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Author Response 
 
This document provides a point-by-point response to the editor corrections followed by a 

marked-upversion of the revised manuscript.  Responses are in red text. 

Phillip Harder May 6, 2020 5 

 

Line 141: remove ‘following’ 

This sentence has been modified to be “The UgCS flight control software (SPH Engineering, 

2020) was used to generate terrain following flight paths with respect to these parameters and 

an underlying SRTM DEM”.  10 

 

Line 252: change to ‘…is smaller for vegetation sites than Open sites, which has implications…” 

Corrected 

 

Line 290: ‘Should ‘orange polygon’ be in brackets? 15 

Orange polygons is now in brackets 

 

Line 389: ‘snow accumulation was consistently observed to be ≤ precipitation over the transect’ 

Presumably this is because of interception? Perhaps specify this? Replace the < symbol with 

text. 20 

Have changed/added the following to the sentence to be clearer : “snow accumulation was 

consistently observed to be less than precipitation over the transect due to interception losses” 

 

In addition have changed Figure 4 so that UTM coordinates are now with respect a study area 

origin not UTM zone to be consistent with all other figures. 25 
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Abstract. Vegetation has a tremendous influence on snow processes and snowpack dynamics yet remote sensing techniques 

to resolve the spatial variability of sub-canopy snow depth are not always available and are difficult from space-based 

platforms. Unmanned Aerial Vehicles (UAV) have had recent widespread application to capture high resolution information 40 

on snow processes and are herein applied to the sub-canopy snow depth challenge. Previous demonstrations of snow depth 

mapping with UAV Structure from Motion (SfM) and airborne-lidar have focussed on non-vegetated surfaces or reported large 

errors in the presence of vegetation. In contrast, UAV-lidar systems have high-density point clouds and measure returns from 

a wide range of scan angles, increasing the likelihood of successfully sensing the sub-canopy snow depth. The effectiveness 

of UAV-lidar and UAV-SfM in mapping snow depth in both open and forested terrain was tested in a 2019 field campaign in 45 

the Canadian Rockies Hydrological Observatory, Alberta and at Canadian Prairie sites near Saskatoon, Saskatchewan, Canada. 

Only UAV-lidar could successfully measure the sub-canopy snow surface with reliable sub-canopy point coverage, and 

consistent error metrics (RMSE <0.17m and bias -0.03m to -0.13m). Relative to UAV-lidar, UAV-SfM did not consistently 

sense the sub-canopy snow surface, the interpolation needed to account for point cloud gaps introduced interpolation artefacts, 

and error metrics demonstrate relatively large variability (RMSE <0.33m and bias 0.08 m to -0.14m). With the demonstration 50 

of sub-canopy snow depth mapping capabilities a number of early applications are presented to showcase the ability of UAV-

lidar to effectively quantify the many multiscale snow processes defining snowpack dynamics in mountain and prairie 

environments.  

1 Introduction 

Snow accumulation and melt are critical parts of the hydrological cycle in cold regions (King et al., 2008). To understand these 55 

processes there needs to be robust and accurate observation methodologies to measure the depth and density of a snowpack, 

and its change, across all aspects of the landscape. Unfortunately, satellite remote sensing methods struggle to quantify the 

spatial distribution of snow at a high enough resolution and accuracy to account for the fine scale interactions between snow 
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and vegetation (Nolin, 2010). Remote sensing conceptually promises the capability to gather this type of data at the spatial 

scales and extents needed, but the main challenge for snow observations across a heterogeneous landscape is that exposed 60 

vegetation and forests obscure the underlying snow surface (Bhardwaj et al., 2016; Nolin, 2010; Tinkham et al., 2014). This 

paper seeks to illuminate some of the challenges posed to UAV-based remote sensing of snow depth observations and how 

UAV-based lidar represents a promising opportunity to overcome this limitation at the small catchment scale (<5 km2). 

Capturing the spatial distribution of snowpacks and snowcover at a particular instance provides information about the 

integrated accumulation and ablation processes up to that point in time. Accurate quantification of snow accumulation and 65 

ablation is needed to improve the understanding of snow hydrology, test processes, examine spatial scaling of process 

interactions (Clark et al., 2011; Deems et al., 2006; Trujillo et al., 2007), and to initialise and/or validate model predictions 

(Hedrick et al., 2018). Snow depth, the focus of this paper, is not the variable of ultimate interest for hydrology. Rather, snow 

water equivalent (SWE) is used for snow hydrology applications (Pomeroy and Gray, 1995). Fully cognisant of this, the focus 

here is on snow depth, as it is well documented that snow depth varies much more than density (Pomeroy and Gray, 1995; 70 

Shook and Gray, 1996; Jonas et al., 2009; López-Moreno et al., 2013); therefore, improving the accuracy of snow depth 

observations in a drainage basin is critical to improving the estimation of SWE at and within basin scales.  

Snow depth and SWE observations are traditionally collected though in situ observations (Goodison et al., 1987; Helms et al., 

2008; Kinar and Pomeroy, 2015a; Sturm, 2015). In situ approaches, such as snow surveying, rely on manual sampling of snow 

depths and densities to get SWE. When conducted along landscape-stratified transects the lansdcape-scale SWE can be 75 

estimated (Pomeroy and Gray, 1995; Steppuhn and Dyck, 1974). The challenge for snow survey observations is that they are 

prone to observer bias, are labour intensive and time consuming, and are often unable to sample all aspects of a landscape such 

as avalanche zones (Kinar and Pomeroy, 2015a). Nonetheless, snow surveying is a proven approach to quantify SWE and has 

been operationalised across many regions. The practice has historical precedence and has created many long-term records 

which are a valuable data source (Goodison et al., 1987; Helms et al., 2008). Other point observations, such as snow pillows 80 

(Coles et al., 1985), acoustic sensors (Kinar and Pomeroy, 2009; 2015b), and passive gamma sensors (Smith et al., 2017) are 

valuable automated data sources, but are spatially limited in extent and can often suffer from location/elevation bias -- as 

demonstrated by the SNOTEL network in the western United States (Molotch and Bales, 2006). In particular, measurements 

of snow in forest clearings will have relatively more snow than under the adjacent canopy (Pomeroy and Gray, 1995) and so 

may not be suitable for snow hydrology calculations or model validations in forested regions even though they are often used 85 

for just such purposes. Other techniques need to be developed to capture the small-scale spatial variability of snow-vegetation 

interactions to advance our process understandings and validate the next generation of distributed snow models. 

