10

15

20

25

Possible biases in scaling-based estimates of mountain-glacier
contribution to sea-level rise

Argha Banerjee!, Disha Patil!, and Ajinkya Jadhav!
'ECS, IISER Pune, India

Correspondence: Argha Banerjee (argha@iiserpune.ac.in)

Abstract. Low-complexity glacier models are used to compute the contribution of mountain glaciers to sea-level rise given a
climate-change scenario. A majority of these models are based on statistical scaling relations between glacier volume, area,
and/or length. In this paper, the response properties of glaciers are theoretically analysed within a time-independent volume-
area scaling assumption. The theoretical results are validated with a scaling model simulation of the response of 703 synthetic
Himalayan glaciers from the Ganga basin to a step-change in climate. The same numerical experiment repeated with a 2-
d shallow-ice approximation (SIA) model, obtains about three times larger climate sensitivity and response time than that
predicted by the scaling model. There is a corresponding low bias in the scaling model estimates of the long-term loss of the
total glacier area and volume. Also, the scaling model predicts the area and volume response times to equal to each other,
while the SIA model obtains area response time that is about 1.5 times larger than the corresponding volume response time.
Consequently, the transient glaciers simulated with SIA exhibit a systematic violation of time-invariant scaling. The SIA results
are used to obtain parameterisations of climate sensitivity and response time of glaciers, leading to a linear-response model
which outperforms the scaling model in reproducing the SIA results. This is confirmed by an experiment on an independent set
of 204 glaciers from the Western Himalaya. This linear-response model may be useful for predicting the sea-level contribution

from shrinking mountain glaciers.

1 Introduction

Shrinking mountain glaciers have contributed significantly to global eustatic sea-level rise in the recent past, and this trend is
expected to continue for the next hundred years or so (Meier, 1984; van de Wal and Wild, 2001; Raper and Braithwaite, 2006;
Cogley, 2009; Hirabayashi et al., 2010; Leclercq et al., 2011; Radi¢ and Hock, 2011; Slangen and van de Wal, 2011; Jacob et
al., 2012; Marzeion et al., 2012; Radi¢ et al., 2014; Huss and Hock, 2015; Hock et al, 2019). The reliability of the predicted
global sea-level change is, thus, intimately tied to the accuracy of the predicted total ice-loss from mountain glaciers.
Instantaneous (annual) glacier surface mass balance can be calculated readily using climate model outputs. In contrast, any
prediction of the long-term evolution of a glacier requires simulating the slow (decadal) changes in glacier area and geometry.
Ideally, this is to be done by solving the dynamical ice-flow equations (e.g., Oerlemans, 2001). However, the numerical cost of
such a computation on a global scale creates a bottleneck, even if simplified approximate descriptions of the ice-flow equations,

like, shallow-ice approximation (SIA) (Hutter, 1983) or its higher order variants were to be used (Egholm et al., 2011; Clarke
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et al., 2015). One-dimensional SIA-based modelling tools are promising developments in this regard (Maussion et al., 2019;
Zekollari et al., 2019; Rounce et al., 2020). The uncertainties associated with various input parameters, e.g., an uncertain glacier
bedrock, limit the benefit of using the physically-based ice-flow models as well (Farinotti et al., 2016).

Due to the above difficulties, the existing global-scale estimates of the contributions of shrinking mountain-glaciers to sea-
level rise mostly rely on low-dimensional approximate parameterisations of glacier dynamics (Radi¢ et al., 2014). The results
from these simplified models provide critical inputs for assessing regional to global vulnerability to sea-level rise (e.g., Kulp
and Strauss, 2019). While some of these parameterisations are empirical prescriptions for adjusting the hypsometry of the
transient glaciers (Raper and Braithwaite, 2006; Huss et al., 2010; Huss and Hock, 2015), a majority of them are primarily
based on a statistical volume-area (or volume-area-length) scaling relation. This volume-area scaling equation relates glacier

volume V' to glacier area A as,
V =cA", (D

where, v is a dimensionless scaling exponent, and c is a scale factor (Bahr et al., 2015). This relation was established empirically
(e.g., Chen and Ohmura, 1990), and subsequently proved using dimensional analysis (Bahr et al., 1997, 2015). The derivation

utilised the empirical sub-linear scaling of glacier width and ablation rate with the glacier length (Bahr, 1997).

Theoretically, the scaling exponent y is time-independent, and can be expressed as 7y = 1+ m’igig (Bahr et al., 2015). Here,
n is the power-law exponent of Glen’s rheology of ice (Glen, 1955), and m is the scaling exponent of ablation rate with glacier
length (Bahr, 1997). For an individual glacier, the scale-factor c captures the control of all the glacier-specific factors (except
area) on its volume (Bahr et al., 2015). There is no available theoretical prescription for obtaining the value of ¢ for an arbitrary
glacier. ¢ may be calibrated for a particular glacier based on available independent measurements of area and volume during
an epoch, but its time dependence can be accessed only with a detailed model simulation (Bahr et al., 2015).

For a large enough ensemble, glacier area typically spans a few orders of magnitude. However, the corresponding c values
vary over arelatively restricted range (Bahr et al., 2015). This allows an approximate statistical description of any set of glaciers
using eq. 1, where a single best-fit ¢ and a fixed + is used (Bahr et al., 2015). Such a best-fit scaling relation provides a fairly
accurate estimate of the total ice volume of a large set of glaciers, but the corresponding predictions for the individual glaciers
have relatively large uncertainties (Bahr et al., 2015). Note that there is no theoretical constraint for ¢ to be time-independent
for a given set of non-steady glaciers (Bahr et al., 2015).

