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Abstract

The cold-arid trans-Himalayan region comprises significant areas underlain by permafrost,

While the information on the permafrost characteristics and extent started emerging, the

governing energy regimes of this cryosphere region is of particular interest. This paper presents

the results of Surface Energy Balance (SEB) study,carried out in the upper Ganglass catchment
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in the Ladakh region of India, which feed directly to the River Indus. The point SEB is

estimated using the one-dimensional mode of GEOtop model from 1 September 2015 to 31

depth variations (accumulation and melting), outgoing longwave radiation and one-year near-

surface ground temperatures and showed good agreement with the respective simulated values.

Jor the study period, the surface energy balance characteristics of the study site show that the
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net radiation (29.7 W m?) was the major component, followed by sensible heat flux (156 W /

m-2), Jatent heat flux (-11.2 W m?).and the ground heat flux was equal to -0.5 W m2_During |

both the years, the latent heat flux was highest in summer and lowest in winter, whereas the

sensible heat flux was highest in post-winter and gradually decreased towards the pre-winter

season. During the study period, snow cover builds up in the catchment initiated by the last

week of December facilitating the ground cooling by almost three months (October to
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December) of sub-zero temperatures up to -20 °C providing a favourable environment for

permafrost. It is observed that the Ladakh region have a very low relative humidity in the range

of 43% as compared to, e.g., ~70% in the Alps facilitating lower incoming longwave radiation
and strongly negative net longwave radiation averaging ~ -90 W m2 compared to -40 W m-2
in the Alps. Hence, the high elevation cold-arid region land surfaces could be overall colder
than the locations with more RH such as the Alps. Further, it is apprehended that high incoming

shortwave radiation in the region during summer months may be facilitating enhanced cooling

of wet valley bottom surfaces as a result of stronger evaporation.
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1 Introduction

The Himalayan cryosphere is gssential for sustaining the flows in the major rivers originating
from the region (Bolch et al., 2012, 2019; Hock et al., 2019; Immerzeel et al., 2012; Kaser et
al., 2010; Lutz et al., 2014; Pritchard, 2019). These rivers flow through the most populous
regions of the world (Pritchard, 2019) and insight on the processes driving the change is critical
for evaluating the future trajectory of water resources of the area, ranging from small headwater
catchments to large river systems (Lutz et al., 2014). It is hard to propose a uniform framework
for the downstream response of these rivers as they originate and flow through various glacio-
hydrological regimes of the Himalaya (Kaser et al., 2010; Thayyen and Gergan, 2010). Lack
of understanding of multiple processes driving the cryospheric response of the region is
limiting our ability to anticipate the subsequent changes and their impacts correctly. This has
been highlighted by the recent studies which suggested the occurrence of higher precipitation
in the accumulation zones of the glaciers than previously known (Bhutiyani, 1999; Immerzeel

et al., 2015; Thayyen, 2020).
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The sensitivity of mountain permafrost to climate change (Haeberli et al., 2010) leads to

changes in permafrost conditions such as an increase in active layer thickness that eventually

affect the ground stability (Gruber and Haeberli, 2007; Salzmann et al., 2007), trigger debris

flows and rockfalls (Gruber et al., 2004; Gruber and Haeberli, 2007; Harris et al., 2001),

hydrological changes (Woo et al., 2008), run-off patterns (Gao et al., 2018; Wang et al., 2017),

water quality (Roberts et al., 2017), greenhouse gas emissions (Mu et al., 2018), alpine

ecosystem changes (Wang et al., 2006), and unique construction requirements to negate the

effects caused by ground-ice degradation (Bommer et al., 2010). These strongly affect the

mountain _communities and indicate the relevance of mountain permafrost on human

livelihoods. Field observations suggest that ground-ice melt may be a critical water source in

dry summer years in the cold-arid regions of Ladakh (Thayyen, 2015).

The energy balance at the earth’s surface drives the spatio-temporal variability of ground

temperature (Oke, 2002; Sellers, 1965; Westermann et al., 2009). It is linked to the atmospheric

boundary layer, and location-dependent transfer mechanisms between land and the overlying

atmosphere (Endrizzi, 2007; Martin and Lejeune, 1998; McBean and Miyake, 1972). The

surface energy balance (SEB) in cold regions additionally depends on the seasonal snow cover,

vegetation and moisture availability in the soil (Lunardini, 1981) and (semi-) arid areas exhibit
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glacier area. More coarse assessment in the Hindu Kush Himalaya (HKH) region suggests that
the permafrost area extends up to 1 million km?, which roughly translate into 14 times the area
of glacier cover of the region (Gruber et al., 2017). Except for Bhutan, the expected permafrost
areas in all other countries is larger than the glacier area. With jwo-thirds of the HKH underlain
by permafrost, China has by far the largest estimated share (906x10° km?) followed by India
(40.1x10° km?), Pakistan (26.6x10° km?), Afghanistan (17.5x10% km?), Nepal (11.1x10% km?),
Bhutan (1.2x10% km?) and Myanmar (0.1x10% km?) (cf. Table 1, Gruber et al., 2017). The
mapping of rock glaciers using remote sensing suggested that the discontinuous permafrost in
the HKH region can be found between 3500 m a.s.l. in Northern Afghanistan to 5500 m a.s.l.
on the Tibetan Plateau (Schmid et al., 2015). Recently, Pandey (2019) published a remote

sensing based rock glacier inventory of Himachal Himalaya,and yeports that the discontinuous

permafrost can be found within an elevation range of 3000-5500 m a.s.l. Another rock glacier
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are limited, for example, the energy balance studies on glaciers by Azam et al, (2014) and

Singh et al, (2020). The SEB also has a significant influence on regional and local climate

(Eugster et al., 2000). During summer months, the permafrost creates a heat sink, which

reduces the skin temperature, and therefore heat transfer to the atmosphere is also reduced

(Eugster et al., 2000). This highlight that the knowledge of frozen ground and associated energy

regimes are a critical knowledge gap in our understanding of the Himalayan cryospheric
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systems, especially in the Upper Indus Basin.

