
Dear editor, reviewers 

We would like to thank you and the reviewers for the constructive and insightful comments and suggestions to improve our 

manuscript. We have carefully revised the manuscript according to the suggestions and comments, and provide point-by-point 

response following each comment and suggestion.  

In the following, reviewer comments are given in black and responses are given in blue (the revised sentence was set in italics). 5 

The corresponding changes have been made in the revised paper with track changes. We mainly did follow ing modification 

in the updated manuscript:  

1) The revised manuscript has been proof read by a native English speaker; 

2) Another two year (2008, 2009) data together with the data in 2017 were used in evaluation stage in Section 4.3; 

correspondingly, we revised Fig. 7. 10 

3) We added the additional description information about the Fig. 8 in Section 4.3. 

4) We added the description map on fractional snow cover distribution across North America (Figure S-9). 

We think the revised manuscript has addressed all the reviewers’ comments and hopefully it is now suitable for publication 

in The Cryosphere 

Sincerely, 15 

Xiongxin Xiao 

  



----------------------------------------------------------------------------------------------------------------------------------------------------- 

**********************Reply to comments from anonymous reviewer 1#*********************** 

----------------------------------------------------------------------------------------------------------------------------------------------------- 

REVIEWER 1 # 

This manuscript describes the development and validation of a technique to estimate fractional snow cover (FSC) from passive 5 

microwave brightness temperatures. Optical FSC estimates for algorithm training and validation were derived from MODIS 

Collection 6. Surface snow depth measurements and an independent passive microwave snow extent classifier were also used 

for evaluation. Overall, the study is comprehensive and detailed. I commend the authors for the thorough nature of the study 

– multiple combinations of passive microwave measurements are considered, sensitivity to various configurations of the 

retrieval are compared, and multiple datasets are used for evaluation. Because of this comprehensive approach, description of 10 

the analysis is sometimes unclear in some places, and the logic is not always clear on the back and forth conversion between 

FSC information derived via the retrieval and comparison with MODIS, and binary snow extent information used for 

evaluation. This can get confusing in places. But overall, the technique shows good promise, and this initial overview makes 

for a new contribution worthy of publication The Cryosphere.  

Please note that the paper requires a thorough edit for grammar, English usage, and word choice. Edits of this nature were too 15 

numerous to identify individually in my review. 

Response: Thanks for your valuable comments and suggestions to improve our manuscript. We have replied to each comment 

below. The manuscript has been edited by a native English speaker. Additionally, to make the description of the conversion 

from fractional snow cover to binary snow cover clear, we changed “random forest FSC” to “random forest SCA” in binary 

snow cover area information evaluation in the revised manuscript.  20 

 

General comments 

Please double check all the data citations in Section 2.1 and Section 2.2. Some citations  are missing from the reference list.  

While it’s fine to provide the URL to the NSIDC webpage which hosts the data, the proper data citations (which are provided 

under the“Citing These Data” tab on the NSIDC webpages) must also be used. 25 

Response: Thanks for your suggestion. We updated and added the corresponding data citations for the dataset used in Section 

2. 

 

Section 2.3.2: why is the IGBP land cover data product described here in addition to the MCD12Q1 product? This dataset 

does not seem to be used in the analysis: :  30 

Response: MODIS land cover data have several classification scheme, including the IGBP classification schemes. The 

MODIS land cover data with IGBP classification scheme was used as the basis data of fractional snow cover retrieval model 

 

Page 6 lines 14-23: Previous work has shown the potential for passive microwave SWE datasets, despite high uncertainty in 

the SWE retrievals, to provide useful snow extent information. This provides additional justification for the approach 35 

developed in this study. A brief mention of this could be added to this paragraph, including a citation to: Brown, R., C. Derksen, 

and L. Wang. 2010. A multi-dataset analysis of variability and change in Arctic spring snow cover extent, 1967-2008. Journal 

of Geophysical Research. 115: D16111, doi:10.1029/2010JD013975. 



Response: Thanks for your suggestion. We cited the related literature and added the description about snow parameters (snow 

cover extent, snow depth and water equivalent) retrieval in page 7 lines 16-19 as follows: 

“A number of published work have demonstrated the potential to derive snow depth and SWE using passive microwave 

radiation data (Kim et al., 2019; Wang et al., 2019). Despite the high uncertainties associated with snow depth and SWE 

estimations, using passive microwave data can provide useful snow cover extent information (Brown et al., 2010; Foster et 5 

al., 2011).” 

 

Section 3.1: I was disappointed e that the analysis period was limited to January and February. This is a real limitation 

because the spring period is the most important with respect to the snow-albedo feedback and the contribution of snow melt 

to streamflow. Additionally, the snow melt period may pose significant challenges to the use of passive microwave data 10 

because of a loss of sensitivity to snow when it is wet. This limitation to the study is acknowledged in Section 5.1, but 

I suggest the conclusions and discussion clearly emphasize that these results are applicable to dry snow conditions, 

and that performance is likely to be weaker during snow melt. 

Response: Thanks for your comment. We do agree that the estimation and analysis of fractional snow cover should cover the 

whole snow cover season (autumn, winter and spring). Noted that the fractional snow cover estimation work we're doing will 15 

cover all the year round. Additionally, we clarified the description information of applicable condition for this study in Section 

6 (page 26 lines 8-10) based on your suggestion:  

“These models established using several data sources in January and February had better applicability in dry snow conditions, 

while estimation results could be less accurate in wet snow conditions.” 

 20 

Section 3.2: the short-term cloud filter for single days of cloud cover is clearly described (page 8 line 21) but it’s not 

clear how longer cloudy periods are dealt with. If cloud is present for two or more consecutive days, is that pixel 

masked as cloud as described on page 9 line 3? Please state this clearly. 

Response: Thanks. If cloud is present for two or more consecutive days, the pixel would be masked as cloud according to 

short term cloud filter. Additionally, we revised and clarified the description about the short term cloud filter (page 9 lines 21-25 

24)  

“2) Short-term temporal filter: if the status of a pixel in the input image (MCD10A1) in a given day (t) was cloud and both 

the preceding (t - 1) and succeeding (t + 1) days were snow-covered (or snow-free), the pixel in the output image (MCTD10A1) 

in the given day (t) was assigned as snow-covered (or snow-free) (summarized by Eq. 2)…”  

and revised the confused term “filter” in original sentence to  30 

“We adopted the most rigorous pixel filtering rule, by which one clouded pixel cannot be allowed within a 15*15 pixel window ” 

in page 10 lines 4-5. 

 

Section 4.1.1: there is virtually no difference in performance between scenarios 1, 4, and 5, as summarized in Table 4, 

with the main difference in performance between scenarios due to the inclusion of ancillary fields (lat/lon; 35 

topography). While I agree that “location information and topographic factors play a crucial role in snowpack 

distribution” can a more physically-based explanation be provided for these results? 

Response: Thanks for your comment. The results of Scenarios-1, 4, and 5 show that there indeed were no significant 

differences among these three scenarios. Generally speaking, inputting more information could make great contribution to 

improving the performance of snow cover parameters estimation. However, we found that inputting more information did not 40 

provide too much contribution for the performance improvement of fractional snow cover by analyzing the results of 

Scenarios-1, 4, and 5. Thus, we conclude that the input variables in Scenarios-1 have redundant information and it makes 

model establishment more time consuming. These statements have been similarly described in our manuscript “The 

comparison among Scenarios -1, 4, 5 indirectly indicates that the variables used in Scenario -1 may have some information 



redundancy and slightly weaken the efficiency of the random forest retrieval model” in page 17 lines 17-19 

 

Additionally, we added the explanation for the “location information and topographic factors” in page 17 lines 6-9  

“In this study, the retrieval method required these five basic input variables as auxiliary information in order to learn the 

characteristics of snow cover under different surface conditions to assist in accurately estimating snow cover properties. In 5 

contrast, in the absence of these basic input variables, the established model has no advantage in accurately predicting the 

characteristics of fractional snow cover under complex surface conditions” 

 

Section 4.3/Figures 6 and 7: the scatterplots seem to illustrate that the retrieval is capable of identifying low snow 

fraction and high snow fraction, but with less skill across the intermediate values. This may be in large part due to 10 

issues with the reference snow fraction from MODIS, which seems to be clustered around low and high snow fraction 

values as shown in Figure 7 (with the exception of forested areas as shown in Figure 7a). Please consider adding some 

text to the first paragraph of Section 4.3, or strengthening the text on page 20 lines 10-20 to make clear how the 

performance of the retrieval can be influenced by the behaviour of the reference dataset. 

Response: Thanks for your comment. In order to clarify the influence of reference dataset to fractional snow cover retrieval, 15 

we added the following statement in page 24 lines 9-11.  

“This is mainly because the established fractional snow cover retrieval model when using the training sample with relatively 

low diversity of fractional snow cover values does not well learn the snow cover distribution characteristics of the various 

surface condition.” 

 20 

Figure 8: the paper would be strengthened with more emphasis on the presentation of spatial results. Figure 8 is really 

important, but I found it unclear, especially panel D (the sub-panels within panel D are hard to read). Why is there so 

much white space in panel B? Zero snow fraction needs to have a separate colour than the range of 0 to 0.3, in order to 

clearly show where the retrieval estimates no snow versus very low fractions of snow (e.g. 0.1 to 0.3). I suggest a clear 

set of maps be presented, with emphasis on a comparison between MODIS and passive microwave estimates at the 25 

continental scale (as in panels B and C) for some key events which extended the snowline. 

Response: Thank you very much for your valuable suggestion.  

1) The MODIS binary snow cover image (Fig. 8A) was translated to the reference MODIS fractional snow cover (Fig. 8B) 

by applying the strictest pixel filtering rule at a 15*15 pixels window, meaning that the window do not allow an cloudy and 

water pixel when calculating the fractional snow cover. Therefore, many pixels (6.25-km) were masked as “fill value” (white 30 

in Fig. 8B). In addition, we did a test, if 5% (about 11 pixels) of cloudy and water pixels are allowed in the 15*15 pixels 

window, more than 6% of the white space would substitute with the intermediate values (0.1 ~ 0.9) of fractional snow cover. 

In other words, the number of pixels with the intermediate value (ranging from 0.1 to 0.9) will double from what it is now. 

The following figure show the increase percentage of the number of pixel with the fractional snow cover values in range of 

0.1 and 0.9 in different land cover types if we allow 5% of cloudy and water pixels in the 15 * 15 pixels window.  Furthermore, 35 

the estimated fractional snow cover would bring maximum 5% uncertainty due to these cloudy and water pixels  



 

Figure R. The increase percentage of the number of pixel with the fractional snow cover values in range of 0.1 and 0.9 in 

different land cover types (forest, shrub, prairie and bare land) if we allow 5% of cloudy and water pixels in the 15 * 15 pixels 

window. 

 5 

2) We modified and clarified why the separate color map was used in here.  

 “Fig. 8 shows the comparison between our estimated fractional snow cover and the reference MODIS fractional snow cover, 

and more importantly, provides another perspective for snow cover identification in Section 4.4. Thus, Fig. 8B and 8C used 

0.3 as the threshold of fractional snow cover to define snow-covered and snow-free area, and this was adopted through the 

experiments in Section 4.4” in page 20 lines 18-21. 10 

3) Moreover, according to your suggestions, we strengthened the description of spatial results in order to improve the legibility 

of each image (Fig. 8), and the revised statements as follows:  

“Apart from the scatter plots and statistical analysis, Fig. 8 shows the distribution pattern of snow cover from a spatial 

perspective, including MODIS composite binary snow cover (Fig. 8A), MODIS fractional snow cover (Fig. 8B), and the 

estimated fractional snow cover by the proposed algorithm (Fig. 8C). When the most rigorous pixel filtering rule at the 15*15 15 

pixel window was applied (see Section 3.2), the large number of cloud covered pixels (yellow) in Fig. 8A resulted in most 

areas of the MODIS fractional snow cover image (Fig. 8B) being represented by a “fill value”. Additionally, the number of 

intermediate values for MODIS fractional snow cover in winter would be much lower than the number of values near the two 

extreme values (0 and 1). In contrast, the estimated fractional snow cover from passive microwave brightness temperature 

data can provide almost complete coverage and continuous spatial information on snow cover (Fig. 8C; Fig. S-7 in the 20 

Appendix). Fig. 8 shows the comparison between our estimated fractional snow cover and the reference MODIS fractional 

snow cover, and more importantly, provides another perspective for snow cover identification in Section 4.4. Thus, Fig. 8B 

and 8C used 0.3 as the threshold of fractional snow cover to define snow-covered and snow-free area, and this was adopted 

through the experiments in Section 4.4. This means that the pixel was identified as snow cover when fractional snow cover 

value was less than 0.3. From Fig. 8A – C, the spatial pattern of estimated fractional snow cover from the proposed method 25 

seems to accurately capture the distribution of snow cover from MODIS under clear-sky conditions, such as the snow-free 

area in most areas of North America, and snow-covered areas in northern Canada. Fig. 8D presents a specific example 

comparing these two fractional snow cover datasets and MODIS composite binary snow cover products in central Canada 

on February 27th, 2017. Based on this example, we find that our estimated fractional snow cover was capable of obtaining 

snow cover distribution when most of the area was covered by cloud, which was not the case for MODIS. This example also 30 

show that the extent of snowline observed in the MODIS binary snow cover image (500 m), which was the boundary between 

snow-covered and snow-free, was well described and exhibited by the estimated fractional snow cover (6.25 km)” in page 20 

lines 10-30. 



Moreover, the estimation results comparison of fractional snow cover for MODIS and our proposed algorithm in continuous 

value has been shown in the supplement file: 

 

Figure S-7. Comparison of the reference MODIS fractional snow cover (A) with our estimated fractional snow cover (B) in 

continuous value (6.25-km) on February 27th, 2017 (2017058) 5 

 

Page 18 lines 3-6/Page 19 lines 27-28/Page 22 lines 1-3: the explanation for the potential over-identification of snow 

in the microwave retrievals (compared to the Grody product) is not convincing. The misclassification of snow extent 

due to non-snow scatterers (like cold deserts/frozen ground) is not a prevalent issue in North America. To better 

understand the statement that “the non-snow scatterer is the major source of snow cover misclassification for random 10 

forest FSC results” it would be clearer to show a map of locations where the RF classifier identifies snow and the 

Grody algorithm does not. This aspect needs to be explored in more detail in the final manuscript. 