It is the above statistical interpretation of the scaling relation, where a best-fit time-invariant ¢ and a constant ~y is used to
describe an ensemble of glaciers, that is exploited in the scaling-based approximate models of glacier dynamics (e.g., Radi¢
et al., 2007). Hereinafter, we refer to the class of models that are based on such an approach (e.g., Radi¢ et al., 2007), as
“scaling models”. As the present study investigates the possibility of biases in scaling model predictions of the sea-level rise
contribution of mountain glaciers, we restrict ourselves to the above statistical interpretation of the scaling relation.

The performance of scaling models in simulating the transient glacier response have previously been tested against various
dynamical ice-flow models (e.g., SIA, higher order approximations, or Stokes’ model) in one to three dimensions using both
idealised (Radi¢ et al., 2007; Adhikari and Marshall, 2012) and realistic geometries (Radi¢ et al., 2008; Farinotti and Huss,
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2013). The uncertainties introduced by a scaling-model parameterisation of the evolution of glaciers with realistic geometries
were considered by Farinotti and Huss (2013). The spirit of the present study is quite similar to that of Farinotti and Huss
(2013), except that we are investigating the possible intrinsic biases of scaling models in a situation where the parameters (c

and ) are known accurately. The specific objectives of the present study are,
1. To obtain analytical predictions for climate sensitivity and response time of glaciers in a scaling model.

2. To compare the climate sensitivity and response time of a large number of synthetic glaciers with realistic geometries,

as obtained from a scaling model and a 2-d SIA model.

3. To investigate the possibility of long-term biases in scaling model estimates of changes in glacier area and volume with

respect to corresponding SIA results.

4. To find convenient parameterisations of glacier response properties obtained from the SIA simulations, and develop an

accurate linear-response model.

Note that the last objective involves a linear-response model which is a low-complexity model obtained in the limit of a
relatively small deviation around a steady state (e.g., Oerlemans, 2001). To apply this model on a large number of glaciers,
the response time and climate sensitivity need to be specified for each of them. A lack of accurate and numerically-convenient
parameterisations of these dynamical properties may have limited their application (Harrison et al., 2001; Liithi, 2009; Bach et
al., 2019). Here, we aim to obtain parameterisations of the glacier response properties using results from 2-d SIA simulations
of a large ensemble of synthetic glaciers with realistic geometries.

The paper is organised as follows. First, we theoretically derive the glacier-response properties within a time-invariant
scaling assumption (sect. 2.1 and 3.1). Then, we compare the performance of a representative scaling model (Radi¢ et al.,
2007) with that of a 2-dimensional SIA model, in simulating the response of 703 idealised Himalayan glaciers in the Ganga
basin to a hypothetical step rise in equilibrium line altitude (ELA) (sect. 2.2 and 3.2). We use the response properties obtained
from the scaling model to test the above analytical expressions for glaciers-response properties. The SIA results are used to
obtain parameterisations for the linear-response properties of glaciers. The accuracy of the scaling model and a linear-response
in reproducing the SIA-derived long-term loss of total glacier area and volume is assessed for the above 703 glaciers. The
performance of the linear-response model is also tested for an independent set of 204 glaciers in the western Himalaya without
any further calibraton. We also discuss the applicability of the linear-response model for actual computation of future glacier

loss for a set of transient glaciers forced by any arbitrary time-variation ELA (sect. 3.3).

2 Methods
2.1 Theoretical methods

For a theoretical analysis of the glacier-response properties implied by a scaling model, we consider a set of hypothetical

glaciers that are responding to a warming climate such that the volume-area scaling relation (eq. 1) is valid, and c is a given
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time-invariant constant. Then, the fractional changes in area and volume of these glaciers, in the limit of small changes, are

related as follows.
1 \%
AV mceyA" T AA = VZAA =~vhAA, 2)

where, AV and A A are the changes in area and volume, and the mean ice thickness is h = V/A. The above equation is the
basis of the scaling models of glacier evolution (e.g., Radi¢ et al., 2007). We have derived analytical expressions for glacier
response time and climate sensitivity starting from this equation, essentially following the line of arguments by Harrison et al.
(2001).

2.2 Numerical methods

We simulated the response of an ensemble of synthetic clean glaciers with realistic geometries to a hypothetical step-change
in ELA using three different methods (scaling, STA, and linear-response models). For this exercise, we considered all the 8§14
glaciers larger than 2 km? in the Ganga basin, the central Himalaya (Supplementary fig. S1). The ice-free bedrock for each
of the glacier was obtained using available ice-thickness estimates (Kraaijenbrink et al., 2017) and surface elevation (ASTER

GDEM, V003). The following idealised elevation-dependent linear mass-balance profile was used,
b(z) = Max{B(z — E),bo}. 3)

Here, (5 is the balance gradient, z is the surface elevation, and F is the equilibrium-line altitude (ELA). by is a cutoff on
maximum accumulation taken to be 1.0 m/yr. The choice of 3 is described later. In our mass-balance model, we neglected
complicating factors like supraglacial debris cover and its effects on ablation, and the avalanche contribution to accumulation.
Overall, the simulated glaciers can not be considered faithful copies of the actual Himalayan glaciers. Rather, they constituted
an ensemble of synthetic glaciers with realistic geometries (e.g., Farinotti and Huss, 2013) to be used here for a comparative

study of the performance of the three models.
2.2.1 A 2-d SIA model

The ice-flow dynamics was implemented within a two dimensional SIA (Hutter, 1983) as a numerically efficient non-linear
diffusion problem (Oerlemans, 2001). While SIA may not be the best method for simulating valley glaciers due to its limitation
in describing ice-flow influenced by longitudinal stresses and/or steep bedrock slopes (Le Meur et al., 2004), there is enough
evidence in the literature that SIA does a reasonable job of describing both the steady and transient dynamics of valley glaciers
(e.g., Vieli and Gudmundsson, 2004; Le Meur et al., 2004; Radi¢ et al., 2008). The contribution of sliding to the flow was
neglected here for simplicity.