The goal of this manuscript is to improve the understanding of permafrost in cold-arid UIB

areas and to advance our ability to analyse and simulate the characteristics of permafrost there.

This can guide the application of available models in the Ladakh region which are calibrated

(Boeckli et al., 2012) or validated (Cao et al., 2019; Fiddes et al., 2015) elsewhere,

Furthermore, it can help to interpret differences in surface offset observed in Ladakh (Wani et

al., 2020) and other permafrost areas (Boeckli et al., 2012; Hasler et al., 2015; PERMOS, 2019).

Our working hypothesis is that the surface offset for particular terrain types in the UIB differs

from what is known in other areas, driven by aridity and high elevation. We aim to improve

the understanding of the SEB and its relationship with the ground temperature by working on

three objectives: (1) Quantifying the SEB at South Pullu, as an exemplar for permafrost areas

in the UIB. (2) Understand the pronounced seasonal and inter-annual variation of snowpack

and GST, as these are intermediate phenomena between the SEB and permafrost. (3)
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Ladakh region, where only little data on ground temperatures
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interpret differences in the relationships of air and shallow
ground temperatures (surface offset) observed in Ladakh
(Wani et al., 2019) and other permafrost areas (Boeckli et al.,
2012; Hasler et al., 2015; PERMOS, 2019).

The specific objectives of this study are to (a) quantify the
point Surface Energy Balance (SEB) and its components in a
cold-arid Himalayan permafrost environment, (b) evaluate the
quality of SEB assessment by modelling snow depth and
near-surface ground temperature variations and compare with
the field observations (c) understand the role of winter
snowpack characteristics (timing, thickness and duration) and
its effect on ground surface temperature, and (d) compare the
SEB regime of cold-arid Himalaya with other better
investigated permafrost regions of the world.
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2 Study area and data .

2.1 Study area

The present study is carried out at South-Pullu (34.25°N, 77.62°E, 4727 m a.s.l.) in the upper

Ganglass catchment (34.25°N to 34.30°N and 77.50°E to 77.65°E), Leh, Ladakh (Figure 1).

Ladakh is a Union territory of India and has a unique climate, hydrology and landforms. Leh
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is the district headquarter, where long-term climate data is available (Bhutiyani et al., 2007).

Long-term mean precipitation of Leh (1908-2017, 3526 m a.s.l.) is 115 mm (Lone et al., 2019;

Thayyen et al., 2013) and the daily minimum and maximum temperatures during the period

(2010 to 2012) range between -23.4 to 33.8 °C (Thayyen and Dimri, 2014). The spatial area of

the catchment is 15.4 km? and extends from 4700 m to 5700 m a.s.l. A small cirque glacier

called as Phuche glacier with an area of 0.62 km? occupies the higher elevations of the

catchment. A single stream flows through the valley of the catchment originating from Phuche

glacier. This stream flows intermittently with most of the flow from May to October.

The catchment lies in the Ladakh mountain range and is part of the main Indus river basin.

Geologically, the study catchment is part of the Ladakh batholith (Thakur, 1981). The study

catchment also consists of steep mountain slopes with the valley bottom filled with glacio-

fluvial deposits. Other sporadic landforms found in the catchment include patterned ground,

boulder fields, peatlands, high elevation wetlands and a small lake. Many of these landforms

point towards intense frost action in the area.
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Figure 1 Location of the study site in the upper Ganglass catchment. (Base image sources on

the right panel: © Esri, DigitalGlobe, GeoEye, Earthstar Geographic’s, CNES/Airbus DS

USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User

Community).

2.2 __Meteorological data used

The automatic weather station (AWS) in the catchment is located at an elevation of 4727 m
a.s.l. at South-Pullu (Figure 1). It is located in the wide deglaciated valley trending southeast.
The site has a local slope angle of 15°, and the soil is sparsely vegetated. Weather data has been
collected by a Sutron automatic weather station from 1 September 2015 to 31 August 2017.
The study years 1 September 2015 to 31 August 2016 and 1 September 2016 to 31 August
2017 hereafter in the text will be designated as 2015-16 and 2016-17 respectively. The
variables measured include air temperature, relative humidity, wind speed and direction

incoming and outgoing shortwave and longwave radiation and snow depth (Table 1). The snow
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term climate data is available (Bhutiyani et al., 2007).
Long-term mean precipitation of Leh (1908-2017, 3526
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3.1 Estimation of precipitation from snow height,

In high elevation and remote sites, the snowfall measurement is a difficult task with an under

catch of 20-50% (Rasmussen et al., 2012; Yang et al., 1999). At the South Pullu station, daily

elevation area, an under catch of 23% of snowfall was reported earlier (Thayyen et al., 2015)

[Unpublished work]. Here, we had the time resolution problem between total measured

precipitation and other meteorological forcing’s including SR50 snow depth (hourly and

recorded by automatic weather station). Therefore, fo match the temporal resolution of

2013) and the daily minimum and maximum
temperatures during the period (2010 to 2012) range
between -23.4 to 33.8 °C (Thayyen and Dimri, 2014).
Due to scarce precipitation and warm summers, this
part of the trans-Himalaya is classified as a cold-arid
region characterised by strong land-atmosphere
interactions, rarefied atmosphere and strong incoming
solar radiation. The spatial area of the catchment is 15.4
km? and extends from 4700 m to 5700 m a.s.I. A small
cirque glacier called as Phuche glacier with an area of
0.62 km? occupies the higher elevations of the
catchment. A single stream flows through the valley of
the catchment originating from Phuche glacier. This
stream flows intermittently with most of the flow from
May to October. 1
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the evolution of the snow depth and the transfer of heat and water in snow and soil. GEOtop

Jepresents the combined ground heat and water balance, the exchange of energy with the

atmosphere by taking into consideration the radiative and turbulent heat fluxes. The model has

a multi-layer snowpack and solves the energy and water balance of the snow cover_and soil

including the highly non-linear interactions between the water and energy balance during soil

freezing and thawing (Dall’ Amico et al., 2011). Jt can be applied in complex terrain and makes

it possible to account for topographical and other environmental variability (Fiddes et al., 2015;

Gubler et al., 2013).,
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snow free conditions. The positive Fsurf (gain to the system) during summertime is the energy

released to refreeze the water and represents the freezing flux.

