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Abstract

Clouds play an important role in the climate system: (1) cooling the Earth by reflecting incoming
sunlight to space and (2) warming the Earth by reducting thermal energy loss to space. Cloud
radiative effects are especially important in polar regions and have the potential to significantly
alter the impact of sea ice decline on the surface radiation budget. Using CERES data and 32
CMIPS5 climate models, we quantify the influence of polar clouds on the radiative impact of polar
sea ice variability. Our results show that the cloud shortwave cooling effect strongly influences
the impact of sea ice variability on the surface radiation budget and does so in a counter-intuitive
manner over the polar seas: years with less sea ice and a larger net surface radiative flux show a
more negative cloud radiative effect. Our results indicate that 66 + 2% of'thischange in the net
cloud radiative effect is due to the reduction in surface albedo and the remaining 34 + 1% is due
to an increase in cloud cover/optical thickness. The overall cloud radiative damping effect is 56 +
2% over the Antarctic and 47 + 3% over the Arctic. Thus, present-day cloud properties
significantly reduce the net radiative impact of sea ice loss on the Arctic and Antarctic surface
radiation budgets. As a result, climate models must accurately represent present-day polar cloud
properties in order to capture the surface radiation budget impact of polar sea ice loss and thus the
surface albedo feedback.
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1. Introduction

Solar radiation is the primary energy source for the Earth system and provides the energy driving
motionsin the atmosphere and ocean, the energy behind water phase changes, and for the energy
stored in fossil fuels. Only a fraction (Loebet al., 2018) of the solar energy arriving to the top of
the Earth atmosphere (shortwave radiation, SW) is absorbed at the surface. Some of'it is reflected
back to space by clouds and by the surface, while some is absorbed by the atmosphere. In parallel,
the Earth’s surface and atmosphere emit thermal energy back to space, called outgoing longwave
(LW) radiation, resulting in a loss of energy (Fig. 1). The balance between these energy exchanges
determines Earth’s present and future climate. The change in this balance is particularly important
over the Arctic where summer sea ice is retreating at an accelerated rate (Comiso et al., 2008),
surface albedo is rapidly declining, and surface temperaturesare rising at a rate double that of the
global average (Cohen et al., 2014; Graversen et al., 2008), impacting sub-polar ecosystems
(Cheung et al., 2009; Post et al., 2013) and possibly mid-latitude climate (Cohen et al., 2014;
Cohen et al. 2019).

Clouds play an important role in modifying the radiative energy flows that determine Earth’s
climate. T hisis done both by increasing the amount of SW reflectedback to space and by reducing
the LW energy loss to space relative to clear skies (Fig. 1). These cloud effectson Earth’s radiation
budget can be gauged using the Cloud Radiative Effect (CRE), defined as the difference between
the actual atmosphere andthe same atmosphere without clouds (Charlock and Ramanathan, 1985).
The different spectral components of this effect can be estimated from satellite observations: the
global average SW cloud radiative effect (SWcre) is negative since clouds reflect incoming solar
radiation back to space resulting in a cooling effect. On the other hand, the LW cloud radiative
effect (LWcre) is positive since clouds reduce the outgoing LW radiation to space generatinga
warming effect (Harrison et al., 1990; Loeb et al., 2018; Ramanathan et al., 1989).

Cloud properties and their radiative effects exhibits significant uncertainty in the polar regions
(e.g., Curry et al. 1996; Kay and Gettelman 2009; Boeke and T aylor 2016; Kato et al. 2018). For
instance, climate models struggle to accurately simulate cloud cover, optical depth, and cloud
phase (Cesana et al., 2012; Komurcuet al., 2014; Kay et al. 2016). An accurate representation of
polar clouds is necessary because they strongly modulate radiative energy fluxes at the surface, in
the atmosphere,andat the T OA influencingthe evolution ofthe polar climate systems. In addition,
polar cloud properties interact with other properties of the polar climate systems (e.g., sea ice) and
influence how variability in these properties affects the surface energy budget (Qu and Hall 2006;
Kay and L’Ecuyer 2013; Sledd and L’Ecuyer 2019). Morevoer, Loeb et al. (2019) documented
severe limitations in the representation of surface albedo variations and their impact on the
observed radiation budget variability in reanalysis products, motivating the evaluation of radiation
budget variability over the polar seas in climate models. In this study, we use the Clouds and the
Earth’s Radiant Energy System (CERES) top-of-atmosphere (T OA) and surface (SFC) radiative
flux datasets and 32 Coupled Model Intercomparison Project (CMIPS5) climate models to estimate
the relationship between the CRE and the surface radiation budget in polar regions to improve our
understanding of how clouds modulate the surface radiation budget.
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Figure 1 Schematic representation of radiative energy flows in the polar seas under total sky
conditions (a, ¢) and clear sky conditions (b, d) for two contrasting surface conditions: without sea
ice (a, b) andwith sea ice (c, d). All fluxes are taken positive downwards.
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2. Methods and data