The value of Glen’s flow-law exponent was assumed to be 3 (e.g., Oerlemans, 2001). For the sake of simplicity, we did not
tune any of the model parameters to match the observed ice-thickness and/or flow velocity on any of these glaciers. The only
exception was ELA which was tuned to obtain the initial steady state as described below. In order to avoid possible dependence

of the results on any specific choice of parameters, we picked the parameters related to mass balance and flow from random
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distributions. The rate constant of Glen’s law was picked randomly from the set {0.5,0.6,...,1.4,1.5} x 10724 Pa=3s~! for
each of the glaciers. This range of values is comparable to those used to model mountain glaciers previously (Radi¢ et al.,
2008). The balance gradient 3 was also picked randomly from the set of values {0.005, 0.006, ..., 0.009, 0.010} yr—! for each
glacier. This range of [3-values is comparable to the observed mass-balance gradients in the Himalaya (e.g., Wagnon et al.,
2013).

The model was integrated using a linearised implicit finite-difference scheme (Hindmarsh and Payne, 1996), with a no-
slip boundary condition at the ice-bedrock interface and a no-flux boundary condition at the domain boundary. An iterative
conjugate-gradient method was employed within the implicit scheme, with a spatial grid-size of 100 mx 100 m and time steps
of 0.01 years. To avoid the known problem of a possible violation of mass conservation in SIA on steep terrains (Jarosch et
al., 2013), we smoothed the bedrock with a centrally-weighted 3 x 3 moving-window averaging. In addition, conservation of
ice was explicitly monitored by tracking the total accumulation and ablation on the glacier surface, and the ice flux out of the
glacier boundary in the ablation zone. The cumulative net gain of ice matched the total ice in the domain to within one part
per 10° at any time ¢. Only on three glaciers (out of the total of 814), a violation of conservation due to steep bedrock was
observed, and these three were not considered in our analysis (supplementary figure S2). One more glacier had to be removed
where an erroneously mapped truncated tributary lead to an unrealistic piling up of ice (Supplementary fig. S2).

The SIA simulation was run starting with an empty bedrock, with the initial £ being the median elevation. The simulation
was continued until a steady state was reached. Subsequently, £ was moved up or down, and the simulation was repeated, until
the extent of the steady state was similar to the present glacier extent (RGI, 2017) (Supplementary fig. S2). Once the desired
steady state was found (See supplementary fig. S3 for a few examples), the glaciers were perturbed by a 50 m step rise in ELA.
Subsequently, the annual values of area and volume were recorded for the next 1000 years (Supplementary fig. S4). The mean
and standard deviation of the modelled ELA for these 810 glaciers were 5480 and 445 m, respectively.

Out of the total 810 simulated glaciers from the Ganga basin, on 98 glaciers the fractional change in glacier area at ¢ = 1000
was more than 50%, and these were excluded from the analysis. This was necessary as a linear-response model can only be
applied to glaciers with small relative changes (Oerlemans, 2001). We confirmed that the nature of our results does not depend
on the precise value of this cutoff (Supplementary fig. S6). An additional 9 glaciers had response time larger than 500 years
and they were removed. This was done to avoid a possible overestimation of the response time whenever its magnitude was
comparable to or larger than the total simulation period of 1000 years (supplementary fig. S7). The removal of these 9 glaciers
led to a reduction in the number (total area) of simulated glaciers by only ~ 1%(~ 2%).

Finally, we were left with an ensemble of 703 synthetic Himalayan glaciers (Supplementary fig. S1), with area in the range
of 2.2—156.0 km? (a median value 5.5 km?). The steady glaciers modelled with SIA had, on the average, 1.25 times larger area
and 1.66 times larger ice-thickness (supplementary figs. S3, S8) compared to the corresponding estimates of Kraaijenbrink et
al. (2017). The higher thickness of the modelled glaciers can be ascribed to a larger modelled area, a steady mass balance, and
an uncalibrated SIA model. The total area and volume of these 703 synthetic glaciers were 6865 km? and 847 km?, respectively.
This set covered 86% of the total 810 glaciers number-wise, and 89% area-wise. The distributions of glacier area and mean

slope for the two sets of 810 and 703 synthetic glaciers are shown in supplementary fig. S8.
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2.2.2 Scaling model

The response of the above set of 703 steady-state glaciers to a 50 m instantaneous rise in ELA was also computed with a
scaling model (Radi¢ et al., 2007). The SIA-derived initial steady-state volume, area, and hypsometry (with the bin size of 25
m) for each of the glaciers were used as the starting point. For any of the modelled glaciers, the scaling and SIA models used
the same mass-balance parameters. At any time ¢ during the evolution, the mass-balance function (eq.3) was summed over
the instantaneous glacier hypsometry to obtain the net volume loss for that time step. The corresponding area loss was then
obtained using Eq. 2. The reduction in the area was assumed to have taken place in the lowest elevation band/s of each glacier
(Radi¢ et al., 2007). The scaling exponent was fixed at v = 1.286 because of the assumed linear mass-balance profiles of the
simulated glaciers (i.e., m = 1). The annual-resolution time series of area and volume were recorded for 1000 years for each

of the glaciers.
2.2.3 Glacier response properties

For each of the 703 glaciers, the time series of volume and area as obtained using the SIA and scaling models, were sepa-
rately fitted to linear-response forms (e.g., eq. 9 below) to obtain the corresponding best-fit values of the four linear-response
parameters (the climate sensitivities and the response times of area and volume) for each of them (supplementary fig. S4).

