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Abstract. Approximate glacier models are used to compute the contribution of mountain glaciers to sea-level rise given a

climate-change scenario. A majority of these models are based on statistical scaling relations between glacier volume, area,

and/or length. In this paper, the response properties of glaciers resulting from a time-independent volume-area scaling as-

sumption are theoretically analysed. The theoretical results are validated with a scaling model simulation of the response of

703 synthetic Himalayan glaciers from the Ganga basin to a step-change in climate. The same experiment repeated with a5

2-d shallow-ice approximation (SIA) model, obtains about two times larger climate sensitivity and response time than that

predicted by the scaling model. This indicates a possible low bias in the scaling model estimates of the long-term loss of

glacier area and volume. Scaling models predict the area and volume response times to be equal to each other, while the SIA

model obtains area response time that is about 1.5 times larger than the corresponding volume response time. Consequently,

the transient glaciers simulated with SIA exhibit a systematic violation of time-invariant scaling. The SIA results are used to10

obtain parameterisations of climate sensitivity and response time of the glaciers in terms of corresponding ablation rate near the

terminus, mass-balance gradient, and mean thickness. A linear-response model based on these parameterisations outperforms

the scaling model in reproducing glacier response as simulated with SIA. This is confirmed in an independent experiment

with a set of 164 glaciers from the Western Himalaya. This linear-response model may be useful for predicting the sea-level

contribution from shrinking mountain glaciers.15

1 Introduction

Shrinking mountain glaciers have contributed significantly to global eustatic sea-level rise in the recent past, and this trend is

expected to continue for the next hundred years or so (Meier, 1984; van de Wal and Wild, 2001; Raper and Braithwaite, 2006;

Cogley, 2009; Hirabayashi et al., 2010; Leclercq et al., 2011; Radić and Hock, 2011; Slangen and van de Wal, 2011; Jacob

et al., 2012; Marzeion et al., 2012; Radić et al., 2014; Huss and Hock, 2015; Hock et al, 2019; Marzeion et al., 2020). The20

reliability of the predicted global sea-level change is, thus, intimately tied to the accuracy of the predicted total ice-loss from

mountain glaciers for any given climate scenario.

Instantaneous (annual) glacier surface mass balance can be calculated readily using climate model outputs. In contrast, any

prediction of the long-term evolution of a glacier requires simulating the slow (decadal) changes in glacier area and geometry.

Ideally, this is to be done by solving the dynamical ice-flow equations (e.g., Oerlemans, 2001). However, the numerical cost25
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of such a computation on a global scale is high, even if simplified approximate descriptions of the ice-flow equations, like,

shallow-ice approximation (SIA) (Hutter, 1983) or its higher order variants were to be used (Egholm et al., 2011; Clarke et

al., 2015). One-dimensional SIA-based modelling tools are promising developments in this regard (Maussion et al., 2019;

Zekollari et al., 2019; Rounce et al., 2020) and have recently been used for global sea-level rise computation (Marzeion et al.,

2020). The uncertainties associated with various input parameters, e.g., an uncertain glacier bedrock, limit the benefit of using30

the physically-based ice-flow models (Farinotti et al., 2016). Consequently, a majority of the recent global-scale estimates

of the contributions of shrinking mountain-glaciers to sea-level rise relies on low-dimensional approximate parameterisations

of glacier dynamics (Radić et al., 2014; Hock et al, 2019; Marzeion et al., 2020). The results from these simplified models

have provided critical inputs for assessing regional to global vulnerability to sea-level rise (e.g., Kulp and Strauss, 2019), and

contributed strongly to the multimodel ensemble-averaged predictions of future sea-level rise (Hock et al, 2019; Marzeion et35

al., 2020).

While some of the above parameterisations of glacier dynamics are empirical prescriptions for adjusting the hypsometry of

the transient glaciers (Raper and Braithwaite, 2006; Huss et al., 2010; Huss and Hock, 2015), a majority of them are primarily

based on a statistical volume-area (or volume-area-length) scaling relation. This volume-area scaling equation relates glacier

volume V to glacier area A as,40

V = cAγ , (1)

where, γ is a dimensionless scaling exponent, and c is a scale factor (Bahr et al., 2015). This relation was established empirically

(e.g., Chen and Ohmura, 1990), and subsequently proved using dimensional analysis (Bahr et al., 1997, 2015). The derivation

utilised the empirical sub-linear scaling of glacier width and ablation rate with the glacier length (Bahr, 1997).

Theoretically, the scaling exponent γ is time-independent, and can be expressed as γ = 1+ m+1
m+n+3 (Bahr et al., 2015). Here,45

n is the power-law exponent of Glen’s rheology of ice (Glen, 1955), and m is the scaling exponent of ablation rate with glacier

length (Bahr, 1997). For an individual glacier, the scale-factor c captures the control of all the glacier-specific factors (except

area) on its volume (Bahr et al., 2015). There is no available theoretical prescription for obtaining the value of c for an arbitrary

glacier. c may be calibrated for a particular glacier based on available independent measurements of area and volume over an

epoch, but its time dependence can be accessed only with a detailed model simulation (Bahr et al., 2015). For a large enough50

ensemble, glacier area typically spans a few orders of magnitude. However, the corresponding c values vary over a relatively

restricted range (Bahr et al., 2015). This allows an approximate statistical description of any set of glaciers using eq. 1, where

a single best-fit c and a fixed γ is used (Bahr et al., 2015). Such a best-fit scaling relation provides a fairly accurate estimate

of the total ice volume of a large set of glaciers, but the corresponding predictions for the individual glaciers have relatively

large uncertainties (Bahr et al., 2015). Note that there is no theoretical constraint for c to be time-independent for a given set55

of non-steady glaciers (Bahr et al., 2015).

