Supplement to: Estimating fractional snow cover from passive microwave brightness temperature data using MODIS snow cover product over North America

Xiongxin Xiao¹, Shunlin Liang², Tao He¹, Daiqiang Wu¹, Congyuan Pei¹, Jianya Gong¹

- ¹ School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
- ² Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA

Correspondence to: Tao He (taohers@whu.edu.cn)

Lists:

5

20

- Table S1. MODIS NDSI snow cover layer recoding description
- 10 Table S2. The statistics of top nine important variables for random forest
 - Table S3. The optimization tests of learning rate of ANN on prairie dataset of 2017.
 - Table S4. Variable selection tests in 6 scenarios on three land cover types (forest, shrub and prairie). The accuracy indexes of the estimation are calculated using OOB error estimates method.
- Table S5. Variable selection tests in 6 scenarios on three land cover types (forest, shrub and prairie). The accuracy indexes of the estimation are calculated using 10-fold cross validation (CV).
 - Table S6. The parameters of Linear regression formula
 - Figure S-1. Using OOB error estimates to evaluate the performance of random forest models with increasing training sample size for forest type
 - Figure S-2. Using OOB error estimates to evaluate the performance of random forest models with increasing training sample size for prairie type
 - Figure S-3. Using OOB error estimates to evaluate the performance of random forest models with increasing training sample size for bare land type
 - Figure S-4. The color-density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow cover for four algorithms (linear regression, ANN, MARS, and random forest) for shrub type.
- Figure S-5. The color-density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow cover for four algorithms (linear regression, ANN, MARS, and random forest) for prairie type.
 - Figure S-6. The color-density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow cover for four algorithms (linear regression, ANN, MARS, and random forest) for bare land type.
 - Figure S-7. Figure S-7. Comparison of the reference MODIS fractional snow cover (A) with our estimated fractional snow cover (B) in continuous value (6.25-km) on February 27th, 2017 (2017058)

Figure S-8. The accuracy indicators (OA, precision, recall, specificity, F1-score, kappa) of snow cover detection from two algorithm (Grody' algorithm; Random forest) for four land cover types.

Table S1. MODIS NDSI snow cover layer recoding description

ID	Description	New ID			
0 ~ 100	NDSI snow cover	Snow-covered/snow-free			
200	Missing data	Cloud			
201	No decision				
211	Night				
250	Cloud				
254	Detector saturated				
237	Inland water	Water			
239	Ocean				
255	Fill	Fill			

Table S2. The statistics of top nine important variables for random forest

ID	Variables	Count (the maximum is 4)
1	Latitude	4
2	T37h	4
3	T37v	4
4	T85h	4
5	T85v	4
6	T_19v_37v	4
7	T_22v_19v	2
8	T_22v_85v	4
9	T_37v_85v	4

Table S3. The optimization tests of learning rate of ANN on prairie dataset of 2017.

	Test A-1	Test A-2	Test A-3	Test A-4
Hidden Layers	1	1	1	1
Learning Rate	0.1	0.2	0.3	0.4
R	0.712	0.718	0.672	0.639
MAE	0.152	0.155	0.170	0.185
RMSE	0.192	0.198	0.212	0.230
Time spent modeling / s	50.86	13.18	13.95	13.47

Table S4. Variable selection tests in 6 scenarios on three land cover types (forest, shrub and prairie) for random forest method. The accuracy indexes of the estimation are calculated using OOB error estimates method.

Land	cover	Indexes	Scenario-	Scenario-	Scenario-	Scenario-	Scenario-	Scenario-
type			1	2	3	4	5	6
forest		R	0.699	0.594	0.505	0.696	0.688	0.646
		MAE	0.168	0.190	0.206	0.168	0.170	0.178
		RMSE	0.207	0.233	0.252	0.208	0.210	0.221
		Time spent modeling / s	8.38	6.81	3.77	6.34	6.4	6.73
shrub		R	0.808	0.749	0.702	0.804	0.800	0.771
		MAE	0.140	0.158	0.169	0.141	0.142	0.151
		RMSE	0.187	0.209	0.226	0.188	0.190	0.201
		Time spent modeling / s	3.98	3.22	1.83	3.02	3.17	3.1
prairie		R	0.743	0.650	0.599	0.743	0.743	0.698
		MAE	0.156	0.179	0.188	0.155	0.155	0.167
		RMSE	0.194	0.220	0.233	0.193	0.194	0.207
		Time spent modeling / s	8.45	6.82	4.18	7.08	6.53	6.43

Table S5. Variable selection tests in 6 scenarios on three land cover types (forest, shrub and prairie) for random forest method. The accuracy indexes of the estimation are calculated using 10-fold cross validation (CV).