Please note that applying a step change in ELA to a steady-state glacier to obtain the step-response function is a standard
prescription for obtaining glacier response properties (Oerlemans, 2001; Vieli and Gudmundsson, 2004; Harrison et al., 2001;
Bach et al., 2019). Within a linear-response assumption, the step-responses of volume and area have an exponential form
(e.g., eq. 9 below). The asymptotic exponential decay time is the response time of the glacier, and the asymptotic magnitude
of the decay is the climate sensitivity. Because of the deviations of the simulated response from a pure exponential decay
(supplementary fig. S4), the best-fit response time may be slightly different from the e-folding time, which has been used in
some of the previous studies (e.g., Vieli and Gudmundsson, 2004; Bach et al., 2019). However, we take the best-fit asymptotic
decay time to be the response time. By definition, it minimises the deviation between the predictions of the SIA and linear-
response models, and thus, improves the performance of the latter in reproducing SIA results to some extent. We confirm that
the difference between the above two definitions of the response time is small.

The best-fit linear-response properties obtained from the scaling model results for the 703 glaciers were used to verify the
corresponding theoretical expressions obtained from scaling theory (eqgs. 8, 11, 12, 13 below). On the other hand, the best-fit
response times and climate sensitivities obtained from the SIA simulations of the 703 glaciers were used to fit for empirical
relations that are motivated by the corresponding expressions derived from the scaling theory. All the above fits were performed

in log-log scale, and R? of the fits were noted.
2.2.4 A linear-response model

The best-fit empirical parameterisations for climate sensitivity and response time obtained by fitting the SIA results, were used

to obtain a linear-response model. This model was applied to simulate the response of the above 703 synthetic Himalayan
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glaciers to a 50 m step-change in ELA at ¢ =0. To assess the uncertainty of the linear-response model output, a random
Gaussian noise were added to the best-fit empirical parameters to generate an ensemble of 100 independent linear-response
model outputs. The standard deviation of this added Gaussian noise for a given fit parameter was set equal to standard error of
that parameter.

To test the applicability of the above linear-response model that was calibrated using SIA results for the 703 central Hi-
malayan glaciers, the model was applied to a different set of 204 glaciers from the western Himalaya without any further
calibration. For these western Himalayan glaciers, SIA and scaling model simulations were also performed following the same
procedures as detailed above. The time series of total area and volume of these 204 western Himalayan glaciers obtained using

the three different models were then compared.
3 Results and Discussions

3.1 Theoretical results

Below, we derive some relevant consequences of the time-invariant scaling assumption, including expressions for the climate
sensitivity and response time of area and volume. These results are expected to be generally valid for all scaling models that

are based on eq. 2.
3.1.1 The rates of area and volume change

Eq. 2, which was derived from eq. | assuming a time-independent c, implies,
V =~cA " A =~hA. (4)

Here, V and A denote the corresponding rates of change of glacier volume and area, respectively. If the net specific balance is

&b (in m/yr), then the annual rate of volume loss V = 6bA. This, together with eq. 4, implies,

. ob
A = —A
T 5)
ob
_ by ©)
yc

Thus, in the scaling models the rate of change of area scales with glacier area with an exponent (2 — ). This is consistent
with empirical observations for real glaciers as well (Banerjee and Kumari, 2019). As the scale factor % in the right-hand
side (RHS) of eq. 5 is proportional to the net specific mass balance, this may be a convenient way of obtaining mean regional
thinning rates from relatively straightforward remote-sensing measurements of the rate of area change. However, the accuracy

of this relation is contingent on the validity of the assumption of a time-independent c.
3.1.2 Area response time

To compute the area response time, let us consider a constant perturbation, i.e., a step change in ELA applied to a steady glacier

for time ¢ > 0 (e.g., Oerlemans, 2001). Let’s denote the corresponding instantaneous net negative balance at ¢t = 0 by §bg A, the
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asymptotic (t — oo) shrinkage of glacier area by AA., = A(0) — A(t — o0), and that of ice volume by AV,,,. Then, we have
(Harrison et al., 2001),

AA b + BAV., ~ —5by A. (7)

Here, b; is the ablation rate near the terminus. The area response time of the glacier can be expressed as 74 ~ AAy,/ A.

Therefore, using the above expressions for A (Eq.5) and AA, (Eq.7), we obtain,
ra=—(X4p = ®)
~vh

Here, the symbol 7* is a convenient shorthand notation for the time scale _<% + B)_l. In the above derivation, AV, that
appears in eq. 7 is eliminated with the help of eq. 2. Eq. 8 is comparable with the expression of area response time as given by
Harrison et al. (2001), or Liithi (2009).