Remote sensing approaches have shown promise to evaluate snow depth in open areas. Airborne-lidar and UAV Structure 

from Motion (UAV-SfM) approaches have been proven to provide snow depth mapping abilities when differencing snow-

covered (hereafter snow) and snow-free (hereafter ground) Digital Elevation Models (DEM). Lidar, an active sensor, emits a 90 

pulse of light and detection of the reflected pulse results in a point cloud of a scene with a consistent quality point cloud 

regardless of flight characteristics, wind conditions, or solar illumination. A clear benefit of lidar is that multiple returns per 
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pulse can be observed with returns possible from within the canopy and from the sub-canopy ground or snow surface. In 

contrast UAV-SfM uses a passive RGB sensor where data quality is not actively controlled. This results in variable image 

quality because: inconsistent solar illumination influences image exposure; wind gusts influence platform stability leading to 95 

blurry images and inconsistent overlap; and surface heterogeneity means that some areas of the domain will have more key 

points--points automatically detected and matched in multiple images (Westoby et al., 2012)--leading to variability in the 

quality of the SfM solution (Bühler et al., 2016; Harder et al., 2016; Meyer and Skiles, 2019). So while SfM can provide similar 

quality error metrics in open areas the quality will vary between flights as conditions change, whereas lidar will be more 

consistent. Reported snow depth accuracy in open environments, expressed as root mean square errors (RMSE), varies from 100 

0.08 m to 0.60 m for airborne-lidar (Currier et al., 2019; DeBeer and Pomeroy, 2010; Harpold et al., 2014; Mazzotti et al., 

2019; Painter et al., 2016; Tinkham et al., 2014), 0.17 to 0.30 m for airborne-SfM (Bühler et al., 2015; Meyer and Skiles, 2019; 

Nolan et al., 2015), and 0.02 to 0.30 m for UAV-SfM (Harder et al., 2016; Vander Jagt et al., 2015; De Michele et al., 2016). 

A notable challenge is that the presence of exposed vegetation, especially dense forest, confounds SfM solutions and obscures 

airborne-lidar bare surface extractions which are needed for fine scale differencing of DEMs to evaluate snow depths or snow 105 

depth changes (Bhardwaj et al., 2016; Deems et al., 2013; Harpold et al., 2014). Terrestrial laser scanning (TLS) is another 

approach for observing high-resolution snow depth data which has been used to develop an understanding of snow depth 

distributions and for validating other snow depth observation methods (Currier et al., 2019; Egli et al., 2012; Grünewald et al., 

2010; Mott et al., 2011). However, TLS has important limitations that restrict further landscape scale understanding of snow 

processes in forested areas as it is limited by the site specific viewshed and viewing geometry (Deems et al., 2013) and 110 

occlusion by forest canopies and low vegetation which decreases point cloud density away from forest edges (Currier et al., 

2019). TLS remains an excellent technique for detailed examination of the forest edge snow environment. 

Most applications of remote sensing for observing snow processes have focussed on open environments. However, vegetated 

portions of those same environments can play a large role in landscape-scale snow hydrology. For example, wetland vegetation 

accumulates deep snowdrifts and so has an exaggerated influence on snow accumulation processes in prairie environments 115 

(Fang and Pomeroy, 2009). Similarly, forests constitute large fractions of the mountain domain (Callaghan et al., 2011; 

Troendle, 1983) and have very different snow processes than found in open environments (Pomeroy et al., 2002). Snow-

vegetation interactions are complex (Currier and Lundquist, 2018; Gelfan et al., 2004; Hedstrom and Pomeroy, 1998; Harder 

et al., 2018; Mazzotti et al., 2019; Musselman et al., 2008; Parviainen and Pomeroy, 2000; Pomeroy et al., 2001; Zheng et al., 

2016) and involve both snow interception by the canopy and wind redistribution to forest edges. In dense forests, vegetation 120 

leads to interception and subsequent sublimation of snow resulting in an overall decrease in accumulation (Hedstrom and 

Pomeroy, 1998; Parviainen and Pomeroy, 2000; Reba et al., 2012; Swanson et al., 1986). In open environments, such as the 

prairies, tundra and alpine, wind redistribution of snow leads to a decrease in snow depth in exposed erodible areas and an 

increase in snow accumulation over aerodynamically rough surfaces or in sheltered areas where wind speeds decrease and 

snow is deposited– this includes forest edges (Busseau et al., 2017; Essery et al., 1999; Fang and Pomeroy, 2009; Liston and 125 

Hiemstra, 2011; Pomeroy et al., 1993; Schmidt, 1982). Much of the understanding of snow-vegetation interactions is based on 
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snow surveys, which are limited in scale and extent. Thus approaches to systematically and efficiently quantify these dynamics 

across a drainage basin accounting for topographic and vegetation heterogeneity are needed to further develop and test our 

process understandings. 

1.1 Research Questions and Objectives 130 

The overall motivation of this work is to understand how snow depth, as well as the processes driving its accumulation and 

ablation, varies across complex vegetated landscapes. Better tools are needed to measure snow at scales that resolve snow-

vegetation interactions, which can involve individual trees and small forest gaps. So the specific objectives in this manuscript 

are to: 1) evaluate the ability of UAV-lidar versus UAV-SfM techniques for measuring snow depth in open and vegetated 

areas, and 2) articulate challenges and opportunities for UAV’s to map sub-canopy snow depth. 135 

2 Data and Methods 

2.1 Sites 

Several sites from western Canada, which represent a range of surface condition and snow climates, were selected to test the 

ability of the UAV-lidar and UAV-SfM to measure snow depth in open and vegetated areas.  

Fortress Mountain Snow Laboratory (hereafter Fortress), in Kananaskis, AB (50.833 N, 115.220 W), is a research basin 140 

operated by the University of Saskatchewan’s Centre for Hydrology in support of mountain hydrology research. The 5 km2 

catchment’s elevation ranges from 2000 m to 2900 metres above sea level (m.a.s.l.). Field observations for this paper focussed 

on the Fortress Ridge (Figure 1a) which spans an open alpine environment, a larch treeline zone near 2200 m.a.s.l., and a 

mixed lodgepole pine and subalpine fir forested slope to the valley bottom at 2000 m.a.s.l. (Schirmer and Pomeroy, 2019). 

