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Author Response 
 
This document provides a point-by-point response to the reviews followed by a marked-up 

version of the revised manuscript 

Phillip Harder April 29, 2020 5 

 
Response to Reviewer 1: 
 
The Cryosphere 
Manuscript tc-2019-284 10 

Title: Advances in mapping sub-canopy snow depth with unmanned aerial vehicles using 
structure from motion and lidar techniques 
Authors: Phillip Harder, John W. Pomeroy, and Warren D. Helgason 
Paper Summary: 
The authors show a comprehensive comparison between snow depth derived from UAV 15 

structure from motion and UAV lidar. They compare both datasets in forested areas, shrub 
areas, and in open/smoother terrain to manual snow depth measurements that are geolocated 
with GNSS systems. The authors show that UAV lidar can provide information beneath the 
canopy. This allows the user to look at snow depth variability and snow-vegetation processes 
with lidar. The authors clearly show issues with UAV SfM. The authors also nicely show a cost 20 

comparison stating that lidar is more accurate but costs ~15,000 dollars per additional cm of 
accuracy. The paper is well written and it discusses many caveats and issues that remain with 
lidar. The paper is a nice demonstration of the accuracy of UAV lidar, its utility, and remaining 
limitations. 
The authors do not just evaluate the two techniques. The authors show how lidar can capture 25 

fine scale variability, such as tree wells, and detect fine scale processes with prairies. This 
shows originality and significance. I recommend the paper be published pending minor 
revisions. 
 
General/Major Comments: 30 

No major comments. Mostly, nit-picky comments. Enjoyed the paper, particularly Figure 7 and 
Figure 10 and their ability to capture tree wells and their changes throughout time. 
 
Thank you for the detailed review. The edits you suggest will make this a much stronger 
contribution- see my specific responses in red below. 35 

 
Specific Comments: 
Title sounds like a review paper. Perhaps consider something like, UAV lidar improves 
observations of sub-canopy snow depth variability over UAV SfM. 
 40 
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Good point- this is definitely not supposed to be a review paper.  Changed to “Improving sub-
canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure from motion 
techniques “ 
 
Line 7: I would disagree that techniques are lacking. You might say something related to that 45 

they don’t always exist; satellite remote sensing is difficult. Airborne lidar captures this. So does 
TLS. This has been shown. 
 
Agreed- changed to “Vegetation has a tremendous influence on snow processes and snowpack 
dynamics yet remote sensing techniques to resolve the spatial variability of sub-canopy snow 50 

depth are not always available and are difficult from space-based platforms” 
 
Line 26: Traditional remote sensing methods is vague. What’s traditional to you might to be 
traditional to someone else. 
Traditional = satellite in my mind.  Has been changed. “Unfortunately, satellite remote sensing 55 

methods…” 
 
Line 35: I would just say test processes 
Changed 
 60 

Line 38: I don’t think Painter et al. 2016 initialized or validated a model. Andrew Hedricks recent 
WRR paper (Hedrick et al., 2018) would be better suited, which uses ASO data to update 
iSnobal (reinitialize). 
Agreed and have changed reference.  
 65 

Line 66: Leading to variably, I think you mean variability 
Corrected 
 
Line 70: It would be great to reference (Currier et al., 2019) here. Table 1 in their paper reviews 
this and they provide their own evaluation metrics of ALS in a forest and open area. I would also 70 

reference (Mazzotti et al., 2019). They showed a comparison of lidar in Switzerland to snow 
depth transects in forested areas as well. 
Have added these references. 
 
Line 75: TLS was used in the forest in (Currier et al., 2019). Yes, the TLS did not go all the way 75 

into the entire forest but from an evaluation perspective of airbone lidar or SfM there’s little 
difference from being 300 meters in a forest as long as there are consistent trees overhead that 
would inhibit returns from the laser. Also, their paper did not explicitly show that TLS couldn’t be 
used further in the forest, it just gets more complicated. 
We are seeking a tool that can measure snow-depth below forest canopies to further process 80 

understandings at the landscape scale rather than simply evaluating differences in 
observational technique.  TLS will work on forest edges but will always be at a disadvantage 
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further into forests versus mobile airborne platforms due to rapid decrease in point cloud density 
with distance from sensor, analogous to the lambert cosine law, and attenuation of laser 
penetration though canopy not to mention with slope aspect/slope/curvature/viewshed 85 

constraints.  Forest edges, including several 10s of m within the forest canopy from the edge 
have distinctive snow accumulation and ablation energetics (Pomeroy and Gray, 1995; 
Musselman et al., 2015; Musselman and Pomeroy, 2016). TLS success is always site 
context/geometry specific while UAV-lidar will not be. Changed to: 
 “However, TLS has important limitations to furthering landscape scale understanding of snow 90 

processes in forested areas as it is limited by the site specific viewshed and viewing geometry 
(Deems et al., 2013) and occlusion by forest canopies and low vegetation which decreases point 
cloud density away from  forest edges (Currier et al., 2019).  It remains an excellent technique 
for detailed examination of the forest edge snow environment.“ 
 95 

Line 90: Could add that (Zheng et al., 2016) lidar to understand vegetation processes effect on 
snow. They particularly note bias that might occur due to tree wells. (Currier & Lundquist, 2018) 
used lidar to understand the snow-vegetation interactions in multiple climates. (Mazzotti et al., 
2019) also used airborne lidar data to improve the understanding of snow depth related to the 
forest in Colorado and Switzerland. 100 

Have added these references. 
 
Line 190: I would mention here that the code is provided on your github page. Great job with 
providing this. 
Have added a reference to github at start of data processing section. 105 

 
Line 205: Trees typically are taller than 50 cm. Most people consider a tree to be at least 2 m 
tall. Why did you choose 50 cm? This is inconsistent with what the caption shows in Figure 4. 
This was a typo and has been corrected.  Classes for vegetation height bins are open <0.5m, 
shrub 0.5 – 2m, and tree >2m. 110 

 
Line 230: What is estimated and what is observed? I’d say UAV-derived Snow Depth and Snow 
Depth Probe Manual Observations, or something more specific. 
Caption text for Figure 5 has been update to be clearer on what is observed and what is 
estimated. 115 

 
Line 235: Yes, the reported error metrics are inflated when moving into the forest. It’d be 
worthwhile mentioning that the sample size is much less. 
Have added a sentence to express this. 
“The sample size of snow depth probe observations is smaller for vegetation sites than open 120 

sites has implications for error metrics –outliers will have greater weight.” 
 
Some lidar points do great. In the methods the GNSS mentions a ±2.5 cm accuracy, how was 
that determined. Is it possible that this is inflated when in the forest? If not, mention that. Are 
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these errors from how the point cloud was processed and points were classified? Is ±2.5 cm 125 

true for both horizontal and vertical accuracy? 
The accuracy is reported by the Leica GS16 for each point at time of observation.  It is computed 
from signal quality on the controller as the 3D uncertainty between the base and rover.  Only 
points in the forest that were able to resolve the RTK solution were collected – there is no 
decrease in accuracy for the forest/non forest data analyzed. Have added the following to 130 

section 2.2.3 in methods: “.  The 3D uncertainty of the relative position between the base and 
rover was computed in real-time to be < ±2.5cm accounting for errors in signal strength, satellite 
coverage, and instrument precision.  RTK signal quality can degrade in forests but only points 
with fixed RTK solutions were used in this analysis so all survey points are of equal quality 
irrespective of vegetation cover.” 135 

 
Line 238: I’d start a new paragraph when introducing the error metrics with SfM. 
Separated 
 
Line 245: The authors should be using Digital Terrain Models instead of Digital Surface Models 140 

throughout. 
I agree that DSM may not be appropriate here as its definition implies that it is the top of the 
surface whether that be the soil surface in open areas or the top of the canopy in forested areas.  
A DEM is closer to our meaning in that it is a bare-surface raster grid, with trees and vegetation 
excluded, referenced to a vertical datum.  A DTM on the other hand has various definitions, 145 

some of which are incompatible with what we are describing in this paper: 
1) DEM can be synonymous with DTM in some countries https://gisgeography.com/dem-

dsm-dtm-differences/ 
2) In the US and other countries, a DTM is not a DEM, but is a vector data set composed 

of regularly spaced points and natural features such as ridges and breaklines. A DTM 150 

augments a DEM by including linear features of the bare-earth terrain. 
https://gisgeography.com/dem-dsm-dtm-differences/ 

3) DTM: bare-earth representation with irregular spaces between points (non-raster). 
Behrendt, R. Introduction to LiDAR and forestry, part 1: a powerful new 3D tool for 
resource managers. The Forestry Source, p. 14-15, set. 2012. 155 

 
DTM is an acronym with various definitions that may complicate its application here as we are 
considering both bare ground and snow surfaces beneath a forest canopy.  We feel that it is 
more appropriate to call these “snow DEM” and “ground DEM” as I am filtering out vegetation 
points and focusing on the extracted “bare surface” points. Deems et al. 2013 uses DEM to 160 

describe snow and bare ground surfaces. 
 
Figure 6: Cool analysis. I would consider adding a black dashed line for 2.5 cm. This plot 
supports the results of Currier et al. 2019, that the airborne lidar is more likely to penetrate the 
shrubs than the TLS observations. What’s the scientific name for the shrubs found at these 165 

locations? 

https://gisgeography.com/dem-dsm-dtm-differences/
https://gisgeography.com/dem-dsm-dtm-differences/
https://gisgeography.com/dem-dsm-dtm-differences/
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Horizontal black line added at 2.5 cm as a reference in Figure 6.  There are many shrub or 
similar low vegetation species at these locations.  The Prairie sites have a lot of tall prairie 
grasses and reeds in the wetland areas along with willow and dogwood shrubs and poplar trees. 170 

In the cropland around it will be crop residues/standing stubble of wheat or barley.  In the 
Fortress mountain site, shrubs are primarily willow but there are others too. The site descriptions 
have been updated to reflect these vegetation details. 
 
Figures: I would change the easting northing to the total number of meters within the domain, 175 

or start at 0 and show ticks from 0 m. I don’t know the projection information, and if I did the 
numbers aren’t that meaningful. If the location is important, please provide the UTM zone. But 
still it’s a bit annoying to do the subtraction each time to get a sense of scale. I would just make 
it easier for the readers, if possible. Otherwise the figures are great. 
 180 

Have changed all the figures to have 0,0 UTM origins consistent to each scene. 
 
 
Line 317: This seems like an appropriate time to re-mention UAV lidars ability to capture tree 
wells. 185 

Have re-mentioned this here. 
 
Line 321: Confusing sentence. Deems reported errors in the forest larger than 14 cm? Why is 
14 cm mentioned. Figure 5 reports RMSE of 0.15 and 0.16. Also, in the previous sentence. 
Studies have masked out the forest? Studies have looked at airborne lidar accuracy in the forest. 190 

These results report error metrics for forest situation that are comparable to airborne lidar for 
open areas.  Some lidar snow depth errors in the forest are comparable to  metrics reported 
here but it’s always hard to have apples- to apples comparisons as “forest” is not a uniform 
landscape class in terms of structure/density and species with respect to how lidar interacts with 
it.  The advantage of UAV-lidar is that we can get a much broader range in scan angle so we 195 

can improve probability of reaching surface points below the tree crown from “oblique” angles. 
Have changed text to be: 
 
“This RMSE is comparable to previous efforts with UAV or airborne-SfM and airborne-lidar that 
have been focussed on mapping the snow depth of open snow surfaces. Applications of 200 

airborne-lidar to forested areas report similar errors (Currier et al., 2019; Mazzotti et al., 2019) 
but the higher flight altitude of airborne platforms and their near nadir perspective limit point 
densities near tree centres that are necessary to capture tree wells.” 
 
Line 355: Really cool figure and analysis 205 

Thanks! 
 
Line 375: Green polygons look cyan when zoomed out, might choose a different color. 
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Furthermore, the near infrared data seemingly comes out of nowhere – maybe provide some 
more context within the section for it and why it needs to be mentioned. Provide a citation for 210 

NIR serving as a proxy for albedo. 
 
I have removed the NIR figure and discussion of its data as it is beyond the scope of the paper 
and needlessly complicates the story. 
 215 

Line 435: “The accuracy and resolution demands mean that bare surface classification 
techniques suitable for airborne platforms that efficiently resolve topography and hydrography 
at watershed scales from last returns will be unsuitable for resolving the snow depth around a 
particular shrub from a dense point cloud for example” The paper did not show that using the 
last returns was unsuitable. The classification technique 220 

used something similar to last returns. Previous studies have showed using the last returns 
resulted in a generally unbiased snow depth estimate, and provided a reasonable approximation 
of the variability. I am not sure what this sentence is attempting to say. 
 
A long winded way to say that where there are dense shrubs the last returns will not necessarily 225 

be the snow or ground surface and therefore last-return methods will not be appropriate.  This 
is clarified as “Where there are dense shrubs, the last returns will not necessarily be the snow 
or ground surface and therefore last-return methods common to airborne applications will not 
be appropriate” 
 230 

Line 465: A discussion referencing the difficulties with modeling in Mark Raleigh’s paper seems 
appropriate and a better citation then Tom Painters 2016 paper. Furthermore, when mentioning 
snow pack density variability, mentioning Karl Wetlaufer’s paper seems appropriate (Raleigh & 
Small, 2017; Wetlaufer et al., 2016). 
 235 

These are much more appropriate references- thanks. 
 