Response: Thanks for your comment. Although the commission error of the proposed algorithm in snow cover identification 

only have 0.17, we provided additional information to explain this kinds of error. As you say, the non-snow scatters (like cold 

deserts, frozen ground) is not a prevalent issue in North America. According to our analysis results, we can also conclude that 15 

the snow cover misclassification effected by cold deserts and frozen ground is not prevalent issue in North America. We 

specified the different source error for commission error and revised the statement as follows:  

 “The records, which were misclassified as snow cover by random forest SCA, although they are non-snow scatter components 

(precipitation, cold desert, and frozen ground), account for 70.1% of total misclassification records (CE = 0.17), of which 

63.0% comes from precipitation, 6.4% from cold desert, and 0.7% from frozen ground” in page 23 lines 12-15. 20 

 

Following your suggestion, we first analyzed the confidence of the comparison results between Random forest SCA and 

Grody’s algorithm SCA, when the in-situ station observation is absent. We provided the following statistical metrics (Table 

A) using the data in 2017. We can see that the percentage of “True observation” for Grody’s algorithm only is 24.9% when 

RF classifier identifies snow-covered and the Grody’s algorithm does not (Condition B); inversely, it should be classified as 25 

snow-covered. If we do not use the in-situ observation as the “true” observation, we do not have high confidence to say that 

the detection results by our proposed algorithm in Condition B are not right. Moreover, we show an example that provides a 

map for different condition combinations of Random forest SCA and Grody’s algorithm SCA (Fig. S-9). The inconsistencies 

between Random forest SCA and Grody’s algorithm SCA usually occurred in the mid-latitude region, in which it has the low 

fractional snow cover (Figure S-7). And also we revised the statement to  30 

“For different results for these two snow cover mapping algorithms, we have used an example to show the inconsistencies 

and consistencies in mapping between the random forest SCA and Grody’s algorithm SCA (Fig. S-9)” in page 23 lines 17-18. 



 

Table A. The effect of precipitation, cold desert and frozen ground in snow cover misclassification. FP is false positive 

that means it is the number of pixels that are misclassified as snow cover by Random forest FSC.  𝑆𝐷𝑜𝑏𝑠 = 0 denotes 

snow-free measured in station, otherwise, it is snow-covered; 𝑆𝐶𝐺𝑟𝑜𝑑𝑦 = 0 denotes snow-free (precipitation, cold 

desert and frozen ground) determined by Grody’s algorithm, otherwise it is snow-covered; 𝐹𝑆𝐶 ≤ 0.3 denotes snow-5 

free cover detected by our method, otherwise, it is snow-covered. 

No. Conditions 

Observation Percentage of “True observation”  

𝑆𝐷𝑜𝑏𝑠 = 1 𝑆𝐷𝑜𝑏𝑠 = 0 
Random 

Forest 

Grody’s 

algorithm 

A 𝑆𝐶𝐺𝑟𝑜𝑑𝑦 = 0 & 𝐹𝑆𝐶 ≤ 0.3 17435 (13%) 116069 (87%) 87% 87% 

B 𝑆𝐶𝐺𝑟𝑜𝑑𝑦 = 0 & 𝐹𝑆𝐶 > 0.3 60601 (75.1%) 20063 (24.9%) 75.1% 24.9% 

C 𝑆𝐶𝐺𝑟𝑜𝑑𝑦 = 1 & 𝐹𝑆𝐶 ≤ 0.3 4379 (51.5%) 4120 (48.5%) 48.5% 51.5% 

D 𝑆𝐶𝐺𝑟𝑜𝑑𝑦 = 1 & 𝐹𝑆𝐶 > 0.3 80167 (90.3%) 8575 (9.7%) 90.3% 90.3% 

 

 

Figure S-7. Comparison of the reference MODIS fractional snow cover (A) with our estimated fractional snow cover (B) in 

continuous value (6.25-km) on February 27th, 2017 (2017058) 10 



 

Figure S-9. The mixed snow cover detection map for different condition combinations of Random forest SCA and Grody’s 

algorithm SCA on February 27th, 2017 (2017058) (the meaning of A-B can refer to Table A). 

 

Editorial comments:  5 

Abstract line 23: change ‘0.31 million’ to ‘310 000’  

Response: Thanks. “0.31 million” was changed to “310 000” in page 1 line 30. 

 

Abstract line 26: I suggest not referring to the passive microwave dataset used for comparison as ‘Grody’s snow 

mapping algorithm’ in the abstract.  10 

Response: Thanks. We changed the statement to “There was significant improvement in the accuracy of snow cover 

identification using our algorithm; the overall accuracy had increased by 18% (from 0.71 to 0.84), and the omission error 

had reduced by 71% (from 0.48 to 0.14), when the threshold of fractional snow cover was 0.3” in abstract. 

 

Page 2 line 2: change ‘cycles’ to ‘cycle’  15 

Response: we changed “cycles” to “cycle” in page 2, line 11. 

 

Page 2 line 5: ‘vast number of water resources’ awkward wording  

Response: we rephrased the sentence to “Snowpack also stores a huge amount of water…” in page 2, lines 13-14. 

 20 

Page 3 lines 20-25: when possible, try to use product names instead of the author names. For example, the Kelly 

(2009) reference refers to the NASA standard AMSR-E snow water equivalent product. The citations should be 



retained, just the product names changed. 

Response: Thanks you for your comment. We inquired each algorithm and tried to find their products. If the corresponding 

products were not found, author’s name was used as the name of the algorithm. We revised the statement to  

“Specifically, they involved the application of common passive microwave snow cover mapping algorithms, such as Grody’s 

algorithm (Grody and Basist, 1996), National Aeronautics and Space Administration (NASA) Advanced Microwave Scanning 5 

Radiometer – Earth Observing System (AMSR-E) SWE algorithm (Kelly, 2009), Singh’s algorithm (Singh and Gan, 2000), 

Neal’s algorithm (Neale et al., 1990), the FY3 algorithm (Li et al., 2007), and the South China algorithm (Pan et al., 2012)  …” 

in page 4 lines 4-8. 

 

Page 3 line 28 and page 20 line 17: change ‘patch’ to ‘patchy’  10 

Response: the word “patch” was revised to “patchy” in page 4, line14 and page 24 line 14. 

 

Page 4 line 7: change ‘predict’ to ‘retrieve’   

Response: we changed “predict” to “retrieve” in page 4 line 25. 

 15 

Page 5 line 7: change ‘America’ to ‘United States’  

Response: We changed “America” to “United States” in page 5 line 26. 

 

Page 8 line 4: not clear what is meant by ‘fill’  

Response: We changed to “fill value” in page 9 line 4. 20 

 

Page 18 lines 10-14: this text is unclear and seems very anecdotal. I think it can be removed.  

Response: Thank you. We removed these unclear statements. 

 

Figure 1: Add units to the legend. Why is there negative elevation?  25 

Response: Thanks. We updated Figure 1. The negative value is located in the lake region which is under the land surface.  



 

Fig. 1 Topographic map of North America. 

 

Figure 4: caption is not clear  

Response: The caption of Fig. 4 changed to “The performance of random forest models with increasing the size of training 5 

sample for shrub type” 

 

Figure 9: add x-axis label to indicate snow depth  

Response: Thanks. We added x-axis label to Fig. 9 

 10 

 



Figure 10: add axis labels 

Response: Thanks. We updated the Fig. 10. 

 

  



----------------------------------------------------------------------------------------------------------------------------------------------------- 

**********************Reply to comments from anonymous reviewer 2#*********************** 

-------------------------------------------------------------------------------------------------------------------- --------------------------------- 

REVIEWER 2# 

Overview and General Comments 5 

This manuscript describes a new approach of estimating fractional snow fraction from satellite-based passive microwave (PM) 

sensors and higher resolution MODIS snow cover estimates. The authors present different regression and machine learning 

type algorithms, including multi-regression, artificial neural networks (ANN), and a random forest regression technique, for 

estimating the PM-based snow cover fraction using the MODIS snow cover as a reference input to the algorithms along with 

accounting for different PM retrieval and ancillary datasets, like vegetation types. The methods are demonstrated and validated 10 

against independent in situ measurements across the region of interest (Canada and the US).  

Overall, the paper includes comprehensive descriptions of the data and methods used,  and detailed background and 

justification for the work presented. It also is within the scope and appropriate for the journal, The Cryosphere. The 

supplementary material does help support the overall findings in the paper. However, some of the methods and conclusions 

may require some revision and may not be conclusive enough as there is a limitation on the years evaluated and the wintertime 15 

period focused on. A few major and minor comments are noted in this review that hopefully help to strengthen the paper and 

the organization of the methods and results presented. There are a few sections that were difficult to follow and some of the 

English grammar and syntax was unclear. 

Response: Thanks for your constructive suggestions and positive comments. According to you suggestion and comments, we 

have carefully revised the manuscript and provided point-by-point response following each comment.  20 

 

One downside to this study is that the authors only focused on seven years of available passive microwave and optically based 

snow cover observations and then just the peak snow months of January and February. Though it seems to make sense to 

focus only on when the snowpack is at the peak months and more spatially continuous,  however, it is also worthwhile to 

capture the temporal and spatial heterogeneity in the accumulation and ablation seasons and more fully test the algorithms 25 

described and applied in this study. Otherwise, the algorithms are only somewhat effective for peak wintertime in US and 

Canada and not applicable for studies, like prescribing observational snow cover conditions in climate projection or snow-

land-atmosphere climate interaction studies, which are pointed out as one primary reason to perform this present study.  

Response: Thanks you very much. We do agree with your comment on extending the study period to the snow cover 

accumulation and ablation stages/seasons for the fractional snow cover retrieval models. For this issue, we have discussed in 30 

Section 5.1 and provided the detailed discussions  

“…In this study’s datasets, a greater number of records were located near the extreme values of the fractional snow cover (0 

and 1). Thus, it is reasonable to use stratified random sampling (Dobreva and Klein, 2011), however, not the proportional 

distribution of target values suggested by previous studies (Nguyen et al., 2018; Millard and Richardson, 2015). Even in this 

cases, the overestimation and underestimation often occur in the results of training datasets (Fig. 7 A – D) and evaluation 35 

datasets (Fig. 7 a – d), respectively. This is mainly because the established fractional snow cover retrieval model using the 

training sample with relatively low diversity of fractional snow cover values does not well learn the snow cover distribution 

characteristics of the various surface condition. Therefore, it is necessary for future studies to increase the amount of samples 

by extending the study period to the snow accumulation and snow ablation stages (Xiao et al., 2018), where there is much 

more shallow snow and "patchy" snow cover. Another option is using data from multi-source sensors to generate reference 40 

snow cover data (e.g., Sentinel -1 Synthetic Aperture Radar data). By doing this, the proportion of fractional snow cover 



values in the training sample may be distributed as evenly as possible (Colditz, 2015; Jin et al., 2014; Lyons et al., 2018).” in 

page 24 lines 5-16. 

 

In fact, the same idea on “It is also worthwhile to capture the temporal and spatial heterogeneity in the accumulation and 

ablation seasons and more fully test the algorithms described and applied in this study” has been one major task of our ongoing 5 

work. Specifically, it is to establish different fractional snow cover retrieval models on different snow cover stages (snow 

cover accumulation stage, snow cover stabilization stage and snow cover ablation stage), and to analyze the spatiotemporal 

variation characteristics of the estimated fractional snow cover.  

 

Also, in relation to the timeframe of the training and validation data years, only having one year to perform the validation 10 

seems quite limiting, as a given year can be hard to note overall performance given snow cover can vary greatly from year to 

year (e.g., snow drought conditions). This is somewhat reflected in Figure 7 (right column panels),  which show how highly 

variable and not as predictable in the validation year (2017). Please explain why a longer period of record is not used, e.g., 

2002-2019 (Terra+Aqua MODIS combined) and the passive microwave combined product by Brodzik et al.  (2018), to 

perform the training and validation period. Perhaps, use Water Years (WY) 2002-2013 for training and WY 2014-2018 for 15 

validation? 

Using only one year for testing and a second year for validation is very limiting for this study, and it is highly recommended 

for additional years to be included. Also, for the four different approaches of estimating the fractional snow cover from passive 

microwave should have longer evaluations performed in this context as the summary of the results would be inconclusive for 

one year of validation. 20 

Response：Thanks for your comments and suggestions. In the absence of available published materials on fractional snow 

cover estimation from passive microwave data, the first subject of this study is to explore the possibility and feasibility of 

estimating fractional snow cover estimation from passive microwave brightness temperature data. Therefore, we conducted a 

series of experiments with 10 years data (January and February only) to demonstrate the feasibility of estimating fractional 

snow cover from passive microwave data, as described in Section 6 (page 26 lines 11-18) 25 

“Numerous studies have investigated the relationship between common snowpack physical properties (e.g., snow depth and 

water equivalent) and passive microwave brightness temperature at different frequencies and polarizations (Chang et al., 

1987; Dietz et al., 2011; Kim et al., 2019; Xiao et al., 2018). Unlike many previous studies, this study innovatively used passive 

microwave data to directly estimate fractional snow cover. The results showed that it is possible to directly obtain an estimated 

fractional snow cover with high accuracy from high-spatial-resolution passive microwave data (6.25 km) under all weather 30 

conditions. Further detailed study on the use of high spatial resolution passive microwave data for fractional snow cover 

estimation presents itself as an interesting research direction for the development of the studies on fractional snow cover 

estimation”. Overall, we has basically achieved the preset goals of this study.  