In the cold regions, the SEB is a complex function of solar radiation, seasonal snow cover,

vegetation, near-surface moisture content, and atmospheric temperature (Lunardini, 1981).

Based on the in-situ available data, the calculation of SEB components like H, LE and G is

difficult. For example, in the calculation of turbulent heat fluxes (H and LE), the wind speed

and temperature measurements near the ground surface are required at two heights, which are

generally not available. Therefore, parameterisation method like bulk aerodynamic method is

used which is valid under statically neutral conditions in the surface layer (Stull, 1988). Hence

application of a tested model like GEOtop (Endrizzi et al., 2014; Rigon et al., 2006) is a good |
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alternative for the estimation of these fluxes. However, in the GEOtop (Endrizzi et al., 2014), /
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In GEOtop, the surface heat flux (Fs,,r) is the energy available for exchange and is given by /\

the sum of net shortwave (SW},) and net longwave (LW,) radiations and turbulent heat fluxes, )~

i.e. sensible (H) and latent heat flux (LE). The surface heat flux equation (EqJ)}
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Also, LW, in Eqg. 4 is equal to the difference between the incoming longwave radiation (LW;;,)
coming from the atmosphere and the outgoing longwave radiation (LW,,;) radiated by the
surface (Oke, 2002).

as below:,
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where Ty is the surface temperature (K) and €; is the surface emissivity.
The turbulent fluxes (H and LE) are driven by the gradients of temperature and specific

humidity between the air and the surface, and due to turbulence caused by winds as primary
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transfer mechanism in the boundary layer (Endrizzi, 2007). GEOtop estimates the turbulent
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where p, is the air density (kg m-3), wy is the wind speed (m s™%), c,, the specific heat at constant
pressure (J kg* K1), L, the specific heat of vaporisation (J kg™), Q, and Q} are the specific
humidity of the air (kg kg™?) and saturated specific humidity at the surface (kg kg™?)

respectively, and r, is the aerodynamic resistance (-). The aerodynamic, resistance is obtained

applying the Monin—Obukhov similarity theory (Monin and Obukhov, 1954), which requires

that values of wind speed, air temperature and specific humidity are available at least at two

different heights above the surface. But the values of these variables are generally measured at

standard height above the surface and can be used for near surface with following assumptions;
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(a) the air temperature is equal to the ground surface temperature; however, this assumption

leads to the boundary condition nonlinearity, (b) the specific humidity is equal to ay,Q;, and

(c) wind speed is equal to zero.

The Byp and ayp are the coefficients (Eq. 8 and 9) that take into account the soil resistance to
evaporation, and only depend on the liquid water pressure close to the soil surface. They are
calculated according to the parameterisation of Ye and Pielke (1993), which considers

evaporation as the sum of the proper evaporation from the surface and diffusion of water vapour
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3.2.1 _The heat equation_and snow depth

The equation (Eq. 10) representing the energy balance in a soil volume subject to phase change

in GEOtop is given below (Endrizzi et al., 2014);

ayph
at

+ V.G + S — pu[Ls + (T = Tref)]Sw = 0 @€o

where UPM is the volumetric internal energy of soil (J m™3) subject to phase change, t(s) time,
V- the divergence operator, G the heat conduction flux (W m=), S,,, is the energy sink term
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(W m3), S, is the mass sink term (s™%), L; (J kg?) the latent heat of fusion, p,, the density of
liquid water in soil (kg m3), c,, is the specific thermal capacity of water (J kg™t K1), T (°C)
the soil temperature and T,.. (°C) the reference temperature at which the internal energy is

calculated. If G is written according to Fourier’s law, the Eq. 10 becomes:
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+V.(Ar V) + Sen — puw[Ls + cw(T = Tref)]|Sw = 0 (1)

where A, _js the thermal conductivity (W m* K'1). The A, being a non-linear function of ;

temperature, because the proportion of liquid water and ice contents depends on temperature.

For the calculation of A, the GEOtop uses the method proposed by Cosenza et al, (2003). The
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detailed description of the heat conduction equation used in GEOtop can be found in Endrizzi
et al. (2014).

The snow cover buffers the energy exchange between the soil and atmosphere and critically

influences the soil thermal regime (Endrizzi et al., 2014). GEOtop includes a multi-layer,

energy-based, Eulerian snow modelling approach. In GEOtop, the equations for snow

modelling are similar to the ones used for the soil matrix (Endrizzi et al., 2014). The

discretisation of snow in GEOtop is done to describe the thermal gradients which are finer near

the surface (with the atmosphere) and at the bottom (with soil). In GEOtop, the effective

thermal conductivity at the interface of snow and ground is calculated similarly as in between

different soil layers using the method of Cosenza et al. (2003). In GEOtop, the fresh snow

density is computed using the Jordan et al, (1999) formula, which is based on air temperature

and wind speed. More details about the snow metamorphism compaction rates and the snow

discretisation in GEOtop can be found in the appendix D2 and D3, respectively of (Endrizzi

etal., 2014).
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3.2.2 Model setup_and forcing’s,

The 1D GEOtop simulation was carried out at South-Pullu (Figure 1). The soil column is 10 m
deep and is discretised into 19 layers, with thickness increasing from the surface to the deeper
layers. The top 8 layers close to the ground surface were resolved with thicknesses ranging
from 0.1 to 1 m, because of the higher temperature and water pressure gradients near the surface
(Endrizzi et al., 2014), while the lowest layer is 4.0 m thick.

The snowpack is discretised in 10 layers, which are finer at the top at the interface with the

atmosphere and the bottom with the soil,,

modelling the soil temperature down to 1 m (2 years*25 times), and then using the modelled k‘

soil temperatures as an initial condition to repeatedly simulate soil temperature down to 10 m

(2 years *25 times) (c.f., Fiddes et al., 2015; Gubler et al., 2013; Pogliotti, 2011). Preliminary

tests show that the minimum number of repetitions required to bring the soil column to

equilibrium was 25 (Figure S1)._The values of all the input parameters used is given in

Appendix (Table Al to A4) in the supplementary material.