Shrubs are primarily willows. The area was developed as an alpine ski resort in the 1960’s, but is currently a limited-use ski 145 

operation without snowmaking, and some open ski runs remain through some of the slopes of interest. Strong winds result in 

substantial redistribution of snow by blowing snow in this environment (Aksamit and Pomeroy, 2018) 

Two study areas in the Canadian Prairies were examined in this study. Both sites provide examples of cropland with hummocky 

terrain subject to significant blowing snow redistribution (Figure 1bc). Windblown snow from upland areas of short vegetation, 

wheat and barley stubble, is often transported to lower elevation wetland depressions where it is effectively trapped by wetland 150 

vegetation, shrub vegetation types include willows, dogwoods, tall grasses and reeds while the trees are primarily poplar and 

willow. One site was located southeast of Saskatoon, SK (51.941 N, 106.379 W), hereafter Clavet, with the other site north of 

Saskatoon, SK (52.694 N, 106.461 W), hereafter Rosthern. The main difference between prairie sites was that Rosthern 

received more snowfall and developed a deeper snowpack than Clavet in winter 2019. Where results from both sites are 

aggregated, they are collectively referred to as Prairie hereafter. 155 
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Figure 1: a) Fortress Mountain Snow Observatory in Kananaskis, Alberta, Canada, b) Rosthern and c) Clavet prairie study locations 

in Saskatchewan, Canada. Data collection was centred on Fortress Ridge (ridgeline in background centre) an area of high 

topographic variability and a mix of dense forests and clearings. The Rosthern photo highlights the low vertical relief of upland 

areas and isolated woodlands amongst cultivated fields. The Clavet photo highlights the transition zone between the open upland 160 
agricultural terrain and the lower elevation vegetated wetland.  

2.2 Data Collection 

2.2.1 Lidar System 

The UAV-lidar system was comprised of a Riegl miniVUX-1UAV lidar sensor, integrated with an Applanix APX-20 Inertial 

Measurement Unit (IMU), and mounted on a DJI M600 Pro UAV platform (Figure 2a). The miniVUX1-UAV utilises a rotating 165 

mirror to provide a 360-degree line scan with a measurement rate of 100 KHz and up to 5 returns per shot with a 15 mm 

precision. The APX-20 provides positional accuracy of <0.05m in horizontal and <0.1m in vertical dimensions with a 200Hz 

sampling rate and 0.015 degree and 0.035 degree accuracy in roll/pitch and heading, respectively. The payload, 5 kg, 

approaches the maximum capacity of the M600 Pro platform so flight parameters to maximise mapping efficiency were set to 

7 m/s ground speed, 100 m flight altitude above the surface, with parallel flight lines 80 m apart. The UgCS flight control 170 

software (SPH Engineering, 2020) was used to generate flight paths with these parameters and terrain following with respect 

to an underlying SRTM DEM. The UgCS flight control software (SPH Engineering, 2020) was used to generate terrain 

following flight paths with respect to these parameters and an underlying SRTM DEM. Flight times are conservatively limited 

to 15 minutes. The generated UAV-lidar point clouds have densities of approximately 75 points per square metre (pt m-2). 
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2.2.2 Structure from Motion systems 175 

Coincident surface mapping with SfM used imagery collected by EbeeX or Ebee+ fixed wing UAV platforms with SODA 

RGB cameras from Sensefly (Figure 2b). The longer flight times, up to 70 minutes, associated with a lightweight payload on 

a fixed wing platform allowed for efficient mapping of large areas. Overlap parameters were generally 80% for the longitudinal 

and 65% in the lateral axes. Flight altitudes of 120 m above the surface provided a ground sample distance of 2.8 cm with the 

SODA camera, which was used on both EbeeX and Ebee+ platforms. The generated UAV-SfM point clouds have densities of 180 

~ 110 pt m-2. 

  

Figure 2: UAV-lidar platform: Riegl miniVUX1-UAV mounted on DJI M600 Pro (a) and UAV-SfM platform: Sensefly EbeeX (b). 

2.2.3 Ground Validation Surveys 

The assessment of snow depth accuracy used coincident surveys of surface elevation points with Global Navigation Satellite 185 

System (GNSS) surveys and manual measurement of snow depths with a ruler. The intention of the surveys was to validate 

the spatially distributed snow depth retrievals and transects were selected in a manner for the surveyor(s) to efficiently sample 

the greatest variety of vegetation types and gradients. A Leica GS16 base/rover kit provided a real-time-kinematic (RTK) 

survey solution to survey points. The 3D uncertainty of the relative position between the base and rover was computed in real-

time to be < ±1.5 cm which accounts for errors in signal strength, satellite coverage, and instrument precision. RTK signal 190 

quality can degrade in forests but only points with carrier-phase RTK solutions were used in this analysis so all survey points 
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are of consistent quality irrespective of vegetation cover. Post-processing of the GNSS data used the Canadian Geodetic 

Survey of Natural Resources Canada Precise Point Positioning (PPP) online tool (Natural Resources Canada, 2020) to define 

an absolute base station location. Due to multi-site logistics the base station location varied between flights and collection 

periods ranged between 2.5 and 9 hours and PPP computed standard deviations were consistently < 2 cm. Post-processing with 195 

Leica Infinity software (version 2.4.1.2955) established the absolute positions of the rover points by maintaining the RTK 

rover-base position but adjusting the base station absolute location to that established by the PPP tool. Propagating the 

uncertainty of the RTK solution (± 1.5 cm) and PPP derived absolute base location (± 2 cm) gives an uncertainty of ± 2.5 cm 

for the survey points. 

2.2.4 Campaigns 200 

To assess the accuracy of the UAV snow depth measurement methods as well as provide insight into the seasonally evolving 

snow depth distribution a total of 19 flight/manual surveys were conducted at all three study sites between September 2018 

and April 2019. These are summarised by date, surveyed surface condition, UAV data collected, and corresponding number 

of manually surveyed surface elevation points in Table 1. 

 205 

Table 1: Summary of data collection campaign, Sept 2018 to April 2019 

Date 

(mm-dd) 

Surface Data Collected Site Number of Manual 

Observations 

09-07 ground lidar Rosthern 0 

09-19 ground lidar Fortress 0 

10-10 ground lidar Clavet 0 

12-13 snow lidar Clavet 0 

01-31 snow lidar,SfM Clavet 51 

02-13 snow lidar,SfM Fortress 81 

03-11 snow lidar Clavet 30 

03-13 snow lidar,SfM Rosthern 111 

03-15 snow lidar Clavet 35 

03-18 snow lidar,SfM Rosthern 81 

03-20 snow lidar,SfM Clavet 69 

03-22 snow lidar,SfM Rosthern 72 

03-24 snow SfM Rosthern 0 

03-26 snow lidar,SfM Rosthern 73 

03-29 snow lidar Rosthern 77 

04-03 snow lidar Clavet 0 

04-04 snow lidar Rosthern 0 

04-09 snow lidar Rosthern 0 

04-25 snow lidar Fortress 39 
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2.3 Data Processing 

Snow depth was quantified as the vertical difference between a bare ground DEM and a bare snow surface DEM. This approach 

was taken regardless of whether DEMs come from lidar scanning or SfM processing. The workflows implemented to produce 210 

DEMs vary between lidar and SfM approaches (Figure 3) and code is available at https://github.com/phillip-harder/UAV-

snowdepth. 
 