 

Moreover, at the beginning of our experiment, we also tested the performance of fractional snow cover retrieval model with 35 

the remaining data of 2011-2016 (excluding the dataset used for training samples); its conclusion is consist with that of the 

current experiment (using a single year of data), and the accuracy indexes (MAE and RMSE) are not significantly different. 

To make sure that each experiment is completely independent, we then gave up the above experimental design and adopted 

that the data of different years were used in different phases. As a basis of estimating fractional snow cover from passive 

microwave data, there will be a lot of researches to carry out in future studies, such as to apply this algorithm to other study 40 

region and other study period, to improve the fractional snow cover retrieval algorithm, and to generate a high accuracy 

product for change characteristics analysis of snow cover area.  

 

Furthermore, one issue that has to be explained in detail is the use of the data in this study. As to Fig. 7, the major reason for 

the relatively even distribution of the data used in the left column panels with capital letters (A-D) is that these training data 45 

are obtained by applying a stratified random sampling strategy in the 6 years total available data (2011-2016; January and 

February). Following your suggestion, we added another two years data for evaluating the performance of the retrieval models 



(Fig. 7). The right column panels with lowercase letters (a-d) in the revised Fig. 7, the updated evaluation datasets, which 

were randomly selected from the datasets in 2008 – 2009 and 2017 and the selecting rule is same as the training sample, were 

used to further evaluate the predictive capability of random forest models in all range values. Correspondingly, we modified 

the statistic indexes in Table 6 and the description in Section 4.3 as following:  

“The independent data, which was randomly selected from the datasets in 2008 – 2009 and 2017 and the selecting rule is 5 

same as the training sample, was used to further evaluate the predictive capability of random forest models in all range values. 

In this part, we analyzed the results from the training and evaluation stage for four land cover types (Table 6, Fig. 7). Fig. 7A 

and 7a show that fractional snow cover around 1 are distinctly underestimated and few are above the 1:1 line. The model for 

forest type had the poorest performance with the lowest R (0.636) and the highest RMSE (0.221) for the evaluation dataset 

(Table 6). The retrieval model on the prairie type had the best performance on the evaluation data (R: 0.752; MAE: 0.148; 10 

RMSE: 0.189). In shrub and bare land types (Fig. 7B, 7b, 7D and 7d; Table 6), the retrieval models have similar performance 

in evaluation datasets (R: 0.712 and 0.719; MAE: 0.160 and 0.165; RMSE: 0.212 and 0.216, respectively); "true" fractional 

snow cover values in the training and validation datasets were more distributed at two polar ends (0.0~0.3 and 0.9~1.0) in 

these two land cover types. When comes to the results in the training stage and the evaluation stage, we can found that the 

estimation performance of the retrieval model in evaluation datasets are highly dependent on the quality of training sample 15 

which was used to establish the retrieval models. Fig. 7 show that the established models in four land cover types can properly 

capture the characteristics of all range of fractional snow cover values.” 

 

 

Table 6. The performance of random forest models on training and validation data under four land cover types. 20 

Land cover 

type 

Training Validation 

R MAE RMSE R MAE RMSE 

Forest 0.702 0.166 0.207 0.636 0.180 0.221 

Shrub 0.772 0.146 0.191 0.712 0.160 0.212 

Prairie 0.807 0.142 0.182 0.752 0.148 0.189 

Bare land 0.807 0.144 0.190 0.719 0.165 0.216 

 



   

Fig. 7. The color-density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow 

cover for four land cover types (forest: A, a; shrub: B, b; prairie: C, c; bare land: D, d). Left column with capital letters  is the 



results in the training stage (A-D); right column with lowercase letters is the results in the evaluation stage (a-d). 

 

Some of the methods sections are hard to follow, though the authors provide many details there and in the Supplemental 

material. For example, Section 3.3.1 of “Selecting input variables” was at times hard to follow and why each scenario was 

selected. Improving the organization of the sections to flow better in terms of their logic and why different experiments were 5 

performed would be helpful for the overall background and discussions of this study.  

The English grammar and syntax used require additional review and editing by editorial services to help correct these issues 

before resubmitting. A few suggested corrections are offered below in the technical corrections section. 

Response: Thanks for your positive comment to improve our manuscript. The revised manuscript has been proof read by a 

native English speaker. Additionally, we clarified the background of the variables selection and setting for each scenarios, and 10 

revised the statement about why different experiments were performed in Section 3.3.1 (from page 10 lines 19 to page 11 line 

14).  

“A decision tree was established using all variables shown in Scenario -1 (Table 1), and was utilized to compare with five 

scenarios in terms of prediction performance and efficiency. Note that these 19 input variables were determined by using the 

Correlation Attribute Evaluation method in the Waikato Environment for Knowledge Analysis 3.8.3 (WEKA) data mining 15 

software. This method evaluates the worth of the attribute by measuring the correlation between the attribute and the target 

(Frank et al., 2004; Eibe Frank, 2016). The brightness temperature and its linear combination can also directly be used to 

detect snow cover based on Xu et al. (2016) study; thereby, Scenario -2 only contained brightness temperature and its linear 

combination without consideration to the effects of location and topographic factors. Wiesmann and Mätzler (1999) reported 

that V and H polarizations were dominated by scattering and snow stratigraphy, respectively. Thus, Kim et al. (2019) only 20 

assimilated V polarization with an ensemble snowpack model to estimate snow depth. Therefore, in Scenario -3, we attempted 

to evaluate the performance of the established retrieval model by only using the brightness temperature in 19, 37 and 91 GHz 

(V polarization) based on Wiesmann and Mätzler (1999) and Kim et al. (2019). In Scenario -4, we used similar input variables 

to those used for snow depth estimation in Xiao et al. (2018), and examined whether these same parameters can or cannot 

estimate the fractional snow cover. In Scenario -5, unlike the variables used in Scenario -4, we attempted to use the basic 25 

input variables coupled with the brightness temperature linear combination for fractional snow cover retrieval.  

There are other variable selection strategies based on the importance rank when using random forest method. For example, 

Mutanga et al. (2012) implemented a backward feature elimination method to progressively eliminate less important variables, 

whilst Nguyen et al. (2018) summarized the grade of the variable and selected the top eight important variables as the input 

variables in the training model. Similarly, this study assessed the importance of input variables on four land cover types using 30 

the same size of the training sample (15 000) (Xiao et al., 2018). We then counted the number of times of each variable that 

was ranked in the top nine important variables (summarized in Table S2, Appendix), which were then used as the input 

variables for Scenario -6 (listed in Table 1). By assessing the performance of models established by these six scenarios, an 

optimal combination of input variables for the fractional snow cover retrieval model may be selected (see Section 4.1.1). All 

input variables were normalized to [0, 1].” 35 

 

Specific Comments 

Abstract: The authors introduce “Grody’s snow cover mapping algorithm” towards the end of the abstract without any other 

background. Perhaps they could provide one introductory phrase on this algorithm within the abstract to give more context.  

Response: Thanks for your comment. We revised the original sentence to “There was significant improvement in the accuracy 40 

of snow cover identification using our algorithm; the overall accuracy had increased by 18% (from 0.71 to 0.84), and the omission 

error had reduced by 71% (from 0.48 to 0.14), when the threshold of fractional snow cover was 0.3 ” in Abstract 

 



Page 2, Lines 9-10: The authors mention that snow cover data from station measurements are “time-consuming, [and] 

cumbersome,”. What do the authors mean by these adjectives? Please clarify here. Any dataset, including satellite, requires 

time and careful derivation of the final product. However, in situ snow cover data are spatially discontinuous and require more 

time to maintain. 

Response: Thank you. According to your suggestion, we clarified the sentence to  5 

“Snow cover data is typically obtained from meteorological stations or in-situ manual measurements, which is spatially 

discontinuous and labor intensive” in page 2 lines 17-18. 

 

Page 6, lines 11-12: Would like to point out here that North America includes Mexico as well. The authors should specify that 

their study domain spans the continental U.S. and Canada only. 10 

Response: Thank you. We specified the study domain definition and revised the original sentence to  

“Fig. 1 shows the elevation pattern for North America, limited to Canada and United States in this study.” in page 7 lines 3-

4. 

 

Page 7, lines 10-11: Authors state here that “to the best of our knowledge, there are no researchers have developed fractional 15 

snow cover : : : using passive microwave data.” Please take a look at the following references and cite appropriately: 

Foster, J.L., D. K. Hall, J. B. Eylander, G. A. Riggs, S. V. Nghiem, M. Tedesco, E. Kim, P.M. Montesano, R. E. J. Kelly, K.  

A. Casey and B. Choudhury (2011): A blended global snow product using visible, passive microwave and scatterometer 

satellite data, International Journal of Remote Sensing, 32:5, 1371-1395, DOI: 10.1080/01431160903548013 

Response: Thanks for your comment. The study carried out in Foster et al. (2011) was to yield a blended snow cover product 20 

with a 25-km resolution by combining MODIS snow cover product, AMSR-E snow water equivalent product, and QSCAT 

data, which have several parameters including snow cover extent, snow water equivalent, fractional snow cover, onset of 

snowmelt and areas of snow cover that are actively melting. We find that there is essential difference between Foster’s study 

and our work in fractional snow cover estimation. In contrast, current study devoted to retrieving fractional snow cover from 

passive microwave brightness temperature at 6.25-km resolution, which means that the estimated results are based on passive 25 

microwave data. We changed it to “Second, to the best of our knowledge, there are few attempts to directly develop fractional 

snow cover from passive microwave data” in page 8 lines5-6 

 

Page 8, lines 24-27: It would be helpful here to provide a lead in sentence to introduce your first two equations. 

Response: Thanks your valuable suggestion. We revised and clarified the description about these two equations as follows 30 

(in page 9 line 16-26):  

“1) Combining snow cover images from two sensors on a given day: the first simple filter was applied under the assumption 

that snowmelt and snowfall did not occur within the two sensor observations. Whether a pixel in Terra (𝑆𝑡
𝐴𝑞𝑢𝑎

) or Aqua 

(𝑆𝑡
𝑇𝑒𝑟𝑟𝑎 ) snow cover image in a given day (t) was observed as snow cover or snow-free, the pixel in the output image 

(MCD10A1) was assigned the same ground status (shown in Eq. 1). The results showed about 3% of cloud cover was 35 

removed compared to MOD10A1 (Gafurov and Bárdossy, 2009). 

2) Short-term temporal filter: if the status of a pixel in the input image (MCD10A1) in a given day (t) was cloud and both 

the preceding (t - 1) and succeeding (t + 1) days were snow-covered (or snow-free), the pixel in the output image 

(MCTD10A1) in the given day (t) was assigned as snow-covered (or snow-free) (summarized by Eq. 2). Compared to the 

first filter, this short-term temporal filter may markedly reduce the number of days (10% ~ 40%) for cloud coverage and 40 

increase the overall accuracy of snow cover detection (Gafurov and Bárdossy, 2009; Tran et al., 2019)…” in page 8 lines 

22-30. 



 

Page 8, last line: “Calculation areas should be in a larger feet : : :” What is meant here by “feet”? It does not seem to make 

sense to use this word here, but perhaps “footprint area” makes more sense? Please correct. 

Response: Thanks for your suggestion. We corrected the sentence to  

“Calculated areas should be a larger footprint area than the pixel resolution to avoid MODIS geolocation uncertainties…” 5 

in page 10 lines 1-2. 

 

Page 11, lines 2-3: MODIS Collection 5 products are considered older and not “current”, as they have been replaced by 

Collection 6. Recommend removing “current” here. 

Response: Thank you. We removed “current” and revised the sentence to “This type of regression method has been applied in 10 

generating the standard MODIS fractional snow cover product Collection 5…” in page 12 lines 12-13. 

 

Subsection 3.4.1: The authors discuss both the linear and multi-linear regression methods here, which makes the discussion 

confusing to follow. They then have the reader refer to the Supplementary material for more information. It is recommended 

that the authors better describe in this subsection how the “linear regression” is applied. Was it based on the equations in 15 

Salomonson and Appel (2004) or new linear equations and parameters derived for the four different vegetation categories? 

Please try to better organize and explain this linear method in this subsection.  

Response: Thanks for your comment and suggestion. We revised the statement about linear regression method as follows:  

“For optical remote sensing studies, there is a classical and general linear regression method used to estimate the sub-pixel 

snow cover area in medium- to high-spatial-resolution image. This only involve the relationship between NDSI and fractional 20 

snow cover derived from high-resolution snow cover maps (Salomonson and Appel, 2004; Salomonson and Appel, 2006). This 

type of regression method has been applied in generating the standard MODIS fractional snow cover product Collection 5. 

Similarly, the multiple linear regression method was used as a reference method in this study to estimate fractional snow cover 

based on passive microwave data. The inputs were the same as the other three methods in this study…” in page 12 lines 8-15. 

 25 

Page 14, lines 10-11: Please provide citations and references where possible for the metrics, especially Cohen’s kappa 

coefficient and the F1 score. 

Response: Thanks. We add the citation for the metrics and correspondingly the sentence was revised to  

“Six accuracy assessment indices were used for the analysis of snow cover detection capability (Liu et al., 2018; Gascoin et 

al., 2019); overall accuracy (OA), precision (that is, a positive prediction value), recall, specificity (that is, the true negative 30 

rate), F1 score (Zhong et al., 2019), and Cohen's kappa coefficient (Foody, 2020).” in page 16 lines 4-7. 

 

Page 15, Lines 11-12: Authors indicate here that their “Scenario-6” variable sensitivity case “generated the worse performance, 

with the low R, the great MAE and RMSE”. When looking at Table 4 results, Scenario-6 appears to perform rather well 

overall. Perhaps it would help if the authors specify here that of the Scenarios of 1, 4-5 and 6, Scenario-6 performs the “worst”. 35 

It is also recommended to change the last part of that sentence to: “ this scenario’s setting had the third worst performance 

with lower R values and higher MAE and RSME values.” 