The input meteorological data required for running the 1D GEOtop model include time series

of precipitation, air temperature, relative humidity, wind speed, wind direction and solar

radiation components and the description of the site (slope angle, elevation, aspect angle, and

sky view factor) for the simulation point. The model was run, at an hourly time step

corresponding to the measurement time step of the meteorological data.
3.3 Model performance evaluation

While the accuracy of simulated energy fluxes cannot be quantified, the quality of GEOtop

simulations is evaluated pased on, proxy variables such as snow depth, GST and the LWput.
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melt-out date of the snow depth is a good indicator showing how good the surface mass and

energy balance is simulated, and (p) the GST is the result of all the processes occurring at the
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and (¢) LW, which is governed by the temperature and emissivity at the surface and the Eq.
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et al., 2012). Typically, a variety of statistical measures are used to assess the model
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4.1 Model evaluation

In this section, the capability of GEOtop to reproduce the proxy variables is evaluated. The

model was evaluated based on snow depth, one-year GST and the LW,u. In this study, the
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4.1.1 Evaluation of snowpack

Snow depth variations simulated by GEOtop are compared with observations from 1

September 2015 to 31 August 2017 (Figure 2). The model captures the peaks, start and melt-

out dates of the snowpack, as well as overall fluctuations (R? = 0.98, RMSE = 59.5 mm, MB =

Deleted: enclose

X ; [ Deleted: different model evaluation statistics were used for

| Formatted: Superscript

J
J
)
)

Formatted: Font: Italic

Formatted: Font: Italic

Deleted: a) radiation components, and (b) GST and the
snow depth as described below.

o JU

Deleted: <#>Performance statistics for evaluation of
radiation componentsf

<#>For the evaluation of radiation components, we prefer
the statistics mean bias difference (MBD) and the root
mean square difference (RMSD) (Badescu et al., 2012;
Gubler et al., 2012; Gueymard, 2012). These statistics
indicate model prediction accuracy (Stow et al., 2003). The
MBD (Eq. 12) is a simple and familiar measure that
neglects the magnitude of the errors (i.e. positive errors can
compensate for negative ones) (Gubler et al., 2012):q
<#>1

[ Formatted: Subscript

16.7 mm, NSE = 0.91, Instrument error = £10 mm) (Figure S2). The maximum standing snow -

height (h) simulated by the GEOtop was 1219 mm in comparison to the 1020 mm measured in

17

“| Formatted: Not Highlight

Formatted: Font: Italic

(
[Formatted: Font: Italic
(
(

Deleted:

o U




834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

the field. In the low snow year, the maximum simulated h was 326 mm in comparison to the

280 mm measured in the field. During the melting period of the low and high snow years, the

snow depth was slightly under-estimated. However, during the accumulation period of high

snow year (2016-17), the h was rather overestimated by the model.

Furthermore, the performance of the ESOLIP estimated precipitation was evaluated against a

controlled run with precipitation data measured in the field (Figure 2). ESOLIP is the superior

approach for precipitation estimation, where snow depth and necessary meteorological

measurements are available.
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Figure 2 Comparison of hourly observed and GEOtop simulated snow depth at South-Pullu

(4727 m a.s.l.) from 1 September 2015 to 31 August 2017. The black line denotes the snow

depth measured in the field by SR50 sensor. The red (Snow depth ESOLIP) and green (Snow

depth_field) lines in the plot indicate the GEOtop simulated snow depth based on ESOLIP

estimated precipitation and precipitation measured in the field, respectively.

4.1.2 _Evaluation of near-surface ground temperatures (GST)

GST is simulated (GST_sim) on an hourly basis and compared with the observed values+—— [ Formatted: Space After: 0 pt

(GST _obs) near the AWS, available from 1 September 2016 to 31 August 2017 (Figure 3). The
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results show a reasonably good linear agreement between the simulated and observed GSTs

(Figure S3, R2 = 0.97, MB =-0.11 °C, RMSE = 1.63 °C, NSE = 0.95, Instrument error = +0.1

°C). The model estimated the dampening of soil temperature fluctuations by the snowpack and

the zero-curtain period at the end of melt-out of the snowpack reasonably well.
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Figure 3 Comparison of daily mean observed (GST obs, °C) and GEOtop simulated near-«

surface ground temperature (GST sim, °C) at South-Pullu (4727 m a.s.l.) from 1 September

2016 to 31 August 2017.

4.1.3 Evaluation of outgoing longwave radiation

Modelled LW, is evaluated with the observed measurements and a comparison of daily mean+——

observed, and simulated LWyt is shown in Figure 4. The daily mean LW, matches very well ;

with the observed data, except during summer months when the simulated L\W,u: was slightly
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overestimated than the observed values. The hourly LWout sShows a good linear relationship

(Figure S4, R2 = 0.93, NSE = 0.73) but the GEOtop slightly overestimates the LWout (MBD =

3 %) with RMSD value of 10 % (Instrument error = +10%).
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Based on the evaluation of LW,., the GEOtop can simulate the surface temperature at the point

scale; therefore, we believe that it can reasonably calculate the SEB components.
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Figure 4 Comparison of daily mean observed outgoing longwave radiation (LW,y:_0bs) and<«—

GEOtop simulated (LW,ut_sim) at South-Pullu (4727 m a.s.l.) from 1 September 2015 to 31

August 2017. The instrument error for the Kipp and Zonen (CGR3) (4500 to 42000nm)

radiometer is +10%.

