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Abstract 8 

The cold-arid trans-Himalayan region comprises significant areas underlain by permafrost. 9 

While the information on the permafrost characteristics and extent started emerging, the 10 

governing energy regimes of this cryosphere region is of particular interest. This paper presents 11 

the results of Surface Energy Balance (SEB) study carried out in the upper Ganglass catchment 12 

in the Ladakh region of India, which feed directly to the River Indus. The point SEB is 13 

estimated using the one-dimensional mode of GEOtop model from 1 September 2015 to 31 14 

August 2017 at 4727 m a.s.l elevation. The model is evaluated using field monitored snow 15 

depth variations (accumulation and melting), outgoing longwave radiation and one-year near-16 

surface ground temperatures and showed good agreement with the respective simulated values. 17 

For the study period, the surface energy balance characteristics of the study site show that the 18 

net radiation (29.7 W m-2) was the major component, followed by sensible heat flux (-15.6 W 19 

m-2), latent heat flux (-11.2 W m-2) and the ground heat flux was equal to -0.5 W m-2. During 20 

both the years, the latent heat flux was highest in summer and lowest in winter, whereas the 21 

sensible heat flux was highest in post-winter and gradually decreased towards the pre-winter 22 

season. During the study period, snow cover builds up in the catchment initiated by the last 23 

week of December facilitating the ground cooling by almost three months (October to 24 
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December) of sub-zero temperatures up to -20 °C providing a favourable environment for 58 

permafrost. It is observed that the Ladakh region have a very low relative humidity in the range 59 

of 43% as compared to, e.g., ~70% in the Alps facilitating lower incoming longwave radiation 60 

and strongly negative net longwave radiation averaging ~ -90 W m-2 compared to -40 W m-2 61 

in the Alps. Hence, the high elevation cold-arid region land surfaces could be overall colder 62 

than the locations with more RH such as the Alps. Further, it is apprehended that high incoming 63 

shortwave radiation in the region during summer months may be facilitating enhanced cooling 64 

of wet valley bottom surfaces as a result of stronger evaporation. 65 

Keywords: Cold-arid, Cryosphere, GEOtop, Himalaya, Leh, Permafrost, Surface Energy 66 

Balance 67 

1 Introduction 68 

The Himalayan cryosphere is essential for sustaining the flows in the major rivers originating 69 

from the region (Bolch et al., 2012, 2019; Hock et al., 2019; Immerzeel et al., 2012; Kaser et 70 

al., 2010; Lutz et al., 2014; Pritchard, 2019). These rivers flow through the most populous 71 

regions of the world (Pritchard, 2019) and insight on the processes driving the change is critical 72 

for evaluating the future trajectory of water resources of the area, ranging from small headwater 73 

catchments to large river systems (Lutz et al., 2014). It is hard to propose a uniform framework 74 

for the downstream response of these rivers as they originate and flow through various glacio-75 

hydrological regimes of the Himalaya (Kaser et al., 2010; Thayyen and Gergan, 2010). Lack 76 

of understanding of multiple processes driving the cryospheric response of the region is 77 

limiting our ability to anticipate the subsequent changes and their impacts correctly. This has 78 

been highlighted by the recent studies which suggested the occurrence of higher precipitation 79 

in the accumulation zones of the glaciers than previously known (Bhutiyani, 1999; Immerzeel 80 

et al., 2015; Thayyen, 2020). 81 
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The sensitivity of mountain permafrost to climate change (Haeberli et al., 2010) leads to 90 

changes in permafrost conditions such as an increase in active layer thickness that eventually 91 

affect the ground stability (Gruber and Haeberli, 2007; Salzmann et al., 2007), trigger debris 92 

flows and rockfalls (Gruber et al., 2004; Gruber and Haeberli, 2007; Harris et al., 2001), 93 

hydrological changes (Woo et al., 2008), run-off patterns (Gao et al., 2018; Wang et al., 2017), 94 

water quality (Roberts et al., 2017), greenhouse gas emissions (Mu et al., 2018), alpine 95 

ecosystem changes (Wang et al., 2006), and unique construction requirements to negate the 96 

effects caused by ground-ice degradation (Bommer et al., 2010). These strongly affect the 97 

mountain communities and indicate the relevance of mountain permafrost on human 98 

livelihoods. Field observations suggest that ground-ice melt may be a critical water source in 99 

dry summer years in the cold-arid regions of Ladakh (Thayyen, 2015). 100 

The energy balance at the earth’s surface drives the spatio-temporal variability of ground 101 

temperature (Oke, 2002; Sellers, 1965; Westermann et al., 2009). It is linked to the atmospheric 102 

boundary layer, and location-dependent transfer mechanisms between land and the overlying 103 

atmosphere (Endrizzi, 2007; Martin and Lejeune, 1998; McBean and Miyake, 1972). The 104 

surface energy balance (SEB) in cold regions additionally depends on the seasonal snow cover, 105 

vegetation and moisture availability in the soil (Lunardini, 1981) and (semi-) arid areas exhibit 106 

their typical characteristics (Xia, 2010).  107 

The role of permafrost is a key unknown variable in the Himalaya, especially in headwater 108 

catchments of the Indus basin. However, one can notice that the none of excellent studies about 109 

Himalayan cryosphere (e.g., Immerzeel et al., 2010; Lutz et al., 2014) discuss permafrost and 110 

its role in regional climate and Hydrology. And this is our prime motivation to take up the 111 

permafrost studies in the region. Recent studies have signalled significant permafrost area in 112 

the cold-arid upper Indus basin areas covering Ladakh (Wani et al., 2020). This study suggests 113 

the permafrost area in a small (15.4 km2) catchment in the Ladakh region is 22 times of the 114 
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glacier area. More coarse assessment in the Hindu Kush Himalaya (HKH) region suggests that 122 

the permafrost area extends up to 1 million km2, which roughly translate into 14 times the area 123 

of glacier cover of the region (Gruber et al., 2017). Except for Bhutan, the expected permafrost 124 

areas in all other countries is larger than the glacier area. With two-thirds of the HKH underlain 125 

by permafrost, China has by far the largest estimated share (906x103 km2) followed by India 126 

(40.1x103 km2), Pakistan (26.6x103 km2), Afghanistan (17.5x103 km2), Nepal (11.1x103 km2), 127 

Bhutan (1.2x103 km2) and Myanmar (0.1x103 km2) (cf. Table 1, Gruber et al., 2017). The 128 

mapping of rock glaciers using remote sensing suggested that the discontinuous permafrost in 129 

the HKH region can be found between 3500 m a.s.l. in Northern Afghanistan to 5500 m a.s.l. 130 

on the Tibetan Plateau (Schmid et al., 2015). Recently, Pandey (2019) published a remote 131 

sensing based rock glacier inventory of Himachal Himalaya and reports that the discontinuous 132 

permafrost can be found within an elevation range of 3000–5500 m a.s.l. Another rock glacier 133 

inventory from IHR suggests that the elevations above 4600 m a.s.l. are suitable for the 134 

occurrence of permafrost (Baral et al., 2019). Similarly, an initial localised estimate of 420 km2 135 

of permafrost is suggested in the Kullu district of Himachal Pradesh, India (Allen et al., 2016).  136 

The cold-arid region of Ladakh has reported sporadic occurrence of permafrost and associated 137 

landforms (Gruber et al., 2017; Wani et al., 2020) with the sorted patterned ground and other 138 

periglacial landforms such as ice-cored moraines. Previous studies of permafrost in the Ladakh 139 

region are from the Tso Kar basin (Rastogi and Narayan, 1999; Wünnemann et al., 2008), and 140 

the Changla region (Ali et al., 2018).  141 

The SEB characteristics of different permafrost regions have been studied, e.g., the North 142 

American Arctic (Eugster et al., 2000; Lynch et al., 1999; Ohmura, 1982, 1984), European 143 

Arctic (Lloyd et al., 2001; Westermann et al., 2009), Tibetan Plateau (Gu et al., 2015; Hu et 144 

al., 2019; Yao et al., 2008, 2011, 2020), European Alps (Mittaz et al., 2000) or Siberia (Boike 145 

et al., 2008; Kodama et al., 2007; Langer et al., 2011a, 2011b). However, SEB studies of IHR 146 
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are limited, for example, the energy balance studies on glaciers by Azam et al. (2014) and 176 

Singh et al. (2020). The SEB also has a significant influence on regional and local climate 177 

(Eugster et al., 2000). During summer months, the permafrost creates a heat sink, which 178 

reduces the skin temperature, and therefore heat transfer to the atmosphere is also reduced 179 

(Eugster et al., 2000). This highlight that the knowledge of frozen ground and associated energy 180 

regimes are a critical knowledge gap in our understanding of the Himalayan cryospheric 181 

systems, especially in the Upper Indus Basin. 182 

The goal of this manuscript is to improve the understanding of permafrost in cold-arid UIB 183 

areas and to advance our ability to analyse and simulate the characteristics of permafrost there. 184 

This can guide the application of available models in the Ladakh region which are calibrated 185 