Line 479: “The UAV-lidar metrics consistently exceed the UAV-SfM metrics and are better than 
previously reported results in the airborne-lidar and UAV-SfM literature.” 
This isn’t true. Metrics are similar but not better than. Please note line 69. 240 

Have rewritten this sentence. To be “The UAV-lidar performance consistently exceeded the 
UAV-SfM performance and was better than previously reported results in the airborne-lidar and 
UAV-SfM literature” 
 
References Currier, W. R., & Lundquist, J. D. (2018). Snow Depth Variability at the Forest Edge 245 

in Multiple Climates in the Western United States. Water Resources Research, 54, 1–18. 
https://doi.org/10.1029/2018WR022553 
Currier, W. R., Pflug, J., Mazzotti, G., Jonas, T., Deems, J. S., Bormann, K. J., et al. (2019). 
Comparing aerial lidar observations with terrestrial lidar and snow-probe transects from NASA’s 
2017 SnowEx campaign. Water Resources Research, 1–10. 250 
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https://doi.org/10.1029/2018wr024533 
Hedrick, A. R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky, M., et al. (2018). 
Direct Insertion of NASA Airborne Snow Observatory-Derived Snow Depth Time Series Into the 
iSnobal Energy Balance Snow Model. Water Resources Research, 54, 8045–8063. 
https://doi.org/10.1029/2018WR023400 Mazzotti, G., Currier, W. R., Deems, J. S., Pflug, J. M., 255 

Lundquist, J. D., & Jonas, T. (2019). Revisiting Snow Cover Variability and Canopy Structure 
Within Forest Stands: Insights From Airborne Lidar Data. Water Resources Research, 55(7), 
6198–6216. https://doi.org/10.1029/2019wr024898  
Raleigh, M. S., & Small, E. E. (2017). Snowpack density modeling is the primary source of 
uncertainty when mapping basin-wide SWE with lidar. Geophysical Research Letters, 260 

44(8), 3700–3709. https://doi.org/10.1002/2016GL071999 
Wetlaufer, K., Hendrikx, J., & Marshall, L. (2016). Spatial heterogeneity of snow density and its 
influence on snow water equivalence estimates in a large mountainous basin. Hydrology, 3(1). 
https://doi.org/10.3390/hydrology3010003 
Zheng, Z., Kirchner, P. B., & Bales, R. C. (2016). Topographic and vegetation effects on snow 265 

accumulation in the southern Sierra Nevada: A statistical summary from lidar data. Cryosphere, 
10(1), 257–269. https://doi.org/10.5194/tc-10-257-2016 
 
 
 270 

Response to Reviewer 2: 
Paper Summary: 
The authors compare two relatively new methodologies for using UAVs for mapping snow 
depths in forested and open prairie environments with in situ ground validation GNSS surveys. 
They present a very thorough analysis involving an impressive collection of data from 19 unique 275 

survey dates from two distinct environments over the course of a single winter season. The time 
and effort taken to plan, collect, and process such a comprehensive dataset cannot be 
overstated! The results of the comparison on the ability of both the UAV-lidar and UAV-SfM to 
estimate snow depths are not necessarily new, but to my knowledge, they have not been 
compared as extensively with both the successes and failures of both methodologies clearly 280 

presented. In open environments, the UAV-lidar and UAV-SfM snow depth mapping capabilities 
are similar, but in vegetated areas, the UAV-lidar methods excel by having the ability to 
penetrate through vegetation and measure sub-canopy snow depth. However, in densely 
vegetated, tight canopy environments, even the UAV-lidar mapping method cannot penetrate 
the canopy and therefore cannot produce reliable snow depth estimates. An added benefit of 285 

using the UAV-lidar over UAV-SfM for snow depth mapping is the insensitivity of the lidar to 
homogeneous surface conditions and variable/poor solar illumination, both of which contribute 
to substantial errors in UAV-SfM mapping. In-addition, the increased vertical accuracy of the 
UAV-lidar sensors can be used to better detect patterns in snow distribution and depth 
previously not obtainable over basin-wide study sites in complex landscapes. The authors do a 290 

nice job at presenting their findings in a well-written manner using suitable figures. As an added 
bonus, the authors also discuss the cost difference between the UAV measuring methodologies, 

https://doi.org/10.1029/2018WR023400
https://doi.org/10.1029/2019wr024898
https://doi.org/10.5194/tc-10-257-2016
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and calculate a metric that assigns a dollar value to each centimeter of improved RMSE between 
methods. This cost analysis is of interest, but probably has less relevance for the future, as the 
price for the type of equipment used in this study continues to decrease dramatically year-by-295 

year. I recommend the publication of this paper pending minor revisions addressing the 
suggested comments and technical edits. 
A PDF supplement has also been uploaded that contains all the suggested edits/comments. In 
the technical edits section, this PDF supplement has all changes highlighted in BOLD. 
An example of the suggested changes to Figure 7a has also been uploaded as Figure 1 – Slide 300 

1.JPG. This example figure provides a visualization of the changes being suggested for Figures 
7a, 8a, 9a (applies to General Comment at Line 270/295/300). 
 
First, thank you for this detailed review and you will find our responses in red below the 
corresponding comment. 305 

 
General Comments: 
Line 59 – ‘differencing snow-covered (hereafter snow) and snow-free (hereafter ground)…’ 
Double check terminology throughout paper for consistency. The following different term are 
used: bare-ground, bare ground, ground, surface, bare surface. Personally – I like the use of 310 

the term bare-ground. 
 
We refer to ‘surfaces’ which can be either snow or snow-free.  “Bare’ refers to points left after 
vegetation point removal for either a snow or snow-free surface. ‘Ground’ implies a snow-free 
surface. We have edited the paper to make the terminology more consistent, following these 315 

rules throughout. 
 
Line 59 – ‘Digital Surface Models (DSMs)’ I think you are actually referring to the Digital Terrain 
Models (DTMs). Change this reference throughout the paper. 
 320 

I agree that DSM may not be appropriate here as its definition implies that it is the top of the 
surface whether that be the soil surface in open areas or the top of the canopy in forested areas.  
A DEM is closer to our meaning in that it is a bare-surface raster grid, with trees and vegetation 
excluded, referenced to a vertical datum.  A DTM on the other hand has various definitions, 
some of which are incompatible with what we are describing in this paper: 325 

1) DEM can be synonymous with DTM in some countries https://gisgeography.com/dem-
dsm-dtm-differences/ 

2) In the US and other countries, a DTM is not a DEM, but is a vector data set composed 
of regularly spaced points and natural features such as ridges and breaklines. A DTM 
augments a DEM by including linear features of the bare-earth terrain. 330 

https://gisgeography.com/dem-dsm-dtm-differences/ 
3) DTM: bare-earth representation with irregular spaces between points (non-raster). 

Behrendt, R. Introduction to LiDAR and forestry, part 1: a powerful new 3D tool for 
resource managers. The Forestry Source, p. 14-15, set. 2012. 

https://gisgeography.com/dem-dsm-dtm-differences/
https://gisgeography.com/dem-dsm-dtm-differences/
https://gisgeography.com/dem-dsm-dtm-differences/
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 335 

DTM is an acronym with various definitions that may complicate its application here as we are 
considering both bare ground and snow surfaces beneath a forest canopy.  We feel that it is 
more appropriate to call these “snow DEM” and “ground DEM” as I am filtering out vegetation 
points and focusing on the extracted “bare surface” points. Deems et al. 2013 uses DEM to 
describe snow and bare ground surfaces. 340 

 
 
Line 134 – ‘flight parameters to maximise mapping efficiency were set to…’ What about limiting 
the scan angle? The Riegl lidar can scan 360 degrees, what level of off nadir scan angle did 
you limit the data collection/processing to and why? 345 

The Riegl scanner does scan in a 360o configuration.  While data can be limited to specific scan 
angles at collection it was not limited in our application, as there is no increase in 
performance/accuracy to do so – the mirror is rotating the full 360o.  The scan angle was not 
limit in processing the data either.  The laser is relatively low powered and we have found that 
returns at angles shallower than 70o from nadir are rare. Hence, we did not limit the available 350 

data to perform our analysis – any points available were used to optimize the surface feature 
extraction. 
 
Line 135 – ‘100 m flight altitude above the surface…’ Did the mission planning software make 
use of terrain following mode to ensure consistent flight altitude above ground? If so, what 355 

source of terrain information did you use? 
 
Yes used terrain following with respect to a SRTM DEM. Have added ”The UgCS flight control 
software was used to generate flight paths with these parameters and terrain following with 
respect to an underlying SRTM DEM” 360 

 
Line 148 – I deleted the term differential: differential GNSS corrections (code-based) are 
significantly less, accurate than RTK/PPK/PPP (carrier phase methods) – I suspect even though 
the Leica GS16 unit is DGPS capable, you used the more accurate carrier phase correction 
methods. 365 

 
Correct, we were using the carrier phase methods. ‘differential’ has been removed 
 
Line 150 - suggest removing the term ‘random within the survey areas and’ if the transects were 
also selected to most efficiently survey the greatest variety of vegetation types. 370 

Agreed – we have removed that text. 
 
Line 152 – ‘provided a real-time-kinematic (RTK) survey solution …’ While conducting your 
manual surveys did you make use of the RTK capabilities – or did you post-process the rover 
data as indicated at line 153? 375 
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The difference between the rover and base was established during the surveys with RTK. 
Because the base position was not known in advance to the surveys the RTK observed rover 
positions needed to be adjusted to absolute locations in post processing once the base position 
was established through the PPP step – an offset needed to be calculated and applied to survey 380 

points. In post processing the only adjustment was made to the base position not the relative 
rover-base positioning. This is clarified as: 
” Post-processing with Leica Infinity software (version 2.4.1.2955) established the absolute 
positions of the rover points by maintaining the RTK rover-base position but adjusting the base 
station absolute location to that established by the PPP tool.” 385 

 
Line 152 – ‘accuracy of < ±2.5cm.’ Can you provide a reference for this? 
Not shown here but the uncertainty is computed in real-time as part of the RTK and PPP based 
solutions see below and was consistently less than of < ±2.5cm –not based on a reference. 
 390 

Line 154 – ‘(https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php)’ Add this website to the 
references section 
Have added this to the references. 
 
Line 154 – ‘absolute base station location.’ How long did you collect your raw GNSS data for 395 

and what were the PPP computed standard deviations for the base station locations? Did you 
always use the same base station location for every flight? 
 
Due to the logistics of conducting campaigns at multiple sites, raw GNSS data was only logged 
when we were on site with different tripod setups.  Therefore logging varied in duration between 400 

2.5 and 9 hours.  The PPP computed standard deviations were consistently less than 2cm –
often better. For simplicity the uncertainty of the survey solution was presented to be ± 2.5 cm.  
This value is based propagating a conservative uncertainty of the PPP based solution 2cm and 
the RTK solution off 1.5cm.  sqrt (2^2+1.5^2)=2.5. We have updated section 2.2.3 to reflect this. 
 405 

Line 174 – ‘<2.5 cm.’ Do you mean +/- 2.5 cm as mentioned earlier in the text? Is this value 
based on the specs of the Leica GS16 GNSS survey equipment or was it based on the PPP 
online standard deviations? How did you obtain this value? 
See comment above 
 410 

Line 181 – ‘< ±2.5 cm’ Same comment as above? Is this value based on the specs of the Leica 
GS16 GNSS survey equipment or was it based on the PPP online standard deviations? How 
did you obtain this value? 
See comment above 
 415 

Line 205 – ‘vegetation height (open <0.1 m, shrub <0.5 m, and trees >0.5 m)…’ These values 
differ from what is in the Figure 4 caption. Which vegetation height classes did you use, and 
how did you choose the class heights? 
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The caption for figure 4 and text were slightly incorrect due to relics of an earlier edit.  Vegetation 
height classes were open <0.5 m, 0.5 m ≥ shrub ≤2 m, and trees >2 m.  Vegetation classes 420 

were selected with a simple metric to differentiate vegetation based on the height data at hand.  
There will be variability in shrub heights, but for simplicity we used 0.5m and 2m thresholds as 
they were consistent with field observations at the various sites and thresholds previously 
reported in the snow hydrology literature which ranged from 0.5m to 3m in Marsh et al. (1997) 
and 0.3m to 2m in Rasouli et al. (2019). 425 

 
Marsh, P., Pomeroy, J.W., Pietroniro, A., Neumann, N., Nelson, T., 1997. Mapping Regional 
Snow Distribution in Northern Basins Inuvik Area. Saskatoon, Saskatchewan. 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.6847&rep=rep1&type=pdf 
 430 

Rasouli K., Pomeroy J.W., and Whitfield P.H. (2019) Are the effects of vegetation and soil 
changes as important as climate change impacts on hydrological processes? Hydrology and 
Earth System Sciences: 23, pp. 4933-4954 DOI: 10.5194/hess-23-4933-2019 
 
 435 

Line 223 – I deleted reference to RTK - In line 55 you indicate the rover survey points were post-
processed, therefore I am assuming you used a PPK GNSS solution here? 
 
RTK with a post processing of the base position to account for PPP.  See comments above. 
 440 

Line 230 – ‘points extracted from the point clouds or interpolated surfaces…’ This sentence is 
confusing. It is unclear whether you extracted the UAV snow depth values from the point clouds 
or the interpolated DSMs? Which one was it? 
Caption was in error and is corrected as “Plots are segmented for vegetation class (rows), sites 
(columns) and observation method (colours).” 445 

 
Line 256 – Figure 6 - Please add to the caption a description of which metrics are visualized by 
the whiskers of the boxplots. 
 