4.2 Meteorological characteristics

The range of the meteorological variables measured at South-Pullu (4727 m a.s.l.) study site is

given in Table 2 to provide an overview of the prevailing weather in the study region. The daily
mean air temperature (Ta) throughout the study period varies between -19.5 to 13.1 °C with a

mean annual average temperature (MAAT) of -2.5 °C (Figure 5A). The Ta shows significant
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seasonal variations and instantaneous hourly temperature at the study site range between -23.7

°C in January and 18.1 °C in July. During the two-year study period, sub-zero mean monthly

[ Deleted: two year

temperature prevailed for seven months from October to April in both the years (2015-16 and
2016-17). The monthly mean Ta during pre-winter months (September to December) of 2015-

16 and 2016-17 was —4.6 and -2.7 °C respectively. During the core winter months (January to
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February) of 2015-16 and 2016-17, the respective monthly mean Ta was -13.1 and -13.7 °C,
for post-winter months (March and April), mean monthly Ta was -5.8 and -8 °C, respectively,
For summer months (May to August), the respective monthly mean T, was 6.6 and 5.5 °C. A
sudden change in the mean monthly Ta characterises the onset of a new season, and the most
evident inter-season change was found between the winter and summer with a difference of
about 16 °C during both the years.

The mean daily GST recorded by the logger near the AWS available for one year (1 September
2016 to 31 August 2017) is also plotted along with air temperature (Figure 5A). The mean daily

GST ranges from -9.7 to 15.4 °C with mean annual GST of 2.1 °C. The instantaneous hourly

GST at the study site range between -10.7 °C in December and 20.2, °C in July. The GST

followed the pattern of air temperature, but during winter, the snow cover dampened the
pattern. The GST was higher than the Ta except for a short period during snowmelt. The snow

depth shown in Figure 5A is described in sub-section 4.3.

Mean relative humidity (RH) was equal to 43% during the study period (Figure 5B). The daily+

L A SN

average wind speed (u) ranges between 0.6 (29 January 2017) to 7.1 m s* (6 April 2017) with

a mean wind speed of 3.1 m s (Figure 5C). The instantaneous hourly u was plotted as a

function of wind direction (WD) (Figure $5) for the study period which shows that there is a \

persistent dominance of katabatic and anabatic winds at the study site, which is typical of a
mountain environment. The average WD during the study period was southeast (148°) (Figure

5D)

—/Y
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Figure 5 Daily mean values of observed (A) air temperature (plue) and one-year GST (red) (T, [Deleted: 2

°C), snow depth (mm) on the secondary axis; (B) relative humidity (RH, %) with a dashed line

as mean RH; (C) wind speed (u, ms™); and (D) wind direction (WD, °); at South-Pullu (4727

m a.s.l.) in the upper Ganglass catchment, Leh from 1 September 2015 to 31 August 2017.

The daily measured total precipitation at the study site equals 97.8 and 153.4 mm w.e. during
the years 2015-16 and 2016-17 respectively. After adding 23% under catch (Thayyen et al.,
2015) [unpublished work] to the total snow measurements, the total precipitation amount equal
t0 120.3 and 190.6 mm w.e. for the years 2015-16 and 2016-17 respectively. During the study
period, the observed highest single-day precipitation was 20 mm w.e. recorded on 23

September 2015 and the total number of precipitation days were limited to 63. The snowfall
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occurs mostly during the winter period (December to March) with some years witnessing
extended intermittent snowfall till mid-June, as experienced in this study during the year 2016-
17.

The precipitation estimated by the ESOLIP approach at the study site equals 92.2 and 292.5
mm w.e. during the years 2015-16 and 2016-17 respectively. The comparison between
observed precipitation (mm w.e.) and the one estimated by the ESOLIP approach is given in

(Table S1)._In Table S1, the difference between the observed precipitation (mm w.e.) and the

one estimated by the ESOLIP approach is mainly due to the under-catch of winter snow

recorded by the Ordinary Rain Gauge.

4.3 Observed radiation components and snow depth

The observed daily mean variability of different components of radiation, albedo and snow
depth from 1 September 2015 to 31 August 2017 at South-Pullu (4727 m a.s.l.) is shown in
Figure 6. Daily mean SWi, varies between 24 and 378 W m (Table 2). Highest hourly
instantaneous short wave radiation recorded during the study period was 1358 W m-2. Such
high values of SWin are typical of a high elevation arid-catchment (e.g., MacDonell et al.,
2013). Persistent snow cover during the peak winter period for both the years extending from
January to March resulted in a strong reflection of SWi, radiation (Figure 6A). During most of

the non-snow period, mean daily SWou: radiation (Figure 6A) remain more or less stable below

100 W m-2, Daily mean SWo. varies between 2.4 and 262.6 W m2 with a mean value of 83.3
W m-2 (Table 2). The daily mean LWi, shows high variations and ranges between 109 and 345
W m2 with an average of 220 W m (Figure 3B, Table 2). Whereas LWt Was relatively stable
and varied between 211 and 400 W m with an average of 308 W m2 (Figure 6B, Table 2).
The LWout shows higher daily fluctuations during the summer months as compared to the core
winter months. The daily mean SW, during the study period ranges between 2.5 and 319 W m-

2 with a mean value of 127 W m2. The SW,, follows the pattern of SWi,_and for both the years,
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during the wintertime, the SW, was close to zero due to the high reflectivity of snow (Figure

3C). The daily mean LW, varies between -163 and 17 W m=2. The LW, does not show any

seasonality and remain more or less constant with a mean value of -88 W m2 (Figure 6C). The

Deleted: with higher values during summertime and low
values and relatively stable during winter

mean daily observed R, ranges from -80.5 to 227.1 W m-2 with a mean of 39.4 W m (Table

2). During both the years 2015-16 and 2016-17, the Rn was high in summer and autumn but

low in winter and spring. From January to early April (2015-16) and January to early May

(2016-17), when the surface was covered with seasonal snow, the Ry rapidly declined to low

values, or even became negative (Figure 6D). Albedo (a) is calculated as the ratio of daily

mean SWout to daily mean SWin, The q,is of particular importance in the SEB and in the Earth's

radiation balance that dictates the rate of heating of the land surface under different

environmental conditions (Strugnell and Lucht, 2001). The daily mean observed a at the study

with snow (Figure 6E).
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during the study period (Figure 6F). The year 2015-16 experienced low snow as compared to [Deleted: 3F ]