(Boeckli et al., 2012) or validated (Cao et al., 2019; Fiddes et al., 2015) elsewhere. 186 

Furthermore, it can help to interpret differences in surface offset observed in Ladakh (Wani et 187 

al., 2020) and other permafrost areas (Boeckli et al., 2012; Hasler et al., 2015; PERMOS, 2019). 188 

Our working hypothesis is that the surface offset for particular terrain types in the UIB differs 189 

from what is known in other areas, driven by aridity and high elevation. We aim to improve 190 

the understanding of the SEB and its relationship with the ground temperature by working on 191 

three objectives: (1) Quantifying the SEB at South Pullu, as an exemplar for permafrost areas 192 

in the UIB. (2) Understand the pronounced seasonal and inter-annual variation of snowpack 193 

and GST, as these are intermediate phenomena between the SEB and permafrost. (3) 194 

Understanding key differences with other permafrost areas that have SEB observations.  195 

2 Study area and data 196 

2.1 Study area 197 

The present study is carried out at South-Pullu (34.25°N, 77.62°E, 4727 m a.s.l.) in the upper 198 

Ganglass catchment (34.25°N to 34.30°N and 77.50°E to 77.65°E), Leh, Ladakh (Figure 1). 199 

Ladakh is a Union territory of India and has a unique climate, hydrology and landforms. Leh 200 
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is the district headquarter, where long-term climate data is available (Bhutiyani et al., 2007). 237 

Long-term mean precipitation of Leh (1908–2017, 3526 m a.s.l.) is 115 mm (Lone et al., 2019; 238 

Thayyen et al., 2013) and the daily minimum and maximum temperatures during the period 239 

(2010 to 2012) range between -23.4 to 33.8 °C (Thayyen and Dimri, 2014). The spatial area of 240 

the catchment is 15.4 km2 and extends from 4700 m to 5700 m a.s.l. A small cirque glacier 241 

called as Phuche glacier with an area of 0.62 km2 occupies the higher elevations of the 242 

catchment. A single stream flows through the valley of the catchment originating from Phuche 243 

glacier. This stream flows intermittently with most of the flow from May to October.  244 

The catchment lies in the Ladakh mountain range and is part of the main Indus river basin. 245 

Geologically, the study catchment is part of the Ladakh batholith (Thakur, 1981). The study 246 

catchment also consists of steep mountain slopes with the valley bottom filled with glacio-247 

fluvial deposits. Other sporadic landforms found in the catchment include patterned ground, 248 

boulder fields, peatlands, high elevation wetlands and a small lake. Many of these landforms 249 

point towards intense frost action in the area.  250 
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 251 

Figure 1 Location of the study site in the upper Ganglass catchment. (Base image sources on 252 

the right panel: © Esri, DigitalGlobe, GeoEye, Earthstar Geographic’s, CNES/Airbus DS, 253 

USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User 254 

Community). 255 

2.2 Meteorological data used 256 

The automatic weather station (AWS) in the catchment is located at an elevation of 4727 m 257 

a.s.l. at South-Pullu (Figure 1). It is located in the wide deglaciated valley trending southeast. 258 

The site has a local slope angle of 15°, and the soil is sparsely vegetated. Weather data has been 259 

collected by a Sutron automatic weather station from 1 September 2015 to 31 August 2017. 260 

The study years 1 September 2015 to 31 August 2016 and 1 September 2016 to 31 August 261 

2017 hereafter in the text will be designated as 2015-16 and 2016-17 respectively. The 262 

variables measured include air temperature, relative humidity, wind speed and direction, 263 

incoming and outgoing shortwave and longwave radiation and snow depth (Table 1). The snow 264 
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depth is measured using a Campbell SR50 sonic ranging sensor with a nominal accuracy of ±1 265 

cm (Table 1). To reduce the noise of the measured snow depth, a six-hour moving average is 266 

applied. Near-surface ground temperature (GST) is measured at a depth of 0.1 m near the AWS 267 

using miniature temperature data logger (MTD) manufactured by GeoPrecision GmbH, 268 

Germany. GST data was available only from 1 September 2016 to 31 August 2017 and is used 269 

for model evaluation, only. All the four solar radiation components, i.e., incoming shortwave 270 

(SWin), outgoing shortwave (SWout), incoming longwave (LWin) and outgoing longwave 271 

(LWout) radiation were measured. Before using these data in the SEB calculations, necessary 272 

corrections were applied (Nicholson et al., 2013; Oerlemans and Klok, 2002): (a) all the values 273 

of SWin < 5 Wm−2 are set to zero, (b) when SWout > SWin (3 % of data understudy), it indicates 274 

that the upward-looking sensor was covered with snow (Oerlemans and Klok, 2002). The SWout 275 

can be higher than SWin at high elevation sites such as this one due to high solar zenith angle 276 

during the morning and evening hours (Nicholson et al., 2013). In such cases, SWin was 277 

corrected by SWout divided by the accumulated albedo, calculated by the ratio of measured 278 

SWout and measured SWin for a 24h period (van den Broeke et al., 2004).  279 

 280 
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Table 1 Technical parameters of different sensors at South-Pullu (4727 m a.s.l.) in the upper 296 

Ganglass catchment, Leh. (MF: model forcing, ME: model evaluation). 297 

Variable Units Sensor 
Stated 

accuracy 

Height 

(m) 
Use 

Air temperature (°C) Rotronics-5600-0316-1 ±0.2 °C 2.2 MF 

Relative humidity (%) Rotronics-5600-0316-1 ±1.5% 2.2 MF 

Wind speed (m s−1) RM Young 05103-45 ±0.3 ms−1 10 MF 

Wind direction (°) RM Young 05103-45 ±0.3° 10 MF 

Incoming shortwave 

radiation 
(W m−2) 

Kipp and Zonen (CMP6) 

(285 to 2800nm) 
±10% 4.6 MF 

Outgoing shortwave 

radiation 
(W m−2) 

Kipp and Zonen (CMP6) 

(285 to 2800nm) 
±10% 4.6 MF 

Incoming longwave 

radiation 
(W m−2) 

Kipp and Zonen (CGR3) 

(4500 to 42000nm) 
±10% 4.3 MF 

Outgoing longwave 

radiation 
(W m−2) 

Kipp and Zonen (CGR3) 

(4500 to 42000nm) 
±10% 4.3 ME 

Snow depth (m) Campbell SR-50 ±1cm 3.44 ME 

Data logger - Sutron 9210-0000-2B - - - 

Near-surface ground 

temperature 
(°C) 

PT1000 in stainless steel 

cap (by GeoPrecision 

GmbH, Germany) 

±0.1 °C -0.1 ME 

 298 

3 Methods 299 

3.1 Estimation of precipitation from snow height 300 

In high elevation and remote sites, the snowfall measurement is a difficult task with an under 301 

catch of 20–50% (Rasmussen et al., 2012; Yang et al., 1999). At the South Pullu station, daily 302 

precipitation including snow was measured using a non-recording rain gauge. In this high 303 

elevation area, an under catch of 23% of snowfall was reported earlier (Thayyen et al., 2015) 304 

[Unpublished work]. Here, we had the time resolution problem between total measured 305 

precipitation and other meteorological forcing’s including SR50 snow depth (hourly and 306 

recorded by automatic weather station). Therefore, to match the temporal resolution of 307 

precipitation data with other meteorological forcing’s, we adopted the method proposed by 308 

Mair et al. (2016), called Estimating SOlid and Liquid Precipitation (ESOLIP). This method 309 
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makes use of snow depth and meteorological observations to estimate the sub-daily solid 456 

precipitation in terms of snow water equivalent (SWE). In ESOLIP, we considered liquid 457 

precipitation daily only.  458 

The ESOLIP method consists of following steps: (a) filtering of precipitation readings: simple 460 

criteria based on relative humidity (RH) and global shortwave radiation was used such as, for 461 

an actual precipitation event, the RH > 50% and SWin < 400 W m-2, (b) precipitation type 462 

determination: wet bulb temperature (Tw) is used to differentiate between rain and snow such 463 

as if Tw < 1 (SWE estimation) and if Tw >=1 (rain). The Tw is estimated by solving the 464 

psychrometric formula implicitly: 𝑒 = 𝐸(𝑇𝑤) − 𝛾(𝑇𝑎 − 𝑇𝑤), Ta is the air temperature, and e 465 

(hPa) is the vapour pressure in the air, E (hPa) is the saturation vapour pressure, and γ (hPa K-466 

1) is the psychrometer constant depending on air pressure, (c) estimation of density: the fresh 467 

snow density (𝜌) was estimated based on air temperature (Ta) and wind speed (u) as below 468 

(Jordan et al., 1999): 469 

 𝜌 = 500 ∗ [1 − 0.951 ∗ 𝑒𝑥𝑝(−1.4 ∗ (278.15 − 𝑇𝑎)
−1.15 − 0.008𝑢10

1.7)], (1) 