Have added: “Median is indicated by the line inside the box, the upper bound is the 75th 450 

percentile and the lower bound is the 25th percentile and whiskers represent the range of values 
beyond the box.” 
 
Line 266 – ‘The noisy UAV-SFM points in the middle of the slope challenge the snow surface 
extraction even without the presence of vegetation leading to an underestimation of the snow 455 

surface.' Do you have any idea on why the SfM product detected something in the open areas 
on the slope? Why does it lead to an underestimation of snow in this area? Based on the Figure 
7a cross-section it looks like the UAV-SfM red points are equal to or above the green lidar points. 
Why did the interpolation go so low? Did the interpolation treat missing points as 0 or bare 
ground values? 460 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.6847&rep=rep1&type=pdf
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Looking closer at the UAV-SfM noise in Figure 7a there was some vegetation mid slope near to 
the transect.  The lidar was able to differentiate it well but the SfM-generated vegetation points 
occupied a larger space and intruded on the transect line.  Therefore when vegetation was 
removed it led to a gap in the UAV-SfM point cloud at this point in the transect, which when 465 

interpolated through led to the underestimation in the snow surface.  When gaps are present 
the interpolations are sensitive to edge points which tend to have poor quality and therefore 
challenge the validity of the resulting surface. 
 
Have added: “These vegetation points occupied a larger space than the UAV-lidar and intruded 470 

on the transect line.  Therefore, vegetation removal from this point in the transect led to a gap 
in the UAV-SfM point cloud, but not the UAV lidar point cloud.  Interpolating through the gap in 
the UAV-SfM point cloud resulted in underestimation of the snow surface.” 
 
Line 270/295/300 – Figure 7-8-9 - Suggest using shaded/transparent colour bars on plot a) to 475 

indicate the extent of the tree features. This will help highlight the tree well extent and how the 
UAV-SfM interpolation result in deeper snow values across these features (I have uploaded an 
example Figure of 7a. that illustrates what I am trying to describe – Slide 1.JPG). Suggest using 
a more obvious colour in Figure b) for highlighting the SfM only classes. Suggest trying to match 
the tone of colours in Figure c) to more closely match that used in Figure b). Making the open 480 

areas a little bluer, and again highlighting the SfM only points in a more obvious colour. Figure 
7b It sort of looks like the SfM only class occur near the edges of the study area in a just a 
couple areas. Is this related to steeper scan angles at the edge of the study site, perhaps 
coupled with steep terrain?  
 485 

Have modified the figures to have polygons outlining areas of interest in the cross sections and 
changed the colour scheme to more clearly show differences in point coverage.  The SfM-only 
points occurred on the edges of the domain as this was nearing the edge of the lidar flight area 
(less overlapping scan areas reduces the point density and therefore reduces number of ground 
points) 490 

 
Figure 9c) I suggest mentioning in the figure caption that the large dark areas of no lidar points 
represent the extent of the melt water ponds. 
The figure caption is rather large already so prefer to leave this discussion in the text. 
 495 

Line 288 – the negative UAV-SfM snow depth estimates discussed here are explained at lines 
443-450. Perhaps also providing further explanation here might be helpful. 
To simplify the results section would suggest that this explanation fits better into the discussion 
section as it is. 
 500 
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Line 316 – In the example of 7a, the interpolation resulted in erroneously deep snow depth 
estimates. This will not always be the case and in some instances can result in underestimations 
depending on the season, elevation, forest type, etc. Many studies have highlighted the 
differences in snow depths/characteristics between open/forested sites that will influence these 505 

interpolation errors. I think providing some further explanation on the type/magnitude of 
interpolation errors that may occur when using UAV-SfM techniques would help strengthen your 
findings/statement here. 
 
Have added: “Open areas will have greater snow depths than forest areas (Troendle 1983; 510 

Swanson et al., 1986;  Pomeroy et al., 2001; Mazzotti et al., 2019;) meaning UAV-SfM solutions, 
or any approach which requires interpolation of point cloud gaps beneath trees, will overestimate 
snow (Zheng et al., 2016).” 
 
Line 318 – ‘major improvement on previous attempts.’ Can you provide some context on what 515 

is considered a major improvement, including references to previous studies/RMSEs? 
 
Have removed “major” as that is an unquantifiable adjective.  Have modified it to be “The ability 

of UAV-lidar to map snow-depths, with and without canopy cover, and capture tree wells with 

RMSE’s ≤0.15 m is an improvement on previous attempts.  This RMSE is comparable to 520 

previous efforts with UAV-SfM (Bühler  et al., 2016; De Michele et al., 2016; Harder et al., 2016), 

airborne-SfM (Bühler  et al., 2015; Nolan et al., 2015, Meyer and Skiles 2019) and airborne-lidar 

(Deems et al., 2013; Painter et al., 2016) that have been primarily focussed on mapping the 

snow depth of open snow surfaces. Applications of airborne-lidar to forested areas report similar 

errors (Zheng et al., 2016; Currier et al., 2019; Mazzotti et al., 2019) but the higher flight altitude 525 

of airborne platforms and their near nadir perspective limit point densities near tree centres that 

are necessary to capture tree wells.“ 

 
Line 318 – ‘previous efforts…’ Can you provide some references? 
Same as comment above. 530 

Line 321 – ‘0.14 m RMSE (Deems et al., 2013).’ Can you provide the actual magnitude of errors 
previously reported for comparison in the Deem et al., 2013? What is the significance of this 
0.14 m RMSE? 
 
Have removed this 0.14 m RMSE per comment from Reviewer 1 535 
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Line 342 – ‘intermittent precipitation totaling approximately 100 mm’ How was this 
determined/measured? What kind of uncertainties are associated with this reported precipitation 
value. I also want to confirm that you mean 10 cm of snow? This seems low for mountain snow. 
There are a number of precipitation gauges (Geonor and Pluvio) within the Fortress mountain 540 

research basin.  I say ‘approximately’ as this was an approximation of the raw storage gauges 
signals as the data QA/QC and undercatch corrections were beyond the scope of this project.  
And yes I do mean that this is approximately 10 cm of snow.  It is low for a mountain situation 
but 2019 was a low snow year in this area and the February to April interval this is reflecting 
was a cold, dry period without any major snowfall events. 545 

Have added; “measured at storage gauges at the study site” 
 
Line 350 – ‘and development of a tree well in the middle of the transect. The Figure 10b transect 
demonstrates the lack of wind redistribution in the canopies relative to the Figure 10c transect 
on the ridgeline.’ It is unclear where the development of the tree well is highlighted/visible in 550 

Figure 10b. It also unclear how Figure 10b demonstrates the lack of wind re-distribution in the 
canopies. Please provide more detail here. 
Have highlighted the tree wells with orange polygons in figure 10b.  Have added the following 

to clarify the comment on demonstrating a lack of wind redistribution in the forest area. “The 

Figure 10b transect demonstrates the lack of wind redistribution in the forest; snow accumulation 555 

was consistently observed to be ≤ precipitation over the transect, versus the Figure 10c transect 

on the ridgeline, where the accumulation in the lee slope greatly exceeded the observed 

precipitation.”  

 
Line 366 – ‘In contrast UAV-SfM struggled with sensing snow depths in the short shrubs on the 560 

edges of wetlands.’ This sentence contradicts the results displayed in Figure 5, which illustrated 
that the UAV-SfM had lower RMSE in the shrub class compared to the UAV-lidar. It also does 
not support the discussion starting at Line 286 and expanded at Lines 443-450, which discusses 
the challenges that BOTH lidar and SfM face in trying to measure below the canopy in dense 
shrub vegetation. 565 

 
This sentence needed to be a bit more nuanced.  This is not a comment on the RMSE 

differences and should not have highlighted the shrubs in particular rather this was based on 

the fact that there is a higher point cloud density for the lidar versus SfM in wetland areas.  This 

is clarified as “In contrast UAV-SfM struggles with sensing snow depth on the edges of wetlands 570 

as seen by the concentration of lidar only areas at the wetland in the Rosthern study area 

(wetland area highlighted by red polygon in Figure 8b). 
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Line 467 – ‘Observational approaches are also a challenge as typical in situ measurements are 
destructive, limited in extent, and often too limited to develop robust relationships of depth 575 

versus density at the small scales needed (Kinar and Pomeroy, 2015a; Pomeroy and Gray, 
1995).’ The methods developed by Proksch et al., 2015 do provide a method for measuring 
snow density at a much smaller scale applicable for these process-scale studies. The Proksch 
et al., 2015 methods have been recently rigorously applied to a set of snow on sea ice 
measurements by King et al., 2020, highlighting the ability to document the local-scale variations 580 

in snow density relatively quickly over larger spatial extents. 
Proksch, M., Löwe, H. and Schneebeli, M., 2015. Density, specific surface area, and correlation 
length of snow measured by high‐resolution penetrometry. Journal of Geophysical Research: 
Earth Surface, 120(2), pp.346-362. 
King, J., Howell, S., Brady, M., Toose, P., Derksen, C., Haas, C., and Beckers, J.: Local-scale 585 

variability of snow density on Arctic sea ice, The Cryosphere Discuss., 
https://doi.org/10.5194/tc-2019-305, in review, 2020. 
 
These methods while very interesting and small scale are still destructive sample methods which 

means that their application to a UAV-based solution to SWE estimation, that captures local and 590 

landscape scale density spatial and temporal variability, will be limited.  The small sample size 

and empirical calibration of the micro-penetrometer method results in uncertainty in its 

application.   

This is communicated through a slight edit as “ Observational approaches are also a challenge 

as typical in situ measurements are destructive, limited in extent, and often too limited to develop 595 

robust relationships of depth versus density at both the small local and large landscape scales 

needed (Kinar and Pomeroy, 2015a; Pomeroy and Gray, 1995). Opportunities may be available 

to pair UAV-lidar with other UAV-borne sensors such as passive gamma ray or snow acoustics 

(Kinar and Pomeroy, 2015b) to non-destructively develop high spatial and temporal resolution 

estimates of snow density and ultimately water equivalent..” 600 

 
Line 474 – ‘necessary spatial scales’ – Please be more specific on what scales you are referring 
to. 
Have removed this sentence as the scales are mentioned later in the conclusion section. 
 605 

Technical Comments: 
Line 13 – suggest changing to ‘measure returns from a wide range of scan angles, increasing 
the likelihood of successfully…’ 
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Changed 
 610 

Line 51 – suggest changing to ‘are valuable automated data sources, but are spatially limited 
in extent and can often suffer from location/elevation bias…’ 
Changed 
 
Line 53 – suggest changing to ‘and so may not be suitable for snow hydrology calculations or 615 

model validations in forested regions even though they are often…’ 
Changed 
 
Line 60 – spelling correction: quality 
Changed 620 

 
Line 62 – suggest changing to ‘pulse can be observed with returns possible from within the 
canopy and from the sub-canopy ground surface. In contrast UAV-SfM…’ 
Changed 
 625 

Line 64 – spelling correction: variability 
Changed 
 
Line 80 – spelling correction: focused 
This is correct Canadian English spelling. 630 

 
Line 87 – punctuation: ‘In dense forests, vegetation…’ 
Changed 
 
Line 90 – suggest changing to ‘increase in snow accumulation over aerodynamically rough 635 

surfaces or in sheltered areas where the wind speeds decrease and snow is deposited – 
this includes forest edges…’ 
Changed 
 
Line 98 – suggest changing to ‘varies across complex vegetated landscapes…’ 640 

Changed 
 
Line 105 – suggest changing to ‘ability of the UAV-lidar and UAV-SfM techniques for 
measuring snow depth in open 
Changed 645 

 
Line 106 - (50.833 N, 115.220 W) 
Changed 
 
Line 108 – spelling correction: focused 650 
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This is correct Canadian English spelling. 
 
