mountain snowfall estimates over the four continents 250 

vary a lot depending on the datasets examined. MERRA’s datasets and CloudSat present similar magnitude in terms 251 

of mountain and continental snowfall while ERA-Interim and JRA-55 present much lower estimates than the other 252 

datasets. For example, for mountain snowfall: over Eurasia the values for mountain snowfall vary between 379 for 253 

JRA-55 and 1440 cubic km per year for CloudSat. Over North America, it varies from 105 cubic km per year for JRA-254 

55 to 378 cubic km per year for MERRA-2 and for South America from 5 for JRA-55 to 86 cubic km per year for 255 

MERRA-2. Unfortunately, the high range of differences observed for mountain snowfall also applies for the 256 

magnitude of total snowfall over each continent. In all cases, JRA-55 shows the lowest magnitude estimates and 257 

MERRA-2 the highest. It is also interesting to point out that CloudSat is always part of the higher range of snowfall 258 

estimates for each continent. Due to its limited temporal coverage, it might be missing some heavy snow events such 259 

as atmospheric rivers in Western North America (Rutz and Steenburgh, 2012; Lavers and Villarini, 2015; Molotch et 260 

al. 2010). These few events contribute to a large part of the water year precipitation.  261 

 262 

4. Examination of the differences in snowfall magnitude 263 

 The previous section showed a very good agreement between all the datasets in terms of mountain snowfall 264 

fractions. However, the spatial maps presented in Figure 2 and the absolute snowfall amounts in Table 1 showed 265 

substantial differences in magnitude between the different datasets. This is further demonstrated in Figure 3 that 266 

summarizes the snowfall estimates in mm/month/grid box over Eurasia, North America, South America and Africa 267 

and its partitioning between mountainous (blue) and non-mountainous areas (yellow) for the five datasets. To ease the 268 

comparison between the different datasets, here the snowfall amounts are normalized by the number of mountain and 269 

non-mountain grid boxes respectively. There is some consistency in the relative behavior of the various datasets 270 

between the regions. Consistently with the results in Section 3, JRA-55 always has the lowest estimates of snowfall 271 

per grid box (cf. Table 1). For example, over North America and Eurasia, JRA-55 produces 68% less snowfall than 272 

the average of the four other datasets (Fig. 3). Even so, when looking at Figure 4, which presents the frequency of 273 

snowfall occurrences for each continent for all datasets, the frequency of snowfall occurrences for JRA-55 is very 274 
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close to the other products. This indicates that JRA-55 underestimates the intensity of many snowfall events. ERA-275 

Interim also tends to be on the lower end of the spectrum concerning snowfall, compared to the other datasets (Fig. 276 

3). This can be at least partly attributed to its systematic lower frequency of snowfall occurrences (cf. Figure 4). With 277 

the exception of North America, MERRA-2 generally has the highest total snowfall compared to the other datasets 278 

(Fig. 3). Again, this is consistent with the results shown in the previous section. This overestimate is related to the 279 

way this dataset represents the frequency of snowfall events. MERRA-2 produces much more snowfall events than 280 

the other datasets (cf. Figure 4). This bias might be similar to the bias identified for precipitation in climate models, 281 

producing too frequent and too lightly-precipitating events, referred to as “perpetual drizzle” (Stephens et al., 2010). 282 

This could be happening for MERRA-2, for snowfall events.  283 

 284 

The differences in snowfall among datasets is especially prominent over Africa and South America. Over 285 

Africa (Fig. 3d), both MERRA and MERRA-2 produce much more snow than the other datasets, with MERRA-2 286 

producing nearly twice as much snowfall as MERRA. MERRA produces 75% more snowfall than the average of the 287 

three remaining datasets (ERA-Interim, JRA-55 and CloudSat) while for MERRA-2 produces 85% more. For the 288 

same reasons, over South America MERRA-2 produces 73% more snowfall than the average of the other datasets. 289 

Furthermore, it highly exceeds the mountain and non-mountain snowfall compared to the other datasets. However, as 290 

most of the snow over South America is mountainous, the excess in mountainous snowfall has a stronger impact on 291 

the differences in total accumulated snowfall. The seasonal cycle of mountain snowfall over South America (not 292 

shown) provides another interesting explanation for this specific bias. From January to December, MERRA-2 293 

overestimates the other datasets but behave similarly, however during the second part of the cycle (after June), the 294 

behavior of MERRA-2 is very different. Instead of a decrease in mountain snowfall, snowfall accumulations remain 295 

very high and steady. This is clearly a major contributor to the high snowfall estimates of MERRA-2 over South 296 

America.  297 

 298 

5. Summary and conclusion 299 

 Snowfall plays an important role in a number of atmospheric and surface processes that impact energy and 300 

hydrological cycles and can influence Earth’s climate. To understand these processes, and how they will be influenced 301 

by future climate change, it is imperative to have reliable observations of present-day mountain snowfall. This study 302 
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is a preliminary step towards an estimate of mountain snowfall from CloudSat satellite observations and four 303 

reanalyses (MERRA, MERRA-2, JRA-55 and ERA-Interim). In this work we answer the following questions:  304 

1. How much snow falls on the World’s mountains? 305 

1773 cubic km per year of snow falls on the World’s mountains in CloudSat observations, 1763 cubic km per year in 306 

MERRA, 1891 cubic km per year in MERRA-2, 1041 cubic km per year in ERA-Interim and 489 cubic km per year 307 

in JRA-55 (cf. Table 1).  308 

     2. What percentage of continental snow falls on mountainous regions? 309 

4 to 5% of snow falls over the mountains (cf. Table 1).  310 

 311 

One aim of this research is to provide context for researchers for who want to use snowfall estimates globally 312 

or on specific continents from reanalyses and/or satellite observations. The results of the discussion clearly emphasize 313 

the necessity of using several datasets, including different platforms such as reanalyses and satellite observations. 314 