 470 

For 260.15 < Ta ≤ 275.65 K 471 

 𝜌 = 500 ∗ [1 − 0.904 ∗ exp⁡(−0.008𝑢10
1.7)], (2) 

 472 

                                                                                                            For Ta ≤ 260.15 K 473 

and (d) estimation of SWE (SWE = h*ρ): to estimate the SWE of single snowfall events using 474 

snow depth measurements, and identification of the snow height increments of the single 475 

snowfall events and an accurate estimate of the snow density are necessary.  476 

3.2 Modelling of point surface energy balance 477 

In this study, the open-source model GEOtop version 2.0 (hereafter GEOtop) (Endrizzi et al., 478 

2014; Rigon et al., 2006) was used for the modelling of point surface energy balance including 479 
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the evolution of the snow depth and the transfer of heat and water in snow and soil. GEOtop 483 

represents the combined ground heat and water balance, the exchange of energy with the 484 

atmosphere by taking into consideration the radiative and turbulent heat fluxes. The model has 485 

a multi-layer snowpack and solves the energy and water balance of the snow cover and soil 486 

including the highly non-linear interactions between the water and energy balance during soil 487 

freezing and thawing (Dall’Amico et al., 2011). It can be applied in complex terrain and makes 488 

it possible to account for topographical and other environmental variability (Fiddes et al., 2015; 489 

Gubler et al., 2013). 490 

Previous studies have successfully applied GEOtop in mountain regions, e.g., simulating snow 491 

depth and ground temperature (Endrizzi et al., 2014), snow cover mapping (Dall’Amico et al., 492 

2011b, 2018; Engel et al., 2017; Zanotti et al., 2004), ecohydrological processes (Bertoldi et 493 

al., 2010; Chiesa et al., 2014), modelling of ground temperature in complex topography (Fiddes 494 

and Gruber, 2012), water and energy fluxes (Hingerl et al., 2016; Rigon et al., 2006; Soltani et 495 

al., 2019), evapotranspiration (Mauder et al., 2018), permafrost distribution (Fiddes et al., 496 

2015) or modelling ground temperatures (Bertoldi et al., 2010; Gubler et al., 2013). 497 

Generally, the surface energy balance (SEB) (Eq. 3) is written as a combination of net radiation 498 

(Rn), sensible (H) and latent heat (LE) flux and heat conduction into the ground or to the snow 499 

(G) and must balance at all times (Oke, 2002): 500 

 501 

 𝑅𝑛 + 𝐻 + 𝐿𝐸 + 𝐺 − 𝐹𝑠𝑢𝑟𝑓 = 0 (3) 

 502 

where Fsurf is the resulting latent heat flux in the snowpack due to melting or freezing, the sign 503 

convention adopted in this study is as, the energy fluxes towards the surface are positive, and 504 

negative if directed away from the surface (Mölg, 2004). During the summertime, when 505 

conditions for snow melting are prevailing at the ground surface, the Fsurf is negative (loss from 506 

the system) as a result of energy available for melting snow and warming the ground under 507 
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snow free conditions. The positive Fsurf (gain to the system) during summertime is the energy 545 

released to refreeze the water and represents the freezing flux. 546 

In the cold regions, the SEB is a complex function of solar radiation, seasonal snow cover, 547 

vegetation, near-surface moisture content, and atmospheric temperature (Lunardini, 1981). 548 

Based on the in-situ available data, the calculation of SEB components like H, LE and G is 549 

difficult. For example, in the calculation of turbulent heat fluxes (H and LE), the wind speed 550 

and temperature measurements near the ground surface are required at two heights, which are 551 

generally not available. Therefore, parameterisation method like bulk aerodynamic method is 552 

used which is valid under statically neutral conditions in the surface layer (Stull, 1988). Hence, 553 

application of a tested model like GEOtop (Endrizzi et al., 2014; Rigon et al., 2006) is a good 554 

alternative for the estimation of these fluxes. However, in the GEOtop (Endrizzi et al., 2014), 555 

the general equation of SEB (Eq. 3) is linked with the water balance and is written as (Eq. 4): 556 

In GEOtop, the surface heat flux (𝐹𝑠𝑢𝑟𝑓) is the energy available for exchange and is given by 557 

the sum of net shortwave (𝑆𝑊𝑛) and net longwave (𝐿𝑊𝑛) radiations and turbulent heat fluxes, 558 

i.e. sensible (H) and latent heat flux (LE). The surface heat flux equation (Eq.): 559 

 560 

 𝐹𝑠𝑢𝑟𝑓(𝑇𝑠) = 𝑆𝑊𝑛 + 𝐿𝑊𝑛(𝑇𝑠) + 𝐻(𝑇𝑠) + 𝐿𝐸(𝑇𝑠 , 𝜃𝑤)⁡ (4) 

 561 

where 𝑇𝑠, the temperature of the surface, is an unknown in the equation, 𝑆𝑊𝑛 is the shortwave 562 

radiation, 𝐿𝑊𝑛 is the net longwave radiation. The Fsurf is a function of the 𝑇𝑠. Other terms in 563 

Eq. 4 which are a function of 𝑇𝑠 include 𝐿𝑊𝑛, H and LE. In addition, the LE also depends on 564 

the soil moisture at the surface (𝜃𝑤), linking the SEB and water balance equations. The 565 

equations and the key elements of GEOtop are explained in Endrizzi et al. (2014), and here, 566 

only a brief description of the equations that are of interest in this study is given. The 𝑆𝑊𝑛 in 567 

Eq. 4 is equal to the difference between the incoming solar radiation (𝑆𝑊𝑖𝑛) coming from the 568 

atmosphere and the reflected shortwave radiation (𝑆𝑊𝑜𝑢𝑡) (Oke, 2002). 569 
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Also, 𝐿𝑊𝑛 in Eq. 4 is equal to the difference between the incoming longwave radiation (𝐿𝑊𝑖𝑛) 613 

coming from the atmosphere and the outgoing longwave radiation (𝐿𝑊𝑜𝑢𝑡) radiated by the 614 

surface (Oke, 2002). 615 

The 𝐿𝑊𝑜𝑢𝑡 radiated by the surface is also estimated using the Stefan-Boltzmann law (Eq. 5), 617 

as below: 618 

 619 

 𝐿𝑊𝑜𝑢𝑡 =∈𝑠. 𝜎. 𝑇𝑠
4 (5) 

 620 

where 𝑇𝑠 is the surface temperature (K) and ∈𝑠 is the surface emissivity. 621 

The turbulent fluxes (H and LE) are driven by the gradients of temperature and specific 622 

humidity between the air and the surface, and due to turbulence caused by winds as primary 623 

transfer mechanism in the boundary layer (Endrizzi, 2007). GEOtop estimates the turbulent 624 

heat fluxes H (Eq. 6) and LE (Eq. 7) using the flux-gradient relationship (Brutsaert, 1975; 625 

Garratt, 1994) as below: 626 

 𝐻 = 𝜌𝑎𝑐𝑝𝑤𝑠

𝑇𝑎 − 𝑇𝑠
𝑟𝑎

 (6) 

 627 

 𝐿𝐸 = ⁡𝛽𝑌𝑃𝐿𝑒𝜌𝑎𝑐𝑝𝑤𝑠

𝑄𝑎 − 𝛼𝑌𝑃𝑄𝑠
∗

𝑟𝑎
 (7) 

 628 

where 𝜌𝑎 is the air density (kg m–3), 𝑤𝑠 is the wind speed (m s−1),⁡𝑐𝑝 the specific heat at constant 629 

pressure (J kg–1 K–1), 𝐿𝑒 the specific heat of vaporisation (J kg−1),⁡𝑄𝑎 and 𝑄𝑠
∗ are the specific 630 

humidity of the air (kg kg−1) and saturated specific humidity at the surface (kg kg−1) 631 

respectively, and 𝑟𝑎 is the aerodynamic resistance (-). The aerodynamic resistance is obtained 632 

applying the Monin–Obukhov similarity theory (Monin and Obukhov, 1954), which requires 633 

that values of wind speed, air temperature and specific humidity are available at least at two 634 

different heights above the surface. But the values of these variables are generally measured at 635 

standard height above the surface and can be used for near surface with following assumptions: 636 
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(a) the air temperature is equal to the ground surface temperature; however, this assumption 649 

leads to the boundary condition nonlinearity, (b) the specific humidity is equal to 𝛼𝑌𝑃𝑄𝑠
∗, and 650 

(c) wind speed is equal to zero. 651 

The  𝛽𝑌𝑃 and 𝛼𝑌𝑃 are the coefficients (Eq. 8 and 9) that take into account the soil resistance to 652 

evaporation, and only depend on the liquid water pressure close to the soil surface. They are 653 

calculated according to the parameterisation of Ye and Pielke (1993), which considers 654 

evaporation as the sum of the proper evaporation from the surface and diffusion of water vapour 655 

in soil pores at greater depths: 656 

𝛽𝑌𝑃 = 𝜒𝑝(𝑔) −
[𝜒𝑝(𝑔)−𝜃𝑔]