Line 109 – suggest changing to ‘(Figure 1a – background center)…’ 
It is already directly identified as the a) panel so will leave as is. 
 655 

Line 111 – suggest changing to ‘alpine ski resort in the 1960’s, but is currently a limited-use…’ 
Changed 
 
Line 114 – suggest changing to ‘Canadian Prairies were examined in this study.’ 
Changed 660 

 
Line 117 – correction: remove negative sign if using ‘W’ to indicate west (51.941 N, 106.379 W) 
& (52.694 N, 106.461 W) 
Changed 
 665 

Line 125 – Figure 1 caption: suggest changing to ‘Figure 1: a) Fortress Mountain Snow 
Observatory in Kananaskis, Alberta Canada, b) Rosthern and c) Clavet prairie study locations 
in Saskatchewan Canada. Data collection was on Fortress Ridge (background center) an area 
of high topographic variability and a mix of dense forests and clearings. The Clavet photo 
highlights the transition zone between the open upland terrain and the lower elevation 670 

vegetated wetland. The Rosthern scene highlights the low vertical relief of upland areas and 
isolated 
woodlands amongst cultivated fields. 
Changed 
 675 

 
Line 155 – suggest changing to ‘GS16 rover points to correct for the PPP updated base station 
locations were completed using the Leica Infinity software…’ 
This section has been reworked and this edit no longer applies 
 680 

Line 158 – ‘suggest changing to ‘To assess the accuracy of the UAV snow depth measuring 
methods, as well as provide insight into the seasonally evolving snow depth/distribution, a 
total of 19 flight/manual surveys were conducted between all three study sites between 
September 2018 to April 2019. These are summarised by date, surveyed surface, UAV data 
collected, and corresponding number of manually surveyed surface elevation points in Table 685 

1. 
Changed 
 
Line 165 – suggest changing to ‘difference between a bare ground DSM and a snow surface 
DSM.’ 690 

Changed but using DEM rather than DSM 
 



18 

 

Line 176 – suggest changing to ‘Finally, overlapping scan data from adjacent flight lines are 
used to optimise the IMU trajectory, to align the scan lines and reduce the noise of the final point 
cloud within the RiPrecision tool. This final step in noise reduction can improve the final 695 

product because the 1.5 cm laser data precision is greater than the post processed IMU 
trajectory accuracy. (I used the 15mm stated precision of the Reigl sensor presented earlier 
in the text to get the 1.5cm value here) 
Changed and absolutely correct on that last sentence to clarify matters. 
 700 

Line 193 – suggest changing to ‘For the bare-ground lidar scans, the height of vegetation…’ 
Changed 
 
Line 207 – spelling correction: include 
Changed 705 

 
Line 214 – suggest changing to ‘2.3.6 Point Cloud Density’ 
Changed to ‘Point Cloud Coverage’ as density has a different meaning.  Here I’m trying to 
quantify how gappy the bare point clouds are. 
 710 

Line 221 – suggest changing to ‘3.1 Accuracy of UAV-lidar versus UAV-SfM snow depth 
estimates 
Changed 
 
Line 231 – suggest changing to ‘Plots are segmented for points extracted from the point clouds 715 

or interpolated surfaces within each vegetation class (rows), sites (columns) and observation 
method (colours).’ – See general comments above about clearing up the confusion concerning 
which product the points were extract from. 
Changed 
 720 

Line 232 – suggest changing to ‘The influence of vegetation on estimating snow depths from 
UAVs can be directly assessed by…’ 
Changed 
 
Line 234 – suggest changing to ‘Open Prairie and open Fortress RMSE values are similar (0.09 725 

m and 0.1 m RMSE respectively)…’ 
Changed 
 
Line 235 – suggest changing to ‘equally successful at penetrating the open leaf-off deciduous 
tree canopy at the prairie sites as the closed needleleaf canopy at the Fortress site based on 730 

the similar RMSE values within each site’s tree vegetation class.’ 
Changed 
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Line 238 – suggest changing to ‘The Open vegetation has a large RMSE range between sites 
(0.1 m in Prairie and 0.3 m in Fortress respectively) while vegetation class RMSEs range 735 

from…’ 
Changed 
 
Line 240 – suggest changing to ‘UAV-lidar in the prairie Shrub case, the difference between 
these techniques is only 0.04 m, which is within the +/- 2.5 cm observational uncertainty of 740 

the GNSS survey equipment used in this project. 
Changed 
 
Line 247 - suggest changing to ‘manual GNSS surveys using boxplots (Figure 6). The 
boxplots in Figure 6 illustrate that the UAV-SfM snow surface elevations…’ 745 

Changed 
 
Line 257 – suggest changing to ‘3.2 Point cloud density’ 
Changed to “Point cloud coverage” per previous comment. 
 750 

Line 263 – suggest changing to ‘could not reliably return surface points with a density > 1 pt 
0.25 m-2whilst…’ 
Changed 
 
Line 263 – punctuation: ‘At Fortress, UAV-lidar…’ 755 

Changed 
 
Line 265 – suggest changing to ‘lack of UAV-SfM sub-canopy points identified within the treed 
vegetation class results in an interpolated snow surface that is erroneously deep under trees, 
completely missing the detection of the reduced snow depths which are clearly detected (green 760 

line) around the base of the trees by the UAV-lidar.’ 
Changed 
 
Line 274 – suggest changing to ‘c) with the same overlain transparent point type classification 
colour scheme as shown in b).’ 765 

Changed 
 
Line 276 – suggest changing to ‘The predominantly open nature of the Prairie sites 
demonstrates a minimal difference in point density between UAV-lidar and UAV SfM 
measurement techniques. The average extent of the study domain covered with a point 770 

density of > 1 pt 0.25 m2 for 5 coincident flights at the Prairie sites was computed, resulting 
in the mean coverage of 92% versus 83% of the study area for the UAV-lidar and UAV-SfM 
respectively. 
Changed 
 775 
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Line 281 – suggest changing to ‘These gaps in the UAV-SfM point clouds are interpolated and 
therefore will represent…’ 
Changed 
 
Line 287 – suggest changing to ‘both lidar pulses and SfM solutions interpret the vegetation 780 

surface as the top of the bare-ground or snow surface and therefore little difference exists 
between these two DSMs during all measurement periods. An additional challenge of using 
the UAV-SfM techniques is that large gaps in points appear beneath the tall wetland edge 
vegetation due to the inability to penetrate the sub-canopy, as visualized in the cross-sections 
of Figure 8a and 9a, where the estimated UAV-SfM snow surface is below the UAV-lidar ground 785 

surface.’ 
Changed 
 
Line 316 – suggest changing to ‘Sub-canopy snow depth mapping with UAV-SfM therefore 
becomes an exercise in interpolating snow depth values observed in open areas without 790 

vegetation to areas with dense vegetation, rather than sensing the actual snow depth under 
the canopy.’ 
Changed 
 
Line 322 – suggest changing to ‘4.2 Bare-ground point cloud density is critical’ 795 

Ground in this case can be either ‘ground’ or snow so ‘surface remains more appropriate. 
 
Line 323 – suggest changing to ‘The increased point density of UAV-lidar…’ 
Not so much density as lack of gaps aka coverage.  Changed to “The increased continuous 
point coverage of UAV-lidar” 800 

 
Line 325 – suggest changing to ‘The point cloud cross-sections illustrated in Figure 7 
emphasize these findings, highlighting the wider gaps in the UAV-SfM point cloud beneath 
individual trees that require interpolation over longer distances resulting in greater potential 
for error.’ (The lidar data also requires interpolation) 805 

Changed 
 
Line 332 – suggest changing to ‘In contrast, mountainous regions have much more complex 
topography…’ 
Changed 810 

 
Line 337 – suggest changing to ‘continuous bare-ground point cloud coverage.’ 
Ground in this case can be either ‘ground’ or snow so ‘surface remains more appropriate. 
 
Line 338 – suggest difference word choice for: foreshadow 815 

Changed to ‘Two examples are presented here to exemplify analyses the possible with UAV-
lidar’ 
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Line 340 – suggest changing to ‘Differences between open and forest snow cover processes 
can be explored by examining the difference in snow depth…’ 820 

Changed 
Line 342 – suggesting changing to ‘UAV-lidar measured change in snow depth visualizes…’ 
Changed 
 
Line 343 – suggest deleting line: ‘The upper, open terrain clearly demonstrates the influence of 825 

blowing snow redistribution’ because this sentence is ambiguous. 
Line deleted 
 
Line 343 – suggest changing to ‘In the Figure 10c transect cross-section there was 
accumulation of up to 2 m over the September-April time period on lee slopes, whilst the upper 830 

windswept portions of the ridge demonstrate snow erosion between February and April.” 
Changed 
 
Line 346 – suggest changing to ‘The dynamics and extents of blowing snow sources (grey/red) 
and sinks (blue) are clearly visualized in 10a, which closely match the findings of Schirmer 835 

and Pomeroy (2019) using SfM for this same study region. 
Changed 
 
Line 347 – suggest deleting line: ‘Considering the forest slope brings out features that UAV-SfM 
cannot observe.’ Because this sentence appears as a fragment 840 

Deleted sentence 
 
Line 349 – suggest changing to ‘there is a general decline in snow depth from February to 
April (due to melt on the south facing slope).’ 
Changed 845 

 
Line 360 – suggest changing to ‘wind-blown snow from open upwind sources and are typically 
associated with…’ 
Changed 
 850 

Line 366 – suggest changing to ‘Areas that the UAV-lidar was able to measure correspond to 
areas…’ 
Changed 
 
Line 390 – suggest changing to ‘This gradient in dust and albedo is likely associated with the 855 

increases in snowmelt rates observed downwind of the grid road.’ 
Section has been reworked. 
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Line 405 – suggest changing to ‘UAV-lidar, relative to UAV-SfM, provides the ability to 
measure snow depth below vegetation…’ 860 

Changed 
 
Line 408 – suggest changing to ‘and cheaper equipment, subscriptions to virtual reference 
station networks if available in the study area (requires only a rover and not a base station), 
or equipment rentals are all viable alternatives to lower costs.’ 865 

Changed 
 
Line 410 – suggest changing to ‘The main cost difference between UAV-lidar and UAV-SfM 
platforms is therefore in terms of the UAV sensor payload.’ 
Changed 870 

 
Line 412 – suggest changing to ‘like consumer grade UAVs (DJI Phantom 3 < $2,000 CAD), to 
more expensive options like…’ 
Changed 
 875 

Line 413 – suggest changing to ‘Current integrated lidar systems suited to UAV snow mapping’ 
Changed 
 
Line 423 – suggest changing to ‘In contrast, most current UAV-lidar configurations need 
larger platforms that require more cycles of large battery sets to cover similar areas, which 880 

represents a logistical challenge in keeping the batteries warm and charged in cold and 
remote areas.’ 
Changed 
 
Line 428 – suggest changing to ‘Despite the lower initial purchase cost and longer flight 885 

endurance, the errors and artefacts that UAV-SfM measuring techniques introduce in sub-
canopy snow depth measurements, as detailed in sections 4.3.1 and 4.3.2, suggest that 
UAV-SfM is not able to directly measure snow depth in densely vegetated environments.’ 
Changed 
 890 

Line 434 – suggest changing to ‘Precise classification of surface points from snow and ground 
scans are needed to resolve…’ 
Changed 
 
Line 435 – suggest changing to ‘The accuracy and resolution demands are such that bare-895 

ground surface classification techniques developed for airborne platforms to resolve 
topography and hydrography at watershed scales from lidar last returns may be unsuitable for 
resolving snow depths.’ 
Have changed this sentence with respect to Reviewer 1 comments 
 900 
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Line 438 – suggest changing to ‘filtering tools and associated parameters to be able to reliably 
detect the sub-canopy bare-ground surface and achieve desired quality…’ 
Changed 
 
Line 441 – spelling correction: ‘large-scale’ 905 

Changed 
 
Line 448 – suggest changing to ‘the areas of negative snow are limited to areas where snow 
depth is relatively shallow in comparison to the deep snow in the wetland edges.’ 
Changed 910 

 
Line 452 – suggest changing to ‘snow depth estimation in these hydrologically significant snow 
accumulation areas.’ 
Changed 
 915 

Line 453 – suggest changing to ‘ground surface, but current sensors with these 
characteristics may exceed the payload capacities of most UAV platforms. Advances in bare 
surface classification/filtering software…’ 
Changed 
 920 

 
 
 
 
 925 

 
 
 
 
 930 

 
 
 
 
 935 
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Abstract. Vegetation has a tremendous influence on snow processes and snowpack dynamics yet remote sensing techniques 950 

to resolve the spatial variability of sub-canopy snow depth are lackingnot always available and are difficult from space-based 

platforms. Unmanned Aerial Vehicles (UAV) have had recent widespread application to capture high resolution information 

on snow processes and are herein applied to the sub-canopy snow depth challenge. Previous demonstrations of snow depth 

mapping with UAV Structure from Motion (SfM) and airborne-lidar have focussed on non-vegetated surfaces or reported large 

errors in the presence of vegetation. In contrast, UAV-lidar systems have high-density point clouds, measure returns from a 955 

wide range of scan angles, and so have a greaterincreasing the likelihood of successfully sensing the sub-canopy snow depth. 

The effectiveness of UAV-lidar and UAV-SfM in mapping snow depth in both open and forested terrain was tested in a 2019 

field campaign in the Canadian Rockies Hydrological Observatory, Alberta and at Canadian Prairie sites near Saskatoon, 

Saskatchewan, Canada. Only UAV-lidar could successfully measure the sub-canopy snow surface with reliable sub-canopy 

point coverage, and consistent error metrics (RMSE <0.177m and bias -0.03m to -0.13m). Relative to UAV-lidar, UAV-SfM 960 

did not consistently sense the sub-canopy snow surface, the interpolation needed to account for point cloud gaps introduced 

interpolation artefacts, and error metrics demonstrate relatively large variability (RMSE <0.33m and bias 0.08 m to -0.14m). 

With the demonstration of sub-canopy snow depth mapping capabilities a number of early applications are presented to 

showcase the ability of UAV-lidar to effectively quantify the many multiscale snow processes defining snowpack dynamics 

in mountain and prairie environments.  965 

1 Introduction 

Snow accumulation and melt are critical parts of the hydrological cycle in cold regions (King et al., 2008). To understand these 

processes there needs to be robust and accurate observation methodologies to measure the depth and density of a snowpack, 

and its change, across all aspects of the landscape. Unfortunately, traditionalsatellite remote sensing methods struggle to 
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quantify the spatial distribution of snow at a high enough resolution and accuracy to account for the fine scale interactions 970 

between snow and vegetation (Nolin, 2010). Remote sensing conceptually promises the capability to gather this type of data 

at the spatial scales and extents needed, but the main challenge for snow observations across a heterogeneous landscape is that 

exposed vegetation and forests obscure the underlying snow surface (Bhardwaj et al., 2016; Nolin, 2010; Tinkham et al., 2014). 