It is the above statistical interpretation of the scaling relation, where a best-fit time-invariant c and a constant γ is used to

describe an ensemble of glaciers, that is exploited in the scaling-based approximate models of glacier dynamics (e.g., Radić et

al., 2007). Hereinafter, we refer to the models that are based on such an approach (e.g., Radić et al., 2007), as “scaling models”.
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As the present study investigates the possibility of biases in scaling model predictions of the sea-level rise contribution of60

mountain glaciers, we restrict ourselves to the above statistical interpretation of the scaling relation.

The performance of scaling models in simulating the transient glacier response have previously been tested against various

dynamical ice-flow models (e.g., SIA, higher order approximations, or Stokes’ model) in one to three dimensions using both

idealised (Radić et al., 2007; Adhikari and Marshall, 2012) and realistic geometries (Radić et al., 2008; Farinotti and Huss,

2013). The uncertainties introduced by a scaling-model parameterisation of the evolution of glaciers with realistic geometries65

were considered by Farinotti and Huss (2013). The spirit of the present study is quite similar to that of Farinotti and Huss

(2013), except that we are investigating the possible intrinsic biases of scaling models in a situation where the parameters (c

and γ) are known accurately. The specific objectives of the present study are,

1. To obtain analytical predictions for climate sensitivity and response time of glaciers in a scaling model.

2. To compare the climate sensitivity and response time of a large number of synthetic glaciers with realistic geometries,70

as obtained from a scaling model and a 2-d SIA model.

3. To investigate the possibility of long-term biases in scaling model estimates of changes in glacier area and volume with

respect to corresponding SIA results.

4. To find convenient parameterisations of glacier response properties obtained from the SIA simulations, and develop an

accurate linear-response model.75

Note that a linear-response model introduced in the last objective is a low-complexity model obtained in the limit of a relatively

small deviation around a steady state (e.g., Oerlemans, 2001). To apply this model to a large number of glaciers, the response

time and climate sensitivity need to be specified for each of them. A lack of accurate and numerically-convenient parameteri-

sations of these dynamical properties may have limited their application (Harrison et al., 2001; Lüthi, 2009; Bach et al., 2018).

Here, we aim to obtain parameterisations of the glacier response properties as functions of a few easily accessible properties80

of the glaciers, using results from 2-d SIA simulations of a large ensemble of synthetic glaciers with realistic geometries.

The paper is organised as follows. First, we theoretically derive the glacier-response properties within a time-invariant scaling

assumption (sect. 2.1 and 3.1). Then, we compare the performance of a representative scaling model (Radić et al., 2007) with

that of a 2-dimensional SIA model, in simulating the response of 703 idealised Himalayan glaciers in the Ganga basin to a

hypothetical step rise in equilibrium line altitude (ELA) (sect. 2.2 and 3.2). We use the response properties obtained from the85

scaling model to test the above analytical expressions for glaciers-response properties. The corresponding SIA results are used

to obtain parameterisations for the linear-response properties of realistic glaciers. The accuracy of the scaling model and a

linear-response model in reproducing the SIA-derived long-term loss of total glacier area and volume is assessed for the above

703 glaciers. The performance of the linear-response model is also tested for an independent set of 164 glaciers in the western

Himalaya without any further calibration. We also discuss the applicability of the linear-response model for actual computation90

of future glacier loss for a set of transient glaciers forced by any arbitrary time-variation ELA (sect. 3.3).
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2 Methods

2.1 Theoretical methods

For a theoretical analysis of the glacier-response properties implied by a scaling model, we consider a set of hypothetical

glaciers that are responding to a warming climate such that the volume-area scaling relation (eq. 1) is valid, and c is a given95

time-invariant constant. Then, the fractional changes in area and volume of these glaciers, in the limit of small changes, are

related as follows.

∆V ≈ cγAγ−1∆A= γ
V

A
∆A= γh∆A, (2)

where, ∆V and ∆A are the changes in area and volume, and the mean ice thickness is h= V/A. The above equation is the

basis of the scaling models of glacier evolution (e.g., Radić et al., 2007). We have derived analytical expressions for glacier100

response time and climate sensitivity starting from this equation, essentially following the line of arguments by Harrison et al.

(2001).

2.2 Numerical methods

We simulated the response of an ensemble of synthetic clean glaciers with realistic geometries to a hypothetical step-change

in ELA using three different methods (scaling, SIA, and linear-response models). For this exercise, we considered all the 814105

glaciers larger than 2 km2 in the Ganga basin, the central Himalaya (Supplementary fig. S1). The ice-free bedrock for each of

the glacier was obtained using available ice-thickness estimates (Kraaijenbrink et al., 2017) and surface-elevation data (ASTER

GDEM, V003). The following idealised elevation-dependent linear mass-balance profile was used,

b(z) =Max{β(z−E), b0}. (3)

Here, β is the balance gradient, z is the surface elevation, and E is the equilibrium-line altitude (ELA). b0 is a cutoff on110

maximum accumulation taken to be 1.0 m/yr. The choice of β is described later. In our mass-balance model, we neglected

complicating factors like supraglacial debris cover and its effects on ablation, and the avalanche contribution to accumulation.

Overall, the simulated glaciers cannot be considered faithful copies of the actual Himalayan glaciers. Rather, they constituted

an ensemble of synthetic glaciers with realistic geometries (e.g., Farinotti and Huss, 2013) to be used here for a comparative

study of the performance of the three models.115

2.2.1 A 2-d SIA model

The ice-flow dynamics was implemented within a two dimensional SIA (Hutter, 1983) as a numerically efficient non-linear

diffusion problem (Oerlemans, 2001). While SIA may not be the best method for simulating valley glaciers due to its limitation

in describing ice-flow influenced by longitudinal stresses and/or steep bedrock slopes (Le Meur et al., 2004), there is enough

evidence in the literature that SIA does a reasonable job of describing both the steady and transient dynamics of valley glaciers120
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(e.g., Vieli and Gudmundsson, 2004; Le Meur et al., 2004; Radić et al., 2008). The contribution of sliding to the flow was

neglected here for simplicity.