1+
𝜒𝑝(1)−𝜃(1)

𝜒𝑝(𝑔)−𝜃𝑔

𝑟𝑎
𝑟𝑑

                                (8) 657 

 658 

𝛼𝑌𝑃 =
1

𝛽𝑌𝑃
[𝜃𝑔 +

𝜒𝑝(1)−𝜃(1)

1+
𝜒𝑝(1)−𝜃(1)

𝜒𝑝(𝑔)−𝜃𝑔

𝑟𝑎
𝑟𝑑

𝑟𝑎

𝑟𝑑
ℎ𝑠(𝜃1)

𝑞(𝑇𝑠1)
𝑠𝑎𝑡

𝑞(𝑇𝑔)
𝑠𝑎𝑡 ]       (9) 659 

 660 

𝑞𝑠𝑎𝑡 is the specific humidity in the saturated condition, the subscripts g and 1 in above two 661 

equations refer to the ground surface and a thin layer next to the ground surface, respectively, 662 

𝜃 is the volumetric water content of the soil, 𝜒𝑝 is the volumetric fraction of soil pores, hs is 663 

the relative humidity in the pores, Tg is the temperature at the ground surface, rd is the soil 664 

resistance to water vapour diffusion. 665 

3.2.1 The heat equation and snow depth 666 

The equation (Eq. 10) representing the energy balance in a soil volume subject to phase change 667 

in GEOtop is given below (Endrizzi et al., 2014): 668 

 
𝜕𝑈ph

𝜕𝑡
+ ∇. 𝐆 + 𝑆𝑒𝑛 − 𝜌𝑤[𝐿𝑓 + 𝑐w(𝑇 − 𝑇𝑟𝑒𝑓)]𝑆𝑤 = 0 (10) 

 669 

where 𝑈ph is the volumetric internal energy of soil (J m−3) subject to phase change, t(s) time, 670 

∇· the divergence operator, G the heat conduction flux (W m−2), 𝑆𝑒𝑛 is the energy sink term 671 
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(W m−3), 𝑆𝑤 is the mass sink term (s−1), 𝐿𝑓 (J kg−1) the latent heat of fusion, 𝜌𝑤 the density of 694 

liquid water in soil (kg m−3), 𝑐w is the specific thermal capacity of water (J kg−1 K-1), T (°C) 695 

the soil temperature and 𝑇𝑟𝑒𝑓 (°C) the reference temperature at which the internal energy is 696 

calculated. If G is written according to Fourier’s law, the Eq. 10 becomes: 697 

𝜕𝑈ph

𝜕𝑡
+ ∇. (𝜆𝑇⁡∇T) + 𝑆𝑒𝑛 − 𝜌𝑤[𝐿𝑓 + 𝑐w(𝑇 − 𝑇𝑟𝑒𝑓)]𝑆𝑤 = 0 (11) 

 698 

where 𝜆𝑇⁡ is the thermal conductivity (W m−1 K−1). The 𝜆𝑇⁡ being a non-linear function of 699 

temperature, because the proportion of liquid water and ice contents depends on temperature. 700 

For the calculation of 𝜆𝑇⁡, the GEOtop uses the method proposed by Cosenza et al. (2003). The 701 

detailed description of the heat conduction equation used in GEOtop can be found in Endrizzi 702 

et al. (2014).  703 

The snow cover buffers the energy exchange between the soil and atmosphere and critically 704 

influences the soil thermal regime (Endrizzi et al., 2014). GEOtop includes a multi-layer, 705 

energy-based, Eulerian snow modelling approach. In GEOtop, the equations for snow 706 

modelling are similar to the ones used for the soil matrix (Endrizzi et al., 2014). The 707 

discretisation of snow in GEOtop is done to describe the thermal gradients which are finer near 708 

the surface (with the atmosphere) and at the bottom (with soil). In GEOtop, the effective 709 

thermal conductivity at the interface of snow and ground is calculated similarly as in between 710 

different soil layers using the method of Cosenza et al. (2003). In GEOtop, the fresh snow 711 

density is computed using the Jordan et al. (1999) formula, which is based on air temperature 712 

and wind speed. More details about the snow metamorphism compaction rates and the snow 713 

discretisation in GEOtop can be found in the appendix D2 and D3, respectively of  (Endrizzi 714 

et al., 2014). 715 
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3.2.2 Model setup and forcing’s 720 

The 1D GEOtop simulation was carried out at South-Pullu (Figure 1). The soil column is 10 m 721 

deep and is discretised into 19 layers, with thickness increasing from the surface to the deeper 722 

layers. The top 8 layers close to the ground surface were resolved with thicknesses ranging 723 

from 0.1 to 1 m, because of the higher temperature and water pressure gradients near the surface 724 

(Endrizzi et al., 2014), while the lowest layer is 4.0 m thick.  725 

The snowpack is discretised in 10 layers, which are finer at the top at the interface with the 726 

atmosphere and the bottom with the soil. 727 

The model was initialised at a uniform soil temperature of -0.5 ºC and spun up by repeatedly 728 

modelling the soil temperature down to 1 m (2 years*25 times), and then using the modelled 729 

soil temperatures as an initial condition to repeatedly simulate soil temperature down to 10 m 730 

(2 years *25 times) (c.f., Fiddes et al., 2015; Gubler et al., 2013; Pogliotti, 2011). Preliminary 731 

tests show that the minimum number of repetitions required to bring the soil column to 732 

equilibrium was 25 (Figure S1). The values of all the input parameters used is given in 733 

Appendix (Table A1 to A4) in the supplementary material. 734 

The input meteorological data required for running the 1D GEOtop model include time series 735 

of precipitation, air temperature, relative humidity, wind speed, wind direction and solar 736 

radiation components and the description of the site (slope angle, elevation, aspect angle, and 737 

sky view factor) for the simulation point. The model was run at an hourly time step 738 

corresponding to the measurement time step of the meteorological data. 739 

3.3 Model performance evaluation 740 

While the accuracy of simulated energy fluxes cannot be quantified, the quality of GEOtop 741 

simulations is evaluated based on proxy variables such as snow depth, GST and the LWout. 742 

These variables were chosen because they have not been used to drive the model, and they 743 

represent different physical processes affected by surface energy balance. For example, (a) the 744 
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melt-out date of the snow depth is a good indicator showing how good the surface mass and 785 

energy balance is simulated, and (b) the GST is the result of all the processes occurring at the 786 

ground surface such as radiation, turbulence, latent and sensible heat fluxes (Gubler, 2013), 787 

and (c) LWout which is governed by the temperature and emissivity at the surface and the Eq. 788 

3 is solved in terms of skin temperature. Therefore, the LWout is used as a proxy for the 789 

evaluation of SEB.  790 

Model performance is evaluated based on the measured and the simulated time series (Gubler 791 

et al., 2012). Typically, a variety of statistical measures are used to assess the model 792 

performance because no single measure encloses all aspects of interest. In this study also, R2 793 

(Carslaw and Ropkins, 2012), mean bias difference (MBD) and the root mean square difference 794 

(RMSD) (Badescu et al., 2012; Gubler et al., 2012; Gueymard, 2012), MB and RMSE (Gupta 795 

et al., 1999), and NSE (Nash and Sutcliffe, 1970) were used (Eq. S1 to S6). 796 

4 Results 802 

4.1 Model evaluation 803 

In this section, the capability of GEOtop to reproduce the proxy variables is evaluated. The 804 

model was evaluated based on snow depth, one-year GST and the LWout. In this study, the 805 

simulation results are based on the standard model parameters obtained from the literature 806 

(Table 2 and 3, Gubler et al., 2013) and were not improved by trial and error and the same 807 

simulation results are used for model evaluation. 808 

4.1.1 Evaluation of snowpack 809 

Snow depth variations simulated by GEOtop are compared with observations from 1 810 

September 2015 to 31 August 2017 (Figure 2). The model captures the peaks, start and melt-811 

out dates of the snowpack, as well as overall fluctuations (R2 = 0.98, RMSE = 59.5 mm, MB = 812 

16.7 mm, NSE = 0.91, Instrument error = ±10 mm) (Figure S2). The maximum standing snow 813 

height (h) simulated by the GEOtop was 1219 mm in comparison to the 1020 mm measured in 814 
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the field. In the low snow year, the maximum simulated h was 326 mm in comparison to the 834 

280 mm measured in the field. During the melting period of the low and high snow years, the 835 

snow depth was slightly under-estimated. However, during the accumulation period of high 836 

snow year (2016-17), the h was rather overestimated by the model. 837 

Furthermore, the performance of the ESOLIP estimated precipitation was evaluated against a 838 

controlled run with precipitation data measured in the field (Figure 2). ESOLIP is the superior 839 

approach for precipitation estimation, where snow depth and necessary meteorological 840 

measurements are available. 841 

 842 

Figure 2 Comparison of hourly observed and GEOtop simulated snow depth at South-Pullu 843 