This paper seeks to illuminate some of the challenges posed to UAV-based remote sensing of snow depth observations and 

how UAV-based lidar represents a promising opportunity to overcome this limitation at the small catchment scale (<5 km2). 975 

Capturing the spatial distribution of snowpacks and snowcover at a particular instance provides information about the 

integrated accumulation and ablation processes up to that point in time. Accurate quantification of snow accumulation and 

ablation is needed to improve the understanding of snow hydrology, test processes understandings, examine spatial scaling of 

process interactions (Clark et al., 2011; Deems et al., 2006; Trujillo et al., 2007), and to initialise and/or validate model 

predictions (PainterHedrick et al., 20168). Snow depth, the focus of this paper, is not the variable of ultimate interest for 980 

hydrology. Rather, snow water equivalent (SWE) is used for snow hydrology applications (Pomeroy and Gray, 1995). Fully 

cognisant of this, the focus here is on snow depth, as it is well documented that snow depth varies much more than density 

(Pomeroy and Gray, 1995; Shook and Gray, 1996; Jonas et al., 2009; López-Moreno et al., 2013); therefore, improving the 

accuracy of snow depth observations in a drainage basin is critical to improving the estimation of SWE at and within basin 

scales.  985 

Snow depth and SWE observations are traditionally collected though in situ observations (Goodison et al., 1987; Helms et al., 

2008; Kinar and Pomeroy, 2015a; Sturm, 2015). In situ approaches, such as snow surveying, rely on manual sampling of snow 

depths and densities to get SWE. When conducted along landscape-stratified transects the lansdcape-scale SWE can be 

estimated (Pomeroy and Gray, 1995; Steppuhn and Dyck, 1974). The challenge for snow survey observations is that they are 

prone to observer bias, are labour intensive and time consuming, and are often unable to sample all aspects of a landscape such 990 

as avalanche zones (Kinar and Pomeroy, 2015a). Nonetheless, snow surveying is a proven approach to quantify SWE and has 

been operationalised across many regions. The practice has historical precedence and has created many long-term records 

which are a valuable data source (Goodison et al., 1987; Helms et al., 2008). Other point observations, such as snow pillows 

(Coles et al., 1985), acoustic sensors (Kinar and Pomeroy, 2009; 2015b), and passive gamma sensors (Smith et al., 2017) are 

valuable automated data sources, but are spatially limited in extent and can often suffer from location/elevation bias -- as 995 

demonstrated by the SNOTEL network in the western United States (Molotch and Bales, 2006).   In particular, measurements 

of snow in forest clearings will provide a much greater snowpack than would be foundhave relatively more snow than under 

the adjacent canopy (Pomeroy and Gray, 1995) and so mayare not be suitable for snow hydrology calculations or model 

validations in forested regions even though they are often used for just such purposes.   Other techniques need to be developed 

to capture the small-scale spatial variability of snow-vegetation interactions to advance our process understandings and validate 1000 

the next generation of distributed snow models. 

Remote sensing approaches have shown promise to evaluate snow depth in open areas. Airborne-lidar and UAV Structure 

from Motion (UAV-SfM) approaches have been proven to provide snow depth mapping abilities when differencing snow-
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covered (hereafter snow) and snow-free (hereafter ground) Digital Surface Elevation Models (DESM). Lidar, an active sensor, 

emits a pulse of light and detection of the reflected pulse results in a point cloud of a scene with a consistent quaility point 1005 

cloud regardless of flight characteristics, wind conditions, or solar illumination. A clear benefit of lidar is that multiple returns 

per pulse can be observed with pointsreturns possible from within the canopy and from the sub-canopy ground or snow surface 

within the canopy and at the underlying surface. In contrast UAV-SfM uses a passive RGB sensor where data quality is not 

actively controlled. This results in variable image quality because: inconsistent solar illumination influences image exposure; 

wind gusts influence platform stability leading to blurry images and inconsistent overlap; and surface heterogeneity means that 1010 

some areas of the domain will have more key points--points automatically detected and matched in multiple images (Westoby 

et al., 2012)--leading to variability in the quality of the SfM solution (Bühler et al., 2016; Harder et al., 2016; Meyer and Skiles, 

2019).   So while SfM can provide similar quality error metrics in open areas the quality will vary between flights as conditions 

change, whereas lidar will be more consistent.   Reported snow depth accuracy in open environments, expressed as root mean 

square errors (RMSE), varies from 0.08 m to 0.60 m for airborne-lidar (Currier et al., 2019; DeBeer and Pomeroy, 2010; 1015 

Harpold et al., 2014; Mazzotti et al., 2019; Painter et al., 2016; Tinkham et al., 2014), 0.17 to 0.30 m for airborne-SfM (Bühler 

et al., 2015; Meyer and Skiles, 2019; Nolan et al., 2015), and 0.02 to 0.30 m for UAV-SfM (Harder et al., 2016; Vander Jagt 

et al., 2015; De Michele et al., 2016). A notable challenge is that the presence of exposed vegetation, especially dense forest, 

confounds SfM solutions and obscures airborne-lidar bare ground surface extractions which are needed for fine scale 

differencing of DESMs to evaluate snow depths or snow depth changes (Bhardwaj et al., 2016; Deems et al., 2013; Harpold 1020 

et al., 2014). Terrestrial laser scanning (TLS) is another approach for observing high-resolution snow depth data which has 

been used to develop an understanding of snow depth distributions and for validating other snow depth observation methods 

(Currier et al., 2019; Egli et al., 2012; Grünewald et al., 2010; Mott et al., 2011). However, TLS has had limited 

contributionsimportant limitations to furtheringthat restrict further landscape scale understanding of snow processes in forested 

areas as they are restricted toit is limited by the site specific viewshed and viewing geometry (Deems et al., 2013) and occlusion 1025 

by forest canopies and low vegetation which decreases point cloud density away from  visible open terrain and forest edges 

(Currier et al., 2019). It remains an excellent technique for detailed examination of the forest edge snow environment. 

Most applications of remote sensing for observing snow processes have focussed on open environments. However, vegetated 

portions of those same environments can play a large role in landscape-scale snow hydrology. For example, wetland vegetation 

accumulates deep snowdrifts and so has an exaggerated influence on snow accumulation processes in prairie environments 1030 

(Fang and Pomeroy, 2009). Similarly, forests constitute large fractions of the mountain domain (Callaghan et al., 2011; 

Troendle, 1983) and have very different snow processes than found in open environments (Pomeroy et al., 2002). Snow-

vegetation interactions are complex (Currier and Lundquist, 2018; Gelfan et al., 2004; Hedstrom and Pomeroy, 1998; Harder 

et al., 2018; Mazzotti et al., 2019; Musselman et al., 2008; Parviainen and Pomeroy, 2000; Pomeroy et al., 2001; Zheng et al., 

2016) and involve both snow interception by the canopy and wind redistribution to forest edges. In dense forests, vegetation 1035 

leads to interception and subsequent sublimation of snow resulting in an overall decrease in accumulation (Hedstrom and 

Pomeroy, 1998; Parviainen and Pomeroy, 2000; Reba et al., 2012; Swanson et al., 1986). In open environments, such as the 
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prairies, tundra and alpine, wind redistribution of snow leads to a decrease in snow depth in exposed erodible areas and an 

increase in snow accumulation over in aerodynamically rough surfaces or in sheltered areas where wind speeds decrease and 

snow is depositedthat act as snow sinks – this includes forest edges (Busseau et al., 2017; Essery et al., 1999; Fang and 1040 

Pomeroy, 2009; Liston and Hiemstra, 2011; Pomeroy et al., 1993; Schmidt, 1982). Much of the understanding of snow-

vegetation interactions is based on snow surveys, which are limited in scale and extent. Thus approaches to systematically and 

efficiently quantify these dynamics across a drainage basin accounting for topographic and vegetation heterogeneity are needed 

to further develop and test our process understandings. 

1.1 Research Questions and Objectives 1045 

The overall motivation of this work is to understand how snow depth, as well as the processes driving its accumulation and 

ablation, varies across the complex vegetated landscapes. Better tools are needed to measure snow at scales that resolve snow-

vegetation interactions, which can involve individual trees and small forest gaps. So the specific objectives in this manuscript 

are to: 1) evaluate the ability of UAV-lidar versus UAV-SfM to quantifytechniques for measuring snow depth in open and 

vegetated areas, and 2) articulate challenges and opportunities for UAV’s to map sub-canopy snow depth. 1050 

2 Data and Methods 

2.1 Sites 

Several sites from western Canada, which represent a range of surface condition and snow climates, were selected to test the 

ability of the UAV-lidar and UAV-SfM to sample measure snow depth in open and vegetated areas.  

Fortress Mountain Snow Laboratory (hereafter Fortress), in Kananaskis AB (50.833 N, -115.220 W), is a research basin 1055 

operated by the University of Saskatchewan’s Centre for Hydrology in support of mountain hydrology research. The 5 km2 

catchment’s elevation ranges from 2000 m to 2900 metres above sea level (m.a.s.l.). Field observations for this paper focussed 

on the Fortress Ridge (Figure 1a) which spans an open alpine environment, a larch treeline zone near 2200 m.a.s.l., and a 

mixed lodgepole pine and subalpine fir forested slope to the valley bottom at 2000 m.a.s.l. (Schirmer and Pomeroy, 2019). 

Shrubs are primarily willows. The area was developed as an alpine ski resort in the 1960’s, but is currently a limited-use ski 1060 

operation without snowmaking, and some open ski runs remain through some of the slopes of interest.   Strong winds result in 

substantial redistribution of snow by blowing snow in this environment (Aksamit and Pomeroy, 2018) 

Two study areas in the Canadian Prairies were tested examined in this study. Both sites provide examples of cropland with 

hummocky terrain subject to significant blowing snow redistribution (Figure 1bc). Windblown snow from upland areas of 

short vegetation, wheat and barley stubble, is often transported to lower elevation wetland depressions where it is effectively 1065 

trapped by wetland vegetation, shrub vegetation types include willows, dogwoods, tall grasses and reeds while the trees are 

primarily poplar. One site was located southeast of Saskatoon, SK (51.941 N, -106.379 W), hereafter Clavet, with the other 

site north of Saskatoon, SK (52.694 N, -106.461 W), hereafter Rosthern. The main difference between prairie sites was that 
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Rosthern received more snowfall and developed a deeper snowpack than Clavet in winter 2019. Where results from both sites 

are aggregated, they are collectively referred to as Prairie hereafter. 1070 

 

Figure 1: a) Fortress Mountain Snow Observatory in Kananaskis, Alberta, Canada, b) Clavet Rosthern and c) Rosthern Clavet 

prPrairie study locations in Saskatchewan, Canada.  Data collection was centred on Fortress Ridge (ridgeline in background 

centreeline in middle of photograph) an area of high topographic variability and variability betweena mix of dense forests and 

clearings. The Clavet scene photo highlights the tall dense grass and wetlandtransition zone between the open upland agricultural 1075 
terrain and the lower elevation vegetated wetland vegetation of a wetland and agricultural land transitions.   The Rosthern scene 

photo highlights the low vertical relief of upland areas and isolated woodlands amongst cultivated fields. 

2.2 Data Collection 

2.2.1 Lidar System 

The UAV-lidar system was comprised of a Riegl miniVUX-1UAV lidar sensor, integrated with an Applanix APX-20 Inertial 1080 

Measurement Unit (IMU), and mounted on a DJI M600 Pro UAV platform (Figure 2a). The miniVUX1-UAV utilises a rotating 

mirror to provide a 360-degree line scan with a measurement rate of 100 KHz and up to 5 returns per shot with a 15 mm 

precision. The APX-20 provides positional accuracy of <0.05m in horizontal and <0.1m in vertical dimensions with a 200Hz 

sampling rate and 0.015 degree and 0.035 degree accuracy in roll/pitch and heading, respectively. The payload, 5 kg, 

approaches the maximum capacity of the M600 Pro platform so flight parameters to maximise mapping efficiency were set to 1085 

7 m/s ground speed, 100 m flight altitude above the surface,  with with parallel flight lines 80 m apart. The UgCS flight control 

software (SPH Engineering, 2020) was used to generate flight paths with these parameters and terrain following with respect 

to an underlying SRTM DEM. Flight times are conservatively limited to 15 minutes. The generated UAV-lidar point clouds 

have densities of approximately 75 points per square metre (pt m-2). 
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2.2.2 Structure from Motion systems 1090 

Coincident surface mapping with SfM used imagery collected by EbeeX or Ebee+ fixed wing UAV platforms with SODA 

RGB cameras from Sensefly (Figure 2b). The longer flight times, up to 70 minutes, associated with a lightweight payload on 

a fixed wing platform allowed for efficient mapping of large areas. Overlap parameters were generally 80% for the longitudinal 

and 65% in the lateral axes. Flight altitudes of 120 m above the surface provided a ground sample distance of 2.8 cm with the 

SODA camera, which was used on both EbeeX and Ebee+ platforms. The generated UAV-SfM point clouds have densities of 1095 

~ 110 pt m-2. 

  

Figure 2: UAV-lidar platform: Riegl miniVUX1-UAV mounted on DJI M600 Pro (a) and UAV-SfM platform: Sensefly EbeeX (b). 