2016-17. During the 2015-16 year, the snowpack had a maximum depth of 258 mm on 30
January 2016, whereas, during the 2016-17 year, the maximum was 991 mm on 07 April 2017.
The snow cover duration was 120 days during low snow year (2015-16) and 142 days during
the high snow year (2016-17). The site became snow-free on 27 April in 2016 and on 23 May
in 2017. Higher elevations of the catchment become snow-free around 15 July in 2016 while

the snow cover at glacier elevations persisted till 22 August in 2017. For both the year’s snow
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cover at lower elevations initiated by the end of December and the catchment experienced sub-

zero mean monthly temperatures since October.,

Table 2 Two year range of observed daily mean radiation components (SWin, SWout, LWin and« "

LWout, SWh, LW,), surface albedo (a), net shortwave and longwave radiation (SW, and LW,),

air temperature (Tp), wind speed (u), relative humidity (RH), precipitation (P), and snow depth

(h) for the study period (1 September 2015 to 31 August 2017) at South-Pullu (4727 ma.s.l.).

Variable

Units
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1073  Figure 6 Observed daily mean values of (A) incoming (SWin) and outgoing (SWout) shortwave ( Deleted: 3 Observed )

1074  radiation, (B) incoming (LWin) and outgoing longwave (LWou) radiation, (C) net shortwave
1075  (SWh) and longwave radiation (LWh), and (D) net radiation (Rn), (E) surface albedo and (F)
1076  snow depth (h, mm) at South-Pullu (4727 m a.s.l.) from 1 September 2015 to 31 August 2017.
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4.4 Modelled surface energy balance
The mean daily variability of modelled surface energy balance (SEB) components is shown in

Figure 7. The average daily simulated Ry ranges between -78.9 to 175.6 W m2 with a mean

value of 29.7 W m2. The R, shows the seasonal variability and decreases as the ground surface

gets covered by seasonal snow cover during wintertime, and increases as the ground surface

become snow-free (Figure 7A). From December to March of both the years (2015-16 and 2016-

17), Rn decreases and is negative during snow accumulation and remains close to zero during

the melting time. For the rest of the time, R, remains positive. The simulated Ry matches the
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years, the LE jncreases (from pegative to zero) due to the freezing of moisture content in the

soil and also fluctuates close to zero. Furthermore, when the seasonal snow is on the ground,

the LE is pegative, indicating sublimation and keeps increasing (more pegative) after snowmelt

indicating evaporation is taking place.
The heat conduction into the ground G remains relatively a smaller component in the SEB<

(Figure 7C). The mean daily G ranges between -70.9 to 46.3 W m2 with a mean value of -05

W m2. The sign of the G, which shifted from pegative during summer to positive during winter,

is a function of the annual energy cycle. The heat flux available at the surface for melting (Fsurf)

ranges between -137 to 46.3 W m with a mean value of -2.8 W m (Table 3). During the

summer, when snow melting conditions were prevailing, the Fsuf turns negative as a result of
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Figure 7 GEOtop simulated daily mean values of surface energy balance components (A)
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m a.s.l.) from 1 September 2015 to 31 August 2017.
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Table 3 Mean daily range of GEOtop simulated SEB (W m2) components for the study period

(1 September 2015 to 31 August 2017) at South-Pullu (4727 m a.s.l.).
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The LE and H in the morning increased 1 to 2 hours after the Ry during pre-, post-winter and

summer season.

In the 2016-17 year (Figure S7), the pre-winter, winter and summer were the same as that of«

the 2015-16 year except for the amplitude of LE in was larger in summer season due to the

more precipitation and more moisture availability. However, during the winter and post-winter

season of the 2016-17 year, the main difference in diurnal changes was found because of the

extended snow cover till May during that year. The amplitude of Ry, L.E, H and G were smaller

compared to the 2015-16 year.

During the study period, the proportional contribution shows that the net radiation component

dominates (80%) the SEB followed by H (9%) and LE fluxes (5%). The G was limited to 5%

of the total flux, and 1% was used for melting the seasonal snow. The proportional contribution

of each flux percentages of the energy fluxes was calculated by following the approach of

Zhang et al. (2013). The mean monthly modelled SEB components for both the years are given

in Table S2.

Furthermore, during the study period, the partitioning of energy balance shows that 52% (-15.6+

W m2) of Ry (29.7 W m2) was converted into H, 38% (-11.2 W m3) into LE, 1% (-0.5 W m"

2) into G and 9% (-2.8 W m2) for melting of seasonal snow. The partitioning was calculated

by taking the mean annual average of each of the individual SEB components (LE, H and G)

and then divide these respective averages with the mean annual average of Rn. However, a

distinct variation of energy flux is observed during the month of May-June, when one of the

years (2016-17) experienced extended snow.

4.5 Comparison of seasonal distinction of SEB during low and high snow years

A seasonal distinction of observed radiation (SWin, LWin, SWout, LWou, SWh, LW,,) and
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avai)able for melt) was much higher (20.6 W m~2) during the extended snow sub-season of the

2016-17 year. From the inter-year seasonal comparison, it was found that the extended snow

sub-season of the 2016-17 (high snow year) forced significant differences in energy fluxes

between the years.

5  Discussion

5.1 Adistinction of SEB variations during low and high snow years

Realistic reproduction of seasonal and inter-annual variations in snow depth during the low
(2015-16) and high snow (2016-17) years points towards the credible simulation of the SEB
during the study period. We further investigated the response of SEB components during these
years with contrasting snow cover for a better understanding of the critical periods of
meteorological forcing and its characteristics.