(4727 m a.s.l.) from 1 September 2015 to 31 August 2017. The black line denotes the snow 844 

depth measured in the field by SR50 sensor. The red (Snow depth_ESOLIP) and green (Snow 845 

depth_field) lines in the plot indicate the GEOtop simulated snow depth based on ESOLIP 846 

estimated precipitation and precipitation measured in the field, respectively. 847 

4.1.2 Evaluation of near-surface ground temperatures (GST) 848 

GST is simulated (GST_sim) on an hourly basis and compared with the observed values 849 

(GST_obs) near the AWS, available from 1 September 2016 to 31 August 2017 (Figure 3). The 850 
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results show a reasonably good linear agreement between the simulated and observed GSTs 851 

(Figure S3, R2 = 0.97, MB = -0.11 °C, RMSE = 1.63 °C, NSE = 0.95, Instrument error = ±0.1 852 

℃). The model estimated the dampening of soil temperature fluctuations by the snowpack and 853 

the zero-curtain period at the end of melt-out of the snowpack reasonably well. 854 

 855 

Figure 3 Comparison of daily mean observed (GST_obs, °C) and GEOtop simulated near-856 

surface ground temperature (GST_sim, °C) at South-Pullu (4727 m a.s.l.) from 1 September 857 

2016 to 31 August 2017. 858 

4.1.3 Evaluation of outgoing longwave radiation 859 

Modelled LWout is evaluated with the observed measurements and a comparison of daily mean 860 

observed, and simulated LWout is shown in Figure 4. The daily mean LWout matches very well 861 

with the observed data, except during summer months when the simulated LWout was slightly 862 

overestimated than the observed values. The hourly LWout shows a good linear relationship 863 

(Figure S4, R2 = 0.93, NSE = 0.73) but the GEOtop slightly overestimates the LWout (MBD = 864 

3 %) with RMSD value of 10 % (Instrument error = ±10%).  865 
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Based on the evaluation of LWout, the GEOtop can simulate the surface temperature at the point 868 

scale; therefore, we believe that it can reasonably calculate the SEB components. 869 

 870 

Figure 4 Comparison of daily mean observed outgoing longwave radiation (LWout_obs) and 871 

GEOtop simulated (LWout_sim) at South-Pullu (4727 m a.s.l.) from 1 September 2015 to 31 872 

August 2017. The instrument error for the Kipp and Zonen (CGR3) (4500 to 42000nm) 873 

radiometer is ±10%. 874 

4.2 Meteorological characteristics 875 

The range of the meteorological variables measured at South-Pullu (4727 m a.s.l.) study site is 876 

given in Table 2 to provide an overview of the prevailing weather in the study region. The daily 877 

mean air temperature (Ta) throughout the study period varies between -19.5 to 13.1 °C with a 878 

mean annual average temperature (MAAT) of -2.5 °C (Figure 5A). The Ta shows significant 879 

seasonal variations and instantaneous hourly temperature at the study site range between -23.7 880 

°C in January and 18.1 °C in July. During the two-year study period, sub-zero mean monthly 881 

temperature prevailed for seven months from October to April in both the years (2015-16 and 882 

2016-17). The monthly mean Ta during pre-winter months (September to December) of 2015-883 

16 and 2016-17 was −4.6 and -2.7 °C respectively. During the core winter months (January to 884 
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February) of 2015-16 and 2016-17, the respective monthly mean Ta was -13.1 and -13.7 °C,  890 

for post-winter months (March and April), mean monthly Ta was -5.8 and -8 °C, respectively. 891 

For summer months (May to August), the respective monthly mean Ta was 6.6 and 5.5 °C. A 892 

sudden change in the mean monthly Ta characterises the onset of a new season, and the most 893 

evident inter-season change was found between the winter and summer with a difference of 894 

about 16 °C during both the years.  895 

The mean daily GST recorded by the logger near the AWS available for one year (1 September 896 

2016 to 31 August 2017) is also plotted along with air temperature (Figure 5A). The mean daily 897 

GST ranges from -9.7 to 15.4 °C with mean annual GST of 2.1 °C. The instantaneous hourly 898 

GST at the study site range between -10.7 °C in December and 20.2 °C in July. The GST 899 

followed the pattern of air temperature, but during winter, the snow cover dampened the 900 

pattern. The GST was higher than the Ta except for a short period during snowmelt. The snow 901 

depth shown in Figure 5A is described in sub-section 4.3. 902 

Mean relative humidity (RH) was equal to 43% during the study period (Figure 5B). The daily 903 

average wind speed (u) ranges between 0.6 (29 January 2017) to 7.1 m s-1 (6 April 2017) with 904 

a mean wind speed of 3.1 m s-1 (Figure 5C). The instantaneous hourly u was plotted as a 905 

function of wind direction (WD) (Figure S5) for the study period which shows that there is a 906 

persistent dominance of katabatic and anabatic winds at the study site, which is typical of a 907 

mountain environment. The average WD during the study period was southeast (148°) (Figure 908 

5D). 909 
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 943 

Figure 5 Daily mean values of observed (A) air temperature (blue) and one-year GST (red) (T, 944 

°C), snow depth (mm) on the secondary axis; (B) relative humidity (RH, %) with a dashed line 945 

as mean RH; (C) wind speed (u, ms−1); and (D) wind direction (WD, °); at South-Pullu (4727 946 

m a.s.l.) in the upper Ganglass catchment, Leh from 1 September 2015 to 31 August 2017. 947 

The daily measured total precipitation at the study site equals 97.8 and 153.4 mm w.e. during 948 

the years 2015–16 and 2016–17 respectively. After adding 23% under catch (Thayyen et al., 949 

2015) [unpublished work] to the total snow measurements, the total precipitation amount equal 950 

to 120.3 and 190.6 mm w.e. for the years 2015–16 and 2016–17 respectively. During the study 951 

period, the observed highest single-day precipitation was 20 mm w.e. recorded on 23 952 

September 2015 and the total number of precipitation days were limited to 63. The snowfall 953 
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occurs mostly during the winter period (December to March) with some years witnessing 957 

extended intermittent snowfall till mid-June, as experienced in this study during the year 2016-958 

17. 959 

The precipitation estimated by the ESOLIP approach at the study site equals 92.2 and 292.5 960 

mm w.e. during the years 2015–16 and 2016–17 respectively. The comparison between 961 

observed precipitation (mm w.e.) and the one estimated by the ESOLIP approach is given in 962 

(Table S1). In Table S1, the difference between the observed precipitation (mm w.e.) and the 963 

one estimated by the ESOLIP approach is mainly due to the under-catch of winter snow 964 

recorded by the Ordinary Rain Gauge. 965 

4.3 Observed radiation components and snow depth 966 

The observed daily mean variability of different components of radiation, albedo and snow 967 

depth from 1 September 2015 to 31 August 2017 at South-Pullu (4727 m a.s.l.) is shown in 968 

Figure 6. Daily mean SWin varies between 24 and 378 W m-2 (Table 2). Highest hourly 969 

instantaneous short wave radiation recorded during the study period was 1358 W m-2. Such 970 

high values of SWin are typical of a high elevation arid-catchment (e.g., MacDonell et al., 971 

2013). Persistent snow cover during the peak winter period for both the years extending from 972 

January to March resulted in a strong reflection of SWin radiation (Figure 6A). During most of 973 

the non-snow period, mean daily SWout radiation (Figure 6A) remain more or less stable below 974 

100 W m-2. Daily mean SWout varies between 2.4 and 262.6 W m-2 with a mean value of 83.3 975 

W m-2 (Table 2). The daily mean LWin shows high variations and ranges between 109 and 345 976 

W m-2 with an average of 220 W m-2 (Figure 3B, Table 2). Whereas LWout was relatively stable 977 

and varied between 211 and 400 W m-2 with an average of 308 W m-2 (Figure 6B, Table 2). 978 

The LWout shows higher daily fluctuations during the summer months as compared to the core 979 

winter months. The daily mean SWn during the study period ranges between 2.5 and 319 W m-980 

2 with a mean value of 127 W m-2. The SWn follows the pattern of SWin, and for both the years, 981 
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during the wintertime, the SWn was close to zero due to the high reflectivity of snow (Figure 988 

3C). The daily mean LWn varies between -163 and 17 W m-2. The LWn does not show any 989 

seasonality and remain more or less constant with a mean value of -88 W m-2 (Figure 6C). The 990 

mean daily observed Rn ranges from -80.5 to 227.1 W m-2 with a mean of 39.4 W m-2 (Table 991 

2). During both the years 2015–16 and 2016–17, the Rn was high in summer and autumn but 992 

low in winter and spring. From January to early April (2015–16) and January to early May 993 