 

Figure 3: Data processing workflows for lidar and SfM point cloud generation. 215 

2.3.1 Lidar processing workflow 

To generate a georeferenced lidar point cloud several data streams need to be integrated in post processing. The raw high 

frequency trajectory (x, y, z, pitch, roll, and yaw) information from the APX-20 IMU was post processed with POSPAC UAV 

software, which includes a post processing kinematic (PPK) correction by integrating base GNSS data from a known point < 

2 km from flight area, to provide an absolute sensor position uncertainty of < 2.5 cm. The post-processed IMU data is merged 220 

with the scanner data within the proprietary RiProcess software package to translate the time of flight laser returns to an x, y, 

and z point. Finally, alignment of scan lines with overlapping scan data from adjacent flight lines is used to optimise the IMU 

trajectory with the RiPrecision tool. This final step in noise reduction improves the final product because the 1.5 cm laser data 

precision is greater than the post processed IMU trajectory accuracy. 

2.3.2 SfM processing workflow 225 

The UAV-SfM processing workflow begins with associating a high accuracy x, y, and z positon to the images taken. Within 

the Emotion 3.X software from SenseFly a PPK correction, with raw GNSS data collected at the known point base station, is 

applied to the photo locations to give geotag accuracies of < ±2.5 cm. The Pix4D Mapper (v 4.3.33) SfM software, with the 

https://github.com/phillip-harder/UAV-snowdepth
https://github.com/phillip-harder/UAV-snowdepth
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“3D Maps” default options template, processed the collected imagery and post processed geotags to produce a densified point 

cloud. Within the study sites a minimum of 5 ground control points (GCP), blue 2 m x 2 m tarps with a white cross, were 230 

surveyed with the Leica GS16 rover and integrated into the Pix4D SfM workflow. For further details on how Pix4D implements 

SfM techniques and more generally the approach to use SfM to map snow depth refer to Harder et al. (2016) and Meyer and 

Skiles (2019). 

2.3.3 Point Cloud Processing 

The points representing the ‘bare’ surface, whether that is the snow or ground surface, are of interest for snow mapping. Lidar 235 

point clouds comprise of returns from vegetation and the snow/ground surface, while UAV-SfM point clouds comprise returns 

from vegetation or the snow/ground surface and exhibit substantial noise around snow patch edges (Harder et al., 2016). To 

remove noise and vegetation points a noise removal and bare surface point classification was applied to the point clouds with 

the LAStools software (Isenburg, 2019). The lidar workflow performed a noise removal followed by a bare surface point 

classification. For the bare-ground lidar scans, the height of vegetation (non-ground) points was also calculated. For the UAV-240 

SfM point clouds, the noise removal and bare surface classification follows the workflow of Isenburg (2018).  

2.3.4 Surface interpolation 

A DEM was generated in order to reduce the overall volume of data and to allow for simple surface differencing. The 

‘blast2dem’ tool within the LAStools package generates a seamless triangulated irregular network (TIN) that conforms to the 

point cloud which is then resampled to a raster (Isenburg, 2019). A spatial resolution of 0.1 m was applied to all DEMs 245 

generated. 

2.3.5 Error Assessment 

To assess the accuracy of UAV-lidar and UAV-SfM with respect to observations, a DEM based comparison was undertaken. 

Snow and ground surface values were extracted from the DEM raster cells for locations where a point was manually surveyed 

and snow depth measured. The snow depth was calculated from the vertical difference between the snow DEM and ground 250 

DEM. The influence of vegetation height on snow depth errors was also considered by segmenting the error metrics with 

respect to vegetation height (open <0.5 m, 0.5 m ≥ shrub ≤2 m, and trees >2 m) derived from the snow-free UAV-lidar scan. 

The classified vegetation maps and location of all survey points are visualised in Figure 4. The error metrics employed to 

assess the differences between observations and estimates include the root mean square error (RMSE), and the mean bias (mb) 

(Harder et al., 2016). 255 
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Figure 4: Fortress a), Rosthern b), and Clavet c) study sites classified by vegetation height derived from snow-free (ground) UAV-

lidar into open (<0.5 m), shrub (>0.5 m and <2 m) and tree (>2 m) domains. Red points identify locations of manual snow depth 260 
survey observations sampled over the course of the data collection campaign. Black lines in Fortress map are 50 m elevation contours. 

2.3.6 Point cloud coverage 

The continuity of bare surface point density between UAV-lidar and UAV-SfM methods was quantified in order to interpret 

how well the respective tools can sense sub-canopy surfaces. All surveys with coincident UAV-lidar and UAV-SfM flights 

were assessed with the LAStools (Isenburg, 2019) grid_metrics function to classify area with > 1 pt 0.25 m-2 and thereafter 265 

were summarised as percentage areas of each study site with >1 pt 0.25 m-2 with respect to technique. This is a rough metric 

of DEM quality as it quantifies the relative amount of interpolation needed to translate a point cloud to a continuous surface.  
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3 Results 

3.1 Accuracy of UAV-lidar versus UAV-SfM snow depth estimates 

An accuracy assessment comparing the snow depth from UAV-lidar and UAV-SfM techniques to the manually sampled 270 

through ground surveys is shown in Figure 5. UAV-lidar has consistently lower error than UAV-SfM in open environments 

and mountain vegetation. The exception is prairie shrub vegetation where the UAV-lidar RMSE is slightly larger than UAV-

SfM RMSE. The significance of the different relative RMSE values for Prairie shrub vegetation is negligible relative to the 

much larger differences noted in the other domains. UAV-lidar bias is consistently negative (-0.03 m to -0.13 m), while the 

UAV-SfM bias is more variable and both positive and negative (0.08 m to -0.14 m).  275 
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Figure 5: Comparison of snow depth observations from snow probes and snow depth estimates from UAV techniques. Plots are 

segmented within each vegetation class (rows), sites (columns) and observation method (colours).  

The influence of vegetation on estimating snow depth from UAV’s can be directly assessed by considering the errors associated 280 

with different vegetation classes (Figure 5). When considering UAV-lidar, the errors are worse in the presence of vegetation. 

Open Prairie and Open Fortress RMSE values are similar (0.09 m and 0.1 m RMSE respectively), whilst vegetated sites have 

larger error (0.13 m to 0.17 m RMSE) with no observed dependency upon vegetation class or type. The sample size of snow 

depth probe observations is smaller for vegetation sites than Open sites, which has implications for error metrics –outliers will 

have greater weight. The UAV-lidar is equally successful at penetrating the open leaf-off deciduous tree canopy at the prairie 285 

sites as the closed needleleaf canopy at the Fortress site based on the similar RMSE values within each site’s tree vegetation 

class. The UAV-lidar RMSE for Shrub and Tree vegetation classes at Fortress and Prairie sites are within 0.04 m. For UAV-

SfM the errors differ widely for various vegetation covers. The Open vegetation has a large RMSE range between sites (0.1 m 

in Prairie and 0.3 m in Fortress respectively) while vegetation class RMSEs range from 0.13 m to 0.33 m.  