Results presented here can help future analyses select validation datasets for specific continents, since we show that 315 

some datasets behave differently than the others for continental snowfall estimates. For this reason, as well as the 316 

acknowledgement by modelers that have difficulties accurately representing snowfall over South American mountains 317 

(Gelaro et al., 2017), it is suspected that MERRA-2 is not the optimal dataset to use for this continent. However, this 318 

study and Wrzesien et al. (2019) showed that over North America, MERRA-2 is certainly a realistic dataset with 319 

substantial skills. Generally, there is no good or bad dataset, however some datasets may outperform others over 320 

certain continents. These different abilities in the reanalyses and satellite products can lead to issues when validating 321 

climate models, for example. It is therefore recommended to use an ensemble of the products just like it is 322 

recommended to use several models or simulations. This study also suggests that estimates of the fraction of snow 323 

that falls in the mountains may be more reliable than estimates of the absolute magnitude of mountain snow 324 

accumulations. A hypothesis behind this result could be that the datasets presented here have a similar representation 325 

of the large-scale forcings but differences at local/smaller scales, which could be due to uncertainties in the 326 

microphysics. Indeed, even if the reanalyses are based on different models, they should simulate similar and realistic 327 

large-scale forcings. For CloudSat, its ability to capture these forcings would come from its relatively good level of 328 

temporal and spatial coverages. This could explain the consensus between the different datasets in terms of snowfall 329 

fractions. On the other hand, at smaller scales, both types of datasets experience different limitations which would 330 
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explain the dissimilarities in snowfall magnitude. For example for CloudSat, its spatial coverage could lead to miss 331 

some heavy snow events like atmospheric rivers.  332 

 333 

In the future, this work will expand in several directions. First, a deeper and more process-oriented analysis 334 

of the differences observed during the different datasets should be done over each continent. While this study is 335 

confined to mountain snowfall produced by CloudSat and reanalysis datasets, it also serves as a foundation for 336 

studying cloud microphysical and dynamical processes operating within snow-producing clouds forced by orography. 337 

Because different modes of snowfall have varying impacts on the environment and potentially unique remote sensing 338 

fingerprints, identifying specific types of snowfall could lead to better measurements of snowfall. In addition, this 339 

could also improve forecasting by representing different snowfall modes more realistically within numerical weather 340 

models. Also, to evaluate the ability of climate models to represent snowfall estimates, this same analysis could be 341 

realized for climate models such as the CMIP5 ensemble, or the forthcoming CMIP6 ensemble.  342 
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Tables 495 
 496 
 497 

 
Snowfall 
estimates  

 
MERRA 
 
 

 
MERRA-2 

 
ERA- 
Interim 

 
JRA-55 

 
CloudSat 

Percentage of 
mountain grid 

boxes per 
continent 

Eurasia 
 

1416 /11176 
11% 

1426 / 13104 
10% 

808 /8112 
9% 

379 / 3916 
9% 

1440 / 10764 
12% 

33% 

North  
America 

312 / 4500 
6% 

378/5800 
6% 

223 /3450 
6% 

105 / 1725 
6% 

303   / 7325 
4% 

24% 

South 
America 

30 / 270 
10% 

86 / 662 
12% 

10 / 100 
9% 

5 / 46 
10% 

30   / 236 
11% 

21% 

Africa 0.5 / 6 
8% 

0.8 / 11 
7% 

0.1 / 1 
9% 

0.07 / 0.5 
12% 

0.2    / 2 
9% 

14% 

Global  1763/ 43403 
4% 

  1891/47127 
4% 

  1041/21363 
5% 

 489/11288 
4% 

  1773/35027 
5% 

 

 498 

Table 1: The table summarizes the snowfall estimates of mountain and non-mountain snowfall for MERRA, MERRA-499 

2, ERA-Interim, JRA-55 and CloudSat for the time period 2007-2016, for Eurasia, North America, South America, 500 

Africa and globally. For each area and dataset, a table cell shows: the amount of mountain (top left), non-mountain 501 

snow (top right; cubic km per year) and the contribution of mountain snow to the total amount of snow falling over a 502 

continent (bottom, %). The last column shows the percentage of grid boxes considered as mountain by the mountain 503 

mask over each continent.  504 

 505 

 506 

 507 
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Figures  509 
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 511 
 512 
 513 
Figure 1: Spatial maps of the continental mask (a) with specific colors for each continent: blue for North America, 514 

pink for South America, orange for Eurasia, green for Africa, red for Australia and white for Antarctica; and the 515 

associated mountain mask (b) for each continent containing mountains.  516 
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518 

Figure 2: Spatial maps of global cumulative mountain snowfall (mm/month/gridbox) for a) CloudSat, b) MERRA, c) 519 

MERRA-2, d) ERA-Interim and d) JRA-55, averaged over the time period 2007-2016.  520 
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 521 

Figure 3: Snowfall estimates (mm/month/grid box) over: a) Eurasia, b) North America, c) South America and d) 522 

Africa for CloudSat, MERRA, MERRA-2, ERA-Interim and JRA-55 over the time period 2007-2016. Mountain snow 523 

is in blue and non-mountain snow is in yellow.  524 
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 539 

Figure 4: Frequency of occurrence of snowfall estimates over: a) Eurasia, b) North America, c) South America and 540 

d) Africa for CloudSat, MERRA, MERRA-2, ERA-Interim and JRA-55 over the time period 2007-2016. Mountain 541 

snow is in blue and non-mountain snow is in yellow.  542 
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