(2016–17), when the surface was covered with seasonal snow, the Rn rapidly declined to low 994 

values, or even became negative (Figure 6D). Albedo (α) is calculated as the ratio of daily 995 

mean SWout to daily mean SWin. The α is of particular importance in the SEB and in the Earth's 996 

radiation balance that dictates the rate of heating of the land surface under different 997 

environmental conditions (Strugnell and Lucht, 2001). The daily mean observed α at the study 998 

site ranges from 0.04 to 0.95, with a daily mean value of 0.43 (Table 2). However, the value of 999 

broadband albedo is not greater than 0.85 (Roesch et al., 2002), and the maximum value (0.95) 1000 

recorded at the study site might be due to the instrumental error. The daily mean α was low in 1001 

summer and high in winter and increased significantly when the ground surface was covered 1002 

with snow (Figure 6E). 1003 

Both the years (2015–16 and 2016–17) experienced contrasting snow cover characteristics 1004 

during the study period (Figure 6F). The year 2015-16 experienced low snow as compared to 1005 

2016-17. During the 2015-16 year, the snowpack had a maximum depth of 258 mm on 30 1006 

January 2016, whereas, during the 2016-17 year, the maximum was 991 mm on 07 April 2017. 1007 

The snow cover duration was 120 days during low snow year (2015-16) and 142 days during 1008 

the high snow year (2016–17). The site became snow-free on 27 April in 2016 and on 23 May 1009 

in 2017. Higher elevations of the catchment become snow-free around 15 July in 2016 while 1010 

the snow cover at glacier elevations persisted till 22 August in 2017. For both the year’s snow 1011 
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cover at lower elevations initiated by the end of December and the catchment experienced sub-1028 

zero mean monthly temperatures since October. 1029 

Table 2 Two year range of observed daily mean radiation components (SWin, SWout, LWin and 1030 

LWout, SWn, LWn), surface albedo (α), net shortwave and longwave radiation (SWn and LWn), 1031 

air temperature (Ta), wind speed (u), relative humidity (RH), precipitation (P), and snow depth 1032 

(h) for the study period (1 September 2015 to 31 August 2017) at South-Pullu (4727 m a.s.l.).  1033 

Variable Units Min. Max. Mean 

SWin W m-2 24.1 377.8 210.4 

SWout W m-2 (-)2.4 (-)262.6 (-)83.4 

α - 0.04 0.95 0.43 

LWin W m-2 109.0 344.7 220.4 

LWout W m-2 (-)211.3 (-)400.0 (-)308.0 

SWn W m-2 2.5 318.7 127.0 

LWn W m-2 -163 17.1 -87.6 

Ta °C -19.5 13.1 -2.5 

u m s-1 0.6 7.1 3.1 

RH % 8 98 43.3 

P mm w.e 0 24.6 3 

h mm 0 991 - 
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 1072 

Figure 6 Observed daily mean values of (A) incoming (SWin) and outgoing (SWout) shortwave 1073 

radiation, (B) incoming (LWin) and outgoing longwave (LWout) radiation, (C) net shortwave 1074 

(SWn) and longwave radiation (LWn), and (D) net radiation (Rn), (E) surface albedo and (F) 1075 

snow depth (h, mm) at South-Pullu (4727 m a.s.l.) from 1 September 2015 to 31 August 2017. 1076 
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4.4 Modelled surface energy balance 1079 

The mean daily variability of modelled surface energy balance (SEB) components is shown in 1080 

Figure 7. The average daily simulated Rn ranges between -78.9 to 175.6 W m-2 with a mean 1081 

value of 29.7 W m-2. The Rn shows the seasonal variability and decreases as the ground surface 1082 

gets covered by seasonal snow cover during wintertime, and increases as the ground surface 1083 

become snow-free (Figure 7A). From December to March of both the years (2015-16 and 2016-1084 

17), Rn decreases and is negative during snow accumulation and remains close to zero during 1085 

the melting time. For the rest of the time, Rn remains positive. The simulated Rn matches the 1086 

observed Rn (Figure 7A), which shows that the LWout was estimated very well by the model. 1087 

The daily mean H ranges between -88.6 to 53 W m-2 with a mean value of -15.6 W m-2. The H 1088 

is positive from January to April (2015-16) and January to June (2016-17) due to the presence 1089 

of seasonal snow cover (Figure 7B). Rest of the period H remain negative and larger (~35 W 1090 

m-2) for most of the time. The seasonal variation in H points to a broader temperature gradient 1091 

in summer than in winter. The daily mean LE ranges between -81.4 to 7.6 W m-2 with a mean 1092 

value of -11.2 W m-2. During the snow-free freezing period (October to December) of both the 1093 

years, the LE increases (from negative to zero) due to the freezing of moisture content in the 1094 

soil and also fluctuates close to zero. Furthermore, when the seasonal snow is on the ground, 1095 

the LE is negative, indicating sublimation and keeps increasing (more negative) after snowmelt 1096 

indicating evaporation is taking place. 1097 

The heat conduction into the ground G remains relatively a smaller component in the SEB 1098 

(Figure 7C). The mean daily G ranges between -70.9 to 46.3 W m-2 with a mean value of -0.5 1099 

W m-2. The sign of the G, which shifted from negative during summer to positive during winter, 1100 

is a function of the annual energy cycle. The heat flux available at the surface for melting (Fsurf) 1101 

ranges between -137 to 46.3 W m-2 with a mean value of -2.8 W m-2 (Table 3). During the 1102 

summer, when snow melting conditions were prevailing, the Fsurf turns negative as a result of 1103 
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energy available for melt (Figure 7C). The positive Fsurf during summertime (when melting 1143 

conditions are prevailing at the surface) is the energy used to refreeze the meltwater and 1144 

represents the freezing heat flux. 1145 

 1146 

 Figure 7 GEOtop simulated daily mean values of surface energy balance components (A) 1147 

observed and simulated net radiation (Rn), (B) sensible (H) and latent (LE) heat flux, (C) 1148 

ground heat flux (G) and surface heat flux (Fsurf) and (D) snow depth (h) at South-Pullu (4727 1149 

m a.s.l.) from 1 September 2015 to 31 August 2017.  1150 

 1151 

 1152 

 1153 

Deleted: 4C1154 

Deleted: Otherwise, the Fsurf become zero.1155 

Formatted: Subscript

Deleted: 1156 

Deleted: 4 1157 

Formatted: Subscript



29 

 

Table 3 Mean daily range of GEOtop simulated SEB (W m-2) components for the study period 1158 

(1 September 2015 to 31 August 2017) at South-Pullu (4727 m a.s.l.). 1159 

Variable Min. Max. Mean 

Rn -78.9 175.6 29.7 

H -88.6 53.0 -15.6 

LE -81.4 7.6 -11.2 

G -70.9 46.3 -0.5 

Fsurf -137.0 46.3 -2.8 

 1160 

The average season diurnal variation of modelled SEB components (Rn, LE, H and G) for the 1161 

2015–16 and 2016–17 years are shown in Supplementary Figures S6 and S7, respectively. The 1162 

seasons chosen were pre-winter (Sep to Dec), winter (Jan to Apr), post-winter (May-Jun), and 1163 

summer (Jul to Aug). 1164 

In the 2015–16 year (Figure S6), the amplitude of Rn and the G during pre-winter, post-winter 1165 

and summer season were the largest and smallest in winter. The G peaks earlier than those of 1166 

the LE and H during the pre-winter, post-winter and summer season. The LE and H show strong 1167 

seasonal characteristics such as (a) during the pre-winter season, the magnitude of diurnal 1168 

variation of H was greater than LE depicting lesser soil moisture content because of freezing 1169 

conditions at that time, (b) during the winter season, the amplitude of LE was slightly greater 1170 

(sublimation process) than H, (c) during the post-winter, the amplitude of H was greater than 1171 

LE and, (d) during the summer season, again the amplitude of H was greater than LE, which is 1172 

similar to that of the pattern seen during the pre-winter season. In the 2015-16 year, the 1173 

amplitude of LE in comparison to H was smaller in summer season due to the lesser 1174 

precipitation and lesser moisture availability. The Rn and G increased rapidly after the sunrise 1175 

and changed the direction during pre-winter, post-winter and summer seasons. After sunset, 1176 

the Rn and G again change sign rapidly, but the LE and H gradually decreased to lower values. 1177 
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The LE and H in the morning increased 1 to 2 hours after the Rn during pre-, post-winter and 1218 

summer season.  1219 

In the 2016–17 year (Figure S7), the pre-winter, winter and summer were the same as that of 1220 

the 2015–16 year except for the amplitude of LE in was larger in summer season due to the 1221 

more precipitation and more moisture availability. However, during the winter and post-winter 1222 

season of the 2016–17 year, the main difference in diurnal changes was found because of the 1223 

extended snow cover till May during that year. The amplitude of Rn, LE, H and G were smaller 1224 

compared to the 2015-16 year. 1225 

During the study period, the proportional contribution shows that the net radiation component 1226 

dominates (80%) the SEB followed by H (9%) and LE fluxes (5%). The G was limited to 5% 1227 

of the total flux, and 1% was used for melting the seasonal snow. The proportional contribution 1228 

of each flux percentages of the energy fluxes was calculated by following the approach of 1229 

Zhang et al. (2013). The mean monthly modelled SEB components for both the years are given 1230 

in Table S2. 1231 

Furthermore, during the study period, the partitioning of energy balance shows that 52% (-15.6 1232 