The value of Glen’s flow-law exponent was assumed to be 3 (e.g., Oerlemans, 2001). For the sake of simplicity, we did not

tune any of the model parameters to match the observed ice-thickness and/or flow velocity on any of these glaciers. The only

exception was ELA which was tuned to obtain the initial steady state as described below. In order to avoid possible dependence125

of the results on any specific choice of parameters, we picked the parameters related to mass balance and flow from random

distributions. The rate constant of Glen’s law was picked randomly from the set {0.5,0.6, ...,1.4,1.5}× 10−24 Pa−3s−1 for

each of the glaciers. This range of values is comparable to those used to model mountain glaciers previously (Radić et al.,

2008). The balance gradient β was also picked randomly from the set of values {0.005, 0.006, ..., 0.009, 0.010} yr−1 for each

glacier. This range of β-values is comparable to the observed mass-balance gradients in the Himalaya (e.g., Wagnon et al.,130

2013).

The model was integrated using a linearised implicit finite-difference scheme (Hindmarsh and Payne, 1996), with a no-

slip boundary condition at the ice-bedrock interface and a no-flux boundary condition at the domain boundary. An iterative

conjugate-gradient method was employed within the implicit scheme, with a spatial grid-size of 100 m×100 m and time steps

of 0.01 years. To avoid the known problem of a possible violation of mass conservation in SIA on steep terrains (Jarosch et al.,135

2013), we smoothed the bedrock with a centrally-weighted 3× 3 moving-window averaging. In addition, the conservation of

ice was explicitly monitored by tracking the total accumulation and ablation on the glacier surface, and the ice flux out of the

glacier boundary in the ablation zone. The cumulative net gain of ice matched the total ice in the domain to within one part

per 109 at any time t. Only on three glaciers (out of the total of 814), a violation of conservation due to steep bedrock was

observed, and these three were not considered in our analysis (supplementary figure S2). One more glacier had to be removed140

where an erroneously mapped truncated tributary led to an unrealistic piling up of ice (Supplementary fig. S2).

The SIA simulation was run starting with an empty bedrock, with the initial E being the median elevation. The simulation

was continued until an approximate steady state was reached such that the absolute value of the net specific balance was less

than 10−4 m/year. Subsequently, E was moved up or down, and the simulation was repeated until the extent of the steady state

was similar to the present glacier extent (RGI, 2017) (Supplementary fig. S2). Once the desired steady state was found (See145

supplementary fig. S3 for a few examples), the glaciers were perturbed by a 50 m step rise in ELA. Subsequently, the annual

values of area and volume were recorded for the next 1000 years (Supplementary fig. S4). The mean and standard deviation of

the modelled ELA for these 810 glaciers were 5480 and 445 m, respectively.

Out of the total 810 simulated glaciers from the Ganga basin, on 98 glaciers the fractional change in glacier area at t= 1000

was more than 50%, and these were excluded from the analysis. This was necessary as a linear-response model can only be150

applied to glaciers with small relative changes (Oerlemans, 2001). We confirmed that the nature of our results does not depend

on the precise value of this cutoff (Supplementary fig. S6). An additional 9 glaciers had response time larger than 500 years

and they were removed. This was done to avoid a possible overestimation of the response time whenever its magnitude was

comparable to or larger than the total simulation period of 1000 years (supplementary fig. S7). The removal of these 9 glaciers

led to a reduction in the number (total area) of simulated glaciers by only ∼ 1%(∼ 2%).155
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Finally, we were left with an ensemble of 703 synthetic Himalayan glaciers (Supplementary fig. S1), with area in the range

of 2.2−156.0 km2 (a median value 5.5 km2). The steady glaciers modelled with SIA had, on the average, 1.25 times larger area

and 1.66 times larger ice-thickness (supplementary figs. S3, S8) compared to the corresponding estimates of Kraaijenbrink et

al. (2017). The higher thickness of the modelled glaciers can be ascribed to a larger modelled area, a steady mass balance, and

an uncalibrated SIA model. The total area and volume of these 703 synthetic glaciers were 6865 km2 and 847 km3, respectively.160

This set covered 86% of the total 810 glaciers number-wise, and 89% area-wise. The distributions of glacier area and mean

slope for the two sets of 810 and 703 synthetic glaciers are shown in supplementary fig. S8.

2.2.2 Scaling model

The response of the above set of 703 steady-state glaciers to a 50 m instantaneous rise in ELA was also computed with a

scaling model (Radić et al., 2007). The SIA-derived initial steady-state volume, area, and hypsometry (with the bin size of 25165

m) for each of the glaciers were used as the starting point. For any of the modelled glaciers, the scaling and SIA models used

the same mass-balance parameters. At any time t during the evolution, the mass-balance function (eq.3) was summed over

the instantaneous glacier hypsometry to obtain the net volume loss for that time step. The corresponding area loss was then

obtained using Eq. 2. The reduction in the area was assumed to have taken place in the lowest elevation band/s of each glacier

(Radić et al., 2007). The scaling exponent was fixed at γ = 1.286 because of the assumed linear mass-balance profiles of the170

simulated glaciers (i.e., m= 1). The annual-resolution time series of area and volume were recorded for 1000 years for each

of the glaciers.

2.2.3 Glacier response properties

For each of the 703 glaciers, the time series of volume and area as obtained using the SIA and scaling models, were sepa-

rately fitted to linear-response forms (e.g., eq. 9 below) to obtain the corresponding best-fit values of the four linear-response175

parameters (the climate sensitivities and the response times of area and volume) for each of them (supplementary fig. S4).