The UAV-SfM reports slightly better metrics than UAV-lidar in the prairie Shrub case, the difference between these techniques 290 

is only 0.04 m which is within the ± 0.025 m observational uncertainty of the GNSS survey equipment used in this project. 

The influence of vegetation type is apparent in the UAV-SFM Tree class where the dense needleleaf forest at Fortress has a 

higher RMSE (0.33 m) than the leaf-off deciduous trees in the prairies (0.2 m). Overall UAV-lidar tends to consistently have 

lower RMSE’s than UAV-SfM which provides confidence in this technique for mapping snow depth sub-canopy.  

Snow depth is estimated from differencing the snow and ground DEMs. Therefore, the uncertainty of the snow depth is a 295 

propagation of the error of both the snow and ground DEMs. To distinguish which DEM may contribute more to the snow 

depth error, the remotely sensed surface elevations were compared to the surface elevations from manual GNSS surveys using 

boxplots (Figure 6). The boxplots in Figure 6 illustrate that the UAV-SfM snow surface elevations have errors consistently 

greater than the corresponding UAV-lidar surfaces at Fortress. In the Prairie snow-surface case, the median RMSE is 

consistently lower for UAV-SfM than UAV-lidar, but the UAV-SfM does have more variability in its errors. The ground 300 

surface was only available from UAV-lidar for this study so no corresponding UAV-SfM ground surface analysis is available. 

The snow-free UAV-lidar survey has a consistently higher or more variable RMSE than the snow surfaces (with the exception 

of the Open Prairie and Open and Tree Fortress UAV-SfM). 

 

 305 
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Figure 6: Boxplots of RMSE of UAV estimated and RTK survey surface elevations segmented by surface condition, technique, site, 

and vegetation classification. The error metrics approach the ± 2.5 cm uncertainty of the RTK survey data (black line). Median is 

indicated by the line within the box, the upper bound is the 75th percentile and the lower bound is the 25th percentile and whiskers 310 
represent the range of values beyond the box. 

3.2 Point cloud coverage 

The quality of a remotely sensed snow depth estimate is directly tied to how much interpolation is required to fill gaps in a 

point cloud. The point clouds were classified into areas where >1 pt 0.25 m-2 existed for each technique. Examples of this 

approach are visualized for the Fortress, Rosthern and Clavet sites on Feb 14, March 18 and March 20, 2019 survey dates in 315 

Figures 7-9 respectively. At the Fortress site (Figure 7b) the large areas of lidar only points (blue) correspond to areas of forest 
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cover as the UAV-SfM technique could not reliably return surface points with a density > 1 pt 0.25 m-2 whilst the UAV-lidar 

could. At Fortress, UAV-lidar had > 1 pt 0.25 m-2 for 93% of the area of interest versus 54% for UAV-SfM. Considering the 

black polygons in the Figure 7a transect, the lack of sub-canopy points identified within the Tree vegetation class results in an 

interpolated snow surface that is erroneously deep under trees, completely missing the detection of the reduced snow depths 320 

which are clearly detected (green line) around the base of the trees by the UAV-lidar. The noisy UAV-SFM points in the 

middle of the slope (orange polygon) come from vegetation adjacent to the transect. These vegetation points occupied a larger 

space than the UAV-lidar and intruded on the transect line. Therefore vegetation removal from this point in the transect led to 

a gap in the UAV-SfM point cloud, but not the UAV lidar point cloud. Interpolating through the gap in the UAV-SfM point 

cloud at this point led to an underestimation of the snow surface. An additional challenge for UAV-SfM is open areas with 325 

low surface contrast and surface homogeneity which resulted in large areas without point coverage on the northwest portion 

of the Fortress study area.  
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Figure 7: Fortress Ridge (February 14, 2019) study site with an example a) cross section with all points and interpolated vegetation-

free surface (lines) for SfM-snow (red), lidar-snow (green) and lidar-ground (blue) surveys. The study area is classified by areas with 330 
greater than 1 pt per 0.25 m-2 in b) with respect to point clouds obtained from UAV-lidar and UAV-SfM techniques. In a) black 

polygons highlight areas of tree wells while the orange polygon highlights an area of UAV-SfM noise on a slope. The red inset polygon 

in b) identifies the area of the orthomosaics displayed in c) with the same overlain transparent point type classification colour scheme 

as shown in b). Red line in c) corresponds to the cross section plotted in a). 
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The predominantly open nature of the Prairie sites demonstrates a minimal difference in point coverage between the UAV-335 

lidar and UAV-SfM techniques. The average extent of the study domain covered with a point density of > 1 pt 0.25 m-2 for 5 

coincident flights at Prairie sites was computed, resulting in the mean coverage of 92% versus 83% of the study area for the 

UAV-lidar and UAV-SfM respectively. As seen in Figure 8 at the Rosthern site, the areas without UAV-lidar points include 

some wetland shrubs (green areas in Figure 8 b and c), but predominantly are randomly distributed points. In contrast, UAV-

SfM is missing points from areas where the snow surface is very uniform, in vegetated rings around wetlands, and in areas of 340 

dense vegetation (blue areas in Figure 8 b and c). These gaps in the UAV-SfM point clouds are interpolated and therefore will 

represent areas of greater uncertainty. There was ponded meltwater on the surface of the frozen ground and frozen wetland 

water surface at the Clavet Site on March 20, 2019, which is responsible for the many areas missing lidar points (green areas) 

in Figure 9b. Water is a specular reflector therefore unless the lidar has a nadir perspective water areas will appear as a gap in 

the point cloud. Fortunately, since water surfaces are flat, minimal interpolation artefacts remain when generating DEMs from 345 

the point clouds if the pond edges are sufficiently captured. The challenge in the prairies, as seen in black polygons in Figure 

8a and 9a, is in areas of thick but short vegetation (Shrub class) where both lidar pulses and SfM solutions interpret the 

vegetation surface as the top of the bare-ground or snow surface and therefore little difference exists between DEMs during 

all measurement periods. An additional challenge of using the UAV-SfM technique is that large gaps in points appear beneath 

the tall wetland edge vegetation leading to points, as visualised in orange polygons in Figure 8a and 9a cross-sections, where 350 

the estimated UAV-SfM snow surface is below the UAV-lidar ground surface. 
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Figure 8: Rosthern (March 18, 2019) study site with an example a) cross section with all points and interpolated vegetation-free 355 
surface (lines) for SfM-snow (red), lidar-snow (green) and lidar-ground (blue) surveys. The study area is classified by areas with 

greater than 1 pt per 0.25 m-2 in b) with respect to point clouds obtained from UAV-lidar and UAV-SfM techniques. In a) the black 

polygon highlights areas of dense shrubs while the orange polygon highlights interpolation artefacts of the UAV-SfM. The red inset 

polygon in b) identifies the area of the orthomosaics displayed in c) the same overlain transparent point type classification colour 

scheme as shown in b). Red line in c) corresponds to the cross section plotted in a). 360 
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Figure 9: Clavet (March 20, 2019) study site with an example a) cross section with all points and interpolated vegetation-free surface 

(lines) for SfM-snow (red), lidar-snow (green) and lidar-ground (blue) surveys. The study area is classified by areas with greater 

than 1 pt per 0.25 m-2 in b) with respect to point clouds obtained from UAV-lidar and UAV-SfM techniques. In a) the black polygon 

highlights areas of dense shrubs while the orange polygon highlights interpolation artefacts of the UAV-SfM. The red inset polygon 365 
in b) identifies the area of the orthomosaics displayed in c) with the same overlain transparent point type classification colour scheme 

as shown in b). Red line in c) corresponds to the cross section plotted in a). 