2.2.3 Ground Validation Surveys 

The assessment of snow depth accuracy used coincident surveys of surface elevation points with differential Global Navigation 1100 

Satellite System (GNSS) surveys and manual measurement of snow depths with a ruler. The intention of the surveys was to 

validate the spatially distributed snow depth retrievals and therefore transects were random within the survey areas and selected 

in a manner for the surveyor(s) to efficiently sample the greatest variety of vegetation types and gradients. A Leica GS16 

base/rover kit provided a real-time-kinematic (RTK) survey solution that to allows surveying of points.  to aThe 3D n accuracy 

ofuncertainty of the relative position between the base and rover was computed in real-time to be < ±1.5 cm which accounts 1105 

for errors in signal strength, satellite coverage, and instrument precision < ±2.5cm. RTK signal quality can degrade in forests 
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but only points with carrier-phase RTK solutions were used in this analysis so all survey points are of consistent quality 

irrespective of vegetation cover.  Post-processing of the GNSS data used the Canadian Geodetic Survey of Natural Resources 

Canada Precise Point Positioning (PPP) online tool (Natural Resources Canada, 

2020(https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php) to define an absolute base station location. Due to multi-site 1110 

logistics the base station location varied between flights and collection periods ranged between 2.5 and 9 hours and PPP 

computed standard deviations were consistently < 2 cm. Post-processing with Leica Infinity software (version 2.4.1.2955) 

adjustment of theestablished the absolute positions of the  GS16 rover points to account forby maintaining the RTK rover-base 

position but adjusting the  the PPP base station absolute location to that established by the PPP tool. Propagating the uncertainty 

of the RTK solution (± 1.5 cm) and PPP derived absolute base location (± 2 cm) gives an uncertainty of ± 2.5 cm for the survey 1115 

points. used the Leica Infinity software (version 2.4.1.2955). 

2.2.4 Campaigns 

To assess the accuracy of thesethe UAV snow depth measurement methods as well as provide insight into the seasonally 

evolving snow depth distribution a total of  evolution over periods of time 19 flight/manual surveys were conducted over theat 

all three study sites between course of September 2018 andto April 2019. These are summarised by date, surveyed 1120 

surfacesurface condition, UAV data collected, and corresponding number of manually surveyed surface elevation points in 

Table 1. 

 

Table 1: Summary of data collection campaign, Sept 2018 to April 2019 

Date 

(mm-dd) 

Surface Data Collected Site Number of Manual 

Observations 

09-07 ground lidar Rosthern 0 

09-19 ground lidar Fortress 0 

10-10 ground lidar Clavet 0 

12-13 snow lidar Clavet 0 

01-31 snow lidar,SfM Clavet 51 

02-13 snow lidar,SfM Fortress 81 

03-11 snow lidar Clavet 30 

03-13 snow lidar,SfM Rosthern 111 

03-15 snow lidar Clavet 35 

03-18 snow lidar,SfM Rosthern 81 

03-20 snow lidar,SfM Clavet 69 

03-22 snow lidar,SfM Rosthern 72 

03-24 snow SfM Rosthern 0 

03-26 snow lidar,SfM Rosthern 73 

03-29 snow lidar Rosthern 77 

04-03 snow lidar Clavet 0 

04-04 snow lidar Rosthern 0 
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04-09 snow lidar Rosthern 0 

04-25 snow lidar Fortress 39 

 1125 

2.3 Data Processing 

Snow depth was quantified as the vertical difference between a bare bare ground DESM and a bare bare snow surface DESM. 

This approach was taken regardless of whether point clouds or surface modelDEMs come from lidar scanning or SfM 

processing. The workflows implemented to produce point clouds and DESMs vary between lidar and SfM approaches (Figure 

3) and code is available at .https://github.com/phillip-harder/UAV-snowdepth. 1130 

 

 

Figure 3: Data processing workflows for lidar and SfM point cloud generation. 

https://github.com/phillip-harder/UAV-snowdepth
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2.3.1 Lidar processing workflow 

To generate a georeferenced lidar point cloud several data streams need to be integrated in post processing. The raw high 1135 

frequency trajectory (x, y, z, pitch, roll, and yaw) information from the APX-20 IMU was post processed with POSPAC UAV 

software, which includes a post processing kinematic (PPK) correction by integrating base GNSS data from a known point < 

2 km from flight area, to provide an absolute sensor position uncertaintyaccuracy of < 2.5 cm. The post-processed IMU data 

is merged with the scanner data within the proprietary RiProcess software package to translate the time of flight laser returns 

to an x, y, and z point. Finally, alignment of scan lines with overlapping scan data from adjacent flight lines is used to optimise 1140 

the IMU trajectory with the RiPrecision tool, laser data accuracy is greater than the post processed IMU trajectory data, to 

align the scan lines and reduce the noise of the final point cloud within the RiPrecision tool. . This final step in noise reduction 

improves the final product because the 1.5 cm laser data precision is greater than the post processed IMU trajectory accuracy. 

2.3.2 SfM processing workflow 

The UAV-SfM processing workflow begins with associating a high accuracy x, y, and z positon to the images taken. Within 1145 

the Emotion 3.X software from SenseFly a PPK correction, with raw GNSS data collected at the known point base station, is 

applied to the photo locations to give geotag accuracies of < ±2.5 cm. The Pix4D Mapper (v 4.3.33) SfM software, with the 

“3D Maps” default options template, processed the collected imagery and post processed geotags to produce a densified point 

cloud. Within the study sites a minimum of 5 ground control points (GCP), blue 2 m x 2 m tarps with a white cross, were 

surveyed with the Leica GS16 rover and integrated into the Pix4D SfM workflow. For further details on how Pix4D implements 1150 

SfM techniques and more generally the approach to use SfM to map snow depth refer to Harder et al. (2016) and Meyer and 

Skiles (2019). 

2.3.3 Point Cloud Processing 

The points representing the ‘bare’ surface, whether that is the snow or ground surface, are of interest for snow mapping. Lidar 

point clouds comprise of returns from vegetation and the snow/ground surface, while UAV-SfM point clouds comprise returns 1155 

from vegetation or the snow/ground surface and exhibit substantial noise around snow patch edges (Harder et al., 2016). To 

remove noise and vegetation points a noise removal and bare surface point classification was applied to the point clouds with 

the LAStools software (Isenburg, 2019). The lidar workflow performed a noise removal followed by a bare surface point 

classification. For the bare-ground surface lidar scans, the height of vegetation (non-ground) points was also calculated. For 

the UAV-SfM point clouds, the noise removal and bare surface classification follows the workflow of Isenburg (2018).  1160 

2.3.4 Surface interpolation 

A DESM was generated in order to reduce the overall volume of data and to allow for simple surface differencing. The 

‘blast2dem’ tool within the LAStools package generates a seamless triangulated irregular network (TIN) that conforms to the 
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point cloud which is then resampled to a raster (Isenburg, 2019). A spatial resolution of 0.1 m was applied to all DESMs 

generated. 1165 

2.3.5 Error Assessment 

To assess the accuracy of UAV-lidar and UAV-SfM with respect to observations, a surface DEM based comparison was 

undertaken. Snow and ground surface values were extracted from the DESM raster cells for locations where a point was 

manually surveyed and snow depth measured. The snow depth was calculated from the vertical difference between the DSM 

values for the snow DEM and ground DESM’s. The influence of vegetation height on snow depth errors was also considered 1170 

by segmenting the error metrics with respect to vegetation height (open <0.51 m, 0.5 m ≥ shrub ≤<0.52 m,, and trees >20.5 m) 

derived from the snow-free (ground) UAV-lidar scan. The classified vegetation maps and location of all survey points are 

visualised in Figure 4. The error metrics employed to assess the differences between observations and estimates included the 

root mean square error (RMSE), and the mean bias (mb) (Harder et al., 2016). 

  1175 

 

Figure 4: Fortress a), Rosthern b), and Clavet c) study sites classified by vegetation height derived from snow-free (ground) UAV-

lidar into open (<0.5 m), shrub (>0.5 m and <2 m) and tree (>2 m) domains. Red points identify locations of manual snow depth 

survey observations sampled over the course of the data collection campaign. Black lines in Fortress map are 50 m elevation contours. 

2.3.6 Point cloud cCoverage 1180 

The continuity of bare surface point density between UAV-lidar and UAV-SfM methods was quantified in order to interpret 

how well the respective tools can sense sub-canopy surfaces. All surveys with coincident UAV-lidar and UAV-SfM flights 

were assessed with the LAStools (Isenburg, 2019) grid_metrics function to classify area with > 1 pt 0.25 m-2 and thereafter 

were summarised as percentage areas of each study site with >1 pt 0.25 m-2 with respect to technique.   This is a rough metric 

of DESM quality as it quantifies the relative amount of interpolation needed to translate a point cloud to a continuous surface.  1185 
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3 Results 

3.1 Accuracy of UAV-lidar versus UAV-SfM snow depth estimates 

An accuracy assessment comparing the snow depth from UAV-lidar and UAV-SfM techniques to that the manually sampled 

through the RTK ground surveys is shown in Figure 5. UAV-lidar has consistently lower error than UAV-SfM in open 

environments and mountain vegetation. The exception is prairie shrub vegetation where the UAV-lidar RMSE is slightly larger 1190 

than UAV-SfM RMSE. The significance of the different relative RMSE values for Prairie shrub vegetation is negligible 

relative to the much larger differences noted in the other domains. UAV-lidar bias is consistently negative (-0.03 m to -0.13 

m), while the UAV-SfM bias is more variable and both positive and negative (0.08 m to -0.14 m).  
 

 1195 
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Figure 5: Comparison of snow depth observations from snow probes and UAV-based snow depth estimates from UAV techniques. 

Plots are segmented within eachfor points extracted from the point clouds or interpolated surfacesvegetation class (rows), sites 

(columns) and observation method (colours).  

The influence of vegetation on estimating  snow depth measurement from UAV’s can be is  directly assessed by considering 

the errors associated with different vegetation classes (Figure 5). When considering UAV-lidar, the errors are worse in the 1200 

presence of vegetation. Open Prairie and open Fortress samples RMSE values are similar (0.09 m and 0.1 m RMSE 

respectively), whilst vegetated sites have larger error (0.13 m to 0.17 m RMSE) with no observed dependency upon vegetation 

class or type. The sample size of snow depth probe observations is smaller for vegetation sites than open sites has implications 

for error metrics –outliers will have greater weight. The UAV-lidar is equally successful at penetrating the open leaf-off 

deciduous tree canopy at the prairie sites as the closed needleleaf canopy at the Fortress site based on the similar RMSE values 1205 

within each site’s tree vegetation class. The UAV-lidar RMSE for Shrub and Tree vegetation classes at Fortress and Prairie 

sites are within 0.04 m. For UAV-SfM the errors differ widely for various vegetation covers. The Open vegetation has a large 

RMSE range between sites (0.1 m in Prairie and 0.3 m in Fortress respectively) while vegetation class RMSEs range from 0.13 

m to 0.33 m. While  

The UAV-SfM reports slightly better metrics than UAV-lidar in the prairie Shrub case, the difference between these techniques 1210 

is only 0.04 m which is within the  it is within the± 0.025 m observational error of RTKuncertainty of the GNSS survey 

equipment and reasons will be examined in the discussion.used in this project. The influence of vegetation type is apparent in 

the UAV-SFM TTree class errors where the dense needleleaf forest at Fortress has a higher RMSE (0.33 m) than the leaf-off 

deciduous trees in the prairies (0.2 m). Overall UAV-lidar tends to consistently have lower RMSE’s than UAV-SfM which 

provides confidence in this technique for mapping snow depth sub-canopy.  1215 

Snow depth is estimated from differencing the snow and ground DSMDEMs. Therefore, the uncertainty of the snow depth is 

a propagation of the error of both the snow and ground DSMsDEMs. To distinguish which DSM DEM may contribute more 

to the snow depth error, the remotely sensed surface elevations were compared to the surface elevations from the RTKmanual 

GNSS surveys using boxplots (Figure 6). The boxplots in Figure 6 illustrate that the UAV-SfM snow surface elevations have 

errors consistently greater than the corresponding UAV-lidar surfaces at Fortress. In the Prairie snow-surface case, the median 1220 

RMSE is consistently lower for UAV-SfM than UAV-lidar, but the UAV-SfM does have more variability in its errors. The 

ground surface was only available from UAV-lidar for this study so no corresponding UAV-SfM ground surface analysis is 

available. The snow-free UAV-lidar survey has a consistently higher or more variable RMSE than the snow surfaces (with the 

exception of the Open Prairie and Open and Tree Fortress UAV-SfM). 

 1225 
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Figure 6: Boxplots of RMSE of UAV estimated and RTK survey surface elevations segmented by surface condition, technique, site, 

and vegetation classification. The error metrics approach the ± 2.5 cm uncertainty of the RTK survey data +/- 2.5 cm data(black 1230 
line). Median is indicated by the line within the box, the upper bound is the 75th percentile and the lower bound is the 25th percentile 

and whiskers represent the range of values beyond the box. 

3.2 Point cloud coverage 

The quality of a remotely sensed snow depth estimate is directly tied to how much interpolation is required to fill gaps in a 

point cloud. The point clouds were classified into areas where >1 pt 0.25 m-2 existed for each technique. Examples of this 1235 

approach are visualized for the Fortress, Rosthern and Clavet sites on Feb 14, March 18 and March 20, 2019 survey dates in 

Figures 7-9 respectively. At the Fortress site (Figure 7b) the large areas of lidar only points (orangeblue) correspond to areas 
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of forest cover as the UAV-SfM technique could not reliably return surface points with a density > 1 pt 0.25 m-2  whilst the 

UAV-lidar could. At Fortress, UAV-lidar had > 1 pt 0.25 m-2 for 93% of the area of interest versus 54% for UAV-SfM.   