Please note that applying a step change in ELA to a steady-state glacier to obtain the step-response function is a standard

prescription for obtaining glacier response properties (Oerlemans, 2001; Vieli and Gudmundsson, 2004; Harrison et al., 2001;

Bach et al., 2018). Within a linear-response assumption, the step-responses of volume and area have an exponential form

(e.g., eq. 9 below). The asymptotic exponential decay time is the response time of the glacier, and the asymptotic magnitude180

of the decay is the climate sensitivity. Because of the deviations of the simulated response from a pure exponential decay

(supplementary fig. S4), the best-fit response time may be slightly different from the e-folding time, which has been used in

some of the previous studies (e.g., Vieli and Gudmundsson, 2004; Bach et al., 2018). However, we take the best-fit asymptotic

decay time to be the response time. By definition, it minimises the deviation between the predictions of the SIA and linear-

response models, and thus, improves the performance of the latter in reproducing SIA results to some extent. We confirm that185

the difference between the above two definitions of the response time is small.

The best-fit linear-response properties obtained from the scaling model results for the 703 glaciers were used to verify the

corresponding theoretical expressions obtained from scaling theory (eqs. 8, 11, 12, 13 below). The best-fit response times and
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climate sensitivities obtained from the SIA simulations of the 703 glaciers were used to fit for empirical relations that are

motivated by the corresponding expressions derived from the scaling theory. These fitted forms would allow estimation of the190

response properties of any given glaciers as functions of properties like mean thickness, mass balance gradient and so on. All

the above fits were performed in log-log scale, and R2 of the fits were noted.

2.2.4 A linear-response model

The best-fit empirical parameterisations for climate sensitivity and response time obtained by fitting the SIA results as described

above (given in eqs. 14−17 later), were used to run a linear-response model simulation for any given glacier. This model was195

applied to simulate the response of the above 703 synthetic Himalayan glaciers to a 50 m step-change in ELA at t= 0. We

emphasise that for the linear-response model, we do not use the best-fit the response properties of the individual glacier derived

from the SIA simulations. Rather, the parameterisations of the same obtained by fitting the SIA-derived response properties

(given in eqs. 14−17 later) were utilised. These parameterisations thus allow the model to be applied to any other set of

Himalayan glaciers without the need for simulating them with SIA first.200

To assess the uncertainty of the linear-response model output, the uncertainty of each of the fit parameters was set equal to

the corresponding standard error, and the 95% uncertainty band for the linear-response model outputs were generated using a

Monte Carlo method.

To test the applicability of the above linear-response model that was calibrated using SIA results for the 703 central Hi-

malayan glaciers, the same model was applied to a different set of 204 glaciers from the western Himalaya. The parameteri-205

sations developed for the central Himalayan glaciers as discussed above (given in eqs. 14−17 later) were used to estimate the

response properties of each of these western Himalayan glaciers using input values of corresponding mass-balance gradient,

mean thickness and ablation rate near the terminus. For these western Himalayan glaciers, SIA and scaling model simulations

were also performed following the procedures as detailed above. The glaciers that showed more than 50% change at the 500

year mark in the corresponding SIA simulations were left out as before, and the time series of total area and total volume of210

164 western Himalayan glaciers obtained using the three different models were compared.

3 Results and Discussions

3.1 Theoretical results

Below, we derive some relevant consequences of the time-invariant scaling assumption, including expressions for the climate

sensitivity and response time of area and volume. These results are expected to be generally valid for all scaling models that215

are based on eq. 2.
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3.1.1 The rates of area and volume change

Eq. 2, which was derived from eq. 1 assuming a time-independent c, implies,

V̇ = γcAγ−1Ȧ= γhȦ. (4)

Here, V̇ and Ȧ denote the corresponding rates of change of glacier volume and area, respectively. If the net specific balance is220

δb (in m/yr), then the annual rate of volume loss V̇ = δbA. This, together with eq. 4, implies,

Ȧ =
δb

γh
A (5)

=
δb

γc
A2−γ . (6)

Thus, in the scaling models the rate of change of area scales with glacier area with an exponent (2− γ). This is consistent

with empirical observations for real glaciers as well (Banerjee and Kumari, 2019). As the scale factor δb
γc in the right-hand225

side (RHS) of eq. 5 is proportional to the net specific mass balance, this may be a convenient way of obtaining mean regional

thinning rates from relatively straightforward remote-sensing measurements of the rate of area change. However, the accuracy

of this relation is contingent on the validity of the assumption of a time-independent c.

3.1.2 Area response time

To compute the area response time, let us consider a constant perturbation, i.e., a step change in ELA applied to a steady glacier230

for time t≥ 0 (e.g., Oerlemans, 2001). Let’s denote the corresponding instantaneous net negative balance at t= 0 by δb0A, the

asymptotic (t→∞) shrinkage of glacier area by ∆A∞ ≡A(0)−A(t→∞), and that of ice volume by ∆V∞. Then, we have

(Harrison et al., 2001),

∆A∞bt +β∆V∞ ≈−δb0A. (7)

Here, bt is the ablation rate near the terminus. The area response time of the glacier can be expressed as τA ≈∆A∞/Ȧ.235

Therefore, using the above expressions for Ȧ (Eq. 5) and ∆A∞ (Eq. 7), we obtain,

τA =−(
bt
γh

+β)−1 ≡ τ∗. (8)

Here, the symbol τ∗ is a convenient shorthand notation for the time scale −( btγh +β)−1. In the above derivation, ∆V∞ that

appears in eq. 7 is eliminated with the help of eq. 2. Eq. 8 is comparable with the expression of area response time as given by

Harrison et al. (2001), or Lüthi (2009).240

3.1.3 Volume response time

The instantaneous change in volume (∆V (t)) for a steady glacier perturbed by a small step change in ELA at t= 0 is given

by,

∆V (t) = ∆V∞(1− e−t/τv ), (9)
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where, τv is the volume response time and ∆V∞ is the volume sensitivity (e.g., Lüthi, 2009). Now, V (t),V (0), and V (t→∞)245

appearing in eq. 9 can be expressed in terms ofA(t),A(0), andA(t→∞), respectively, with the help of corresponding scaling

relations (eq. 1). This, in the limit of a small fractional changes in area, yields,

∆A(t) = ∆A∞(1− e−t/τv ). (10)

Comparing the above two equations, and using eq. 8 one obtains,

τA = τV = τ∗. (11)250

This implies that all scaling models implicitly assume the area and volume response times of a glacier to be equal to each

other. However, it is known that for mountain glaciers area response time is larger than the volume response time within a SIA

model (Oerlemans, 2001; Vieli and Gudmundsson, 2004). Therefore, the assumed equality of the two response times in scaling

models (eq. 11) contradicts the existing SIA results. This is an intrinsic bias that is present in any scaling model.