Response: Thank you very much for your suggestion. We revised the statement to  

“Moreover, when compared to Scenarios-1, 4, 5, the setting in Scenario-6, where input variables were selected by importance, 

had the third poorest performance, with a low R, and a high MAE and RMSE” in page 17 lines 13-16. 40 

 



Page 15, line 31 to top of Page 16: Make “Figure” plural and change the last part of this sentence to something like: “show 

that this finding was not coincidental.” This sentence is a bit hard to understand in what is meant by “not coincidental”. Please 

elaborate or better explain the meaning here. 

Response: Thanks. We clarified the statement and revised to  

“Interestingly, the 0.3% training sample size had the shortest modeling time of the three sample size (Fig. 4); Figs. S-1, 2, 3 5 

also exhibit similar findings on modeling time.” in page 18 lines 5-7. 

 

Page 16, line 29: Please clarify here what is meant by “neglected to assess the rationality of estimated value : : :”. Are you 

referring to the out-of-bounds events that occur in the other methods, other than the random forest approach and that that 

“rational” was not well checked? 10 

Response: Thanks for your suggestion and comment. We revised the sentence to  

“Previous studies have generally neglected the analysis and evaluation of whether the estimated value is out-of-range” in 

page 19 lines 8-9. 

 

Page 21, line 1: Authors state that only a few studies validate the accuracy of MODIS snow cover products in forested areas. 15 

Actually, there are several in addition, including: 

Arsenault, K.R., P.R. Houser and G. J.M. De Lannoy, 2014: Evaluation of the MODIS snow cover fraction product, Hydro. 

Proc., 30, 3, pps. 980-998. https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.9636 

Kostadinov, T. S., and T. R. Lookingbill, 2015: Snow cover variability in a forest ecotone of the Oregon Cascades via MODIS 

Terra products, Rem. Sens. Env., 164, pps. 155-169. https://www.sciencedirect.com/science/article/pii/S0034425715001303 20 

Response: Thank you very much for your suggestion. We added the suggested literatures and revised the statement to  

“Several studies have validated and evaluated the accuracy of MODIS snow cover products, particularly in forested areas 

(Parajka et al., 2012; Zhang et al., 2019; Arsenault et al., 2014; Kostadinov and Lookingbill, 2015)” in page 24 lines 27-29. 

 

Page 22, lines 14-16: The first statement here about the “strong limitations in the understanding of physical mechanism” is a 25 

bit hard to understand. Are the authors referring to the underlying physics and characteristics that relate the fractional snow 

to the signature of the passive microwave bright temperature responses? Perhaps, it might be better to frame these concluding 

statements more in that way vs. “mechanisms”. 

Response: Thanks for your constructive suggestion. We clarified and revised the sentence to  

“However, it also contains significant limitations in understanding the physics that relates fractional snow cover to the 30 

signature of passive microwave brightness temperature (Cohen et al., 2015; Che et al., 2016). Future studies need to use 

physical snowpack models and radiation transfer theory to explore the physical mechanistic relationships between microwave 

brightness temperature and fractional snow cover (Pan et al., 2014)” in page 26 lines 23-27. 

 

Table 1: In the row of references, does the Xiao et al. (2018) paper cover both Scenario-4 and -5 columns in the table? If so, 35 

it might be helpful to specify this in the body of the paper. 

Response: Thanks. Xiao et al. (2018) study only cover the variables used in Scenario-4, not in Scenario-5. Thus, we did not 

provide the related reference for Scenario-5. 

 

Figure 8: In panel A, more binary MODIS snow cover present (e.g., large green pixeled areas in Canada), but that does not 40 



seem to get translated over to panel B for the fractional MODIS snow cover (mostly filled in with no fractional values). Please 

explain why most of the derived MODIS snow cover fraction is removed here, especially over Canada? Also, for the MODIS 

snow fractional product, there is no fractional snow representation between 0.3 and 0.8, the other two categories shown in 

panel B. What is happening here in that regard – no fractional snow within 0.3 and 0.8 at any noticeable gridcells? Please 

provide an explanation in the text as well. 5 

Response: Thanks for your suggestions to improve our manuscript.  

1) The MODIS binary snow cover image (Fig. 8A) was translated to the reference MODIS fractional snow cover (Fig. 8B) 

by applying the strictest pixel filtering rule at a 15*15 pixels window, meaning that the window do not allow an cloudy and 

water pixel when calculating the fractional snow cover. Therefore, many pixels (6.25-km) were masked as “fill value” (white 

in Fig. 8B). In addition, we did a test, if 5% (about 11 pixels) of cloudy and water pixels are allowed in the 15*15 pixels 10 

window, more than 6% of the white space would substitute with the intermediate values (0.1 ~ 0.9) of fractional snow cover. 

In other words, the number of pixels with the intermediate value (ranging from 0.1 to 0.9) will double from what it is now. 

The following figure show the increase percentage of the number of pixel with the fractional snow cover values in range of 

0.1 and 0.9 in different land cover types if we allow 5% of cloudy and water pixels in the 15 * 15 pixels window.  Furthermore, 

the estimated fractional snow cover would bring maximum 5% uncertainty due to these cloudy and water  pixels 15 

 

Figure R. The increase percentage of the number of pixel with the fractional snow cover values in range of 0.1 and 0.9 in 

different land cover types (forest, shrub, prairie and bare land) if we allow 5% of cloudy and water pixels in the 15 * 15 pixels 

window. 

 20 

2) Each category (0-0.3; 0.3-0.5; 0.5-0.8; 0.8-1) was exhibited in MODIS fractional snow cover image (Fig. 8B), just the 

difference in the amount of pixels. The intermediate values of fractional snow cover usually can be found at the edge of the 

two extreme values area (0 and 1).  

Based on your suggestion, we revised the description about Fig. 8 as follows:  

“Apart from the scatter plots and statistical analysis, Fig. 8 shows the distribution pattern of snow cover from a spatial 25 

perspective, including MODIS composite binary snow cover (Fig. 8A), MODIS fractional snow cover (Fig. 8B), and the 

estimated fractional snow cover by the proposed algorithm (Fig. 8C). When the most rigorous pixel filtering rule at the 15*15 

pixel window was applied (see Section 3.2), the large number of cloud covered pixels (yellow) in Fig. 8A resulted in most 

areas of the MODIS fractional snow cover image (Fig. 8B) being represented by a “fill value”. Additionally, the number of 

intermediate values for MODIS fractional snow cover in winter would be much lower than the number of values near the two 30 

extreme values (0 and 1). In contrast, the estimated fractional snow cover from passive microwave brightness temperature 

data can provide almost complete coverage and continuous spatial information on snow cover (Fig. 8C; Fig. S-7 in the 



Appendix). Fig. 8 shows the comparison between our estimated fractional snow cover and the reference MODIS fractional 

snow cover, and more importantly, provides another perspective for snow cover identification in Section 4.4. Thus, Fig. 8B 

and 8C used 0.3 as the threshold of fractional snow cover to define snow-covered and snow-free area, and this was adopted 

through the experiments in Section 4.4. This means that the pixel was identified as snow cover when fractional snow cover 

value was less than 0.3. From Fig. 8A – C, the spatial pattern of estimated fractional snow cover from the proposed method 5 

seems to accurately capture the distribution of snow cover from MODIS under clear-sky conditions, such as the snow-free 

area in most areas of North America, and snow-covered areas in northern Canada. Fig. 8D presents a specific example 

comparing these two fractional snow cover datasets and MODIS composite binary snow cover products in central Canada 

on February 27th, 2017. Based on this example, we find that our estimated fractional snow cover was capable of obtaining 

snow cover distribution when most of the area was covered by cloud, which was not the case for MODIS. This example also 10 

show that the extent of snowline observed in the MODIS binary snow cover image (500 m), which was the boundary between 

snow-covered and snow-free, was well described and exhibited by the estimated fractional snow cover (6.25 km).” in page 20 

lines 10-30. 

 

Finally for Figure 8, it would be helpful to assign a different color and category for the non-snow pixels (at fractional value 15 

of 0.) in panels B and C to better discriminate the non-snow areas from the snow-based areas. Currently, snow-free pixels are 

lumped in with the low snow fraction category of 0 to 0.3. 

Response: Thanks for your comment. In this study, we clarified why 0.3 is adopted as the threshold of fractional snow cover.  

“Fig. 8 shows the comparison between our estimated fractional snow cover and the reference MODIS fractional snow cover, 

and more importantly, provides another perspective for snow cover identification in Section 4.4. Thus, Fig. 8B and 8C used 20 

0.3 as the threshold of fractional snow cover to define snow-covered and snow-free area, and this was adopted through the 

experiments in Section 4.4” in page 20 lines 18-20.  

 

In addition, a comparison example of the reference MODIS fractional snow cover with our estimated fractional snow cover 

in continuous value (Figures S-7 vs Fig 8.) in the supplement have been provided to show the continuous change 25 

characteristics of fractional snow cover in the Norther America on February 27th, 2017 (2017058).  

 

Figure S-7. Comparison of the reference MODIS fractional snow cover (A) with our estimated fractional snow cover (B) in 

continuous value (6.25-km) on February 27th, 2017 (2017058) 

 30 

Fig. 11: This is a nice figure that summarize and present these results well.  

Response: Thanks for your positive comments. 



 

Technical corrections 

Page 2, line 25: Please specify what “FY” stands for in “FY series sensors”. 

Response: We revised the sentence to “…Fengyun (FY) series sensors….” in page 3 line 7. 

 5 

Page 3, line 25: Awkward phrasing here: “To unite resolution, : : :” Perhaps try: “ To be at a common resolution, : : :” 

Response: Thanks for your suggestion. We revised the sentence to “To achieve a common resolution, bilinear interpolation 

was used to aggregate the 3.125 km spatial resolution data to 6.25 km” in page 5 lines 15-16. 

 

Page 5, line 7: Recommend here to separate the two phrases here with either a semi-colon (between “collected” and “all 10 

available”) or place the conjunction “and” after the comma. 

Response: Thanks. We revised the sentence to “… Canada and United States were collected, and all available records from 

these sites were included in this study.” in page 5 lines 26. 

 

Page 6, line 6: Please specify what “ETOPO1” stands for. 15 

Response: Thanks. The elevation dataset’s name is called ETOPO1 refer to the website (https://data.nodc.noaa.gov/cgi-

bin/iso?id=gov.noaa.ngdc.mgg.dem:316), and do not have more full name for these characters. 

 

Page 6, line 11: Add citation and reference for “ArcGIS 10.5” software. 

Response: We cited the related reference and revised the sentence to “The slope and aspect data were obtained from ETOPO1 20 

data by ArcGIS 10.5 (Buckley, 2019)” in page 7 lines 2-3.  

 

Page 6, line 17: Replace “heterogeneous” with the noun, “heterogeneity”. 

Response: Thanks. We replace“heterogeneous” with “heterogeneity” in page 7 line 9. 

 25 

Page 7, line 7: MODIS misspelled here as “MODSI”. 

Response: Thanks. We changed “MODSI” to “MODIS” in page 8 line2. 

 

Page 7, line 31: Remove “with” before “accurate”. 

Response: Thank you. We removed “with” before “less accurate” in page 8 line 30. 30 

 

Page 9, line 21: Either replace the semicolon with a period, or make the word,“Thereby”, lower-case. 

Response: Thanks. We changed “Thereby” to “thereby” in page 10 line 25. 

 

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316


Page 9, line 27: Change the “not” in this line to “cannot”. Also on that same line, the word use of “Correspondingly” here 

does not seem to make sense. 

Response: Thanks. We revised the sentence to “… can or cannot estimate the fractional snow cover. In Secenatio-5 ….” in 

page 11 line 1. 

 5 

Page 10, line 5: Make “variable” plural here in “an optimal combination of input variables”. 

Response: Thanks. We changed “variable” to “variables” in page 11 line 13. 

 

Page 13, line 6: “researches” should be changed to “researchers”. 

Response: Thanks you. We changed “researches” to “researchers” in page 14 line 23. 10 

 

Page 18, line 5: Remove “be” before “misclassified” and change “into” to “as”. Also, please remove the phrase, “As we all 

know”, and change the start of the second sentence there to: “Permafrost is known to be widely distributed in the northern 

part of…” 

Response: Thank you. We removed “be” before misclassified and changed “into” to “as”, accordingly, the sentence changed 15 

to “… these scatters were easily misclassified as snow cover in less snow cover conditions…” in page 21 lines 14-16. And we 

have removed the description “Permafrost is known to be widely distributed in the northern part of…” based on the revised 

needs 

 

Page 20, line 4: Change “researches” to “studies”. 20 

Response: We changed “researches” to “studies” in page 23 line 27.  

 

Page 21, lines 23-24: Change “were” to “was” in relation to “The accuracy of the proposed algorithm was further : : :”. 

Response: Thank you. The sentence was changed to “The results of the evaluation using the reference fractional snow cover 

data in 2017 showed that ….” in page 25 lines 26-27. 25 

 

Table 2 caption: “unite” should be “unit”, and “clod desert” should be “cold desert”. 

Response: Thank you very much. We changed “unite” to “unit” and modified “clod desert” to “cold desert” in Table 2 

 

Figure 7: The use of the capitalized and lower-case plot labels is fine but not conventional. Would it make more sense to 30 

simply use, “A, B” then “C, D”, etc., for the paired columns? 