2.1 CERES EBAF Ed4.0 Products: Surface and T OA radiative flux quantitiesare taken from the
NASA CERES Energy Balanced andFilled (EBAF) monthly data set (CERES EBAF-TOA_Ed4.0
and CERES EBAF-SFC Ed4.0), providing monthly, global fluxes on a 1°x1° latitude-longitude
grid (Loebet al., 2018; Kato et al. 2018). CERES surface LW and SW radiative fluxesare used to
investigate the effect of clouds on the surface radiation budget response to sea ice variability over
the polar seas. CERES SFC EBAF radiative fluxes have been evaluated through comparisons with
46 buoys and 36 land sites across the globe, including the available high-quality sites in the Arctic.
Uncertainty estimates for individual surface radiative flux terms in the polar regions range from
12-16 W m2 (16) at the monthly mean 1°x1° gridded scale (Kato et al. 2018). CERES EBAF-
TOA and SFC radiative fluxes show a much higher reliability than other sources (e.g.,
meteorological reanalysis) and represent a key benchmark for evaluating the Arctic surface
radiation budget (Christensen et al. 2016; Loeb et al. 2019; Duncan et al. 2020).

In addition to radiative fluxes, cloud cover fraction (CCF) and cloud optical depth (COD) data
available from CERES EBAF data are used. Monthly mean CCF and COD data are derived from
instantaneous cloud retrievals using the Moderate-resolution Imaging Spectroradiometer
(MODIS) radiances (Trepte et al. 2019). Instantaneous retrievals are then are spatially and
temporally averaged onto the 1°x1°monthly mean grid consistent with CERES EBAF.

2.2 Cloud Radiative Effect: CRE is used as a metric to assess the radiative impact of clouds on
the climate system, defined as the difference in net irradiance at TOA between total-sky and clear-
sky conditions. Using the CERES Energy Balanced And Filled (EBAF) Ed4.0 (Loebet al., 2018)
flux measurements and CMIP5 simulated fluxes, CRE is calculated by taking the difference
between clear-sky and total-sky net irradiance flux at the TOA. All fluxes are taken as positive
downwards.

SWre=SWiotal— SWclear (D
LW e=LWotal — LW lear 2)
NEIL;e=SWere + LW e 3)

2.3 Earth’s surface radiative budget: Surface radiative fluxes are taken from the CERES SFC
EBAF Ed4.0 data set (Kato et al., 2018). The net SW and LW fluxes at the surface (SWg and
LW, respectively) are calculated as the difference between the downwelling SW gown (LW down)
and upwelling SW, (LW ;) as shown in equations 4 (5).

SWst=SWdown— SWup “4)

LW t=LW down — LWyp (5)
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NEL=SWsf + LW (6)

2.4 Sea ice concentration: Sea ice concentration (SIC) data are from the National Snow and Ice
Data Center (NSIDC, http://nsidc.org/data/G02202). Thisdataset isa Climate Data Record (CDR)
of SIC from passive microwave data and provides a consistent, daily and monthly time series of
SIC from 09 July 1987 through the most recent processing for both the North and South Polar
regions (Penget al., 2013; W. Meier, F. Fetterer, M. Savoie, S. Mallory, R. Duerr, 2017). The data

L { Field CodeChanged

is provided on a 25 km x 25 km grid. We used the latest version (Version 3) of the SIC CDR
createdwith a new version of the input product, from Nimbus-7 SMMR andDMSP SSM/I-SSMI'S
Passive Microwave Data.