After a step change in ELA, as the ablation zone shrinks, the initial net negative balance of a glacier gradually decays to zero255

over a period determined by the corresponding response time. A longer area response time in SIA implies that this reduction

in the ablation zone is slower here than that in a scaling model. A corresponding feedback of a larger ablation zone on the net

mass balance should then lead to a higher long-term volume loss in a SIA model than that in a scaling model. This indicates the

possibility of a low bias in scaling model estimates of the climate sensitivity of volume, or equivalently, that in the long-term

changes in glacier volume due to any rise in ELA.260

3.1.4 Climate sensitivity of area and volume

An expression for the climate sensitivity of glacier area (∆A∞), which is the asymptotic change in area due a change in ELA

by δE, is obtained by eliminating ∆V∞ from eq. 7 using eq. 2,

∆A∞
A

=
τ∗βδE

γh
≡ α∗. (12)

Here, we have used the definition of τ∗ (Eq. 8), and that δb0 ≈ βδE for a step change in ELA by δE. The RHS of the above265

equation is denoted by α∗ for convenience.

The corresponding expression for ∆V∞
V is then obtained using Eq. 2,

∆V∞
V

= γα∗. (13)

Again, Eq. 13 is comparable to the expression of volume sensitivity as derived by (Harrison et al., 2001), where the authors

used an arbitrary thickness scale H , instead of the denominator of γh appearing in the definition of α∗ above.270

Please note that strictly speaking, the climate sensitivity of area and volume with respect to a change in ELA should be

defined as ∆A∞
δE and ∆V∞

δE , respectively. However, in this paper, we use ∆A∞ and ∆V∞ as the corresponding sensitivities to

simplify the notation.
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Figure 1. A) Glacier volume as a function of area for the 703 Himalayan glaciers simulated with SIA at t= 0 yr (blue circles), and at

t= 500 yr (red circles) are plotted along with the corresponding best-fit scaling relations (blue and red solid lines). The corresponding fitted

functions, andR2 values are shown in blue and red texts, respectively. B) The trajectories of the 703 glaciers in the V −A plane as simulated

with SIA (thick red lines) and scaling (thin blue lines) models. The inset is a zoomed-in version of the same plot, but with a linear scale.

3.2 Numerical results

3.2.1 Volume-area scaling and a time-dependent scale factor in the SIA model275

Following eq. 1, a power-law relation between the area and volume of the 703 glaciers with an exponent γ = 1 + m+1
m+n+3 =

1.286 is expected as m= 1 and n= 3. The ensemble of glaciers modelled with SIA did conform to above power-law relation

V = cA1.286 at any time t with a single best-fit c. The scale factor slowly decreased with time. For example, fig. 1a shows the

power-law fits at t= 0 and t= 500 years (R2 = 0.9), where the best-fit c-values were 0.053±0.001 and 0.47±0.001 km3−2γ ,

respectively. This implies a ∼11% reduction in c for the ensemble over the period of 500 years after the step-change in ELA280

was applied. A time-dependent c is consistent with the theoretical arguments of Bahr et al. (2015).

The slow and systematic decline in c for the ensemble of shrinking glaciers simulated with SIA model contradicts the basic

assumption of scaling models that c is time-invariant. A decreasing cwould mean eq. 2 is violated, with ∆V
V = γ∆A

A + ∆c
c . Note

that all the three fractional changes involved in this relation are negative. Therefore, for any given |∆A|, the corresponding

|∆V | is going to be larger in SIA model than that in a scaling model where ∆c
c is assumed to be zero (eq. 2). Even though285

the decline in c is only about 11%, it may be associated with a stronger low bias in the long-term change predicted by scaling

models. This is because a larger volume change in SIA would lead to a thinner glacier, and a corresponding surface-elevation

feedback to mass balance is likely to amplify the corresponding long-term mass loss over time.

The dependence of the glacier-specific scale factor on the mean slope is known (Bahr et al., 2015) and has been incorporated

in modified scaling relations where volume is a power-law function both area and slope (e.g., Grinsted, 2013; Zekollari and290

Huybrechts , 2015). For the simulated 703 glaciers, the mean slope increases with time as area is lost preferentially from the
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gently-sloping lower ablation zone. For example, the median slope of the 703 simulated glaciers reduced from 0.41 at t= 0 to

0.37 at t= 500 years. This ∼ 10% reduction in slope is expected to lead to a ∼ 5% decline in c (Bahr et al., 2015) . So, at least

part of the time dependence of c for transient glaciers in SIA simulation is explained by the slope-dependence of c. However,

there may be other factors contributing to the decline in c for the transient glaciers as discussed below.295

3.2.2 Area and volume response times

The theoretical prediction for glacier area and volume response time (eq. 11) worked rather well for the scaling model results

(figs. 2C, and 2D), with best-fit relations of τV = (0.914± 0.002)τA with R2 = 0.99, and τA = (1.066± 0.008)τ∗ with R2 =

0.80.

For SIA simulations, the data showed that τA > τV , and that the two response times were still proportional to each other300

(fig. 3C: τV = (0.687± 0.004)τA, with R2 = 0.94). Also, τA was proportional to τ∗ to a good approximation (fig. 3D: τA =

(2.56±0.04)τ∗, with R2 = 0.53). Interestingly, the value of the proportionality constant in the latter relation as obtained from

SIA was about 2.4 times larger than the corresponding value obtained in the scaling model. This underlines the relatively large

underestimation of area response time by the scaling model. Similarly, the volume response time was about 1.8 times larger

in the SIA simulation than the corresponding scaling model value. This implies that for a given ELA perturbation, the glacier305

response is much faster in the scaling model compared to that in the SIA model for the ensemble of 703 synthetic glaciers.