Response: Thanks for your comment. Horizontally, the capital letters indicate the results in the training stage, while the 

lowercase letters represent the results in evaluation stage; from the vertical perspective, the results in two stages in each row 

are the same type of land cover which was represented by the same level of letters that are easily distinguished.  The caption 

of Fig. 7 was modified to “… Left column with capital letters is the results in the training stage (A-D); right column with 35 

lowercase letters is the results in the evaluation stage (a-d).
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Estimating fractional snow cover from passive microwave brightness 

temperature data using MODIS snow cover product over North 

America 

Xiongxin Xiao1, Shunlin Liang2, Tao He1, Daiqiang Wu1, Congyuan Pei1, Jianya Gong1 

1 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China  5 

2 Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA  

Correspondence to: Tao He (taohers@whu.edu.cn) 

Abstract: The dynamic characteristics of seasonal snow cover are critical for the hydrology management, the climate system, 

and the ecosystem functions. Although optical Optical satellite remote sensing has provend to be an effective tool for 

monitoring global and regional variations of snow cover However, it is still problematic to accurately capturinge the 10 

characteristics of snow dynamics characteristics at a finer spatiotemporal resolution continues to be problematic as, because 

the observations from optical satellite sensors are seriously greatly impacted affected by clouds and solar illumination. Besides, 

Ttraditional methods of mapping snow cover from passive microwave data only provide binary information with at a spatial 

resolution of 25- km spatial resolution. TIn this study, we innovative study applies the random forest regression technique to 

enhanced-resolution passive microwave brightness temperature data (6.25 km) to first present an approach to predict estimate 15 

fractional snow cover over North America under all-weather conditions, derived from the enhanced resolution passive 

microwave brightness temperature data (6.25 km). Many influent factors, including land cover, topography, and location 

information, were incorporated into the retrieval models. This estimation algorithm used Moderate Resolution Imaging  

Spectroradiometer (MODIS) snow cover products between 200810 and 2017 were used to create the reference fractional snow 

cover data as the "true" observations  in this study. Further, the influence of many factors, including land cover, topography, 20 

and location, were incorporated into the retrieval models. The results show that Tthe proposed retrieval models algorithm out-

based on random forest regression technique performed the other three approaches (linear regression, artificial neural networks, 

and multivariate adaptive regression splines), much better using independent test data for all land cover classes, with higher 

accuracy and no out-of-range estimated values, when compared to the other three approaches (linear regression, artificial 

neural networks (ANN), and multivariate adaptive regression splines  (MARS)). The method enabled the The results of the 25 

output evaluattion ofed the estimated fractional snow cover by using using independent datasets, where from 2017 indicate 

that the the root-mean-square error of evaluation results (RMSE) of the estimated fractional snow cover rangedes from 

0.18916.7% to 0.22119.8%. In addition, Tthe snow cover detection capability of the proposed algorithm estimated fractional 

snow cover wasis validatederified in the snow mapping aspect by using snow cover observation data from meteorological 

stations observations with greater(more than 0.310 000 million records).. We foundThe result shows that the binary snow cover 30 

obtained from the estimated fractional snow cover by the proposed retrieval algorithm wasis in a good agreement with the 
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ground measurements (kappa: 0.67). There was significant improvement in the accuracy of snow cover identification using 

ourour algorithm; estimation in the snow cover identification shows significant improvement when benchmarked against the 

Grody’s snow cover mapping algorithm: the overall accuracy had is increased by 18% (from 0.71 to 0.84), and the omission 

error had is reduced by 71% (from 0.48 to 0.14), when the threshold of fractional snow cover was 0.3. TheAccording to our 

experimental results show , we can conclude that it is feasible for estimating fractional snow cover from passive microwave 5 

brightness temperature data may potentially be used to estimate fractional snow cover directly,, and where thisis retrieval 

strategy also offershas a great competitive advantage in detecting snow cover areadetection. 

1. Introduction 

Snow cover is a critical indicator of climate change, and playings a vital role in the global energy budget (Flanner et al., 

2011), water cycles (Gao et al., 2019), and atmospheric circulation (Henderson et al., 2018). Snow cover directly modulates 10 

the release of carbon and methane from the underlying soil (Zhang, 2005; Zona et al., 2016), and influences the permafrost  

conditions and active layer dynamics (Zona et al., 2016). Moreover, snowpack Snowpack also stores aa huge vast 

amountnumber of water resources providing water for both domestic and industrial water use needs (Sturm, 2015; Cheng et 

al., 2019). Accurate and timely monitoring of the spatiotemporal variation of snow cover spatiotemporal variation is beneficial 

for hydrologic forecasting, climate predictions and water resources management (Barnett et al., 2005; Bormann et al., 2018). 15 

Usually, Ssnow cover data is typically obtained from meteorological stations or in-situ manual measurements, which is 

spatially discontinuous and labor are time-consuming, cumbersome, and intensivespatially discontinuous. Remote sensing has 

become an attractive alternative tool to ground-based measurements as it is able tocan cover a wide area and is capable of high 

frequency observations; therefore, it has been an attractive alternative tool to ground-based measurements. Numerous studies 

have focused on snow cover detection and snow cover products used optical and microwave satellite data (Tsai et al., 2019; 20 

Liu et al., 2018; Hori et al., 2017). Most of these snow cover products provide binary information at the pixel-level;, either 

snow-covered or snow-free. However, snow cover often varies within a limited scale area, showing characterized by high 

spatial heterogeneity, especially in alpine terrain areas. Dobreva and Klein (2011) demonstrated that the use of binary snow 

cover classification in snow cover area estimation could may produce considerable uncertainties. The binary Binary snow 

cover lacking fractional features hinders the capabilities of accurately characterization ofing the spatial distribution of snow 25 

cover and cannot accurately capture variations ins the seasonal snow cover dynamics variations. From In terms of the energy 

budget perspective, binary snow cover will bringintroduces significant uncertainties into the global energy budget estimation 

because of due to hugethe large surface albedo differences in surface albedo between snow-covered and snow-free surfaces 

(He et al., 2014). Thus, there is an urgent need to acquire snow cover area within a sub-pixel to is urgently needed for provideing 

accurate snow cover information. Therefore, focusing on fFractional instead of binary snow cover allow for the is derivation 30 
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of snow cover area at the sub-pixel level; this is a better option compared to binary snow cover, which means deriving the 

snow cover area at the sub-pixel level (Salomonson and Appel, 2004). 

Fractional snow cover maps derived from optical imagery have been produced for over 40 years. It is generally well 

known that Ooptical satellite observations have been recognized for theirare suitability inle for estimating fractional snow 

cover because of their high spatial resolution. Moderate- to high- resolution optical observations  have beenare popular in 5 

previous snow cover studies , for example FYFengyun (FY) series sensors (0.5 –~ 4 km) (Wang et al., 2017), Moderate 

Resolution Imaging Spectroradiometer (MODIS) (500 m) (Kuter et al., 2018), and Landsat (30 m) (Berman et al., 2018). There 

are also many predictive methods for predicting fractional snow cover, such as, linear regression (Salomonson and Appel, 

2004; Salomonson and Appel, 2006),; spectral mixture analysis (Wang et al., 2017; Rosenthal and Dozier, 1996);,  machine 

learning, (e.g., artificial neural network, (ANN) (Liang et al., 2017; Moosavi et al., 2014),; and multivariate adaptive regression 10 

splines (MARS) (Kuter et al., 2018). A simple linear regression cannot fully describe the complexity of the relationship 

between satellite observations and fractional snow cover. As such; thus, non-linear approaches were have recently been 

developed to replace this traditional method (Berman et al., 2018). Kuter et al. (2018) estimated fractional snow cover from 

MODIS data using the MARS technique, where the Landsat 8 binary snow cover data served as the reference fractional snow 

cover data. They found results indicated that the estimated fractional snow cover using from MARS method wasis in good 15 

agreement with the reference fractional snow cover, with the average correlation coefficient being values of R = 0.93 

(correlation coefficient) (Kuter et al., 2018). However, polar regions contend with clouds and the limited solar illumination , 

which are in polar regions have become the greatest challenges in for snow cover detection from using optical satellite data. 

This has, resulteding in snow cover maps with incomplete spatial coverage, at times with gaps of sometimes up to 70% (Parajka 

and Blöschl, 2008). Although there have been cConstant efforts have been made to fill the gaps mainly caused by cloud 20 

contamination by fusing multi-source data (Chen et al., 2018), such as passive microwave snow cover products (Hao et al., 

2018; Huang et al., 2016), and different spatiotemporal and spatial information of on snow cover (Dong and Menzel, 2016;  

Gafurov and Bárdossy, 2009); however, most of these studies have focused on binary snow cover. 

When there are consecutive cloudys appear in consecutive days, the use of the before-mentioned data fusion technology 

would introduces cause significant uncertainties in detecting snow cover from optical imagery. Passive microwave sensors are 25 

largely The primary advantageous of passive microwave sensors  because they haveis that they are capacityble tof measureing 

microwave radiation emitted from the ground under the clouds and in darkness. Compared with active microwave 

sensorsBesides, passive microwave sensors, compared with active, have a large swathe width and generate a massive amount 

of daily observations data that extends for several decades (Cohen et al., 2015). To dateNowadays, passive microwave 

brightness temperature data have has been widely applied in monitoring soil moisture (Qu et al., 2019), sea/lake ice (Peng et 30 

al., 2013), frozen soil (Han et al., 2015), and snow cover. Previous studies about on snow cover usually have typically focused 
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on snow depth (Xiao et al., 2018; Che et al., 2008), snow water equivalent (SWE) (Takala et al., 2011; Lemmetyinen et al., 

2018) and snow cover area (Liu et al., 2018; Xu et al., 2016). All these studies on snow cover area were limited to binary 

information. Specifically, they involved the application of seven common passive microwave snow cover mapping algorithms,  

such as Grody’s algorithm (Grody and Basist, 1996), National Aeronautics and Space Administration (Kelly’s NASA) 

Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) SWE algorithm (Kelly, 2009), Singh’s 5 

algorithm (Singh and Gan, 2000), Hall’s algorithm , Neal’s algorithm (Neale et al., 1990), the FY3 algorithm (Li et al., 2007), 

and the South China algorithm (Pan et al., 2012)., all All these algorithmof which utilize different thresholds for the brightness 

temperature to identify binary snow cover. Recently, Xu et al. (2016) applied the brightness temperatures of different channels 

and their linear combinations into the Presence and Background Learning (PBL) algorithm for to identifying global binary 

snow cover. 10 

AsBecause of the effect of environmental factors (e.g.,such as vegetation, topography, and wind) on snow cover 

distribution producesresults in greata vast heterogeneity, snow cover monitoring still bears larger uncertainties when only using 

passive microwave data. These large uncertainties may result from "patchy" (shallow/discontinuous) snow cover and the use 

of coarse resolution (25 km) (Xiao et al., 2018). Albeit with itsDespite the coarse resolution of passive microwave sensors, the 

its capability toof detecting snow cover in the presence of clouds makes passive microwave sensors andemonstrates its 15 

effectiveness as a snow cover monitoring tool. There is an urgent need for dDaily time-series and full space-covered sub-pixel 

snow cover area data are urgently needed for climate and reanalysis studies. Thus, it is necessary to derive high resolution 

fractional snow cover that can describe snow cover distribution patterns and capture its rapid evolution processes. Brodzik et 

al. (2018b) recently published the Calibrated Enhanced-Resolution Passive Microwave Daily Equal-Area Scalable Earth Grid  

(EASE-Grid) 2.0 Brightness Temperature data (see Ssection 2.1 below), which hasve high spatial resolution (3.125 km and, 20 

6.25 km) depending on frequency (Brodzik et al., 2018a; Long and Brodzik, 2016). This passive microwave data with enhanced 

resolution enhanced passive microwave data provides an opportunity for fractional snow cover estimation. 

The main objective of this study is to develop a feasible method utilizing the enhanced-resolution passive microwave 

brightness temperature data to retrievepredict daily fractional snow cover with at a 6.25 km resolution. The datasets used in 

this study are described in Section 2, includinge the enhanced-resolution passive microwave data, ground-based measurements, 25 

MODIS snow cover and land cover products, and topographic data are described in section 2. Section 3 details the proposed 

retrieval algorithm with using the random forest method as a retrieval function. Section 4 presents the results from the methods 

comparison, evaluation, and validation experiments. Finally, section Section 5 discusses the possible factors that impact  

onaffect the accuracy of the fractional snow cover estimates derived from passive microwave data. 
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2. Datasets 

2.1 The enhanced-resolution passive microwave data 

The NASA Making Earth System Data Records for Use in Research  Environments (MEaSUREs) program provides one 

a new version of passive microwave brightness temperature data called known as the Calibrated Enhanced-Resolution Passive 

Microwave Daily EASE-Grid 2.0 (Equal-Area Scalable Earth Grid) Brightness Temperature. Thisese passive microwave 5 

gridded data spans from 1978 to mid-2017, usinge the Level-2 satellite records from multiple passive microwave sensors , time 

span from 1978 to mid-2017 (Brodzik et al., 2018b; Brodzik et al., 2016, Updated 2018.). This enhanced-resolution data can 

may be downloaded from the National Snow and Ice Data Center (NSIDC, https://nsidc.org/data/NSIDC-0630/versions/1). 

We used data from January and February of 200810  to– 2017 (January–February only) to explore the feasibility of estimating 

fractional snow cover using passive microwave data. The Special Sensor Microwave/Imager (SSMIS) sensor (F-16) used in 10 

thise present study offers three channels (19-, 37- and, 91 -GHz) in both horizontal (H) and vertical (V) polarization, and 22 -

GHz with vertical polarization. These datasets were gridded into EASE-Grid 2.0 projections at two spatial resolutions (19- 

and, 22- GHz with 6.25 km,; 37- and, 91 -GHz with 3.125 km). Only observations from descending orbit (morning, 03:52) 

were usedIn order to avoid the effects of wet snow as much as possible wet snow effects, only observations from descending 

orbit (morning, 03:52) were used (Derksen et al., 2000). To achieve a commonunite resolution, a bilinear interpolation was 15 

used to aggregate the 3.125 km spatial resolution data to 6.25 km. 