3.1.3 Volume response time

The instantaneous change in volume (AV(t)) for a steady glacier perturbed by a small step change in ELA at ¢t = 0 is given

by,
AV (t) = AVuo (1 — e ™)), )

where, 7, is the volume response time and AV, is the volume sensitivity (e.g., Liithi, 2009). Now, V'(¢),V(0), and V (t — 00)
appearing in eq. 9 can be expressed in terms of A(t), A(0), and A(t — o0), respectively, with the help of corresponding scaling

relations (eq. 1). This, in the limit of a small fractional changes in area, yields,

AA(t) = AA (1 — e V™), (10)
Comparing the above two equations, and using eq. 8 one obtains,

TA=TYy =T an

This implies that all scaling models implicitly assume the area and volume response times of a glacier to be equal to each
other. However, it is known that for mountain glaciers area response time is larger than the volume response time within a SIA
model (Oerlemans, 2001; Vieli and Gudmundsson, 2004). Therefore, the assumed equality of the two response times in scaling
models (eq. 11) contradicts the existing SIA results. This is an intrinsic bias that is present in any scaling model.

After a step change in ELA, as the ablation zone shrinks, the initial net negative balance of a glacier gradually decays to zero
over a period determined by the corresponding response time. A longer area response time in SIA implies that this reduction
in the ablation zone is slower here than that in a scaling model. A corresponding feedback of a larger ablation zone on the net
mass balance should then lead to a higher long-term volume loss in a STA model than that in a scaling model. This indicates the
possibility of a low bias in scaling model estimates of the climate sensitivity of volume, or equivalently, that in the long-term

changes in glacier volume due to any rise in ELA.
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3.1.4 Climate sensitivity of area and volume

An expression for the climate sensitivity of glacier area (A A.), which is the asymptotic change in area due a change in ELA
by 6 E, is obtained by eliminating AV, from eq. 7 using eq. 2,

AA,, T*BOE
A qh

=a*. (12)

Here, we have used the definition of 7* (Eq. 8), and that dby ~ BJE for a step change in ELA by d E. The RHS of the above

equation is denoted by a* for convenience.

The corresponding expression for % is then obtained using Eq. 2,
AV
£ —1a (13)

Again, Eq. 13 is comparable to the expression of volume sensitivity as derived by (Harrison et al., 2001), where the authors
used an arbitrary thickness scale H, instead of the denominator of yh appearing in the definition of a* above.
Please note that strictly speaking, the climate sensitivity of area and volume with respect to a change in ELA should be

defined as 242 and &V

37 55> respectively. However, in this paper, we use AA,, and AV, as the corresponding sensitivities to

simplify the notation.

= (0.053 * 0.001) x*-286
0.91
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Figure 1. A) Glacier volume as a function of area for the 703 Himalayan glaciers simulated with SIA at ¢ = 0 yr (blue circles), and at
t = 500 yr (red circles) are plotted along with the corresponding best-fit scaling relations (blue and red solid lines). The corresponding fitted
functions, and R? values are shown in blue and red texts, respectively. B) The trajectories of the 703 glaciers in the V — A plane as simulated

with SIA (thick red lines) and scaling (thin blue lines) models. The inset is a zoomed-in version of the same plot, but with a linear scale.
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3.2 Numerical results

3.2.1 Volume-area scaling and a time-dependent scale factor in the SIA model

m+1
m+n+3

1.286, is expected (as m = 1 and n = 3). The ensemble of glaciers modelled with SIA did conform to above power-law relation

Following eq. 1, a power-law relation between the area and volume of the 703 glaciers with an exponent v =1+

V = cA286 at any time ¢ with a single best-fit c. The scale factor slowly decreased with time. For example, fig. 1a shows the
power-law fits at t = 0 and ¢ = 500 years (R? = 0.9), where the best-fit c-values were 0.05340.001 and 0.4740.001 km3~27,
respectively. This implies a ~11% reduction in c for the ensemble over the period of 500 years after the step-change in ELA
was applied. A time-dependent c is consistent with the theoretical arguments of Bahr et al. (2015).

The slow and systematic decline in c for the ensemble of shrinking glaciers simulated with SIA model contradicts the basic
assumption of scaling models of a time-invariant c. A decreasing ¢ would mean eq. 2 is violated, with % = 7% + %. Note
that all the three fractional changes involved in this relation are negative. Therefore, for any given |AA|, the corresponding
|AV] is going to be larger in SIA model than that in a scaling model where % is assumed to be zero (eq.2). Even though
the decline in c is only about 11%, it may be associated with a stronger low bias in the long-term change predicted by scaling
models. This is because a larger volume change in SIA would lead to a thinner glacier, and a corresponding surface-elevation
feedback to mass balance is likely to amplify the corresponding long-term mass loss over time.

The dependence of the glacier-specific scale factor on the mean slope is known (Bahr et al., 2015) and has been incorporated
in modified scaling relations where volume is a power-law function both area and slope (e.g., Grinsted, 2013; Zekollari and
Huybrechts , 2015). For the simulated 703 glaciers, the mean slope increases with time as area is lost preferentially from the
gently-sloping lower ablation zone. For example, the median slope of the 703 simulated glaciers reduced from 0.41 at ¢ =0 to
0.37 at t = 500 years. This ~ 10% reduction in slope is expected to lead to a ~ 5% decline in ¢ (Bahr et al., 2015) . So, at least
part of the time dependence of c for transient glaciers in SIA simulation is explained by the slope-dependence of c. However,

there may be other factors contributing to the decline in c for the transient glaciers as discussed below.
3.2.2 Area and volume response times

The theoretical prediction for glacier area and volume response time (eq. 11) worked rather well for the scaling model results
(figs. 2C, and 2D), with best-fit relations of 7y = (0.996 +0.001)74 with R? = 0.995, and 7 = (0.942+0.006)7* with R? =
0.89.