Apart from the overall underestimation of area and volume response times by the scaling model, another serious limitation

of scaling models that emerges from the above analysis is that here the area and volume response times are equal to each

other (eq. 11, and fig. 3C). In contrast, the SIA model predicted τA ≈ 1.5τV . The ratio of the two response times obtained from

the 2-d SIA model here is generally consistent with earlier results based on 1-d flowline models (Oerlemans, 2001; Vieli and310

Gudmundsson, 2004). The equality of the two response times in the scaling model led to a linear trajectory in V −A plane

for the transient glaciers (fig. 1B). While in SIA model, a relatively larger area response time, together a slow initial changes

in area (supplementary figs. S4, S10), led to curved V −A plane trajectories for individual transient glaciers. In particular,

a slowly changing area means the V −A trajectories bend downward causing c to reduce for the transient ensemble (fig 1).

Moreover, At the early stages of response, glaciers simulated by a scaling model lose area much quicker than those simulated315

by an SIA model (fig. 1B). The associated net mass-balance feedbacks then lead to a subdued long-term volume response in

scaling model, and a comparatively stronger volume response in the SIA model, just as predicted in sect. 3.1.3.

3.2.3 The climate sensitivity of glacier area and volume

For the 703 glaciers simulated by the scaling model, the fitted asymptotic fractional changes in area and volume, or equivalently,

the corresponding (fractional) climate sensitivities, were proportional to each other (fig. 2A: ∆V∞
V = (1.383±0.003)∆A∞

A , with320

R2=0.99). Here, the best-fit constant of proportionality is close to, but about 8% larger than γ = 1.286 as predicted by eq. 2.

In contrast, the SIA simulations obtained ∆V∞
V = (1.93± 0.02)∆A∞

A , with R2=0.85 (fig. 3A). In this case, the constant of

proportionality was ∼ 1.5γ, compared to the corresponding value of ∼ γ in the scaling model. This larger value of the ratio

of the two climate sensitivities in SIA model is consistent with the observed decline in c for the transient glaciers simulated
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with this model (fig. 1). Please note that no theoretical prediction is available for the ratio of asymptotic fractional changes in325

volume and area in a SIA model.

Figure 2. Scaling model simulations of the 703 synthetic Himalayan glacier show that, (A) the best-fit (fractional) climate sensitivities of

area and volume are proportional to each other, (B) The climate sensitivity of volume is proportional to α∗ ≡ βδEτ∗

γh
, (C) The response

times associated with glaciers area and volume are approximately equal, and (D) the volume response time is approximately equal to

τ∗ ≡−( bt
γh

+β)−1. In all the above plots, the corresponding best-fit curves are shown with red lines. The fit parameters and R2 of the fits

are also given. These numerical trends are consistent with theoretical results derived in sect. 3.1.

Fig. 2B shows that in the scaling model, climate sensitivity of glacier volume is proportional to α∗ ( ∆V∞
V = (0.655±

0.008)α∗, with R2 = 0.67). This is in line with eq. 13, except that the constant of proportionality is significantly less than

γ. A similar proportionality between the SIA-derived best-fit ∆V∞
V and α∗ is shown in fig. 3B, with ∆V∞

V = (1.71± 0.03)α∗.

However, in this case the fit is relatively noisy with R2 = 0.48.330

The above relations suggest that the climate sensitivity of volume in the SIA simulation was about 2.6 times larger than that

in the scaling model. Similarly, the climate sensitivity of glacier area obtained from the SIA model was also about 1.9 times

larger than that obtained from the scaling model. This trend of a relatively large (by about a factor of about 2) underestimation of

climate sensitivity of glacier volume and area by the scaling model is consistent with the effects of a relatively faster shrinkage

of the ablation zone in the early stages of the response as discussed in 3.1.3 and 3.2.2.335

3.2.4 The total glacier loss estimated using the three models

Starting with an initial volume (area) of 847 km3 (6865 km2), the 703 glaciers simulated by SIA lost a total of 194 km3 (726

km2) of volume (area) in 500 years due to the step-rise in ELA by 50 m. As shown in fig 4, both the scaling and the linear-

response models underestimated the long-term change in total area in this experiment, with estimated area changes of 334 and

623 km2, respectively. The scaling-model prediction for area change was only 46% of the corresponding SIA estimate, while340

the linear-response model estimate was 86% of that of SIA. Similar trends were seen for the magnitudes of estimated volume

change as well, with the respective scaling and linear-response model estimates being ∼ 31% and ∼ 75% of the corresponding

SIA prediction (fig 4). We confirmed that the nature of the above results does not depend on the chosen cut-off of 50% change

that was used to select the 703 glaciers (Supplementary fig. S6). In fact, with a smaller cut-off, the linear-response model
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Figure 3. Results from the SIA simulations of the 703 synthetic Himalayan glacier show that, (A) The climate sensitivities of area and volume

are proportional to each other, (B) The climate sensitivity of glacier volume is proportional to α∗ = βδEτ∗

γh
, (C) The response times associated

with glaciers area and volume are proportional to each other, and (D) The volume response time is proportional to τ∗ =−( bt
γh

+β)−1. The

fitted functions are shown with red lines. The corresponding fit parameters and R2 of the fits are also given. See text for detailed discussions.

estimates were even closer to the corresponding SIA estimates (Supplementary fig. S6). This is expected as linear-response345

models are derived in the limit of small fractional changes (Oerlemans, 2001).