2.2 Ground measurements 

Although ground measurements of snow cover have limited spatial representationiveness in passive microwave coarse 

spatial resolution, the in-situ measurements continue to beare still the most authentic and reliable data source for snow depth 

estimation or snow cover detection (Chen et al., 2018; Sturm et al., 2010). The gGround measurements from the Global 20 

Historical Climatology Network-Daily (GHCN-Daily) data were used to assess the snow cover detection capability (Menne et 

al., 2012a). The GHCN-Daily dataset waiss provided by the National Climatic Data Center (available in 

http://doi.org/10.7289/V5D21VHZ), and; it integrates daily observations from approximately 30 different data sources. The 

new version data was, updated on June 13, 2018, and containeds measurements from over one hundred thousand100 000 

stations worldwide. These stations record various aspects a variety elements of meteorological observations, including snow 25 

depth and snowfall (Menne et al., 2012b). Data for more than 50 000 measurement sites across Canada and AmericaUnited  

States were collected, and, all available records from these sites were included in this study. 

2.3 MODIS land surface products  

2.3.1 Snow cover product 

MODIS snow cover products were considered the most suitable reference data bBecause of its their wide application, 30 

http://doi.org/10.7289/V5D21VHZ
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high accuracy (Hall and Riggs, 2007; Zhang et al., 2019; Coll and Li, 2018), and high spatiotemporal resolution (1 -day; 500 

-m), MODIS snow cover products  were considered as the most suitable reference data. The accuracy of the version 6 MODIS 

snow cover products  (version 6) has been improved compared to that of version 5 (Dong et al., 2014; Huang et al., 2018). The 

most noticeable change for version 6 is that the Normalized Difference Snow Index (NDSI) snow cover has replaced fractional 

snow cover, while the binary snow covered area (SCA) datasets areis no longer available (Riggs and Hall, 2016). A snow cover 5 

detection method using NDSI was applied in version 6 to alleviate commission errors (Riggs et al., 2017). The NDSI index 

contributes helps to distinguish snow from other surface features and to describe the presence of snow (Hall et al., 1998; Hall 

et al., 2001). These products are were available from NSIDC website (MOD10A1: https://nsidc.org/data/MOD10A1; 

MYD10A1: https://nsidc.org/data/MYD10A1)(Hall and Riggs, 2016a, b). The local equatorial crossing times of MODIS 

onboard the Terra and Aqua satellites are approximately 10:30 a.m. and 01:30 p.m., respectively. ThisIn the present study used, 10 

both MOD10A1 and MYD10A1 NDSI snow cover products  were used to generate reference fractional snow cover over for 

North America. The NDSI snow cover data were was initiallyfirstly converted to binary snow cover forin order to aggregatione 

into the fractional snow cover data with at a 6.25 km spatial resolution (see Ssection 3.2). 

2.3.2 Land cover product 

Generally, the retrieval accuracy of snow cover parameters is strongly dependents on the land cover types (Xiao et al., 15 

2018; Kuter et al., 2018; Dobreva and Klein, 2011; Huang et al., 2018). WThus, we indirectly considered the land cover effect 

when estimating fractional snow cover by establishing retrieval models on different land cover classes derived from MODIS 

land cover data (200810 –  - 2017). MODIS Land Cover Type Yearly Product (MCD12Q1, version 6) incorporates five 

different classification schemes and is globally available at a 500 -m spatial resolution from spanning 2001 to the present 

(https://search.earthdata.nasa.gov/). The International Geosphere–Biosphere Program (IGBP) classification scheme 20 

categorizes land cover into 17 classes (Sulla-Menashe and Friedl, 2018). In thise study, MCD12Q1 data was resampled into 

the 6.25 km grid using a simple majority method, and then it was integrated into five classes;: forest, shrub, prairie, bare land, 

and water (refer to Xiao et al. (2018)). The Ffractional snow cover retrieval models were established for the previously 

mentioned four of these land cover types, except excluding for water. 

2.4 Topographic data 25 

Previous studies have demonstrated that topography plays an important role in snowpack distribution (Dai et al., 2017) 

and snow evolution (Savoie et al., 2009). The ETOPO1 data was used as the topographic auxiliary data; this data. ETOPO1 

has a 1 arc-minute spatial resolution and was developed by the National Geophysical Data Center of the, National Oceanic 

and Atmospheric Administration (NOAA) (Amante and Eakins, 2009). This data is available from the website 

(https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316). This study also considered elevation, not only 30 
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elevation but also slope, and aspect factors. The eElevation was directly acquired from ETOPO1, which was re-projected and 

resampled into the grid atat the  6.25 km spatial resolution. The slope and aspect data were processed obtained from ETOPO1 

data by ArcGIS 10.5 (Buckley, 2019) as a derivative product of ETOPO1 data. Fig. 1 shows the elevation pattern forof our 

study region, North America, limited to Canada and United States in this study. 

3. Methodology 5 

Microwave radiation constantly emitted from the substratum can be measured by passive microwave sensors. However, 

the overlying snow pack attenuates the upward microwave radiation (Chang et al., 1987). This microwave radiation attenuation 

was mainly dominated by volume scatter relying on the properties of the snow cover. However, Pprevious studies have 

demonstrated that there is great heterogeneity in the snow properties and the distribution of snow cover, both of which show 

great heterogeneous and may be influenced by many factors  (Xiao et al., 2019), including, but not limited to, the most prevalent 10 

land-cover (Che et al., 2016; Kim et al., 2019), topography (e.g., elevation, topographic relief) (Smith and Bookhagen, 2016;  

Revuelto et al., 2014), time (Sturm et al., 2010; Dai et al., 2012), and climatic conditions (e.g., wind speed, near-surface soil 

temperature and air temperature) (Dong et al., 2014; Grippa et al., 2004; Josberger and Mognard, 2002). Satellite sensors 

receive reduced upwelling microwave radiation in proportion to a greater snow cover area or a larger mass of snowpack As a 

result, the more covered area or the more mass magnitude of the snowpack, the less  upwelling microwave radiation was 15 

received by the satellite sensors (Chang et al., 1987; Dietz et al., 2011; Saberi, 2019). A number of published work have 

demonstrated the potential to derive snow depth and SWE using passive microwave radiation data (Kim et al., 2019; Wang et 

al., 2019). Despite the high uncertainties associated with snow depth and SWE estimations, using passive microwave data can 

provide useful snow cover extent information (Brown et al., 2010; Foster et al., 2011). 

3.1 Overview 20 

TIn order to develop a fractional snow cover prototype retrieval method combined with optical and passive microwave 

data, we only used the January and February datasets, because as during this period the snow cover areas reach are at a its 

maximum and the snowpack properties are relatively stable during this period (Xiao et al., 2018). The influential factors as 

mentioned above on snow cover, including topography factor, land cover, location and time, were indirectly or directly 

considered during the retrieval of the fractional snow cover. To dateSo far, many researchers have applied machine learning 25 

techniques in for the retrieval of snow cover parameters retrieval to explore the relationship between passive microwave signals 

and snow propertiesy (Xiao et al., 2018; Tedesco et al., 2004). In this studyHere, random forest regression (described in 

Ssection 3.4.4) was selected as the retrieval function method to mine the relationship between passive microwave brightness 

temperature and fractional snow cover. Fig. 2 shows provides an overview of the workflow that consists of four parts: 

First, a ground “truth” observation wasis necessary for to produceing snow cover areas in sub-pixel. Under clear-sky 30 
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conditions, the reference fraction of snow cover wasere generated within a 6.25 -km pixel cell by applying the aggregation 

method to the MODSIS binary snow map (see Ssection 3.2). To make the experiment to be fully independently, tThe reference 

fractional snow cover data was divided into three parts: the data from 2011 to 2016, used in the training stage; the data from 

2010, used in the testing stage; and the 2008 – 2009 and the 2017 data, used in the evaluation stage. 

Second, to the best of our knowledge, there are few attempts to directly develop no researchers have developed fractional 5 

snow cover retrieval methods using from passive microwave brightness temperature data. This meantus, a a series of sensitivity 

experiments of input variables selection is were requiredneeded. The iInput parameters were selected based on a series of the 

tests described in Ssection 3.3.1. Moreover, we conducted several sensitivity experiments to determine the optimal training 

sample size for the retrieval method used in this study (Section 3.3.2). 

Third, many studies have found that the separate estimation of fractional snow cover (Dobreva and Klein, 2011) and snow 10 

depth (Xiao et al., 2018) on different land cover types has produced better results than those obtained from the combined 

retrieval model. HenceAs such, the random forest models were developed separately developed for the four land cover types. 

Fourth, the last stage consisted of is the evaluation and validation of the established model. The Ddata from 2010 were 

was used to assess the performance of four different approaches for estimating fractional snow cover. Additionally, the 

independent datasets in 2008 –2009 and 2017 were employed used to evaluate the performance of the random -forest-based 15 

retrieval algorithm for the four land cover types. The Iindependent validations of snow cover detection capability were 

conducted using the 2017 retrieval results and station snow depth measurements across North America. There were and 

compared with the results of Grody’s snow cover mapping algorithm. 

3.2 Preprocessing of MODIS snow cover products  

The base data for this study was tThe reference fractional snow cover data obtained from the interpretation of MODIS 20 

snow cover products  is the base data for our work. The top highest priority issue wasis to produce daily binary snow cover 

area from NDSI snow cover. Previous snow cover detection studies recommend a 0.4 NDSI threshold on global and regional 

scale snow cover investigations (Parajka et al., 2012; Hall et al., 1995); However, for the new version of MODIS snow cover 

products, several previous studies researches employed a threshold of NDSI > 0 to identify snow cover (Dong et al., 2014; 

Riggs et al., 2017; Huang et al., 2018). The NDSI of other features (e.g., cloud-contaminated pixels at the edges of cloud, 25 

salt pans, and the pixels with very low visible reflectance) can may also be greater than 0 (Riggs et al., 2017). For this 

reason, Zhang et al. (2019) demonstrated that a 0.1 NDSI threshold wasis more reasonable than 0.4 for snow cover 

identification in no-forest regions, whereas, forest-covered regions insufficient lack enough station measurements to dofor a 

reliable and complete evaluation. MODIS snow cover performance iss better in for no-forest landscapes than forest-covered  

counterpartslandscapes, wherein which it is with less accurate for snow cover identification (Hall and Riggs, 2007; Parajka 30 

et al., 2012). 
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TIn this study selected conservative, the NDSI thresholds of 0.1 and 0.4 for, in no-forest-covered areas, and 0.4, 

conservatively and chosen for forest-covered areasareas, respectively (Riggs and Hall, 2016) to, were used for determineing 

“snow-covered” or “snow-free” areas. The original NDSI snow cover layer classes were reclassified into five types ;: snow-

covered, snow-free, water, cloud, and fill value (refer to Table S1 in Appendix). In addition, MCD12Q1 datasets (500- m) 

were were used as auxiliary data to mask water bodies (Fig. 3) in order to alleviate the uncertainty caused by frozen water 5 

bodies when using passive microwave data to detect snow cover (Tedesco and Jeyaratnam, 2016). The MODIS binary snow 

cover data were was generated based on the NDSI snow cover basic quality assessment (QA), with values of 0 (best), 1 

(good) and 2 (OK) (Liang et al., 2017). 

Despite theEven if MODIS snow cover products have a high spatiotemporal resolution and overall accuracy of snow 

cover detection (85% –~ 99%) using MODIS snow cover products (Parajka et al., 2012; Tran et al., 2019; Zhang et al., 10 

2019), the cloud effect hinders its widespread applicability. Previous studies have reported that clouds maycould cover more 

than 40% of the MODIS snow cover data, in some cases even exceeding 60% (Dong and Menzel, 2016; Yu et al., 2016; 

Parajka and Blöschl, 2006). As such, cCloud r emoval processing is  essential to mitigate the cloud obstruction of MODIS 

products. This study adopted tThe cloud removal method combining the MOD10A1 and MYD10A1 snow cover products, as 

proposed by Gafurov and Bárdossy (2009), was adopted. This method consists of two main filters as shown in Fig. 3: 15 

1) Combining snow cover images from two sensors on a given day:. tThe first simple filter was applied under the 

assumption that snowmelt and snowfall did not occur within the two sensor observations. Whether a pixel ion Terra (𝑆𝑡
𝐴𝑞𝑢𝑎

) 

or Aqua (𝑆𝑡
𝑇𝑒𝑟𝑟𝑎) snow cover image in a given day (t) wasis observed as snow cover or snow-free, the pixel in the combined 

output image (MCD10A1) will wasbe assigned the same ground status  (shown in Eq. 1). The results showed about 3% of 

cloud cover was removed compared to MOD10A1 (Gafurov and Bárdossy, 2009). 20 

2) Short-term temporal filter:. iIf the status of a pixel in the input image (MCD10A1) in a given day (t) wasis cloud and 

both the preceding (t - 1) and succeeding (t + 1) days  wereare both snow-covered (or snow-free), the cloud pixel in the 

current MCTD10A1the output image (MCTD10A1) in the given day (t) will bewas assigned as snow-covered status (or 

snow-free) (summarized by Eq. 2). Compared to the first filter, this short-term temporal filter may strikingly markedly 

reduce the number of days (10% ~ 40%) for cloud coverage and increase the in overall accuracy offor snow cover detection 25 

(Gafurov and Bárdossy, 2009; Tran et al., 2019). 

S(𝑜𝑢𝑡𝑝𝑢𝑡,𝑡) = 𝑚𝑎𝑥(𝑆𝑡
𝐴𝑞𝑢𝑎

, 𝑆𝑡
𝑇𝑒𝑟𝑟𝑎 ) (1) 

S(𝑜𝑢𝑡𝑝𝑢𝑡,𝑡) = 1 𝑖𝑓(𝑆(𝑡−1) = 1 𝑎𝑛𝑑 𝑆(𝑡+1) = 1) (2) 

where, t is the time and S represents the ground status observed in the image (0 or 1);. 0 denotes cloud presence and; 1 

indicates snow-covered or snow-free. 

Theoretically, the MODIS fractional snow cover map should calculate the percentage of snow cover in a strictly 
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delimited area of the passive microwave pixel. Calculatedion areas should be in a larger feet footprint area than the pixel 

resolution to avoid MODIS geolocation uncertainties  (Wolfe et al., 2002; Dobreva and Klein, 2011). In this study, a window 

of 15*15 pixels of MODIS binary snow cover data (MCTD10A1; 500- m) was used for to calculateing the fraction of snow 

cover in a 6.25- km pixel. We decided to adopted the most rigorous pixel filtering rule, byin which one clouded pixel can 

notcannot be allowed within a 15*15 pixels window. ThisIt is somewhat slightly different from a previous study that allowed 5 

10% of clouds (Dai et al., 2017). 