W m-2) of Rn (29.7 W m-2) was converted into H, 38% (-11.2 W m-2) into LE, 1% (-0.5 W m-1233 

2) into G and 9% (-2.8 W m-2) for melting of seasonal snow. The partitioning was calculated 1234 

by taking the mean annual average of each of the individual SEB components (LE, H and G) 1235 

and then divide these respective averages with the mean annual average of Rn. However, a 1236 

distinct variation of energy flux is observed during the month of May-June, when one of the 1237 

years (2016-17) experienced extended snow. 1238 

4.5 Comparison of seasonal distinction of SEB during low and high snow years 1239 

A seasonal distinction of observed radiation (SWin, LWin, SWout, LWout, SWn, LWn,) and 1240 

modelled SEB components  (Rn, LE, H, G and Fsurf) for the low and high snow years of the 1241 
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study period is analysed (Table 4). The seasons were defined as winter (Sep-April) and summer 1252 

(May-Aug) (Table 4). These seasons were further divided into two sub-seasons each such as 1253 

early winter (Sep, Oct, Nov and Dec) and peak winter with snow (Jan, Feb, Mar and Apr). 1254 

Similarly, the summer season was divided into two sub-seasons called early summer (May and 1255 

June; some years with extended snow) and peak summer (July and August). 1256 

Table 4: Mean seasonal values of observed radiation and modelled surface energy balance 1257 

components. 1258 

SEB 

Components 

[W m-2] 

2015-16 2016-17 

Winter  

(Sep to Apr) 

Summer  

(May to Aug) 

Winter 

(Sep to Apr) 

Summer 

(May to Aug) 

Sep to Dec 

 (Non-Snow) 

Jan to Apr 

(Snow) 

May to Jun 

(Non-Snow) 

Jul-Aug 

(Peak 

Summer) 

Sep to Dec 

 (Non-Snow) 

Jan to Apr 

(Snow) 

May to Jun 

(Extended 

Snow) 

Jul-Aug 

(Peak 

Summer) 

SWin 177.7 196.0 271.3 245.8 179.2 192.1 262.9 253.7 

LWin 203.0 190.5 244.5 286.5 198.0 202.5 245.9 277.0 

SWout 57.5 135.4 49.9 44.3 41.0 156.4 86.7 43.7 

LWout 310.3 259.5 379.1 412.4 317.9 251.9 337.9 399.3 

SWn 120.2 60.5 221.4 201.5 138.3 35.7 176.2 210.0 

LWn -107.2 -69.0 -134.5 -125.9 -119.9 -49.4 -92.0 -122.3 

Rn 12.9 -8.5 86.9 75.6 18.4 -13.7 84.2 87.7 

LE -1.2 -11.5 -18.9 -7.5 -1.1 -7.7 -33.1 -31.5 

H -21.7 15.7 -47.6 -54.0 -24.3 16.1 -15.9 -40.0 

G 10.0 6.8 -20.3 -14.1 7.0 6.2 -14.6 -16.3 

Fsurf 0.1 2.5 0.0 0.1 0.0 0.9 20.6 0.0 

 1259 

The mean seasonal variability of energy fluxes during these four major seasons is shown in 1260 

Table 4. The mean seasonal SWin were comparable for all the seaons whereas SWout  was 1261 

significantly higher (86.7 W m-2) during  early summer season of 2016-17 period on account 1262 

of extended snow cover as compared to the preceeding low snow year (49.9 W m-2). Similarly, 1263 

LWin show comparable seasonal values during the observation period and LWout  show a major 1264 

difference during the early summer season with extended snow in 2016-17 reducing LWout  1265 

(337.9 W m-2) as compared  to corresponding period in  2015-16 (379.1 W m-2).  1266 

Both the years observed comparable SWn during the early winter period. However, during the 1267 

peak snow season of the 2016-17 year, the SWn was comparatively smaller (35.7 W m–2) as 1268 
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compared to 2015-16 (60.5 W m–2) . Similarly, comparable SWn during the peak summer 1309 

season of both the years is contrasted by lower SWn (176.2 W m–2) of early summer period of 1310 

2017 as compared to 221.4 W m–2 in 2016 on account of extended snow cover. The same trend 1311 

is recorded for LWn as well with a lower value during the extended snow (-92 W m–2) in 2017 1312 

as compared to 2016 (-134.5 W m–2). Seasonal variations in Rn followed the pattern of SWn. 1313 

Both the year's observed comparable Rn during the early snow-free winter period. However, 1314 

the Rn was comparatively lower (-13.7 W m–2) during the peak snow season of 2016-17 as 1315 

compared to 2015-16 (-8.5 W m–2). However, most significant difference of Rn is observed 1316 

during early summer (May-June) and peak summer (Jul-Aug) of 2016 and 2017, respectively. 1317 

 Both the years observed comparable LE flux during the winter season. A key difference in LE 1318 

flux is observed during extended snow and peak summer sub-season of 2016 and 2017. In the 1319 

peak summer sub-season of 2016-17, the LE was higher (-31.5 W m–2) as compared to the 1320 

2015-16 (-7.5 W m–2). The reason behind this is due to the lesser amount of soil water content 1321 

availability for evaporation during 2015-16 in comparison to high snow year 2016-17. The 1322 

comparatively larger LE during the snow sub-season of both the years shows that sublimation 1323 

is a  key factor in the region. The H flux was comparable during the winter season of both the 1324 

years. During the peak summer sub-season of the 2015-16 year, the H was slightly larger (-54 1325 

W m–2) as compared to 2016-17 (-40 W m–2). The critical difference in H flux was observed 1326 

during the extended snow sub-season of the 2016-17 year when H was much smaller (-15.9 W 1327 

m–2) compared to 2015-16 (-47.6 W m–2) owing to the extended snow cover during the 2016-1328 

17 year.  1329 

During the winter season of both the years, the G was positive and changed the sign to negative 1330 

during the summer season. Overall,  G is comparatively a smaller component. The mean 1331 

seasonal Fsurf was almost equal to zero during all the seasons except during the snow sub-season 1332 

of both the years and extended snow sub-season of the 2016-17 year. The Fsurf (heat flux 1333 
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available for melt) was much higher (20.6 W m−2) during the extended snow sub-season of the 1453 

2016-17 year. From the inter-year seasonal comparison, it was found that the extended snow 1454 

sub-season of the 2016-17 (high snow year) forced significant differences in energy fluxes 1455 

between the years. 1456 

5 Discussion 1457 

5.1 A distinction of SEB variations during low and high snow years 1458 

Realistic reproduction of seasonal and inter-annual variations in snow depth during the low 1459 

(2015–16) and high snow (2016–17) years points towards the credible simulation of the SEB 1460 

during the study period. We further investigated the response of SEB components during these 1461 

years with contrasting snow cover for a better understanding of the critical periods of 1462 

meteorological forcing and its characteristics.  1463 

To understand the critical periods of meteorological forcing and its effect on modelled SEB 1464 

fluxes, we will discuss the diurnal variation of modelled SEB only for one season, i.e., early 1465 

summer season, which showed  significant differences in the amplitude of energy fluxes 1466 

(Figure 8). During the early winter, peak winter and peak summer seasons (Figure S6, S7), the 1467 

diurnal variations of the SEB fluxes for the 2015-16 year were more or less similar in 1468 

comparison to the 2016-17 year. However, during the early summer season of both the years 1469 

(Figure 8), the SEB fluxes show different diurnal characteristics. During early summer season 1470 

of the 2016–17 year, the main difference in diurnal changes was found because of the extended 1471 

snow cover till May during that year. For the 2016–17 year, the amplitude of Rn was slightly 1472 

larger, whereas, all other components (LE, H and G) were of almost zero amplitude (Figure 1473 

8B). The smaller amplitude of LE, H and G is due to the smaller input (solar radiation) and the 1474 

extended seasonal snow on the ground. Therefore, we can say that the different SEB 1475 

characteristics during these two years’ is in response to the forcing of precipitation via snowfall. 1476 
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 1563 

Figure 8 The diurnal change of GEOtop modelled seasonal surface energy fluxes for (A) early 1564 

summer 2015-16, and (B) early summer 2016-17 at South-Pullu (4727 m a.s.l.), in the upper 1565 

Ganglass catchment, Leh. The seasonal snow depth is plotted on the secondary axis. 1566 

5.2 Impact of freezing and thawing process on surface energy fluxes 1567 

To understand the impact of freeze/thaw processes on surface energy fluxes, the variability of 1568 

SEB components is discussed here (Figure 9). The aim is to make the study site as an exemplar 1569 

of SEB processes for the seasonal frozen ground and permafrost in the cold-arid Indian 1570 

Himalayan Region. Comparatively, the Rn was higher at the study site due to the higher 1571 

elevation, aridity and sparse vegetation.  1572 

The freeze and thaw processes in the ground are complex and involve several physical and 1573 

chemical changes which include energy exchange, phase change, etc. (Chen et al., 2014; Hu et 1574 

al., 2019). These processes amplify the interaction of fluxes between soil and atmosphere 1575 