Considering the black polygons in the Figure 7a transect, the lack of sub-canopy points identified within the Tree vegetation 1240 

class results in an interpolated snow surface that is erroneously deep under trees, completely missing the detection of the 

reduced snow depths which are clearly detected (green line) around the base of the trees by the UAV-lidar.lack of UAV-SfM 

points near trees means that the interpolated snow surface does not capture the tree wells, which are sharp decreases in snow 

depth around the base of trees, and evident from the UAV-lidar data.  The noisy UAV-SFM points in the middle of the slope, 

orange polygon, come from vegetation adjacent to the transect. These vegetation points occupied a larger space than the UAV-1245 

lidar and intruded on the transect line. Therefore when vegetation removal from this point in the transect led to a gap in the 

UAV-SfM point cloud, but not the UAV lidar point cloud. Interpolating through the gap in the UAV-SfM point cloud at this 

point led to an underestimation of the snow surface. challenge the snow surface extraction even without the presence of 

vegetation leading to an underestimation of the snow surface.  An additional challenge for UAV-SfM is open areas with low 

surface contrast and surface homogeneity which resulted in Llarge areas without UAV-SfM pointpoint coverage occurred 1250 

northweston the northwest portion of the Fortress  of the ridge in open areas due to low surface contrast and surface 

homogeneity.study area.  
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Figure 7: Fortress Ridge (February 14, 2019) study site with an example a) cross section with all points and interpolated vegetation-1255 
free surface (lines) for SfM-snow (red), lidar-snow (green) and lidar-ground (blue) surveys. The study area is classified by areas with 

greater than 1 pt per 0.25 m-2 in b) with respect to point clouds obtained from UAV-lidar and UAV-SfM techniques. In a) black 

polygons highlight areas of tree wells while the orange polygon highlights an area of UAV-SfM noise on a slope. The red inset polygon 

in b) identifies the area of the orthomosaics displayed in c) with an the same overlain transparent point type classification colour 

scheme as shown in b).. Red line in c) corresponds to the cross section plotted in a). 1260 
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The predominantly open nature of the Prairie sites demonstrates a minimal difference in point coverage between techniquesthe 

UAV-lidar and UAV-SfM techniques.. The average extent of the study domain covered with a point density of > 1 pt 0.25 m-

2 for 5 of 5 coincident flights at Prairie sites was computed, resulting in the gave UAV-lidar a mean coverage of 92% versus 

83% of the study area for the UAV-lidar and UAV-SfM respectively. As seen in Figure 8 at the Rosthern site, the areas without 

UAV-lidar points include some wetland shrubs (green areas in Figure 8 b and c), but predominantly are randomly distributed 1265 

points. In contrast, UAV-SfM is missing points from areas where the snow surface is very uniform, in vegetated rings around 

wetlands, and in areas of dense vegetation (orange blue areas in Figure 8 b and c). These gaps in the UAV-SfM point clouds 

are interpolated during DSM interpolation and therefore will represent areas of greater uncertainty.   There was ponded 

meltwater on the surface of the frozen ground and frozen wetland water surface at the Clavet Site on March 20, 2019, which 

is responsible for the many areas missing lidar points (green areas) in Figure 9b.   Water is a specular reflector therefore unless 1270 

the lidar has a nadir perspective water areas will appear as a gap in the point cloud. Fortunately, since water surfaces are flat, 

minimal interpolation artefacts remain when generating DESMs from the point clouds if the pond edges are sufficiently 

captured.   The challenge in the prairies, as seen in black polygons in Figure 8a and 9a, is in areas of thick but short vegetation 

(Sshrub class) where both lidar pulses and SfM solutions interpret the vegetation surface as the ground top of the bare-ground 

or snow surface and therefore little difference exists between DEMs during all measurement periods. the remotely sensed 1275 

ground surface, and UAV-SfM and UAV-lidar snow surface are very similar.   An additional challenge of using the UAV-

SfM technique due  is that to challenges in vegetation removal in bare surface generation is that large gaps in points appear 

beneath the tall wetland edge vegetation leading to points, as visualised in visualized by transects inorange polygons in Figure 

8a and 9a cross-sections, where the estimated UAV-SfM snow surface is below the UAV-lidar ground surface. 

 1280 
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Figure 8: Rosthern (March 18, 2019) study site with an example a) cross section with all points and interpolated vegetation-free 

surface (lines) for SfM-snow (red), lidar-snow (green) and lidar-ground (blue) surveys. The study area is classified by areas with 1285 
greater than 1 pt per 0.25 m-2 in b) with respect to point clouds obtained from UAV-lidar and UAV-SfM techniques. In a) the black 

polygon highlights areas of dense shrubs while the orange polygon highlights interpolation artefacts of the UAV-SfM. The red inset 

polygon in b) identifies the area of the orthomosaics displayed in c) the same overlain transparent point type classification colour 

scheme as shown in b)with an overlain transparent point type classification. Red line in c) corresponds to the cross section plotted 

in a). 1290 



44 

 



45 

 

 

Figure 9: Clavet (March 20, 2019) study site with an example a) cross section with all points and interpolated vegetation-free surface 

(lines) for SfM-snow (red), lidar-snow (green) and lidar-ground (blue) surveys. The study area is classified by areas with greater 

than 1 pt per 0.25 m-2 in b) with respect to point clouds obtained from UAV-lidar and UAV-SfM techniques. In a) the black polygon 1295 
highlights areas of dense shrubs while the orange polygon highlights interpolation artefacts of the UAV-SfM. The red inset polygon 

in b) identifies the area of the orthomosaics displayed in c) with the same overlain transparent point type classification colour scheme 

as shown in b)an overlain transparent point type classification. Red line in c) corresponds to the cross section plotted in a). 
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4 Discussion 1300 

4.1 UAV-lidar is more accurate and consistent than UAV-SfM 

Snow depth mapping with UAVs has had widespread application in recent years (Bühler et al., 2016; Harder et al., 2016; 

Vander Jagt et al., 2015; De Michele et al., 2016). The emphasis has been on using SfM techniques to difference DESMs. One 

of the objectives of this work was to consider the snow depth accuracies possible with the current state of the art of UAV-SfM 

versus UAV-lidar platforms. What has been demonstrated here is that while there are still errors in UAV-lidar (as with any 1305 

measurement), they are smaller and more consistent relative to UAV-SfM. An unavoidable problem for all SfM 

implementations, which is reflected in this work, is that SfM can only sense the surface -- whether that it is the ground/snow 

surface or the top of a vegetation canopy (Westoby et al., 2012). This makes it fundamentally inappropriate for sub-canopy 

mapping of snow. Sub-canopy snow depth mapping with UAV-SfM therefore becomes an exercise in interpolating snow depth 

values observed in open areas without vegetation to areas with dense vegetation, rather than sensing the actual snow depth 1310 

under the canopy. Open areas will have greater snow depths than forest areas (Troendle 1983; Swanson et al., 1986; Pomeroy 

et al., 2001; Mazzotti et al., 2019;) meaning UAV-SfM solutions, or any approach which requires interpolation of point cloud 

gaps beneath trees, will overestimate snow (Zheng et al., 2016). . Sub-canopy snow depth mapping with UAV-SfM therefore 

becomes an exercise in interpolation between areas of open vegetation rather than sensing the actual snow depth under the 

canopy. The ability of UAV-lidar to map snow-depths, with and without canopy cover, and capture tree wells with RMSE’s 1315 

≤<0.177 m is an  major improvement on previous attempts.   This RMSE is comparable to previous efforts with UAV-SfM 

(Bühler et al., 2016; De Michele et al., 2016; Harder et al., 2016),  or airborne-SfM (Bühler et al., 2015; Nolan et al., 2015, 

Meyer and Skiles 2019)  and airborne-lidar (Deems et al., 2013; Painter et al., 2016)  that have been primarily focussed on 

mapping the snow depth of open snow surfaces by masking out forested domains. In aApplications of airborne-lidar to forested 

areas much larger errors have been reported than 0.14 m RMSE (Deems et al., 2013). report similar errors (Zheng et al., 2016; 1320 

Currier et al., 2019; Mazzotti et al., 2019) but the higher flight altitude of airborne platforms and their near nadir perspective 

limit point densities near tree centres that are necessary to capture tree wells. 

4.2 Bare surface point cloud coverage is critical 

The increased continuous point coverage of UAV-lidar is the main advantage over UAV-SfM when trying to map sub-canopy 

snow depth. While snow depth accuracy at times can be similar between techniques, the ability of UAV-lidar to sense a surface 1325 

below vegetation is critical to develop a coherent snow surface DESM. An example of aThe point cloud cross-section of 

illustrateda UAV-SfM and UAV-lidar in Figure 7 emphasizes this pointthese findings, highlighting . Tthe wider gaps in the 

UAV-SfM point clouddata will have wider gaps in the point cloud  beneath individual trees that require interpolation over 

longer distances resulting in greater potential for error.. Features such as tree wells, where the snow depth decreases with 



47 

 

proximity to a tree due to interception/sublimation losses and radiative melting (Pomeroy and Gray, 1995; Musselman and 1330 

Pomeroy, 2017), will be missed. An interesting dynamic of the RMSE errors is that while lidar is comparable across all the 

sites and vegetation categories, the UAV-SfM RMSE values are much greater in the mountain domain. This is attributed to 

interpolation artifacts. In the Prairies where topography is fairly flat, interpolation of the few gaps can give a reasonable 

approximation of the actual surfaces. In contrast, mountainous regionss have much more complex topography and the 

interpolation of large gaps misses much of the small scale topography and snow-vegetation interaction features. Interpolation 1335 

works better between two points that are on the same plane (prairies) rather than on a complex non-linear slope (mountains) 

and where gaps in the point cloud are smaller. 

4.3 Lidar snow depth maps and quantifying snow-vegetation interactions 

The ability of UAV-lidar to map sub-canopy snow depth is established by the consistent error metrics reported as well as the 

continuous bare surface point cloud coverage. The dynamics of snow depth at snow-vegetation process-resolving scales can 1340 

therefore be examined. Two examples are presented here to exemplifyforeshadow some of the analyses available the possible 

with UAV-lidar. 

4.3.1 Fortress Ssnow dDepth cChange.  

The differences between open and forest snow cover processes can be resolved explored by examiningconsidering the 

difference in snow depth between UAV-lidar scans that took place February 13 and April 25, 2019 at Fortress. Over this 1345 

interval there was intermittent precipitation totaling approximately 100 mm measured at storage gauges within the study area. 

UAV-lidar Mmeasured change in snow depth visualizes how snow-vegetation interactions translated this snowfall into a snow 

depth distribution change over a two month interval (Figure 10). The upper, open terrain clearly demonstrates the influence of 

blowing snow redistribution. In the Figure 10c cross-sectiontransect there was accumulation of up to 2 m over the September-

April time period on lee slopes, whilst the upper windswept portions of the ridge demonstrate snow erosion between February 1350 

and-April. The dynamics and extents of blowing snow sources (grey/red) and sinks (blue) are clearly visualized in Figure 10a, 

which closely match the findings  as similarly noted byof Schirmer and Pomeroy (2019) using SfM for the same study region. 

Considering In the forest slopes brings out features that UAV-SfM cannot observe. Tthe UAV-lidar can oobserves the 

increasing snow drifts in the tree line (in the krummholz and tree islands – blue areas on top of facing slope in Figure 10a). 

Within the forested (Figure 10b) transect, there is a general decline in snow depth from February to April with variability due 1355 

to melt on a south facing slope (on left of figure), and development of a tree wells in the middle of the transect (orange 

polygons). The Figure 10b transect demonstrates the lack of wind redistribution in the forest; snow accumulation was 

consistently observed to be ≤ precipitation over the transect,  in the canopies relative toversus the Figure 10c transect on the 

ridgeline which demonstrates significant wind redistribution, snow accumulation on the lee slope greatly exceeded the 

observed precipitation..  1360 
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Figure 10: a) UAV-lidar derived snow depth difference between Feb 13 and Apr 25, 2019. Green and yellow lines in a) correspond 

to the forest and ridge line transect locations for cross-sections in b) and c) respectively.   Cross-section figures plot the 0.5m wide 

point cloud cross section from the September 19, 2018 snow-free scan (black points) to show the point cloud and the processed 1365 
surfaces of the bare ground from September 19, 2018 (red), and snow surface from February 14, 2019 (green) and April 25, 2019 

(blue) UAV-lidar scans. Orange polygons in b) highlight locations of tree wells. 
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4.3.2 Prairie peak snow peak depth and ablation patterns 

In the prairies, wind redistribution is the main driver of snow depth spatial variability. Areas of tall vegetation accumulate 

wind-blown snow from large open upwind sources areas and so are typically associated with the deepest snowpacks. In the 1370 

winter of 2019, the chronology of snow, temperature, and wind events defined the final snow depth distribution (Figure 11a). 