For STA simulations, the data showed that 74 > 7y, and that the two response times were still proportional to each other
(fig. 3C: 7y = (0.687 £ 0.004)74, with R% = 0.94). Also, 7, was proportional to 7* to a good approximation (fig. 3D: 7 =
(2.56 £0.04)7*, with R? = 0.94). Interestingly, the value of the proportionality constant in the latter relation as obtained from
SIA was about 2.7 times larger than the corresponding value obtained in the scaling model. This underlines the relatively large
underestimation of volume response time by the scaling model. Similarly, the area response time was about 3.9 times larger
in the STA simulation than the corresponding scaling model value. This implies that for a given ELA perturbation, the glacier

response is much faster in the scaling model compared to that in the SIA model for the ensemble of 703 synthetic glaciers.

10
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Apart from the overall underestimation of area and volume response times by the scaling model, another serious limitation
of scaling models that emerges from the above analysis is that here the area and volume response times are equal to each
other (eq. 11, and fig. 3C). In contrast, the SIA model predicted 74 ~ 1.57y . The ratio of the two response times obtained from
the 2-d SIA model here is generally consistent with earlier results based on 1-d flowline models (Oerlemans, 2001; Vieli and
Gudmundsson, 2004). The equality of the two response times in the scaling model led to a linear trajectory in V — A plane
for the transient glaciers (fig. 1B). While in STA model, a relatively larger area response time, together a slow initial changes
in area (supplementary figs. S4, S10), led to curved V — A plane trajectories for individual transient glaciers. In particular,
a slowly changing area means the V' — A trajectories bend downward causing ¢ to reduce for the transient ensemble (fig 1).
Moreover, At the early stages of response, glaciers simulated by a scaling model lose area much quicker than those simulated
by an STA model (fig. 1B). The associated net mass-balance feedbacks then lead to a subdued long-term volume response in

scaling model, and a comparatively stronger volume response in the SIA model, just as predicted in sect. 3.1.3.
3.2.3 The climate sensitivity of glacier area and volume

For the 703 glaciers simulated by the scaling model, the fitted asymptotic fractional changes in area and volume, or equivalently,
the corresponding (fractional) climate sensitivities, were proportional to each other (fig. 2A: % = (1.23240.002) %, with
R2=0.997). Here, the best-fit constant of proportionality was close to v = 1.286, as predicted by eq. 2.

In contrast, the SIA simulations obtained A% =(1.93£ 0.02)“%, with R2=0.85 (fig. 3A). In this case, the constant of
proportionality was ~ 1.5y, compared to the corresponding value of ~ y in the scaling model. This larger value of the ratio
of the two climate sensitivities in SIA model is consistent with the observed decline in c for the transient glaciers simulated
with this model (fig. 1). Please note that no theoretical prediction is available for the ratio of asymptotic fractional changes in

volume and area in a STA model.

T T
Scaling Scaling 100 - Scaling L Scaling
100
0.1 ¢ 41 01rp 1

w n
2 2 3 3
3 3 E] E
> <
- 2 & s

5 y = (1.232 + 0.002)x y = (0.581 + 0.007)x e y = (0.996 + 0.001)x y = (0.942 + 0.006)x

& R? = 0.997 R? = 0.702 R? = 0.995 R? = 0.889
o5
A . LB 10 C | D
0.01 /4 . 4 0.01 |- o . g ! 10 ]
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Figure 2. Scaling model simulations of the 703 synthetic Himalayan glacier show that, (A) the best-fit (fractional) climate sensitivities of

BSET*
vh

times associated with glaciers area and volume are approximately equal, and (D) the volume response time is approximately equal to

area and volume are proportional to each other, (B) The climate sensitivity of volume is proportional to o™ =

(C) The response

T = —(b—f +3)~". In all the above plots, the corresponding best-fit curves are shown with red lines. The fit parameters and R? of the fits
~vh

are also given. These numerical trends are consistent with theoretical results derived in sect. 3.1.

11



315

320

325

330

Fig.2B shows that in the scaling model, climate sensitivity of glacier volume is proportional to o* (A% =(0.581+
0.007)a*, with R? = 0.7). This is in line with eq. 13, except that the constant of proportionality is significantly less than
. A similar proportionality between the SIA-derived best-fit A% and o is shown in fig. 3B, with A% = (1.71£0.03)a*.
However, in this case the fit is relatively noisy with R? = 0.48.

The above relations suggest that the climate sensitivity of volume in the SIA simulation was about 2.9 times larger than that
in the scaling model. Similarly, the climate sensitivity of glacier area obtained from the SIA model was also about 3.2 times
larger than that obtained from the scaling model. This trend of a relatively large (by about a factor of about 3) underestimation of
climate sensitivity of glacier volume and area by the scaling model is consistent with the effects of a relatively faster shrinkage

of the ablation zone in the early stages of the response as discussed in 3.1.3 and 3.2.2.

1000

T
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§ § 3 ]
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R? = 0.484 S R? = 0.944 = R2 = 0.526
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Figure 3. Results from the SIA simulations of the 703 synthetic Himalayan glacier show that, (A) The climate sensitivities of area and volume

8 ‘iﬁj , (C) The response times associated

are proportional to each other, (B) The climate sensitivity of glacier volume is proportional to a* =
. . . . . . * b —1
with glaciers area and volume are proportional to each other, and (D) The volume response time is proportional to 7 = _(7;1 + B)~". The

fitted functions are shown with red lines. The corresponding fit parameters and R? of the fits are also given. See text for detailed discussions.