Land	cover	Indexes	Scenario-	Scenario-	Scenario-	Scenario-	Scenario-	Scenario-
type			1	2	3	4	5	6
forest		R	0.704	0.599	0.506	0.699	0.693	0.652
		MAE	0.167	0.190	0.205	0.168	0.169	0.178
		RMSE	0.206	0.231	0.251	0.207	0.209	0.219
		Time spent modeling / s	8.38	6.81	3.77	6.34	6.4	6.73
shrub		R	0.808	0.754	0.704	0.806	0.802	0.773
		MAE	0.140	0.157	0.169	0.140	0.142	0.150
		RMSE	0.187	0.208	0.225	0.187	0.189	0.200
		Time spent modeling / s	3.98	3.22	1.83	3.02	3.17	3.1
prairie		R	0.746	0.659	0.606	0.746	0.747	0.701
		MAE	0.156	0.177	0.189	0.155	0.155	0.166
		RMSE	0.193	0.217	0.231	0.193	0.193	0.206
		Time spent modeling / s	8.45	6.82	4.18	7.08	6.53	6.43

Linear Regression formula, in which, FSC denotes fractional snow cover, $a_1 \sim a_{12}$ means the regression coefficient of each variable, b is the intercept term:

$$FSC = a_1 * lat + a_2 * lon + a_3 * dem + a_4 * slope + a_5 * aspect + a_6 * T_19v_19h + a_7 * T_19v_37v \qquad (S_{+ a_8 * T_19h_37h + a_9 * T_22v_19v + a_{10} * T_22v_85v + a_{11} * T_37v_37h + a_{12} \qquad 1) \\ * T_37v_85v + b$$

Table S6. The parameters of Linear regression formula

	Forest	Shrub	Prairie	Bare land
a_1	1.7124	1.8286	1.3451	1.041
a_2	0.5667	0.7326	0.3796	1.041
a_3	0.6148	0.1765	-0.1648	0.1324
a_4	-0.1449	0.2597	-0.178	0.4921
a_5	0.0266	0.0134	-0.1605	0.0403
a_6	10.1795	13.1437	-23.7192	25.3841
a_7	-9.1104	-4.7906	31.3559	-32.695
a_8	8.8293	12.7346	-24.478	23.8666
a_9	-2.4825	8.1627	9.6261	-7.1022
a_{10}	2.2213	-5.2339	-4.2919	12.2749
a_{11}	-8.5071	-12.9567	22.4968	-23.3069
a_{12}	-0.8334	6.5589	6.4447	-10.2661
<i>b</i>	-1.1476	-9.7496	-9.1063	4.9851

Figure S-1. Using OOB error estimates to evaluate the performance of random forest models with increasing training sample size for forest type

Figure S-2 Using OOB error estimates to evaluate the performance of random forest models with increasing training sample size for prairie type

Figure S-3 Using OOB error estimates to evaluate the performance of random forest models with increasing training sample size for bare land type

Figure S-4 The color-density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow cover for four algorithms (linear regression, ANN, MARS, and random forest) for shrub type. The accuracy metric refer to Table 5. [Note: out of range fractional snow cover values of linear regression, ANN and MARS were truncated on 0 and 1]

Figure S-5 The color-density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow cover for four algorithms (linear regression, ANN, MARS, and random forest) for prairie type. The accuracy metric refer to Table 5. [Note: out of range fractional snow cover values of linear regression, ANN and MARS were truncated on 0 and 1]

Figure S-6 The color-density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow cover for four algorithms (linear regression, ANN, MARS, and random forest) for bare land type. The accuracy metric refer to Table 5. [Note: out of range fractional snow cover values of linear regression, ANN and MARS were truncated on 0 and 1]

Figure S-7. Comparison of the reference MODIS fractional snow cover (A) with our estimated fractional snow cover (B) in continuous value (6.25-km) on February 27th, 2017 (2017058)

Figure. S-8. The accuracy indicators (OA, precision, recall, specificity, F1-score, kappa) of snow cover detection from two algorithm (Grody' algorithm; Random forest) for four land cover types (A: forest; B: shrub; C: prairie; D: bare land)