The UAV-lidar flown on March 13 captures all of these interactions. Deep snow drifts are found in the roadside ditches (linear 

features of 1.5m snow depth on the north and north west corners Figure 11a), in the edges of wetland vegetation (>1m snow 

depths on edges of wetlands identified by greenred polygons in Figure 11a), and the development of a sastrugi dune complex 

in open areas (parabolic dune shapes and small scale snow depth variability in middle of Figure 11a). Areas that the UAV-1375 

lidar was able to measure correspond to areas where snow depth are the deepest and have important snow-vegetation 

interactions.   In contrast UAV-SfM struggles with sensing snow depth in the short shrubs on the edges of wetlands as seen by 

the concentration of lidar only (blue) areas on the wetland edge in the Rosthern study area (wetland area highlighted by red 

polygon in Figure 8b). In the prairies, mapping of the areas with deep snow is critical as the deepest snow areas are the ones 

that dominate runoff generation and runoff contributing area, are critical for ephemeral wetland ecology, and have the longest 1380 

snowcover duration with the related runoff timing implications (Fang and Pomeroy, 2009; Pomeroy et al., 2014). 
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Figure 11: Peak snow depth at the Rosthern site from UAV-lidar scan on March 13, 2019 a) and snow melt depth difference from 1385 
UAV-lidar scans on March 18 and March 22, 2019 b). Snow surface near infrared (NIR) reflectance c) and sSnow depth change cd) 

over a transect (greenblue line in b) are plotted with a hex plot (to show variability) and smoothed line (to show mean change). 

GreenRed polygons in a) highlight wetland areas. 

Prairie snowpacks are shallow, leading Harder et al. (2016) to conclude that UAV-SfM was unable to capture snow ablation 

patterns as the signal to noise ratio in the open domain was too large and vegetated area errors were not considered. With the 1390 
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demonstrated ability of UAV-lidar to consistently map shallow snow in open areas and deep snows in the vegetated areas this 

can be reattempted. Consider the difference in snow depth between March 18 and 23 (Figure 11b) which represents the earliest 

part of the active melt period in this particular snowmelt season. Two examples of the spatial variability of process interactions 

can now be visualized at the appropriate resolutions. First, the spatial variability of albedo is a major driver of snowmelt. The 

greatest melt occurs alongside the gravel-covered “grid” roads in the ditches where road dust significantly lowers the albedo 1395 

thereby accelerating melt of the deep snowpacks. Moving eastward from the road ditches into the open fields there is a decrease 

in snowmelt depth in the overall scene, visualized in the Figure 11cd transect. This pattern is likely due to the redistribution of 

dust from the grid roads to the open field snow surface by the prevailing westerly winds. A snow surface dust concentration 

gradient develops over the winter with higher concentrations of dust, and therefore lower albedo (Woo and Dubreuil, 1985),  

in the west than the east. Near-infrared (NIR) reflectance data, a proxy for snow surface albedo from a coincident multispectral 1400 

UAV flight part of a separate study and not discussed further, demonstrates an increase in albedo (Figure 11c). This increase 

in albedo, and therefore decrease in solar radiation available to melt snow,  corresponds to a decrease in snowmelt rate (Figure 

11dc), moving easterly away from the grid road. The gradient in dust and albedo describes the increases in snowmelt rates 

downwind of the grid road. Second, the spatial variability of snowpack cold content influences melt rates in the early part of 

the melt season. Within the agricultural field, the sastrugi drifts are not melting – due to the larger cold content of the deep 1405 

cold snowdrifts relative to the smaller cold content of the shallower surrounding snowpacks. This is also prevalent in the non-

melting deep snowdrifts at the vegetated wetland edges. With UAV-lidar, a complete picture of the early and asynchronous 

snowmelt processes is possible. If reliant on UAV-SfM the interpolation needed to fill gaps in the point cloud, near vegetation 

and tops of the sastrugi, will obscure the full spatial pattern of snow depth change that conveys the heterogeneity of ablation 

processes. The high spatial resolution and vertical accuracy of UAV-lidar is required to capture these spatial patterns as the 1410 

length scales of the snow surfaces features of interest are small, i.e. sastrugi drifts are on metre scales, and their changes at 

daily timesteps are at the centimetre scale. 

The processes visualized in the Fortress and Rosthern examples are not new, but the value of UAV-lidar is that spatial patterns 

and changes can be observed across complex landscapes and vegetation gradients with a consistent resolution and accuracy. 

UAV-lidar will therefore be a powerful tool to understand the landscape scale snow-vegetation interactions as well as make a 1415 

core contribution to the validation and improvement of distributed snow process modelling of snow processes.  

4.4 Are the costs and logistics of UAV-lidar worth it? 

UAV-lidar, relative to UAV-SfM, provides the ability to a superior observation ofmeasure snow depth below vegetation 

canopies but it does come at a higher cost and logistical complexity. There are many similarities between approaches and one 

commonality is that both UAV-lidar and UAV-SfM require access to a GNSS solution to geolocate point clouds in absolute 1420 

space.   The Leica GS16 package used here is on the expensive side of the spectrum ($70,000 CAD) and cheaper 

productsequipment, subscription to virtual reference station networks if available in the study area (requires only a rover and 

not a base station), or equipment rentals are all viable alternatives to lower costs.   The main cost difference between UAV-
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lidar and UAV-SfM platforms is therefore in terms of the UAV the sensor typepayload.   A plethora of UAV-SfM options 

with and without RTK or PPK photo geotagging are available and can range from small inexpensive systems like a consumer 1425 

grade UAVs (DJI Phantom 3 < $2,000 CAD) or to more expensive options like the Sensefly EbeeX PPK system ($30,000 

CAD) used here. Current integrated lidar systems suited to UAV snow mapping (laser wavelengths < 1000 nm, small size, 

weight, and power requirements, and absolute errors < 5 cm) remain an order of magnitude more expensive than UAV-SfM. 

The cost of the complete UAV-lidar system (lidar, IMU, software suite, and UAV) used here approached $300,000 CAD.   

New and cheaper UAV-lidar sensor options are coming to market all the time, largely driven by the sensing advances coming 1430 

from development of autonomous vehicles, but these need testing and still require high grade IMU/GNSS solutions to allow 

for absolute geolocation of point clouds. An underappreciated aspect of UAV-lidar is that the IMU/GNSS solutions can often 

be more expensive than lidar sensor itself. The additional cost of UAV-lidar to increase sub-canopy snow depth accuracy in 

dense forest situations in this application can be simplified to $15,000 CAD per cm reduction in RMSE (difference in 

equipment costs/difference in Fortress- Tree RMSE).   Logistical differences between UAV-lidar and UAV-SfM are more 1435 

subtle than the stark cost difference. UAV-SfM simply requires a UAV platform and camera in its basic configuration and 

therefore high endurance, small platforms, with small batteries can be easily deployed to map large areas.   In contrast, most 

current UAV-lidar configurations needs larger platforms that require more cycles of large battery sets to cover similar areas 

which represents a logisticalcal challenge in keeping batteries warm and charged in cold and remote areas. Previous UAV-

SfM experience (Harder et al., 2017) demonstrated the need to utilise GCPs even with PPK/RTK photo geotagging to minimise 1440 

the bias error metric.   The low bias of UAV-lidar errors, without assimilating GCPs, removes the need to deploy GCPs for 

UAV-lidar applications which can be a large time sink. Data processing software suites and workflows are distinct but 

ultimately the same level of geomatics expertise is needed to generate useable information. Despite the lower initial purchase 

costs and longer flight endurance thesimpler logistics the  errors and artefacts that UAV-SfM techniques introduce in the sub-

canopy domainsnow depth measurements, as detailed in sections 4.3.1 and 4.3.2, suggest that UAV-SfM is not able to directly 1445 

measure snow depth in densely vegetated environmentsresults in the noise obscuring the signal (Harder et al., 2017) 

particularly in dense forest situations. If accurate sub-canopy snow depth is required UAV-lidar is the superior option and 

therefore worth the added logistics and costs.  

4.5 Ongoing Challenges and Future Research Needs 

The ability of UAV-lidar to resolve sub-canopy snow depths is not without challenges. Precise classification of surface points 1450 

from snow and ground scans areis needed to resolve the snow depth at the resolutions needed to confidently capture snow-

vegetation interactions. Where there are dense shrubs, the last returns will not necessarily be the snow or ground surface and 

therefore last-return methods common to airborne applications will not be appropriateThe accuracy and resolution demands 

mean that bare surface classification techniques suitable for airborne platforms that efficiently resolve topography and 

hydrography at watershed scales from last returns will be unsuitable for resolving the snow depth around a particular shrub 1455 

from a dense point cloud for example. Sub-canopy snow depth mapping requires careful selection of the appropriate point 
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cloud classification and filtering tools and associated parameters to be able to reliably detect the sub-canopy bare-surface and 

achieve desired quality and precision in a final point cloud. To preserve the small-scale surface variability point cloud 

processing will be less efficient as all points need consideration and the focus on small-scale features will at times lead to 

erroneous inclusion of points representing large -scale non-surface objects. The algorithm and parameters decisions also have 1460 

to be adjusted for each flight and site/environment for UAV-SFM due to the variable quality and noise of the generated point 

cloud.  

An especially challenging feature in resolving a ground surface is the presence of low and dense vegetation such as shrubs and 

wetland reeds. This is evident in looking in the centre of the wetland zones (green red polygons) of Figure 11a where there are 

negative snow depths calculated. In this case, the lidar pulses cannot penetrate the dense vegetation to the underlying ground 1465 

surface and the classified bare ground surface points have a positive bias.   As snow accumulates, the reeds compress and 

shrubs bend over to the extent that the corresponding snow surface is below the biased bare ground surface. In the examples 

presented above, the areas of negative snow are limited to areas where snow depth is relatively shallow in comparison to and 

are not as critical to capture as the deep snow in the wetland edges. This challenge might also be apparent in other regions, 

such as the Arctic tundra, where shrub bending and burial by snow has been extensively documented (Pomeroy et al., 2006; 1470 

Sturm et al., 2005). While shrubs are much sparser than wetland reeds their dynamic change in height and potential to bias 

positively the ground surface extraction will increase uncertainty of snow depth estimation in these hydrologically significant 

snow accumulation areas. More powerful lasers and higher scan rates may be possible to increase point cloud density and 

penetration to the ground surface but leads tocurrent sensors with these characteristics that may exceed the payload 

capabilitiescapacities of most UAV platforms. Advances in bare surface classification/filtering software tools to address the 1475 

large noise associated with low and dense vegetation is an obvious avenue of improvement. This avenue is inherently limited, 

as even a perfect bare surface extraction algorithm will not identify points at the ground surface if pulses cannot penetrate 

dense vegetation to the ground surface. The time of year chosen for the ground surface scan, ideally right after snowmelt when 

vegetation is at its lowest and not growing yet, may minimize errors. Unfortunately, this may not be feasible if the critical 

wetland areas are inundated as is often the case in the Canadian Prairies in spring. 1480 

Mapping sub-canopy snow depth is important but the ultimate variable of interest is SWE. The challenge is that at snow-

vegetation interaction scales there may be significant variability from snow pack densification being driven by different 

processes across a landscape (Faria et al., 2000). Densification from wind packing is prevalent in open areas versus 

metamorphic densification due to temperature gradients in sheltered sub canopy areas (López-Moreno et al., 2013). Current 

methods of modelling or measuring snow density are not without problems at these small scales. Modelling snow density will 1485 

impose conceptual understandings of these processes (Raleigh and Small, 2017; Wetlaufer et al., 2016(Painter et al., 2016) 

which may be inappropriate for the small scale features that need to be represented – these may miss mechanical densification 

from snow clumps unloading or dripping from the canopy for example.   Observational approaches are also a challenge as 

typical in situ measurements are destructive, limited in extent, and often too limited to develop robust relationships of depth 

versus density at both the small scales local and large landscape scales needed (Kinar and Pomeroy, 2015a; Pomeroy and Gray, 1490 
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1995). Opportunities may be available to pair UAV-lidar with other UAV-borne sensors such as passive gamma ray or snow 

acoustics (Kinar and Pomeroy, 2015b) to non-destructively develop higher spatial and temporal resolution estimates of snow 

density and ultimately water equivalent.  

5 Conclusions 

Remote sensing techniques to determine snow depth -vegetation interactions have consistently been challenged by the presence 1495 

of vegetation. This has complicated efforts to observe and understand snow-vegetation interactions at the necessary spatial 

scales. This work directly considers emerging UAV-lidar and UAV-SfM techniques to address this gap in observational 

capacity. Based upon extensive data collection at a variety of sites and snow conditions with varying snow-vegetation 

processes, the ability of UAV-lidar to measure sub-canopy snow depth is demonstrated. UAV-lidar provides snow depth 

estimates with RMSE’s <0.1 m in open areas and <0.17 m in vegetated areas. The UAV-lidar metrics performance consistently 1500 

exceeded the UAV-SfM metrics performance and arewas better than previously reported results in the airborne-lidar and UAV-

SfM literature. The ability of UAV-SfM to measure snow depth in open areas is validated with respect to the growing body of 

literature and reconfirms that UAV-SfM is fundamentally inappropriate to sense sub-canopy surfaces. The clear advantage of 

UAV-lidar is that, as an active sensor, it provides a high point cloud density that is unaffected by surface homogeneity and 

allows for reliable bare surface detection. With UAV-lidar we can now confidently observe sub-canopy snow depth at 1505 

centimetre scales needed to examine snow-vegetation interactions at research catchment extents (ie <5 km2). UAV-lidar is an 

emerging tool that will contribute to improving basin-scale snow accumulation estimates, validation and parametrisation of 

distributed snow models, and enhancing snow vegetation interaction process understanding over the landscape scale. 
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