2.5 Polar seas: We define the polar seas as ocean regions where the monthly SIC is larger than
10% at least one month during 2001-2016 period. Polar seas extent is shown in Figure Sl1.

2.6 CMIP5 Models To reconstruct the historical CRE and surface energy budget and project their
future changes, we used an ensemble of simulations conducted with 32 climate models (models
used are shown in Figure 3 and S3) contributing to the Coupled Model Intercomparison Project
Phase 5 (CMIP5) (Taylor et al., 2012). These model experiments provided: historical runs (1850-
2005) in which all external forcings are consistent with observations and future runs (2006-2100)
using the RCP8.5 emission scenarios (T aylor et al., 2012). The comparison with the satellite data
is made over 2001-2016 by merging historical runs 2001-2005 with RCP8.5 2006-2016.

2.7 Estimation of the local variations in radiative flux, cloud cover, and cloud optical depth
concurrent with changesin seaice concentration

This study employs a novel method for quantifying the variations in radiative fluxes and cloud
properties with SIC. This methodology leverages inter-annual variability of sea ice cover to assess
these relationships. Figure 2 schematically shows the methodology based on the following steps.
We use SW as an example and apply the approach in the same way to other variables.

1) ASW; values are summarized in a schematized plot (Figure 2a) where each cell j in such plot
shows the average ASW,, observed for all possible combinations of SIC at a grid box between two
consecutive observation years (year yi and yi+1 from time period 2001-2016) displayed on the X
and Y axes, respectively. For the sake of clarity in Figure 2 the X and Y axesreport SIC in intervals
of 10%, while in Figure 5, 6, 7, S5 and S6 the axes are discretized with 2% bins.

2) Because oftheregular latitude/longitude grid used in the analysis, the area of the grid cells (a;;,)
varies with the latitude. The energy signal (4SW};) is therefore computed as an area weighted
average (Equation 7) where M is the number of grid cells that are used to compute cell j in the
schematised plot Fig 2a. Figure 2b shows the total area of all these grid cells as described by
Equation 8.

M
AsW; = Em=1amtin 7)

E%=1am
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3) Calculation of the area weighted average (4SW,,) of the energy signal of all N cells with the
same fraction X ofa change in SIC (shown with the same colour in Figure 2a) Equation 9.

N aasw;
_ Y=  AjASW;

asw, = =57 ©)

?’zlAj is the total area of all grid cells with a particular SIC change.

ASW, is the energy weighted average of all grid cells with a particular SIC change.
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Figure 2 Schematic representation of the methodology used to quantify the energy flux sensitivity
to changes in sea ice concentration as a linear regression between the percentage of sea ice
concentration and the variation in energy flux (right panel) using SW energy flux data and sea ice
concentration defined in the left panels.
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The average energy signals (ASW,,) per class of sea ice concentration change are reported in a
scatterplot (Fig. 2 right panel) and used to estimate a regression line with zero intercept.

The slope S of this linear regression represents the local SW energy signal generated by the
complete sea ice melting ofa 1° grid cell. The weighted root mean square error (WRMSE) of the
slope is estimated by Equation 10, where p represents one of the NP pointsin the scatterplot (Fig
2 right panel) and X;, is the relative change in sea ice concentration in the range +1 (equivalent to
+100% of sea ice cover change).

2
SNP Ap(aswy -5 X,)
23R Ap

WRMSE = , where A4, =X 4 (10)

j=1

2.8 Diagnosis of contributions to SWcre

SWecre at the surface for the yearyi (Eq. 11) and year yi+1 (Eq. 12) is function of surface albedo
a, SWdown under clear sky conditions (SW l.;) and SWdown under total sky conditions
(SW ‘Ltot)~

SWCTeyi = (1 - ayi) sw ltot,yi 4 lclr,yi) (11)

SWCTeyHl = (1 - ayi+1 )(SW l!:ot,yi+1 -Ssw lcl‘r,yi+1) (12)