The low-bias in the long-term changes of glacier area and volume computed with the scaling model is consistent with the

underestimation of corresponding climate sensitivities by this model (sect. 3.2.3). This indicates the possibility of a negative

bias in scaling model estimates of mountain glacier contribution to sea-level rise as well. As an example, let us consider a

recent comparison (Hock et al, 2019) of projected end-of-the-century sea-level rise contribution of glaciers from 6 different350

models that include a hypsometric-adjustment-based model (Huss and Hock, 2015) and 5 other models which are all based

on some form of scaling. It is seen that the former model consistently predicted the largest fractional change of global glacier

volume and area under various climate scenarios (Table 3 of Hock et al (2019)). The same trend was confirmed in a susbset

of all the runs where the models were forced by the same global climate model outputs (Figure 11 of Hock et al (2019)). In

another recent comparison, similar trends are seen as far as global-scale fractional volume loss by 2100 are concerned (Figure355

S17−S20 of Marzeion et al. (2020)), though on a regional scale there are differences. However, it is difficult to draw a definite

conclusion about any potential bias in scaling models from the above-mentioned studies as there are wide differences among

the models in terms of the initial conditions, climate forcing, and mass-balance parameterisations used. For example many of

the scaling models in Hock et al (2019) had a much larger initial global glacier volume, by up to a factor of about 2, than that

in the non-scaling one. An intercomparison of the models where the same set of glaciers, with the same initial geometry and360

volume were simulated under the same mass-balance forcing - similar to the strategy used in the present study - is neccessary

to identify possible biases that may be present in the exisiting scaling models. The potential biases in the scaling models may

be clearer in long-term simulations over multiple centuries. On shorter time scales of multiple decades, an underestimation

of response times by about a factor of 2 (sect. 3.2.2) to some extent compensates for a corresponding underestimation of the

climate sensitivities (sect. 3.2.3), and the deviations between the SIA and scaling models are not that prominent (fig. 4).365
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Please note that depending on the details of the scaling and SIA models that are being compared, or the set of glaciers that are

being simulated, the actual magnitude of the biases in scaling-model derived climate sensitivity, response time, and long-term

glacier change could be different from that obtained here. However, based on the theoretical arguments and numerical evidence

presented, similar qualitative trends are expected if the above exercise were to be repeated with a more detailed model and/or

for a more realistic set of glaciers.370

Above results show that the linear-response model outperformed the scaling model, producing a closer match with the SIA

results for the 703 synthetic glaciers from the Gangetic Himalaya. However, this linear-response model was calibrated using

the SIA results for the same set of glaciers. Therefore, this match is not enough to establish the effectiveness of the linear-

response model. To confirm the improved performance of the linear-response model compared to that of the scaling model,

we applied both the models to simulate a different set of 164 glaciers in the western Himalaya (supplementary fig. S1). The375

best-fit linear-response properties obtained from SIA simulation of the 703 central Himlayan glaciers were first fitted to obtain

four equations (eqs. 14−17) that relates the response properties to β,γ,h and bt as described before. The same equations were

used to estimate response properties of each of the 164 western Himalayan glaciers as required for the linear-response model

simulations. In this independent experiment, the linear-response model again outperformed the scaling model in reproducing

the corresponding SIA results (supplementary fig. S9). This confirms that the linear-response model, along with eqs. 14−17,380

can be used for computing long-term glacier changes accurately.

Figure 4. The evolution of the total (A) volume, and (B) area of the ensemble of 703 Himalayan glaciers simulated with three different

methods: SIA, scaling, and linear-response models. The uncertainty bands for the linear response model results as also shown. See text for

details.

3.3 The effects of glacier geometry

Can the biases in the scaling model described above, be artefacts arising out of some peculiarities of the geometry of the

specific set of glaciers being simulated, and are not relevant in general for scaling model computations of global-scale mass

loss of mountain glaciers? To rule out that possibility, we simulated the response of a set of highly idealised synthetic glaciers385
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using both a flowline model (Banerjee, 2017) and the above scaling model (Radić et al., 2007). Note that this flowline model

included sliding as well. All of these synthetic glaciers have the same constant-width, the same linear bedrock with constant

slope, and the same linear mass-balance profile. Only the ELA was varied between glaciers. Even for this highly idealised set

of glaciers, the scaling model estimates for the evolution of total area and volume showed biases compared to that obtained

from the flowline model (supplementary fig. S9), and these biases were qualitatively very similar to those depicted in figs. 1 and390

4. Again, the scaling model predicted relatively smaller climate sensitivities, a relatively faster area response, and a low-bias

in the long-term changes, compared to corresponding flowline-model estimates (supplementary fig. S9).

The above flowline-model experiment provides an additional piece of evidence that the scaling-model biases discussed in

this paper are in general expected to be present in scaling model simulations of any set of glaciers. We re-emphasise that even

though the biases are expected to be qualitatively similar to that presented here, the magnitude of the biases are likely to depend395

on the detailed characteristics (related to geometry, flow, and mass-balance processes) of the glaciers studied and the models

used.

3.4 The linear-response model, and its application to real glaciers

As described above, we have used results from the 2-d SIA model simulations of the response of 703 synthetic Himalayan

glaciers to a 50 m step change in ELA, to obtain the following best-fit parameterisations of the glacier response properties (i.e.,400
∆V∞
V , ∆A∞

A , τA and τV ).

∆V∞
V

= (1.71± 0.03)α∗, (14)

∆V∞
V

= (1.93± 0.02)
∆A∞
A

, (15)

τA = (2.56± 0.04)τ∗, (16)

τV = (0.687± 0.004)τA. (17)405

Here, as defined before, τ∗ ≡−( btγh +β)−1, α∗ ≡ βδEτ∗

γh , and δE = 50 m.

With the estimated glacier-specific response properties obtained from eqs. 14−17, it is possible to compute the evolution

glacier volume and area accurately for any glacier and for any arbitrary ELA forcing function. For this the following general

solution of the linear-response equation is used.