3.2.4 The total glacier loss estimated using the three models

Starting with an initial volume (area) of 847 km? (6865 km?), the 703 glaciers simulated by SIA lost a total of 194 km? (726
km?) of volume (area) in 500 years due to the step-rise in ELA by 50 m. As shown in fig4, both the scaling and the linear-
response models underestimated the long-term change in total area in this experiment, with estimated area changes of 352 and
621 km?, respectively. The scaling-model prediction for area change was only 48% of the corresponding SIA estimate, while
the linear-response model estimate was 86% of that of SIA. Similar trends were seen for the magnitudes of estimated volume
change as well, with the respective scaling and linear-response model estimates being ~ 27% and ~ 75% of the corresponding
SIA prediction (fig4). We confirmed that the nature of the above results does not depend on the chosen cut-off of 50% change
that was used to select the 703 glaciers (Supplementary fig. S6). In fact, with a smaller cut-off, the linear-response model
estimates were even closer to the corresponding SIA estimates (Supplementary fig. S6). This is expected as linear-response

models are derived in the limit of small fractional changes (Oerlemans, 2001).
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The low-bias in the long-term changes of glacier area and volume computed with the scaling model is consistent with the
underestimation of corresponding climate sensitivities by this model (sect. 3.2.3). This indicates the possibility of a negative
bias in scaling model estimates of mountain glacier contribution to sea-level rise as well. As an example, let us consider a
recent comparison (Hock et al, 2019) of projected end-of-the-century sea-level rise contribution of glaciers from 6 different
models that include a hypsometric-adjustment-based model (Huss and Hock, 2015) and 5 other models which are all based on
some form of scaling. It is seen that the former model consistently predicted the largest change under various climate scenarios
(e.g., Table 3 of Hock et al (2019)). This may be an indication that biases qualitatively similar to that discussed here, are
generally present in scaling models. Based on our results, the potential biases in the scaling models may be clearer in long-
term simulations over multiple centuries. On shorter time scales of multiple decades, an underestimation of response times by
about a factor of 3 (sect. 3.2.2) to some extents compensates for a corresponding underestimation of the climate sensitivities
(sect. 3.2.3), and the deviation between the SIA and scaling models are not that prominent (fig. 4).

Please note that depending on the details of the scaling and SIA models that are being compared or the set of glaciers that are
being simulated, the actual magnitude of the biases in scaling-model derived climate sensitivity, response time, and long-term
glacier change could be different from that obtained here. However, based on the theoretical arguments and numerical evidence
presented, similar qualitative trends are expected if the above exercise were to be repeated with a more detailed model and/or
for a more realistic set of glaciers.

Above results also show that the linear-response model outperformed the scaling model, producing a closer match with the
SIA results for the 703 synthetic glaciers from the Gangetic Himalaya. However, this linear-response model was calibrated
using the STA results for the same set of glaciers. Therefore, this match is not enough to establish the effectiveness of the
linear-response model. To confirm the improved performance of the linear-response model compared to that of the scaling
model, we applied these two models without any further calibration, to simulate a different set of 204 glaciers in the western
Himalaya (supplementary fig. S1). In this independent experiment, the linear-response model again outperformed the scaling
model in reproducing the corresponding SIA results (supplementary fig. S9). This confirms that the linear-response model can

be used for computing long-term glacier changes accurately.
3.3 The effects of glacier geometry

Can the biases in the scaling model described above, be artefacts arising out of some peculiarities of the geometry of the
specific set of glaciers being simulated, and are not relevant in general for scaling model computations of global-scale mass
loss of mountain glaciers? To explore that possibility, we simulated the response of a set of highly idealised synthetic glaciers
using both a flowline model (Banerjaee, 2017) and the above scaling model (Radi¢ et al., 2007). Note that this flowline model
included sliding as well. All of these synthetic glaciers have the same constant-width, the same linear bedrock with constant
slope, and the same linear mass-balance profile. Only the ELA was varied between glaciers. Even for this highly idealised set of
glaciers, the scaling model estimates for the evolution of total area and volume showed biases compared to that obtained from

the flowline model (supplementary fig. S9), and these biases were qualitatively very similar to those observed in figs. 1 and 4.
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Figure 4. The evolution of the total (A) volume, and (B) area of the ensemble of 703 Himalayan glaciers simulated with three different
methods: SIA, scaling, and linear-response models. The uncertainty bands for the linear response model results as also shown. See text for

details.

Again, the scaling model predicted relatively smaller climate sensitivities, a relatively faster area response, and a low-bias in
the long-term changes, compared to corresponding flowline model estimates (supplementary fig. S9).

The above flowline model experiment provides an additional piece of evidence that the scaling-model biases discussed in
this paper are in general expected to be present in scaling model simulations of any set of glaciers. We emphasise that even
though biases are expected to be qualitatively similar to that presented here, the magnitude of the biases are likely to depend
on the detailed characteristics (related to geometry, flow, and mass-balance processes) of the glaciers studied and the models

used.
3.4 The linear-response model, and its application to real glaciers

As described above, we have used results from the 2-d SIA model simulations of the response of 703 synthetic Himalayan

glaciers to a 50 m step change in ELA, to obtain the following best-fit paramterisations of the glacier response properties (i.e.,

—A&" , —A’gm ,T4 and Ty).