Using the first-order Taylor seriesexpansion to (11) yields
ASWerey;yq_y; =

(—ayir1—yi) SW Lioryi =SW Loy + (1= atyi) Byis —yil(SW Lpoe =SW gy)  (13)

Where

Ayi+1—yi(SVV ‘J'tot —-Sw ’Lclr) = (SW ‘J'tot,yi+1 —-Sw ‘Lclr,yi+1) - (SW ltot,yi 4 lclr,yi) (14)

Separating thetermsyields,
ASWWEAIIJLB = (_Aayi+ 1—yi)(SW ltot,yi -Ssw lcl‘r,yi) (15)

Where ASWcrey . 5 is the part of SWcre change that is induced by the change in surfacealbedo.

A~S‘Wcreclo1.ui = (1 - ayi)AyHl—yi(SW l'tot 4 lclr) (16)

Where ASWcre 44 is the part of SWcre change that is induced by the changein cloud coverandcloud
optical depth.
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ASWerey g —y; = ASWereg e + ASWere oy (17).

The above equations are used in figure 7 and S5.

3. Results and dis cussions

3.1 Negative correlation patterns be tween cloud radiative effect and surface radiation on
polar seas

Given the known cloud influence on the surface radiative budget, a positive correlation between
T OA CRE andsurface radiative budget is expected (the amount of absorbed radiation at the surface
decreases with a more negative SWcre and a less positive LWcre). Figure 3 illustrates a positive
correlation between the annual mean NET cre and NET sfc over much of the global ocean using the
CERES TOA flux data from 2001-2016. However, our analysis reveals the opposite pattern over
the polar seas (defined in section 2.5) where the correlation is negative over the Antarctic and
partly negative over the Arctic (Bering Strait, Hudson Bay, Barents Sea and the Canadian
Archipelago; Fig. 3ab). Considering the SWcre and LW cre components, we find that the SWcre
(Fig. 3cd) shows a similar pattern of correlation as the NET cre (Fig. 3ab) but with a stronger
magnitude, while LWcre generally shows the opposite correlations (Fig. 3ef). This suggests that
the factors influencing SWcre are responsible for the sharp contrast in the correlation found in the
polarregions. Indeed, SWsfc and SWere (Fig. 3gh) show the sharpest and most significant contrast
between the polar regions and the rest of the world (Fig. S2 is similar to Fig. 3 but only significant
correlations at the 95% confidence level are reported in blue and red colors). Overall, climate
models are able to reproduce the spatial pattern of the observed SW correlation, but also show a
large inter-model spread in the spatial extent of the phenomena (Fig. 4 and S3). On the other hand,
several models completely fail to reproduce the correlation. ACCESS1-3, MIROC5, CanESM2
and CSIRO-Mk3-6-0 models show negative correlation over Antarctic continent in contrag to
observed positive correlation. Some models, like IPSL-CM5B-LR, GISS-E2-R and bcc-csm1-1,
fail to reproduce the observed negative correlation over the Southern Ocean. T his suggests that
these models contain misrepresentations of the relationships SWcre and NET sfc likely resulting
from errors in the relationships between sea ice, surface albedo, cloud cover/thickness, and their
influence on surface radiative fluxes that could severely impact their projections. Moreover, Fig.
4 demonstrates that simple correlations between NET sfc and the individual radiation budget terms
represents a powerful metric for climate model evaluation allows for a quick check for realistic
surface radiation budget variability in polar regions.
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Figure 3 Correlation between TOA CRE and surface radiation budget terms over 2001-2016 from
CERES measurements for the Northern Hemisphere (aceg) and Southern Hemisphere (bdfh) polar
sea. Positive correlations shown by the red color indicate that years with less NET sfc coincide
with years where NET cre has a stronger cooling effect and vice versa.
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3.2 Effects of sea ice concentration change