20 

 

 

4 Discussion 

4.1 UAV-lidar is more accurate and consistent than UAV-SfM 370 

Snow depth mapping with UAVs has had widespread application in recent years (Bühler et al., 2016; Harder et al., 2016; 

Vander Jagt et al., 2015; De Michele et al., 2016). The emphasis has been on using SfM techniques to difference DEMs. One 

of the objectives of this work was to consider the snow depth accuracies possible with the current state of the art of UAV-SfM 

versus UAV-lidar platforms. What has been demonstrated here is that while there are still errors in UAV-lidar (as with any 

measurement), they are smaller and more consistent relative to UAV-SfM. An unavoidable problem for all SfM 375 

implementations, which is reflected in this work, is that SfM can only sense the surface -- whether that it is the ground/snow 

surface or the top of a vegetation canopy (Westoby et al., 2012). This makes it fundamentally inappropriate for sub-canopy 

mapping of snow. Sub-canopy snow depth mapping with UAV-SfM therefore becomes an exercise in interpolating snow depth 

values observed in open areas without vegetation to areas with dense vegetation, rather than sensing the actual snow depth 

under the canopy. Open areas will have greater snow depths than forest areas (Troendle 1983; Swanson et al., 1986; Pomeroy 380 

et al., 2001; Mazzotti et al., 2019;) meaning UAV-SfM solutions, or any approach which requires interpolation of point cloud 

gaps beneath trees, will overestimate snow (Zheng et al., 2016). The ability of UAV-lidar to map snow-depths, with and 

without canopy cover, and capture tree wells with RMSE’s ≤0.17 m is an improvement on previous attempts. This RMSE is 

comparable to previous efforts with UAV-SfM (Bühler et al., 2016; De Michele et al., 2016; Harder et al., 2016), airborne-

SfM (Bühler et al., 2015; Nolan et al., 2015, Meyer and Skiles 2019) and airborne-lidar (Deems et al., 2013; Painter et al., 385 

2016) that have been primarily focussed on mapping the snow depth of open snow surfaces. Applications of airborne-lidar to 

forested areas report similar errors (Zheng et al., 2016; Currier et al., 2019; Mazzotti et al., 2019) but the higher flight altitude 

of airborne platforms and their near nadir perspective limit point densities near tree centres that are necessary to capture tree 

wells. 

4.2 Bare surface point cloud coverage is critical 390 

The increased continuous point coverage of UAV-lidar is the main advantage over UAV-SfM when trying to map sub-canopy 

snow depth. While snow depth accuracy at times can be similar between techniques, the ability of UAV-lidar to sense a surface 

below vegetation is critical to develop a coherent snow surface DEM. The point cloud cross-section illustrated in Figure 7 

emphasizes these findings, highlighting the wider gaps in the UAV-SfM point cloud beneath individual trees that require 

interpolation over longer distances resulting in greater potential for error. Features such as tree wells, where the snow depth 395 

decreases with proximity to a tree due to interception/sublimation losses and radiative melting (Pomeroy and Gray, 1995; 

Musselman and Pomeroy, 2017), will be missed. An interesting dynamic of the RMSE errors is that while lidar is comparable 

across all the sites and vegetation categories, the UAV-SfM RMSE values are much greater in the mountain domain. This is 
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attributed to interpolation artifacts. In the Prairies where topography is fairly flat, interpolation of the few gaps can give a 

reasonable approximation of the actual surfaces. In contrast, mountainous regions have much more complex topography and 400 

the interpolation of large gaps misses much of the small scale topography and snow-vegetation interaction features. 

Interpolation works better between two points that are on the same plane (prairies) rather than on a complex non-linear slope 

(mountains) and where gaps in the point cloud are smaller. 

4.3 Lidar snow depth maps and quantifying snow-vegetation interactions 

The ability of UAV-lidar to map sub-canopy snow depth is established by the consistent error metrics reported as well as the 405 

continuous bare surface point cloud coverage. The dynamics of snow depth at snow-vegetation process-resolving scales can 

therefore be examined. Two examples are presented here to exemplify analyses the possible with UAV-lidar. 

4.3.1 Fortress snow depth change  

The differences between open and forest snow cover processes can be explored by examining the difference in snow depth 

between UAV-lidar scans that took place February 13 and April 25, 2019 at Fortress. Over this interval there was intermittent 410 

precipitation totaling approximately 100 mm measured at storage gauges within the study area. UAV-lidar measured change 

in snow depth visualizes how snow-vegetation interactions translated this snowfall into a snow depth distribution change over 

a two month interval (Figure 10). In the Figure 10c cross-section there was accumulation of up to 2 m over the September-

April time period on lee slopes, whilst the upper windswept portions of the ridge demonstrate snow erosion between February 

and-April. The dynamics and extents of blowing snow sources (grey/red) and sinks (blue) are clearly visualized in Figure 10a, 415 

which closely match the findings of Schirmer and Pomeroy (2019) using SfM for the same study region. In the forest the UAV-

lidar observes the increasing snow drifts in the tree line (in the krummholz and tree islands – blue areas on top of facing slope 

in Figure 10a). Within the forested (Figure 10b) transect, there is a general decline in snow depth from February to April due 

to melt on a south facing slope (on left of figure), and development of a tree wells in the middle of the transect (orange 

polygons). The Figure 10b transect demonstrates the lack of wind redistribution in the forest; snow accumulation was 420 

consistently observed to be ≤ precipitation over the transect snow accumulation was consistently observed to be less than 

precipitation over the transect due to interception losses, versus the Figure 10c transect on the ridgeline which demonstrates 

significant wind redistribution, snow accumulation on the lee slope greatly exceeded the observed precipitation.  