To understand the critical periods of meteorological forcing and its effect on modelled SEB
fluxes, we will discuss the diurnal variation of modelled SEB only for one season, i.e., garly

summer season, which showed significant differences in the amplitude of energy fluxes

(Figure 8). During the early winter, peak winter and peak summer seasons (Figure S6, S7), the

diurnal variations of the SEB fluxes for the 2015-16 year were more or less similar in

comparison to, the 2016-17_year. However, during the early summer season of both the years
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simulation results are used for model evaluation.{
<#>Evaluation of radiation components{

<#>The first step in our model evaluation was to test the
radiation components estimated by the model. The
comparison of two-year hourly simulated radiations
components SWin, SWout, LWin and LWout against the field
observation are shown in Figure 5. The observed and
GEOtop estimated SWin shows a strong linear relationship
(R? = 0.95) and was slightly underestimated (MBD = -5 %)
with a high RMSD value of 37 % (Figure 5A). The GEOtop
simulated SWin fulfils the criteria of —5% < MBD < 5% set
by Badescu et al. (2012) for estimation of global SWin for
the Igbal (1983) model, but the criteria of RMSD < 15% is
not fulfilled. The SWout also shows good linear relationship
(R? = 0.84) but it is slightly underestimated (MBD = -1 %)
with high RMSD value of 76 % (Figure 5B). The LWin
does not show a good linear relationship (R? = 0.67) and
was slightly overestimated (MBD = 3 %) with RMSD value
of 15 % (Figure 5C). The LWout shows a good linear
relationship (R? = 0.91) but the GEOtop slightly
overestimates the LWout (MBD = 2 %) with RMSD value of
8 % (Figure 5D).1
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(Figure 8), the SEB fluxes show different diurnal characteristics. During early summer season

of the 201617 year, the main difference in diurnal changes was found because of the extended

snow cover till May during that year. For the 2016-17 year, the amplitude of R, was slightly
larger, whereas, all other components (LE, H and G) were of almost zero amplitude (Figure
8B). The smaller amplitude of LE, H and G is due to the smaller input (solar radiation) and the
extended seasonal snow on the ground. Therefore, we can say that the different SEB

characteristics during these two years’ is Jn response to the forcing of precipitation via snowfall.
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negative to positive due to the transfer of flux from soil to the atmosphere. However, during

summers, the permafrost and the seasonally frozen soil act as a heat sink, because the thawing

processes require a considerable amount of heat that is absorbed from the atmosphere to the

soil (Eugster et al., 2000; Gu et al., 2015). In Figure 9D, during the thawing phase from April

to July, the simulated mean monthly G starts to jncrease and changes sign due to the transfer

of flux from the atmosphere to the soil. This pattern is consistent with the studies on permafrost
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summer and lowest in winter. In contrast, the sensible heat flux was highest in early summer

and gradually decreased towards the pre-winter season. Similar kind of variability in the LE

and H is also reported from the seasonally frozen ground and permafrost regions of the Tibetan

plateau (Gu et al., 2015; Yao et al., 2011, 2020).

Furthermore, in Figure 9C, during the peak summer months (June to August), the H tends to

decrease or became relatively stable. This is mostly due to the thawing in the seasonally frozen

ground resulting in a sensible heat sink (Eugster et al., 2000).

In the Tibetan Plateau, the main reasons for the seasonal variability of the turbulent fluxes are

due to the Asian monsoon and the freezing and thawing processes of the active layer (Yao et

al., 2011), however, in our study site, the monsoon precipitation js not a dominant factor.
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Figure 9: Comparison of estimated mean monthly surface energy balance components (W m- «

2) (A) Ry, (B) LE, (C) H, and (D) G for the low (2015-16) and high (2016-17) snow years, at

South-Pullu (4727 m a.s.l.),,

5.3 Comparison with other environments

In this section, the observed radiation and estimated SEB components from our cold-arid

catchment in Ladakh, India are compared with other cryospheric systems, globally (Table 5).
Although aiming to represent differing permafrost environments, this comparison also includes

SEB studies on glaciers for lack of additional data. In most of the studies referred here, the

radiation components are measured, and the turbulent (H and LE) and ground (G) heat fluxes

are modelled.
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ground temperature (GST) are complex. Snow cover affects
the ground thermal regime by altering the surface energy
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(Goodrich, 1982; Gruber, 2005; Zhang, 2005). In
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low thermal conductivity allows the snow cover to act as an
insulator between the atmosphere and the ground. To
analyse the effects of snow cover on GST, we plotted the
relationship between observed snow depth and GST during
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at South-Pullu (4727 m a.s.l.) (Figure 10). For the shallow
snow depth, the GST was smaller, and as the depth of
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<#>The timing of snow cover start and its duration has a
non-linear influence on the ground surface temperatures
(Bartlett et al., 2004). In the early winter, a thin snow cover
can cool the ground, whereas a thick snow cover insulates
the ground from cold air temperature variations (Keller and
Gubler, 1993). During both the years, the snowfall in the
catchment occurred by the last week of December
facilitating the ground cooling by almost three months
(October to December) of sub-zero temperatures up to -20
°C. This could be a key factor in controlling the thermal
regime of permafrost in the area. Extended snow cover

during the high snow year insulates the ground from F
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Based on the comparison, the SWijn at the study site is comparable with Tibetan plateau (Mélg

et al., 2012; Zhang et al., 2013; Zhu et al., 2015) and significantly much higher than the values

reported from other studies such as the Alps (Oerlemans and Klok, 2002; Stocker-Mittaz, 2002).

The LW, at the study site was comparable with values observed at Tibetan Plateau (Zhang et al.,

2013; Zhu et al., 2015)_and smaller than the other studies except for Antarctica. At the study

site, the SW, was the largest source of energy and LW, the most considerable energy loss and

strongly negative, and both were higher than those reported in other studies (Table 5).

However, the Andes were an exception (Favier, 2004; Pellicciotti et al., 2008).