3.3 Sensitivity study 

3.3.1 Selecting input variables 

After determining the retrieval function, a major challenge is to selecting the fewest number of variables and to then 

establishprovide an efficient estimation model is a major challenge (Mutanga et al., 2012). Many factors influence snowpack 10 

distribution, and the consideration of all factors in snow cover properties estimation it is unrealistic to consider all factors into 

the snow cover properties estimation. Therefore, we conducted six scenarios to evaluate and finally screen the input variables. 

According to previous study, The topographic factors (digital elevation model (DEM), slope, aspect) (Revuelto et al., 2014) 

and location information (longitude and latitude) (Xiao et al., 2018; Sturm et al., 2010) were directly take as the basic input 

variables. Additionally, consideration was also given to the passive microwave brightness temperature (19- GHz, 37- GHz, 15 

and 91- GHz; both H and V polarization) (Xiao et al., 2018; Xu et al., 2016) and the difference of brightness temperature 

between different channels (Xu et al., 2016; Liu et al., 2018) were also considered (listed in Table 1). The 22- GHz channel 

was excluded because it is sensitive to water vapor. 

AThe decision tree was established using all variables shown in Scenario -1 (Table 1), which and was used utilized to 

compare with the following five scenarios in terms of prediction performance and efficiency. Note that these 19 input variables 20 

were determined by using the Correlation Attribute Evaluation method in in the Waikato Environment for Knowledge Analysis 

WEKA 3.8.3 (WEKAWaikato Environment for Knowledge Analysis ) data mining software. This  method evaluates the worth 

of the attribute by measuring the correlation between the attribute and the target  (Frank et al., 2004; Eibe Frank, 2016). The 

brightness temperature and its linear combination can also be directly be used to detect snow cover based on Xu et al. (2016) 

study;; tThereby, Scenario -2 only containeds brightness temperature and its linear combination without consideration to the 25 

effects ofing location and topographic factors  effects. Wiesmann and Mätzler (1999) reported that vertical V and horizontal H 

polarizations are were dominated by scattering and snow stratigraphy, respectively. Thus, Kim et al. (2019) only assimilated  

vertical V polarization with an ensemble snowpack model to estimate snow depth. Therefore, iIn Scenario -3, we attempted to 

evaluated the performance of the established retrieval model established by only using the brightness temperature in 19-GHz, 

37-GHz and 91- GHz (V polarization) based on Wiesmann and Mätzler (1999) and Kim et al. (2019). IIn the Scenario -4, we 30 

used similar input variables to those used for snow depth estimation in Xiao et al. (2018), and examined whether these same 
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parameters can or cannot estimate the fractional snow cover. Correspondingly, in  In Scenario -5, unlike the variables used in 

Scenario -4Scenario-5, we attempted to used the basic input variables coupled with the brightness temperature linear 

combination for fractional snow cover retrieval.  

The importance rank of the input variable was generated during the training stage of the random forest model (refer to 

section 3.4.4).There are other variable selection strategies  bBased on the importance rank when using random forest method. 5 

For example, , Mutanga et al. (2012) implemented a backward feature elimination method to progressively eliminate less 

important variables, whilst; Nguyen et al. (2018) summarized the grade of vthe variable and selected the top eight important  

variables as the input variables  in the training model. Similarly, we this study assessed the importance of input variables on 

four land cover types using the same size of the training sample (15 000) (Xiao et al., 2018). We then counted the number of 

times of each variable that wasis in the ranked in the top nine important variables (summarized in Table S2, in the Appendix)., 10 

Scenario-6 shows the selected the top nine important variables  which were then used as the input variables for Scenario -6 

(listed in Table 1). By analyzing assessing the performance of models established using the variables in by these six scenarios, 

we will select an optimal combination of input variables for the fractional snow cover retrieval model may be selected (see 

section Section 4.1.1). All input variables were normalized to [0, 1]. 

3.3.2 Determining sample size 15 

Although the random forest method can avoid overfitting (Breiman, 2001), it is important to evaluate the its sensitivity 

to sample selection types and the size of the training sample (Belgiu and Drăguţ, 2016; Millard and Richardson, 2015; Nguyen 

et al., 2018; Colditz, 2015). The performance of predicted models trained by machine learning methods is strongly dependent 

on the quality of the training sample (Dobreva and Klein, 2011). GA good quality training samples indicate that the sample 

data cannot is not be biased towards a certain value. The distribution of the fractional snow cover value from our dataset shows 20 

that more than 70% of the values wereare near 0 and 1. HenceAs such, the use of the random selection or equal proportional 

selection method (Millard and Richardson, 2015; Lyons et al., 2018; Nguyen et al., 2018) would hinder the interpretation of 

the final fractional snow cover estimation model by making reducing the accuracy of the estimation less accurate. ThereforeTo 

address this, we adopted the stratified random sampling as a sample selection strategy (Xiao et al., 2018; Dobreva and Klein , 

2011), where. sStratification was performed on the value of fractional snow cover with at n0.01 increments of 0.01. 25 

From previous studies, we know the sample size, approximately 0.25% of the total study area, was adopted by Colditz 

(2015) when using the random forest method. TMoreover, this value has also been evaluated in optical and active remote 

sensing studies (Nguyen et al., 2018; Du et al., 2015). In this study, we separately generated the training sample datasets 

separately from 0.15% to 0.35% of the total cover area forof each land cover class (in 0.05% increments). Then, the sensitivity 

tests were carried out for the four land cover types.; in Tthis means way, the training dataset would represent the values of 30 

fractional snow cover categories for each land cover type (see Ssection 4.1.2). All the selection operations were completely  
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random. 

3.4 Description of different estimation methods  

In this study, we compared the random forest method with the other three methods for retrieving fractional snow cover, 

including linear regression, ANN, and MARS. It should be Nnoted that the four methods input the same input variables of the 

four methods are the same and are selected by the sensitivity test, including 12 characteristic variables and one target variable  5 

(see section Section 3.3.1 and 4.1.1). 

3.4.1 Linear regression 

For optical remote sensing studies, there is a classical and general linear regression method used to estimate the sub-pixel 

snow cover area in medium- to high-spatial-resolution image. This only involve the A sub-pixel snow cover area estimation 

method has been developed for optical remote sensing studies by establishing a linear relationship between NDSI and fractional 10 

snow cover derived from high high-resolution snow cover maps (Salomonson and Appel, 2004; Salomonson and Appel, 2006). 

This type of regression method has been applied in generating the current standard MODIS fractional snow cover product 

Collection 5. Similarly, Ttheis multiple linear regression method, which uses least squares, was usedemployed as a reference 

method in this study to estimate fractional snow cover from based on passive microwave data. The inputs were the same as 

the other three methods in this study. This method was complete undertaken in WEKA 3.8.3 and dido not use any attribute 15 

selection method. In the Appendix, we presented the linear regression formulas of fractional snow cover estimation for the 

four land cover types (Eq. S-1 and Table S6). 

3.4.2 ANN 

ANN is a popular machine learning technique that has been widely applied in remote sensing studies. Tedesco et al (2004) 

developed an snow water equivalenSWEt and snow depth retrieval algorithm based on an ANN technique using passive 20 

microwave brightness temperature. ANN also was involved in Xiao et al. (2018) also sued ANN study to derive snow depth, 

and Kuter et al. (2018) and Czyzowska-Wisniewski et al. (2015) used ANN study to retrieve fractional snow cover from 

MODIS data. 

ANN consists of multiple layers; an input layer, one or more hidden layers, and an output layer (Hecht-Nielsen, 1992). 

The network with multiple layer perceptron can easily handle the nonlinear relationship between the input and output without 25 

any prior knowledge (Haykin, 2009). The inputs of each neuron wereare multiplied and summed by the connection weight., 

and then Tthe output results were subsequently are computed through using a nonlinear logistic sigmoid transfer function. For 

numerical data, the transfer function in WEKA substitutes the pure linear unit function for the logistic sigmoid. 

Apart Aside from the data preprocessing, a crucial step in this process is to design and optimize the ANN network structure 
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for a betterimproved estimation performance and good generalization capability (Kuter et al., 2018). Kuter et al. (2018) 

demonstrated that multidimensional function modeling can be done successfully achieved with one hidden layer network. All 

parameters were set as to the default with the exception of for the learning rate, which was optimized through a simple trial-

and-error method. From Based on the accuracy index and the modeling speed aspect, Table S3 in the (Appendix) shows that a 

learning rate of 0.2 as the learning rate generated the best performance of for the ANN-retrieval model. 5 

3.4.3 MARS 

The MARS technique has been applied in quite a number plenty of studies and in many fields, such ase.g., classification 

and mapping (Quirós et al., 2009), atmosphere correction (Kuter et al., 2015), pile drivability prediction (Zhang and Goh, 

2016), and fractional snow cover estimation (Kuter et al., 2018). Unlike ANN, the modeling process of MARS is flexible and 

straightforward. Friedman (1991) first proposed the a MARS technique that organizes a simple model for the complex and 10 

high-dimensional relationship between the input variables and the target by having smoothly connecting simply piecewise 

linear polynomials (known as basis functions (BFs)) smoothly connected. The ranges of the input variables awerere cut into a 

series of sub-ranges by the knots; these were that the is connection points for two pieces of BFs. A simple BFs format of MARS 

is expressed as showing in Eq. 3, where. 𝑚𝑎𝑥(·) indicates that only positive parts are were take; otherwise, it is was assigned 

as zero; and. 𝜏 is a univariate knot. 15 

𝑚𝑎𝑥(0, 𝑥 − 𝜏) = {
𝑥 − 𝜏, 𝑖𝑓 𝑥 > 𝜏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

The MARS method involves two stages phrases to establish a regression model; (forward phase and backward phase) for 

establishing a regression model. In the forward phase, the BFs were generated by using athe stepwise search of all univariate 

candidate knots and all variables interactions . These adopted knots and its their corresponding pair of BFs should produce the 

greatest decrease in residual error. The BFs were successively added to the model until it reached the maximum number of 

BFs was reached,. As a resulting in an, the over-fitted and complicated model is over-fitted and complicated. In the backward  20 

phase, the redundant BFs that make the least contributeions to for model predictionive is are completely excluded from the 

regression model. These two phases are an iterative process (Kuter et al., 2018; Zhang and Goh, 2016). 

Two important parameters of MARS determine the model “growing” and “pruning” processes;. The first is the maximu m 

number of basis functions (max_BFs), and the second is the maximum degree of interactions among the input variables 

(max_INT) (Kuter et al., 2018). Kuter et al. (2018) reported that the increase in the structural complexity of the model does 25 

not significantly contribute to improvinge the performance of the MARS model. We did conducted several tests to optimize 

the structure of MARS and found that more complex structures had a longer modeling time, but however, the performance of 

the model did not significantly improve model performance. Specifically, the modeling time of the complex structure 

(max_BFs = 100, max_INT = 2) wasis more than four times greater than that of the simple structure (max_BFs = 40, max_INT 
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= 2) based on our analysis  experiments. TherebyAs such, the simple structure was chosen, as per following Kuter et al. (2018), 

the simple structure was chosen. We implemented an open MARS MATLAB source code available from Jēkabsons (2016) for 

fractional snow cover estimation. These codes were compiled on a 2.40 GHz Intel Xeon Central Processing Unit (CPU) server. 

3.4.4 Random forest 

Random forest is an ensemble learning method, gaining the attention ofwhich has drawn many researchers’ attention 5 

because it is more efficient and robust than the single method (Breiman, 2001). As a classifier, random forest has been 

successfully used to detect snow cover (Tsai et al., 2019), land cover (Rodriguez-Galiano et al., 2012), and woody invasive 

species (Kattenborn et al., 2019). The random forest regression method can also provides a successfully estimateion of land 

surface temperature (Zhao et al., 2019), biomass (Mutanga et al., 2012), and soil moisture (Qu et al., 2019). 

Random forest buildst a large series of decision trees by applying the bootstrap sampling method. In During the training 10 

stage, each tree grows by randomly selecting several variables and samples from input datasets (Mutanga et al., 2012). The 

Iinput data was repeatedly split into training and test data using the bootstrapping method. Each randomly selected bootstrap 

sample in each iteration containeds approximately 2/3 of the input elements. The remaining data, called referred as out-of-bag 

(OOB) data, wasis used for validation. The predicted value of OOB data wasis produced from all the produced trees results 

that were generated and the OOB error was subsequentlyis calculated. For classification, the output wasis determined by voting 15 

the results from all decision trees,; whereas for regression, the output results were determinedis by averaging. The random 

forest was performed conducted in WEKA 3.8.3. As sSeveral attempts to optimize the parameters of random forest structure 

had failed. Thus, all the parameters used were the default values here. 

3.5 Snow cover identification 

The microwave radiation characteristics of precipitation, cold deserts and, frozen ground are similar to that those of snow 20 

cover (Grody and Basist, 1996), and as such. As a result, the snow cover area is likely to be overestimated. Grody and Basist 

(1996) proposed a snow cover identification algorithm, which can distinguishing snow cover from precipitation, cold desert, 

and frozen ground. Consequently, many Many researchers have since used Grody’s algorithm and its derivative algorithm to 

detect snow cover (Che et al., 2008; Xiao et al., 2018; Wang et al., 2019). Liu et al. (2018) reported that on the assessment 

results of different passive microwave snow cover detection algorithms and showed demonstrated that Grody’s algorithm had 25 

a higher precision (positive predictive value) than those of other algorithms. We adopted the revised snow cover decision tree 

of Grody’s algorithm (Table 2) Due toas the highest frequency in this study wasis 91- GHz instead of 81- GHz in Special 

Sensor Microwave Images/Sounder (SSMIS) sensors, we adopted the revised snow cover decision tree of Grody’s algorithm 

(Table 2) (Che et al., 2008). 