22 

 

 

 425 

Figure 10: a) UAV-lidar derived snow depth difference between Feb 13 and Apr 25, 2019. Green and yellow lines in a) correspond 

to the forest and ridge line transect locations for cross-sections in b) and c) respectively. Cross-section figures plot the 0.5m wide 

point cloud cross section from the September 19, 2018 snow-free scan (black points) to show the point cloud and the processed 

surfaces of the bare ground from September 19, 2018 (red), and snow surface from February 14, 2019 (green) and April 25, 2019 

(blue) UAV-lidar scans. Orange polygons in b) highlight locations of tree wells. 430 
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4.3.2 Prairie peak snow peak depth and ablation patterns 

In the prairies, wind redistribution is the main driver of snow depth spatial variability. Areas of tall vegetation accumulate 

wind-blown snow from open upwind sources and are typically associated with the deepest snowpacks. In the winter of 2019, 

the chronology of snow, temperature, and wind events defined the final snow depth distribution (Figure 11a). The UAV-lidar 

flown on March 13 captures all of these interactions. Deep snow drifts are found in the roadside ditches (linear features of 435 

1.5m snow depth on the north and north west corners Figure 11a), in the edges of wetland vegetation (>1m snow depths on 

edges of wetlands identified by red polygons in Figure 11a), and the development of a sastrugi dune complex in open areas 

(parabolic dune shapes and small scale snow depth variability in middle of Figure 11a). Areas that the UAV-lidar was able to 

measure correspond to areas where snow depth are the deepest and have important snow-vegetation interactions. In contrast 

UAV-SfM struggles with sensing snow depth on the edges of wetlands as seen by the concentration of lidar only (blue) areas 440 

on the wetland edge in the Rosthern study area (wetland area highlighted by red polygon in Figure 8b). In the prairies, mapping 

of the areas with deep snow is critical as the deepest snow areas are the ones that dominate runoff generation and runoff 

contributing area, are critical for ephemeral wetland ecology, and have the longest snowcover duration with the related runoff 

timing implications (Fang and Pomeroy, 2009; Pomeroy et al., 2014). 
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Figure 11: Peak snow depth at the Rosthern site from UAV-lidar scan on March 13, 2019 a) and snow melt depth difference from 

UAV-lidar scans on March 18 and March 22, 2019 b). Snow depth change c) over a transect (blue line in b) are plotted with a hex 

plot (to show variability) and smoothed line (to show mean change). Red polygons in a) highlight wetland areas. 

Prairie snowpacks are shallow, leading Harder et al. (2016) to conclude that UAV-SfM was unable to capture snow ablation 450 

patterns as the signal to noise ratio in the open domain was too large and vegetated area errors were not considered. With the 
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demonstrated ability of UAV-lidar to consistently map shallow snow in open areas and deep snows in the vegetated areas this 

can be reattempted. Consider the difference in snow depth between March 18 and 23 (Figure 11b) which represents the earliest 

part of the active melt period in this particular snowmelt season. Two examples of the spatial variability of process interactions 

can now be visualized at the appropriate resolutions. First, the spatial variability of albedo is a major driver of snowmelt. The 455 

greatest melt occurs alongside the gravel-covered “grid” roads in the ditches where road dust significantly lowers the albedo 

thereby accelerating melt of the deep snowpacks. Moving eastward from the road ditches into the open fields there is a decrease 

in snowmelt depth in the overall scene, visualized in the Figure 11c transect. This pattern is likely due to the redistribution of 

dust from the grid roads to the open field snow surface by the prevailing westerly winds. A snow surface dust concentration 

gradient develops over the winter with higher concentrations of dust, and therefore lower albedo (Woo and Dubreuil, 1985), 460 

in the west than the east. This increase in albedo, and therefore decrease in solar radiation available to melt snow, corresponds 

to a decrease in snowmelt rate (Figure 11c), moving easterly away from the grid road. Second, the spatial variability of 

snowpack cold content influences melt rates in the early part of the melt season. Within the agricultural field, the sastrugi drifts 

are not melting – due to the larger cold content of the deep cold snowdrifts relative to the smaller cold content of the shallower 

surrounding snowpacks. This is also prevalent in the non-melting deep snowdrifts at the vegetated wetland edges. With UAV-465 

lidar, a complete picture of the early and asynchronous snowmelt processes is possible. If reliant on UAV-SfM the interpolation 

needed to fill gaps in the point cloud, near vegetation and tops of the sastrugi, will obscure the full spatial pattern of snow 

depth change that conveys the heterogeneity of ablation processes. The high spatial resolution and vertical accuracy of UAV-

lidar is required to capture these spatial patterns as the length scales of the snow surfaces features of interest are small, i.e. 

sastrugi drifts are on metre scales, and their changes at daily timesteps are at the centimetre scale. 470 

The processes visualized in the Fortress and Rosthern examples are not new, but the value of UAV-lidar is that spatial patterns 

and changes can be observed across complex landscapes and vegetation gradients with a consistent resolution and accuracy. 

UAV-lidar will therefore be a powerful tool to understand the landscape scale snow-vegetation interactions as well as make a 

core contribution to the validation and improvement of distributed snow process modelling.  

4.4 Are the costs and logistics of UAV-lidar worth it? 475 

UAV-lidar, relative to UAV-SfM, provides the ability to measure snow depth below vegetation canopies but it does come at a 

higher cost and logistical complexity. There are many similarities between approaches and one commonality is that both UAV-

lidar and UAV-SfM require access to a GNSS solution to geolocate point clouds in absolute space. The Leica GS16 package 

used here is on the expensive side of the spectrum ($70,000 CAD) and cheaper equipment, subscription to virtual reference 

station networks if available in the study area (requires only a rover and not a base station), or equipment rentals are all viable 480 

alternatives to lower costs. The main cost difference between UAV-lidar and UAV-SfM platforms is therefore in terms of the 

UAV sensor payload. A plethora of UAV-SfM options with and without RTK or PPK photo geotagging are available and can 

range from small inexpensive systems like a consumer grade UAVs (DJI Phantom 3 < $2,000 CAD) to more expensive options 

like the Sensefly EbeeX PPK system ($30,000 CAD) used here. Current integrated lidar systems suited to UAV snow mapping 
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(laser wavelengths < 1000 nm, small size, weight, and power requirements, and absolute errors < 5 cm) remain an order of 485 

magnitude more expensive than UAV-SfM. The cost of the complete UAV-lidar system (lidar, IMU, software suite, and UAV) 

used here approached $300,000 CAD. New and cheaper UAV-lidar sensor options are coming to market all the time, largely 

driven by the sensing advances coming from development of autonomous vehicles, but these need testing and still require high 

grade IMU/GNSS solutions to allow for absolute geolocation of point clouds. An underappreciated aspect of UAV-lidar is that 

the IMU/GNSS solutions can often be more expensive than lidar sensor itself. The additional cost of UAV-lidar to increase 490 

sub-canopy snow depth accuracy in dense forest situations in this application can be simplified to $15,000 CAD per cm 

reduction in RMSE (difference in equipment costs/difference in Fortress Tree RMSE). Logistical differences between UAV-

lidar and UAV-SfM are more subtle than the stark cost difference. UAV-SfM simply requires a UAV platform and camera in 

its basic configuration and therefore high endurance, small platforms, with small batteries can be easily deployed to map large 

areas. In contrast, most current UAV-lidar configurations need larger platforms that require more cycles of large battery sets 495 

to cover similar areas which represents a logistical challenge in keeping batteries warm and charged in cold and remote areas. 