∆V (t) = ∆V (0)e−t/τV +
∆V∞
τV δE

t∫
0

∆E(t′)e−(t−t′)/τV dt′ (18)410

Here, ∆E(t) is the given (arbitrary) ELA forcing function. This equation simply states that, any continuous ELA change can

be interpreted as the sum total of a series of discrete impluses, and the corresponding net response is given by a superposition

of suitably delayed responses due to each of the impulses. An analogous expression can be obtained for the area evolution just

by replacing all the V ’s in the above equation with A’s.

Please note that the above formulation does not require the initial state to be steady. As long as the glacier is close to a steady415

state, a linear-response theory will be a good approximation (Oerlemans, 2001). However, an additional initial condition, i.e.,
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the value of ∆V (0), is needed to apply the linear-response model to transient glaciers. ∆V (0) is the initial departure from

a steady state, and can be obtained from the observed rate of volume loss (V̇ ) simply as, ∆V (0) =−τV V̇ . Thus, the linear-

response model can be used to evolve the area and volume of a real set of glaciers for any arbitrary time-dependent ELA

forcing given the initial rates of change of volume and area, initial thickness, mass-balance gradient, and melt rate near glacier420

terminus.

Since the above parameterisation of linear-response perperties (eqs. 14−17) are derived from SIA simulations of an ensemble

of Himalayan glaciers, when applying them to any other glacierised region in world, it may be necessary to simulate a few tens

of glaciers (having a representative range of area and slope) from that region using SIA first, and confirm the accuracy of the

above parameterisations.425

Due to the noise present in the fits (fig. 3), the linear-response model predictions for an individual glacier would have

significant uncertainties. However, for a large set of glaciers, the linear-response model provides accurate estimates of the total

area and volume evolution (fig. 4, supplementary figs. S6 and S9).

3.5 Limitations of the present study

Because of the idealised descriptions of ice flow and the mass-balance profile (as discussed in sect. 2.2), and the absence430

of model calibration to match the available observed data of surface velocity, ice thickness, recent mass balance etc., the

glaciers simulated here are not faithful copies of the Himalayan ones. For a set of more realistic glaciers, the magnitude of

the corresponding biases in scaling-model derived climate sensitivity and response time could be different from that obtained

here. However, based on the theoretical arguments and numerical evidence presented, similar qualitative trends are expected

if the above exercise were to be repeated for a more realistic model that includes higher order mechanics, a more realistic435

mass-balance model, and so on. Similarly, The parameterisations for the linear-response properties given here are obtained

from 2-d simulations of 703 synthetic Himalayan glaciers with some idealisations (sect. 2.2) and without any tuning of model

parameters. The fit-parameters in eqs. 14-17 may be different for a different set of glaciers. The parameterisations may also

change if a more detailed and calibrated model of the same glaciers is used. However, the protocol used here to obtain the

parameterisation for linear response-properties can be directly applied without any change for any set of glaciers and for440

any ice-flow/mass-balance model. While applying the linear response model to any other region, it may be useful to obtain

response properties of a few tens of representative glaciers using flow-model simulations and check if any recalibration of the

parameterisation as given in eqs. 14-17 is necessary.

4 Summary and Conclusions

We performed a theoretical analysis of the response of mountain glaciers within a time-independent scaling assumption. In445

addition, the step-response of 703 steady-state synthetic Himalayan glaciers with realistic geometries and idealised mass-

balance profiles were simulated with three different models: a scaling model, a 2-d SIA model, and a linear-response model.

The results obtained are as follows.
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– Analytical expressions for climate sensitivity and response time of glacier area and volume are derived within a time-

independent scaling assumption. These expressions are validated using results from the scaling model simulation of the450

ensemble of 703 glaciers.

– The response of the glaciers simulated with the 2-d SIA model reveals that the initial steady states and the transient states

follow the volume-area scaling relation, with the best-fit scale factor reducing slowly with time.

– For the ensemble of glaciers studied, the scaling model obtains relatively smaller climate sensitivities of glacier area and

volume by a factor of about 1.9 and 2.6, respectively, compared to those obtained from the SIA model. This results in a455

low bias in the long-term changes predicted by the scaling model.

– For the ensemble of glaciers studied, the scaling model underestimates volume (area) response time by a factor ∼1.8

(2.4) compared to the corresponding SIA estimates.

– For the scaling model, τA ≈ τV , and ∆V∞
V ≈ γ∆A∞

A . In contrast, for the SIA simulations, τA ≈ 1.5τV and ∆V∞
V ≈

1.5γ∆A∞
A .460

– The relatively larger ratio of the two response times in the SIA simulations, along with an initial slow change in area,

leads to curved V −A trajectories, a decreasing c, and a relatively larger long-term volume loss for the transient glaciers

due to a corresponding mass-balance feedback.

– A linear-response model based on the parameterisations of SIA-derived response properties helps reduce the biases in

the predicted long-term glacier changes that are present in the scaling model results for the simulated central Himalayan465

glaciers. The improved performance of this model is validated on an independent set of 164 glaciers in the western

Himalaya.

Based on the theoretical arguments and numerical evidence presented here, it is possible that qualitatively similar biases

may generally be present in the long-term glacier changes computed with scaling models. However, the actual magnitude of

such biases in scaling models may be different from that obtained here for a set of synthetic Himalayan glaciers with idealised470

mass balance. Possible biases in scaling models may, in turn, lead to a low bias in the corresponding estimates of the long-term

sea-level rise contribution from shrinking mountain glaciers. On a multidecadal scale, a faster response due to shorter response

times in the scaling model can compensate for the effects of smaller climate sensitivities to some extent. However, the low

biases in scaling model derived changes in glacier area and volume are likely to become apparent over longer time scales of

multiple centuries. The linear-response model presented above could potentially be useful in predicting the long-term global475

glacier change and/or sea-level rise due to its accuracy and numerical efficiency.

Code availability. The codes for the various models used in this paper shall be made available upon publication.
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