The different surface albedo (a) values help to distinguish the surface characteristics. The mean

o for all the sites (Table 5) where radiation balance is measured either on bedrock or tundra
vegetation was smaller than those measured over firn or ice during summer with few

exceptions. Albedo ranges for glacier ice from 0.5 to 0.7 and for tundra/bedrock from 0.25 to

0.54. Comparison of RH for the study period shows that the mean measured RH (43 %) _was

much smaller than other regions except in the semi-arid Andes (Pellicciotti et al., 2008), where

the RH was comparable. Furthermore, the mean annual precipitation jn this study was also

Jower than in the other areas compared.
Based on the comparison of measured radiation and meteorological variables with other, better-

investigated regions of the world (Table 5), it was observed that our study area js unique in
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the high elevation cold-arid region land surfaces could be overall colder than the locations with

more RH. (b) Increased SWin,, This will mean that sun-exposed slopes will receive more

radiation and shaded ones less (less diffuse radiation) than in comparable areas, and (c)

Increased cooling by stronger evaporation in wet places such as meadows. Therefore, the warm

sun-exposed dry areas and colder wet places could lead to significant spatial inhomogeneity in
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1F57 Table 5: Comparison of mean annual observed radiation and estimated SEB components and meteorological variables with different regions of

1958  the world. (SWi, = Incoming shortwave radiation, SWout = Outgoing shortwave radiation, albedo = a, LW, = Incoming longwave radiation, LWou

1959 = Outgoing longwave radiation, SW, = Net shortwave radiation, LW, = Net longwave radiation, RH = Relative humidity, R, = Net radiation, LE

1960 = Latent heat flux, H = Sensible heat flux, G = Ground heat flux, SEB = energy available at surface, MAAT = Mean annual air temperature, P =

1961  Precipitation, NA = Not available). The LE, H, and G are the modelled values. All the radiation components and heat fluxes are in units of W m-
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SWin 2104 230 136 149 239 344 140 136 101.3 110 79.5 122 78 108 124 94.2
SWout -83.4 -157 =12 -74 -116 -106 -93 -94 -25.7 -70 -39.5 -38 -42 -70 -719.7 -52.0
af) 0.40 0.68 0.53 0.5 0.49 0.3 0.66 0.69 0.25 0.64 0.50 031 | 054 | 065 | 0.64 0.55
LWin 220.4 221 NA 260 272 252 278 248 310 246 263.7 261 254 | 272 NA 184.1
LWout -308.0 =277 NA -308 -311 306 -305 -278 -349.8 -281 -299.0 -300 -286 | -292 NA -233.2
SWi, 127.0 73 64 75 123 238 48 42 75.6 40 40.0 84 36 38 443 42.2
LWh -87.6 -56 -36 -48 -39 -54 -27 -30 -39.8 -36 -35.3 -39 32 | <20 | 492 | -491
RH (%0) 43.3 59 64 59 81 42 78 71 ~75 75 74.8 83 74 77.9 50.8 69.4
Rn 394 17 28 27 84 184 21 12 37.1 4 478 45 4 18 -4.9 -6.9
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6 Conclusion

In the high-elevation, cold-arid regions of Ladakh significant areas of permafrost occurrence

are highly likely (Wani et al., 2020) and large areas experience deep seasonal freeze-thaw. The

present study is aimed at providing first insight on the surface energy balance characteristics

of this permafrost environment,,

JFor the period under study, the surface energy balance characteristics of the cold-arid site in

the Indian Himalayan region show that the net radiation was the major component with amean

value of 29.7 W m?, followed by sensible heat flux (-15.6 W m™) and latent heat flux (-:11.2

W m2), and the mean ground heat flux was equal to -0.5 W m. During the study period, the

partitioning of surface energy balance shows that 52%, of Rn was converted into H, 38% jnto

LE, 1% jnto G and 9% for melting of seasonal snow.

Among the two observation years, one was a low snow year, and the another was high, and

during these low and high snow years, the energy utilised for melting seasonal snow was 4%

' Deleted: 44

( Deleted: (Wani et ., 2019) )
{ Deleted: ]

Deleted: The one-dimensional mode of GEOtop model was
used to estimate the surface energy balance at South-Pullu
(4727 m a.s.l.) in the upper Ganglass catchment from 1
September 2015 to 31 August 2017 using in-situ
meteorological data. The model performance was evaluated
using measured radiation components, snow depth variations
and one-year near-surface ground temperatures which shows
good agreement.

Deleted: daily
Deleted: 28.9
Deleted: 13.5
Deleted: 12.8
Deleted: daily
Deleted: 4

Deleted: show
Deleted: 47

Deleted: (13.5W m?)
Deleted: (28.9 W m?)

Deleted: (0.4 W m?)
Deleted: 7

and 14% of Ry, respectively. During both the years, the latent heat flux was highest in summer

and lowest in winter, whereas the sensible heat flux was highest in post-winter and gradually

decreased towards the pre-winter season. fFor both Jow and high years, the snowfall in the

Deleted: (2.1 W m?)
Deleted:

Deleted: (maximum snow depth of 258 mm and duration of
120 days)

Deleted: (maximum snow depth of 991 mm and duration of
142 days)

catchment occurred by the last week of December facilitating the ground cooling by almost

three months (October to December) of sub-zero temperatures up to -20 °C. The extended snow

cover during the high snow year also insulates the ground from warmer temperature until May.

Therefore, the late occurrence of snow and extended snow cover could be the critical factors
in controlling the thermal regime of permafrost in the area.

A comparison of observed radiation and meteorological variables with other regions of the

world show that the study site/region at Ladakh have a very low relative humidity (RH) in the

range of 43% compared to, e.g. ~70% in the Alps. Therefore, rarefied and dry atmosphere of

the cold-arid Himalaya could be impacting the energy regime in multiple ways; (a) this results
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in the reduced amount of incoming longwave radiation and strongly negative net longwave
radiation, in the range of -90 W m2 compared to -40 W m2 in the Alps and therefore, leading
to colder land surfaces as compared to the other mountain environment with higher RH,_(b)
Jhigher global shortwave radiation leads to more radiation received by sun-exposed slopes than
shaded ones in comparable areas and wet places such as meadows, etc. experience increased
cooling as a result of stronger evaporation. However, sun-exposed dry areas could be warmer,
leading to significant spatial inhomogeneity in permafrost distribution. The current study gives
a first-order overview of the surface energy balance from the cold-arid Himalaya in the context
of permafrost processes, and we hope this will encourage similar studies at other locations in

the region, which would significantly improve the understanding of the climate from the region.
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