AV

Vv = (1.71+0.03)a™, (14)

AV AA,

— = (1.934£0.02)—— 15
v = (2.56+0.04)7", (16)
v = (0.687+0.004)74. (17)

Here, as defined before, 7* = —(% —|—ﬁ)_1, a* = B{/th*’ and 0 F = 50 m. With the help of these paramterisations, it is possible

to compute the evolution glacier volume and area accurately given a glacier and any arbitrary ELA forcing function. For this
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the following general solution of the linear-response equation is used.
t
—t/T AV N ==t /Ty g4t
AV (t) = AV (0)e™TV + SE AE(t))e vdt (18)
0

Here, AE(t) is the given (arbitrary) ELA forcing function. This equation simply states that, any continuous ELA change can
be interpreted as the sum total of a series of discrete steps, and the corresponding net response is given by a superposition of
suitably delayed responses due to each of the steps. An analogous expression can be written down for the area evolution as
well by replacing all the Vs in the above equation with A’s.

Please note that the above formulation does not require the initial state to be steady. As long as the glacier is close to a steady
state, a linear-response theory will be a good approximation (Oerlemans, 2001). However, an additional initial condition, i.e.,
the value of AV(0), is needed to apply the linear-response model to transient glaciers. AV (0) is the initial departure from
a steady state, and can be obtained from the observed rate of volume loss (V) simply as, AV(0) = —TVV. Thus, the linear-
response model can be used to evolve the area and volume of a real set of glaciers for any arbitrary time-dependent ELA
forcing given the initial rates of change of volume and area, initial thickness, mass-balance gradient, and melt rate near glacier
terminus.

Due to the noise present in the fits (fig. 3), the linear-response model predictions for an individual glacier would have
significant uncertainties. However, for a large set of glaciers, the linear-response model provides accurate estimates of the total

area and volume evolution (fig. 4, supplementary figs. S6 and S9).
3.5 Limitation of the present study

Because of the idealised descriptions of ice flow and the mass-balance profile (as discussed in sect. 2.2), and the absence
of model calibration to match the available observed data of surface velocity, ice thickness, recent mass balance etc., the
glaciers simulated here are not faithful copies of the Himalayan ones. For a set of more realistic glaciers, the magnitude of the
corresponding biases in scaling-model derived climate sensitivity and response time could be different from that obtained here.
However, based on the theoretical arguments and numerical evidence presented, similar qualitative trends are expected if the
above exercise were to be repeated for a more realistic model that includes higher order mechanics, flow due to sliding, a more
realistic mass-balance model, and so on. Similarly, The parameterisations for the linear-response properties given here are
obtained from 2-d simulations of 703 synthetic Himalayan glaciers with some idealisations (sect. 2.2) and without any tuning
of model parameters. The fit-parameters in eqs. 14-17 may be different for a different set of glaciers. The paramterisations may
also change if a more detailed and calibrated model of the same glaciers is used. However, the protocol used here to obtain the
parameterisation for linear response-properties can be directly applied without any change for any set of glaciers and for any

ice-flow/mass-balance model.
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4 Summary and Conclusions

We performed a theoretical analysis of the response of mountain glaciers within a time-independent scaling assumption. In
addition, the step-response of 703 steady-state synthetic Himalayan glaciers with realistic geometries and idealised mass-
balance profiles were simulated with three different models: a scaling model, a 2-d SIA model, and a linear-response model.

The results obtained are as follows.

— Analytical expressions for climate sensitivity and response time of glacier area and volume are derived within a time-

independent scaling assumption. These expressions are validated using results from the scaling model simulation of the

ensemble of 703 glaciers.

The response of the glaciers simulated with the 2-d SIA model reveals that the initial steady states and the transient states

follow the volume-area scaling relation, with the best-fit scale factor reducing slowly with time.

For the ensemble of glaciers studied, the scaling model obtains relatively smaller climate sensitivities of glacier area and
volume by a factor of about 3, compared to that from the SIA model. This results in a low bias in the long-term changes

predicted by the scaling model.

For the ensemble of glaciers studied, the scaling model underestimates volume (area) response time by a factor ~2.7

(3.9) compared to the corresponding SIA estimates.

For the scaling model, 74 ~ 7y, and % ~ 7%. In contrast, for the SIA simulations, 74 ~ 1.57y and % =

1.5y84==

The relatively larger ratio of the two response times in the SIA simulations, along with an initial slow change in area,
leads to curved V' — A trajectories, a decreasing c, and a relatively larger long-term volume loss for the transient glaciers

due to a corresponding mass-balance feedback.

A linear-response model based on the parameterisations of SIA-derived response properties helps reduce the biases in
the predicted long-term glacier changes that are present in the scaling model results. The improved performance of this

model is validated on an independent set of 204 glaciers in the western Himalaya.

Based on the theoretical arguments and numerical evidence presented here, it is possible that qualitatively similar biases
may generally be present in the long-term glacier changes computed with scaling models. However, the actual magnitude of
such biases in scaling models may be different from that obtained here for a set of synthetic Himalayan glaciers with idealised
mass balance. Possible biases in scaling models may, in turn, lead to a low bias in the corresponding estimates of the long-term
sea-level rise contribution from shrinking mountain glaciers. On a multidecadal scale, a faster response due to shorter response
times in the scaling model can compensate for the effects of smaller climate sensitivities to some extent. However, the low

biases in scaling model derived changes in glacier area and volume are likely to become apparent over longer time scales of
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multiple centuries. The linear-response model presented above could potentially be useful in predicting the long-term global

glacier change and/or sea-level rise due to its accuracy and numerical efficiency.
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