(Chen et al., 2014). In Figure 9D, during the seasonal freezing phase from September to 1576 

December, the simulated mean monthly G starts to decrease and begins to change the sign from 1577 
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negative to positive due to the transfer of flux from soil to the atmosphere. However, during 1748 

summers, the permafrost and the seasonally frozen soil act as a heat sink, because the thawing 1749 

processes require a considerable amount of heat that is absorbed from the atmosphere to the 1750 

soil (Eugster et al., 2000; Gu et al., 2015). In Figure 9D, during the thawing phase from April 1751 

to July, the simulated mean monthly G starts to increase and changes sign due to the transfer 1752 

of flux from the atmosphere to the soil. This pattern is consistent with the studies on permafrost 1753 

areas from the Tibetan Plateau (Chen et al., 2014; Hu et al., 2019; Zhao et al., 2000). In both 1754 

low and high snow years (Figure 9B and 9C), the mean monthly estimated H and LE heat 1755 

fluxes show prominent seasonal characteristics, such as the latent heat flux was highest in 1756 

summer and lowest in winter. In contrast, the sensible heat flux was highest in early summer 1757 

and gradually decreased towards the pre-winter season. Similar kind of variability in the LE 1758 

and H is also reported from the seasonally frozen ground and permafrost regions of the Tibetan 1759 

plateau (Gu et al., 2015; Yao et al., 2011, 2020). 1760 

Furthermore, in Figure 9C, during the peak summer months (June to August), the H tends to 1761 

decrease or became relatively stable. This is mostly due to the thawing in the seasonally frozen 1762 

ground resulting in a sensible heat sink (Eugster et al., 2000). 1763 

In the Tibetan Plateau, the main reasons for the seasonal variability of the turbulent fluxes are 1764 

due to the Asian monsoon and the freezing and thawing processes of the active layer (Yao et 1765 

al., 2011), however, in our study site, the monsoon precipitation is not a dominant factor. 1766 

Therefore,  freeze/thaw processes are the key factor regulating the turbulent heat fluxes during 1767 

summers. 1768 
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 1776 

Figure 9: Comparison of estimated mean monthly surface energy balance components (W m-1777 

2) (A) Rn, (B) LE, (C) H, and (D) G for the low (2015-16) and high (2016-17) snow years, at 1778 

South-Pullu (4727 m a.s.l.). 1779 

5.3 Comparison with other environments 1780 

In this section, the observed radiation and estimated SEB components from our cold-arid 1781 

catchment in Ladakh, India are compared with other cryospheric systems, globally (Table 5). 1782 

Although aiming to represent differing permafrost environments, this comparison also includes 1783 

SEB studies on glaciers for lack of additional data. In most of the studies referred here, the 1784 

radiation components are measured, and the turbulent (H and LE) and ground (G) heat fluxes 1785 

are modelled. 1786 
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Based on the comparison, the SWin at the study site is comparable with Tibetan plateau (Mölg 1899 

et al., 2012; Zhang et al., 2013; Zhu et al., 2015) and significantly much higher than the values 1900 

reported from other studies such as the Alps (Oerlemans and Klok, 2002; Stocker-Mittaz, 2002). 1901 

The LWin at the study site was comparable with values observed at Tibetan Plateau (Zhang et al., 1902 

2013; Zhu et al., 2015) and smaller than the other studies except for Antarctica. At the study 1903 

site, the SWn was the largest source of energy and LWn the most considerable energy loss and 1904 

strongly negative, and both were higher than those reported in other studies (Table 5). 1905 

However, the Andes were an exception (Favier, 2004; Pellicciotti et al., 2008). 1906 

The different surface albedo (α) values help to distinguish the surface characteristics. The mean 1907 

α for all the sites (Table 5) where radiation balance is measured either on bedrock or tundra 1908 

vegetation was smaller than those measured over firn or ice during summer with few 1909 

exceptions. Albedo ranges for glacier ice from 0.5 to 0.7 and for tundra/bedrock from 0.25 to 1910 

0.54. Comparison of RH for the study period shows that the mean measured RH (43 %) was 1911 

much smaller than other regions except in the semi-arid Andes (Pellicciotti et al., 2008), where 1912 

the RH was comparable. Furthermore, the mean annual precipitation in this study was also 1913 

lower than in the other areas compared. 1914 

Based on the comparison of measured radiation and meteorological variables with other, better-1915 

investigated regions of the world (Table 5), it was observed that our study area is unique in 1916 

terms of lower RH (43% compared to ~70% in the Alps) and cloudiness, leading to (a) Reduced 1917 

LWin and strongly negative LWn (~90 W m-2 on average, much more than in the Alps). Hence, 1918 

the high elevation cold-arid region land surfaces could be overall colder than the locations with 1919 

more RH. (b) Increased SWin: This will mean that sun-exposed slopes will receive more 1920 

radiation and shaded ones less (less diffuse radiation) than in comparable areas, and (c) 1921 

Increased cooling by stronger evaporation in wet places such as meadows. Therefore, the warm 1922 

sun-exposed dry areas and colder wet places could lead to significant spatial inhomogeneity in 1923 
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permafrost distribution. Further, it is apprehended that high incoming shortwave radiation over 1950 

moist  high elevation surfaces may be facilitating enhanced cooling of as a result of stronger 1951 

evaporation.1952 
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Table 5: Comparison of mean annual observed radiation and estimated SEB components and meteorological variables with different regions of 1957 

the world. (SWin = Incoming shortwave radiation, SWout = Outgoing shortwave radiation, albedo = α, LWin = Incoming longwave radiation, LWout 1958 

= Outgoing longwave radiation, SWn = Net shortwave radiation, LWn = Net longwave radiation, RH = Relative humidity, Rn = Net radiation, LE 1959 

= Latent heat flux, H = Sensible heat flux, G = Ground heat flux, SEB = energy available at surface, MAAT = Mean annual air temperature, P = 1960 

Precipitation, NA = Not available). The LE, H, and G are the modelled values. All the radiation components and heat fluxes are in units of W m-1961 
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6 Conclusion 1968 

In the high-elevation, cold–arid regions of Ladakh significant areas of permafrost occurrence 1969 

are highly likely (Wani et al., 2020) and large areas experience deep seasonal freeze-thaw. The 1970 

present study is aimed at providing first insight on the surface energy balance characteristics 1971 

of this permafrost environment. 1972 

For the period under study, the surface energy balance characteristics of the cold-arid site in 1973 

the Indian Himalayan region show that the net radiation was the major component with a mean 1974 

value of 29.7 W m-2, followed by sensible heat flux (-15.6 W m-2) and latent heat flux (-11.2 1975 

W m-2), and the mean ground heat flux was equal to -0.5 W m-2. During the study period, the 1976 

partitioning of surface energy balance shows that 52% of Rn was converted into H, 38% into 1977 

LE, 1% into G and 9% for melting of seasonal snow.  1978 

Among the two observation years, one was a low snow year, and the another was high, and 1979 

during these low and high snow years, the energy utilised for melting seasonal snow was 4% 1980 

and 14% of Rn, respectively. During both the years, the latent heat flux was highest in summer 1981 

and lowest in winter, whereas the sensible heat flux was highest in post-winter and gradually 1982 

decreased towards the pre-winter season. For both low and high years, the snowfall in the 1983 

catchment occurred by the last week of December facilitating the ground cooling by almost 1984 

three months (October to December) of sub-zero temperatures up to -20 °C. The extended snow 1985 

cover during the high snow year also insulates the ground from warmer temperature until May. 1986 

Therefore, the late occurrence of snow and extended snow cover could be the critical factors 1987 

in controlling the thermal regime of permafrost in the area.  1988 

A comparison of observed radiation and meteorological variables with other regions of the 1989 

world show that the study site/region at Ladakh have a very low relative humidity (RH) in the 1990 

range of 43% compared to, e.g. ~70% in the Alps. Therefore, rarefied and dry atmosphere of 1991 

the cold-arid Himalaya could be impacting the energy regime in multiple ways: (a) this results 1992 
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in the reduced amount of incoming longwave radiation and strongly negative net longwave 2059 

radiation, in the range of -90 W m-2 compared to -40 W m-2 in the Alps and therefore, leading 2060 

to colder land surfaces as compared to the other mountain environment with higher RH, (b) 2061 

higher global shortwave radiation leads to more radiation received by sun-exposed slopes than 2062 

shaded ones in comparable areas and wet places such as meadows, etc. experience increased 2063 

cooling as a result of stronger evaporation. However, sun-exposed dry areas could be warmer, 2064 

leading to significant spatial inhomogeneity in permafrost distribution. The current study gives 2065 

a first-order overview of the surface energy balance from the cold-arid Himalaya in the context 2066 

of permafrost processes, and we hope this will encourage similar studies at other locations in 2067 

the region, which would significantly improve the understanding of the climate from the region. 2068 
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