We illustrate that the apparent contradiction over the polar seas between NET cre and NET sfc
found in Fig 3ab is caused by the factors contributing to the SW fluxes. T his can be explained by:
(1) SWcre can change even if cloud propertiesare held constant due to the changes in clear-sky
radiation induced by changes in sea ice and surface albedo. When surface albedo is reduced, the
surface absorbs more sunlight at the surface resulting in a greater SWtotal. At the same time,
SWoclear increases since the lower albedo allows a larger fraction of the extradownwelling SW at
the surface to be absorbed (see Fig. 1). Therefore, SWcre becomes more negative even in the
absence of cloud changes (a purely surface-related effect); (11) On the other hand, the relationship
between cloud cover/thicknessand sea ice could lead to cloudier Polar seas under melting sea ice
(Abe et al., 2016; Liu et al., 2012) such that the SWcre decreases (increasing the amount of SW
reflected back to space by clouds, see Fig. 1), thus the cloud cooling effect is enhanced
concurrently with melting sea ice (a purely cloud-related effect). Both of these factors occur
simultaneously.

Over the Antarctic Oceanseas, analysis of the year-to-year changesin SWdown stratified in 2%
SIC bins retrieved from satellite microwave radiometer measurements (see section 2.7) shows an
increase in SWdown with increased SIC and vice-versa (Fig. 5a). T his suggests that years with
higher SIC also have fewer and/or thinner clouds (Liu et al., 2012) (Fig. 6), larger SWdown and
also larger upward SW radiation (SWup) (Fig. 5b), due to higher surface albedo (Fig. $4).
Consequently, these years show a more negative SWsfc (Fig. 5¢) and thus are characterized by
stronger surface cooling. Furthermore, fewer clouds implies a reduction of the cloud cooling effect
(less negative SWcre) as described above in process (11), thisaccountsfor (19.42 x 100) /56.59 =
34 + 1% (Fig. 7d bottom) ofthe total change in SWcre, and asdescribed in process (1) the increase
in the surface albedo also makes SWcre less negative and explains (37.17 % 100) /56.59 = 66 +
2% of the observed change (Fig. 7d bottom). Thus, the observed negative correlation between
SWocre and SWsfc over the polar seas results from the larger effectsof process (1) than (11). Similar
results are found over the Arctic Ocean©eean with slightly different sensitivity (Fig. S5, S6). T his
difference istied to differencesin sun angle/available sunlight, as Antarctic sea ice is concentrated
at lower latitudes than Arctic sea ice.

Using the regression relationshipsderived from our composite analysis, we estimate the magnitude
of the cloud effect. For the Antarctic system, we use the numbers found in Figure 5e where we
find the annual mean relationship between NETsfc (in W/m?) and SIC (fraction between 0 and 1),
and NET cre (in W/m?) and SIC (fraction between 0 and 1).

ANET sfc=(-36.61%0.72)ASIC (18)
ANET cre=(47.03+1.01)ASIC (19)

When excluding the CRE, the ANET sfc would be equal to (-36.61-47.03) ASIC =-83.64 ASIC.

We estimate that the existence of clouds and their property variations are damping the potential

12
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increase in the NET sfc within the Antarctic system due to the surface albedo decrease from sea ice
melt by 56% (47.03/83.64). The uncertainty is calculated by summing the uncertainties shown in
equation (18) and (19) as follows: (0.722+1.012)Y/2/83.64=2%.

Similarly, over the Arctic (Fig. S5), we compute the cloud influence on the surface net radiative
budget that covarieswith sea ice loss is 4743 %, in agreement with the study of Sledd andL’Ecuyer
(2019).
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Altogether the results suggest clouds substantially reduce the impact of sea ice loss on the surface
radiation budget and thus the observed sea-the-sea ice albedo feedback. Thiseffect in the polar
climate system leads to a substantial reduction (56+2% over the Antarctic and 47+3% over the
Arctic) of the potential increase in NET sfc in response to sea ice loss. Thismagnitude issimilar to
a previousstudy (Quand Hall 2006) showing across a climate model ensemble that clouds damped
the TOA effect of land surface albedo variations by half. Sledd and L’Ecuyer (2019) also
determined that the cloud damping effect (also referred to as cloud masking) of the TOA albedo
variability results from Arctic sea ice changes was approximately half. Despite this mechanism,
the sharp reduction in Arctic surface albedo has dominated the recent change in the surface
radiative budget and has led to a significant increase in NET sfc since 2001 in the CERES data
(Duncan et al. 2020). These results demonstrate that the trends in polar surface radiative fluxes are
driven by reductionsin SIC and surface albedo andthat clouds have partly mitigatedthe trend(i.e.,
a damping effect). Our findings highlight the importance of processes that control sea ice albedo
(i.e. sea ice dynamics, snowfall, melt pond formation, and the deposition of black carbon), as the
surface albedo of the polar seas in regions of seasonal sea ice is crucial for the climate dynamics.