Previous UAV-SfM experience (Harder et al., 2017) demonstrated the need to utilise GCPs even with PPK/RTK photo 

geotagging to minimise the bias error metric. The low bias of UAV-lidar errors, without assimilating GCPs, removes the need 

to deploy GCPs for UAV-lidar applications which can be a large time sink. Data processing software suites and workflows are 

distinct but ultimately the same level of geomatics expertise is needed to generate useable information. Despite the lower initial 500 

purchase costs and longer flight endurance the errors and artefacts that UAV-SfM techniques introduce in the sub-canopy 

snow depth measurements, as detailed in sections 4.3.1 and 4.3.2, suggest that UAV-SfM is not able to directly measure snow 

depth in densely vegetated environments. If accurate sub-canopy snow depth is required UAV-lidar is the superior option and 

therefore worth the added logistics and costs.  

4.5 Ongoing Challenges and Future Research Needs 505 

The ability of UAV-lidar to resolve sub-canopy snow depths is not without challenges. Precise classification of surface points 

from snow and ground scans are needed to resolve the snow depth at the resolutions needed to confidently capture snow-

vegetation interactions. Where there are dense shrubs, the last returns will not necessarily be the snow or ground surface and 

therefore last-return methods common to airborne applications will not be appropriate. Sub-canopy snow depth mapping 

requires careful selection of the appropriate point cloud classification and filtering tools and associated parameters to be able 510 

to reliably detect the sub-canopy bare-surface and achieve desired quality and precision in a final point cloud. To preserve the 

small-scale surface variability point cloud processing will be less efficient as all points need consideration and the focus on 

small-scale features will at times lead to erroneous inclusion of points representing large-scale non-surface objects. The 

algorithm and parameters decisions also have to be adjusted for each flight and site/environment for UAV-SFM due to the 

variable quality and noise of the generated point cloud.  515 

An especially challenging feature in resolving a ground surface is the presence of low and dense vegetation such as shrubs and 

wetland reeds. This is evident in looking in the centre of the wetland zones (red polygons) of Figure 11a where there are 
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negative snow depths calculated. In this case, the lidar pulses cannot penetrate the dense vegetation to the underlying ground 

surface and the classified bare ground points have a positive bias. As snow accumulates, the reeds compress and shrubs bend 

over to the extent that the corresponding snow surface is below the biased bare ground surface. In the examples presented 520 

above, the areas of negative snow are limited to areas where snow depth is relatively shallow in comparison to the deep snow 

in the wetland edges. This challenge might also be apparent in other regions, such as the Arctic tundra, where shrub bending 

and burial by snow has been extensively documented (Pomeroy et al., 2006; Sturm et al., 2005). While shrubs are much sparser 

than wetland reeds their dynamic change in height and potential to bias positively the ground surface extraction will increase 

uncertainty of snow depth estimation in these hydrologically significant snow accumulation areas. More powerful lasers and 525 

higher scan rates may be possible to increase point cloud density and penetration to the ground surface but current sensors with 

these characteristics may exceed the payload capacities of most UAV platforms. Advances in bare surface 

classification/filtering software tools to address the large noise associated with low and dense vegetation is an obvious avenue 

of improvement. This avenue is inherently limited, as even a perfect bare surface extraction algorithm will not identify points 

at the ground surface if pulses cannot penetrate dense vegetation to the ground surface. The time of year chosen for the ground 530 

surface scan, ideally right after snowmelt when vegetation is at its lowest and not growing yet, may minimize errors. 

Unfortunately, this may not be feasible if the critical wetland areas are inundated as is often the case in the Canadian Prairies 

in spring. 

Mapping sub-canopy snow depth is important but the ultimate variable of interest is SWE. The challenge is that at snow-

vegetation interaction scales there may be significant variability from snow pack densification being driven by different 535 

processes across a landscape (Faria et al., 2000). Densification from wind packing is prevalent in open areas versus 

metamorphic densification due to temperature gradients in sheltered sub canopy areas (López-Moreno et al., 2013). Current 

methods of modelling or measuring snow density are not without problems at these small scales. Modelling snow density will 

impose conceptual understandings of these processes (Raleigh and Small, 2017; Wetlaufer et al., 2016) which may be 

inappropriate for the small scale features that need to be represented – these may miss mechanical densification from snow 540 

clumps unloading or dripping from the canopy for example. Observational approaches are also a challenge as typical in situ 

measurements are destructive, limited in extent, and often too limited to develop robust relationships of depth versus density 

at both the small local and large landscape scales needed (Kinar and Pomeroy, 2015a; Pomeroy and Gray, 1995). Opportunities 

may be available to pair UAV-lidar with other UAV-borne sensors such as passive gamma ray or snow acoustics (Kinar and 

Pomeroy, 2015b) to non-destructively develop high spatial and temporal resolution estimates of snow density and ultimately 545 

water equivalent.  

5 Conclusions 

Remote sensing techniques to determine snow-vegetation interactions have consistently been challenged by the presence of 

vegetation. This work directly considers emerging UAV-lidar and UAV-SfM techniques to address this gap in observational 
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capacity. Based upon extensive data collection at a variety of sites and snow conditions with varying snow-vegetation 550 

processes, the ability of UAV-lidar to measure sub-canopy snow depth is demonstrated. UAV-lidar provides snow depth 

estimates with RMSE’s <0.1 m in open areas and <0.17 m in vegetated areas. The UAV-lidar performance consistently 

exceeded the UAV-SfM performance and was better than previously reported results in the airborne-lidar and UAV-SfM 

literature. The ability of UAV-SfM to measure snow depth in open areas is validated with respect to the growing body of 

literature and reconfirms that UAV-SfM is fundamentally inappropriate to sense sub-canopy surfaces. The clear advantage of 555 

UAV-lidar is that, as an active sensor, it provides a high point cloud density that is unaffected by surface homogeneity and 

allows for reliable bare surface detection. With UAV-lidar we can now confidently observe sub-canopy snow depth at 

centimetre scales needed to examine snow-vegetation interactions at research catchment extents (ie <5 km2). UAV-lidar is an 

emerging tool that will contribute to improving basin-scale snow accumulation estimates, validation and parametrisation of 

distributed snow models, and enhancing snow vegetation interaction process understanding over the landscape scale. 560 
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