3.3 Sensitivity of the surface energy budget to variability of seaice concentration

Our results are consistent with other recent studies (T aylor et al., 2015; Morrison et al. 2018) that
demonstrate a CCF response to reduced sea ice in fall/winter but not in summer (Figure 8a) over
the Arctic OceanOeean. The lack of a summer cloud response to sea ice loss is explained by the
prevailingair-sea temperature gradient, where near surface air temperaturesare frequently warmer
than the surface temperature (Kay and Gettelman 2009). Surface temperatures in regions of sea
ice melt hover near freezing due to the phase change, whereas the atmospheric temperatures are
not constrained by the freezing/melting point. Despite reduced sea ice cover,-strerg increases in
surface evaporation (latent heat) are limited (Fig. 8mn), as also suggested by the small trends in
surface evaporation ratederived from satellite-based estimates (Boisvert and Stroeve, 2015; Taylor
et al., 2018). We argue that the strong increase of SWcreCloud under decreased sea ice observed
during summer is induced by larger values of COD (Fig. 8a), which depend on the liquid or ice
water content. We also show that the relationships derived from our observation-driven analysis
match the projected changes in the Arctic and Antarctic surface energy budget in the median
CMIP5 model ensemble (Fig. 8). However, we find a large spread amongst climate models that
indicates considerable uncertainty.

Analyzing the seasonal cycle of the sensitivity of the surface energy budget to SIC variability, we
found that SWsfc (SWcre) explains most of the observed changes in the NET sfc (NET cre) during
summer, while LWsfc plays a minor role (Fig. 8). In contrast, during winter LWsfc (LWcre)
explains most of the observed changes in the NET sfc (NET cre). In general, the median of the 32
CMIPS5 (Taylor et al., 2012) climate models captures the observed sensitivity of the radiative
energy budget and cloud cover change to SIC but the spread between climate models is large,
especially for CCF. We have to note here that, the numbers reported in Figure § are for 100% SIC
loss, while the ones reported in the previous figures (Fig. 5, 6 and 7) are for 100% SIC gain,
explaining the opposite sign.
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3.4 Projections and uncertainties of cloud radiative effects on surface energy budget

Under the RCP8.5 scenario (&business as usual-case”; -Taylor et al., 2012), CMIP5 models show
an increase in SWsfc over the Arctic OceanOeean (Fig. 9a), -consistent with the expected large
decrease in the SIC (Comiso et al., 2008; Serreze et al., 2007; Stroeve et al., 2007). This increase
in SWsfc occurs despite the fel-&ﬁ—elryhlarge concurrent and opposing change in eloud-cooling
etfeet{SWecrey. Projections of Future LW flux changeses (Fig. 9c¢) are expected to walHhikelsyplay
a smalller, -but non-negligible role on total energy budget in summer by slightly furtherincreasing
NET sfc (Fig. 9e)-and-reducing NETere. In addition, CMIPS models shewelearl-indicate that by
2100- the magnitude of the decreasein-NETcre decrease will be is-slightly smaller thant the
increase in NET sfc (Fig. 9¢) over the Arctic OOcean; —* while. -the Antarctic polar sea region
shows the opposite (Fig. 9f). Thisis in line with the estimated dampesning effect of clouds coming
from CERES over 2001-2016 that is about 47+3% in the Arctic and 56+2% in the Antarctic.
tndeed T he stronger cloud damping effect in the Antarctic region causes-is indicated by the

stronger negative change in the NET cre to-becomeevenmere-negativein the Antarctic compared
than-to the Arctic (Fig. 9efgh).

Large uncertainties remain in the rate of declinerate-ofsummer sea ice decline and the timing of
the first eccurrenceofa-sea ice-free Arctic summer (Arzel et al., 2006; Zhang and Walsh, 2006).
TFhereasonprocessesresponsible for behindthe large inter-model spreadbetween climate models
is-are still under debated-scrutiny (Holland et al., 2017; Simmonds, 2015; Turner et al., 2013).
However, recent studies reaffirm the important role of the sea ice albedo feedback and the
associated increased upper Arctic O9cean heat content (Holland and Lundrum 2015; Boeke and
Taylor 2018) as well as the contributions from temperature-related feedbacks (Pithan and
Maruitsen 2014; Stuecker et al. 2018). Ia-thisstudyFigure 9gh;-we—exploredthe- shows that the
annual mean Arctic and Antarctic sea -ice extent trend from 32 CMIPS models a#d-possesses a
#ind-a-large positive correlation with the simulated trend in the SWdown, in line with previous
studies (Hollandand Lundrum 2015 )Fisure-9gh). Wenote that from the 32 CMIPS modelstested,
only a few show SWdown trends consistent with observed trendsin SWdown and SIC over 2001-
2016 (Figure 9gh). Understanding the factors responsible for this disagreement between model-
simulated and observed trends in SWdown and SIC may be provide insights into the processes

responsible for the inter-model spledd in Arctic climate change projections and are the subject of
future work. FhisWe also find ¢ — sts-that the models showine—with a larger trend in
cloud cover also shew-possess a larger decrease~ in sea_-ice extent, -and-suggesting that-a stronger
coupling between efthese two variables that may become stronger eceuin the future. However,
the direction of causality between the two variables is unclear and also requires further study.- We

4. Conclusion
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The manuscript addresses two important climate science topics, namely the role of clouds and the
fate of polar sea ice. The work is grounded in a long time series of robust satellite observations
that allowed us to document an important damping effect in the polar cloud-sea ice system using
aunique inter-annual approach. Our results agree with several previous works that approached the
problem from a different perspective (Hartmann and Ceppi 2014; Sledd and L’Ecuyer 2019). In
addition, we show how 32 state-of-the-artclimate modelsrepresent aspectsofthe surface radiation
budget over the polar seas.

Our data-driven analysis shows that polar sea -ice and clouds interplay in a way that substantially
reduces the impact of the sea ice loss on the surface radiation budget. We found that when sea ice
cover is reduced between two consecutive years, that-the cloud radiative effect becomes more
negative, damping the total change in the net surface energy budget. The magnitude of this effect
is important. Satellite data indicates that the more negative cloud radiative effect reduces the
potential increase of net radiation at the surface by approximately half. One-third of this cloud
radiative effect change isinduced by the direct change in cloud cover/thickness, while two-thirds
of this change results from the surface albedo change.

In addition, we demonstrated that the modelsthat show larger trends in polar sea ice extent also
show larger trends in surface net solar radiation. In order to understand current and future climate
trajectories, model developments should aim at reducing uncertainties in the representation of
polar cloud processes in order to improve the simulation of present-day cloud properties over the
polar seas. Present-day Arctic and Antarctic cloud properties strongly influence the model
simulated cloud damping effect on the radiative impacts of sea ice loss.

Future cloud changes and sea ice evolution represent major uncertainties in climate projections
due to the multiple relevantpathways through which cloudiness and sea ice feed back on Earth’s
climate system (SolomonsS: etal.2007).
Our evidence derived from Earth observatlons prov1des add1t10na1 1n51ght into the coupled
radiative impacts of polar clouds and the changing sea ice cover (Fig. 8) that may provide a useful
constraint on model projections and ultimately improve our understanding of present and future
polar climate. Atthe-veryleastOn a practical level, our results demonstrate a simple correlation
analysis between the net surface radiation budget and individual radiation budget terms that can
be used to quickly evaluate climate modelsfor realistic surface radiation budget variability in polar
regions. Ultimately, our findings on the interplay between cloud and sea ice may support an
improvement in the model representation of the cloud-ice interactions, mechanisms that may
substantially affect the speed of the polar sea ice retreat, which in turn has a broad impact on the
climate system, on the Arctic environmentandon potential economic activitiesin the Arctic region
(Buixadé Farré et al., 2014).
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