There wereare two main objectives for using the revised Grody’s algorithm (hereafter referred to Grody’s algorithm) in 30 
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this workstudy. The first wasis to compare the snow cover identification capability of the proposed fractional snow cover 

estimation algorithm with respect to ground snow depth measurements (see Ssection 4.4).; The second purpose was to assess 

the effect of non-snow scatterer in estimating fractional snow cover, due toOn account of this algorithm’s special capability to 

distinguish the non-snow scatterer (i.e., precipitation, cold desert, and frozen ground), the second purpose is to assess the affect 

of non-snow scatterer in estimating fractional snow cover. In both optical and microwave remote sensing research, the 5 

capability assessment of snow-free detection has been regularly neglected in most of the previous snow cover detection studies. 

3.6 Validation of snow cover identification 

When using the in-situ snow depth (or snow water equivalentSWE) measurements to quantitatively validate the accuracy 

of snow cover area data, the first challenge is how to converting snow depth into binary snow cover using an appropriate 

threshold is the first challenge. Numerous Many different values of depth thresholds have been suggested in published previous 10 

studies,: for instance 2 cm for 20 m spatial resolution (Gascoin et al., 2019); 0 cm (Parajka et al., 2012),; 1 cm (Zhang et al., 

2019), 3 cm (Hao et al., 2018), 4 cm (Huang et al., 2018; Wang et al., 2008) and, 15 cm (Gascoin et al., 2015) for 500 m spatial 

resolution;, 2.5 cm for 5 km spatial resolution (Hori et al., 2017);, 3 cm (Xu et al., 2016) and, 4 cm, 5 cm for 25 km spatial 

resolution (Liu et al., 2018); and, 2 cm for 0.75˚ grid resolution (Brown and Derksen, 2013). Because of thisDue to these 

significant vigorous disagreements in the in the depth threshold svalue, Gascoin et al. (2019) conducted a sensitivity 15 

experiment that tested the agreement between in-situ measurements and optical snow cover area products. Similarly, Tthe 

sensitivity of passive microwave snow cover identification results to the snow depth at 6.25 km spatial resolution was also 

tested by computing the accuracy metrics with snow depth value increasing from 0 cm to 10 cm. 

Then, we neededThe next problem is to determine the threshold for converting fractional snow cover to binary snow 

cover. To dateUp to now, there are few studies exist on fractional snow cover from the passive microwave pixel-level. Dai et 20 

al. (2017) consideredtook the grid consider as snow cover on the grid if the fractional snow cover (25- km) wasis larger than 

10%. IAdditionally, if the fraction of snow cover wasis less than 0.25, the snow water equivalent (SEWE) wasis set to 0 mm 

for to correct theing snow cover area in the daily SWE product according tobased on Luojus et al. (2018) study. However, 

optic remote sensing studies often adopted 0.5 often as is the used threshold of fractional snow cover adopted in optic remote 

sensing studies (Hall and Riggs, 2007). Sensitivity experiments of fractional snow cover similar to ground-based snow depth 25 

were employed in orderconducted to obtain the optimum conversion threshold. Both sensitivity experiments were carried out 

using 2017 bare land type datasets in Ssection 4.4. 

3.7 Performance accuracy assessment 

When evaluating the estimation performance of fractional snow cover in Ssection 4.1-4.3, we used conventional accuracy 

metrics;: correlation coefficient (R; Eq. 4), mean absolute error (MAE; Eq. 5) and root mean squire error (RMSE; Eq. 6).Where 30 
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𝑥  is the mean value of all predicted values 𝑥 𝑖; 𝑦 is the mean value of all target values, 𝑦𝑖 ; and n denotes the number of used 

data.  

𝑅 =
∑ (𝑥 𝑖 − 𝑥)𝑛

𝑖=1
(𝑦𝑖 − 𝑦)

√∑ (𝑥 𝑖 − 𝑥)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

 (4) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥 𝑖 − 𝑦𝑖

|
𝑛

𝑖=1
 (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥 𝑖 − 𝑦𝑖

)2
𝑛

𝑖 =1
 (6) 

We not only evaluated the predicted accuracy of fractional snow cover, and but also assessed the snow cover identification 

performance (see Ssection 4.4). Six accuracy assessment indicesexes were used for the analysis of snow cover detection 

capability analysis(Liu et al., 2018; Gascoin et al., 2019);: overall accuracy (OA), precision (that isa.k.a, a. positive prediction 5 

value), recall, specificity (that is, thea.k.a. true negative rate), F1 score (Zhong et al., 2019), and Cohen's kappa coefficient  

(Foody, 2020). OA refers to the proportion of correctly classified pixels as snow-covered and snow-free. The F1 score is a 

weighted average measurement of precision and recall ranging from 0 to 1 for to measureing the accuracy of binary 

classification. Cohen’s kappa coefficient measures the agreement between the snow cover products and ground measurements. 

All of these indicesexes wcan bere calculated from the confusion matrix (Table 3). OE is the omission error; CE is the 10 

commission error. 

4. Results analysis 

4.1 Sensitivity in the training sample 

4.1.1 Influence of input variables on model performance 

We evaluated the results from 24 random forest fractional snow cover retrieval models (four types * six scenarios) tTo 15 

better understand which input variables have a good relationship with fractional snow cover and the combination of the 

variables that combination can improve the retrieval model performance, we evaluated the results from 24 random forest 

fractional snow cover retrieval models (4 types * 6 scenarios). The data used for variable sensitivity tests in this part merely  

spanned only involved two years (2014 –- 2015) since as the 91- GHz horizontal H polarization data wasis missing over the 

area south of 50° N forin 2016 – -2017. The OOB error and 10-fold cross-validations error were used to measure the 20 

performance of fractional snow cover retrieval models in each scenario (Mutanga et al., 2012). Table 4 shows the results of 

the six scenarios foron the bare land type datasets. 

The variable selection tests arweree used to seek identify a better combination of different variables  (Table 4). At first 

glance, Scenario -3, which only involves vertical V polarization data, yieldeds the smallest R (0.590) and the largest MAE 

(0.197) and RMSE (0.248) of OOB error, and also for 10-fold cross validation error (R: 0.596; MAE: 0.197; RMSE: 0.246). 25 
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Scenario 3 performed the poorest of the When compared to the other fivsixe scenarios, Scenario-3 had the worst performance, 

which may be due to the lack of furtherno more available information from input variables that can could be fully exploited  

(Xiao et al., 2018). Scenario -2, that only containings passive microwave brightness temperature data similar to that is nearly 

same as the variables used in Xu et al.(2016) study, had the second worst poorest performance. This showsIt has proven that 

the location information and topographic factors play a crucial role in snowpack distribution (Revuelto et al., 2014;  5 

Czyzowska-Wisniewski et al., 2015; Sturm et al., 2010). In this study, the retrieval method required these five basic input 

variables as auxiliary information in order to learn the characteristics of snow cover under different surface conditions to assist 

in accurately estimating snow cover properties. In contrast, in the absence of these basic input variables, the established model 

has no advantage in accurately predicting the characteristics of fractional snow cover under complex surface conditions. The 

major difference between Scenarios -1, 4, 5,  5, 6 and Scenario -2 and, 3 (Table 1) wasis whether or not considering the 10 

consideration of the basic input variables (location information and topographic factors).  Thereby, the comparison results 

(i.e., Scenarios -1, 4, 5,  5, 6 vs. Scenarios -2 and, 3) further indicate that the effect of location information and topography 

need to be considered for to estimate snow parameters estimation. Moreover, when compared to Scenarios-1, 4, 5, Even though 

the input variables of Scenario-6 is selected by importance, the setting inis Scenario-6setting, where input variables were 

selected by importance, generated had the third worse poorest performance, with the a low R, the and a highgreat MAE and 15 

RMSE. As for Scenarios -1, 4 and 5, generatedthey gave better results; there were no obvioussignificant differences in R, MAE 

and RMSE values for the tests on the four land cover types tests (Table 4; Tables S4 and S5 in Appendix). Theis comparison 

among Scenarios -1, 4, 5 indirectly indicates that the variables used in Scenario -1 may have some information redundancy 

and slightly weaken the efficiency of the random forest retrieval model. While Although the selection methods of Scenario -4 

and Scenario-5 performed well (in terms of modeling time and accuracy of predicted target), only one scenario was selected;, 20 

the other one may can be used as an alternative in the future. FinallyTo this end, the variable combinations in Scenario -5 were 

selected for further analysis. 

4.1.2 Determination of sample size 

The datasets from 2014 – -2016 were used to examine the sensitivity to training sample size where. tThe used accuracy 

metrics are used were the same as in Ssection 4.1.1. On account ofAs the values and variation trends of the accuracy metrics  25 

of the OOB error and 10-fold cross validation error are were almost sameequivalent, thus, only the OOB error were is shown 

in Fig. 4 and Figures. S-1, 2, 3 (in the Aappendix). We compared the performance of the random forest-based models altering 

the training sample size for the four land cover types. 

Fig. 4 illustrates that there is a slow increase in the R slow increase and a slight decrease in the MAE and RMSE slight 

decrease withwhen the training sample size increased from 0.15% to 0.25% on the shrub type, whilst there was a significant 30 

increase in. Meanwhile, the modeling time has a significant increase. As the sample size goes increase from 0.25% to 0.35%, 
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the model shows a consistently estimates accurate performance of fractional snow cover accurately estimation (higher R and 

less lower MAE and RMSE). This finding appears to be consistent with previous studies (Colditz, 2015; Nguyen et al., 2018). 

An applicable and eligible sample selection scheme, which can achieve an acceptable target prediction accuracy level and an 

adequate execution time, is essential for the implementation of a random forest model with superior predictive capability. One 

noticeable distinction between the three sample sizes (0.25% ~ 0.35%) wasis the modeling time. Interestingly, the 0.3% training 5 

sample size had the lowest shortest modeling time of the three sample size (Fig. 4);.  Figures. S-1, -2, -3, also show exhibit  

similarthat this findings on modeling time was not be coincidental. The explanation reasons underpinning for the difference in 

modeling time is beyond the scope of this study and requires further research. We used the sample dataset covering 0.30% of 

the study area of each class as a suitable size to randomly select training samples. Subsequently, Wwe subsequently extracted 

the training samples for each land cover type from the 2011 – -2016 dataset to establish the retrieval models. 10 

4.2 Comparison of the four retrieval methods  

In this section, the independent testing datasets from 2010 were used to assess the predictive performance of the random 

forest-based models and the other three models (based on linear regression, ANN and MARS). When A comparison ofng the 

modeling time of for the four methods (Table 5) showed that, linear regression shows had the shortest time, with less- than 1 

s for the four land cover types, followed by ANN that iwiths approximately 51 s (forest), 22 s (shrub), 156 s (prairie) and 35 s 15 

(bare land). Random forest modeling times, wereare very close to ANN modeling times for each land cover type. By In contrast, 

the MARS wasis the most time consuming, takes with the longest time (about approximately 6.5 hours) for the prairie type 

and the shortest (19 minutes) for the shrub type. The absolute value of the modeling time would vary under different 

computinger capabilities. 

Table 5 and Fig. 5 exhibit present the results of the four retrieval methods for the four land cover types. The retrieval 20 

models of the shrub type almost predominantly have the lowest RMSE in contrast with the other three land cover types for 

using the four methods (Table 5; cf. Fig. 5 and Figs.ure S-4, 5, 6 in the Appendix). For forest (Table 5; Fig. 5 and 6), Tthe 

random forest model hads the highest R (0.916), lowest MAE (0.202) and RMSE (0.245), and no out-of-range records fFor 

the forest type (Table 5; Fig. 5 and 6),. The distribution and variation of MAE and RMSE for the four methods wereare nearly 

the same similar under different land cover types , with the exception of for the shrub type (Table 5; Fig. 5). Apart fromWith  25 

the exception of ANN, the ranking of results accuracy (MAE and RMSE) of the three algorithms based on the accuracy of 

results (MAE and RMSE) on for the shrub test data was also is the same as that under other land cover types  (i.e., Random 

forest > MARS > linear regression). For the R, random forest shows had the greatest R value, followed by ANN, then MARS, 

and finally for most of the land cover types the smallest Rr value wasis from the linear regression. As showed in Fig. 6 illustrates 

that the, random forest (Fig. 6D) produced a relatively small number of overestimated (~around 0) and underestimated (around 30 

~1) values compared with the other three models (Fig. 6A –- 6C). The MAE (0.315) and RMSE (0.401) of ANN wereare 
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greater than those of MARS (MAE = 0.208, RMSE = 0.254). The number of out-of-range estimated values of ANN (36.62% ; 

161260) wasis also greater than that of MARS (2.65%; 11667), which may be attributed due to the a major underestimation of 

the fractional snow cover were using seriously underestimated by the ANN method. The maximum and minimum of ANN and 

MARS on the forest type wereare 0.949 (-0.52) and 2.132 (-0.122), respectively. For the other three land cover types, the 

numbers of out-of-range pixels of the four methods have were almost in the same order (rRandom forest < ANN < MARS < 5 

linear regression).  

The random forest-based models hadve the best performance with the highest R, and lowest MAE and RMSE (Table 5). 

Previous studies have generally usually neglected neglected the analysis and evaluation of whether the estimated value is out-

of-rangeto assess the rationality of estimated value (Liang et al., 2017; Wang et al., 2017; Hao et al., 2019; Masson et al., 2018). 

From Table 5, we knowshow that the random forest models for the four land cover types produced reasonable fractional snow 10 

cover values that ranginge between 0 and 1. In comparison, the estimated fractional snow cover from the other three methods 

(linear regression, ANN and MARS) was beyond this range. From the number of out-of-range records, the linear regression 

method generated the largest number of out-of-range fractional snow cover estimates, with more than 0.85 million pixels  

(18.69%). Although the number of out-of-range records of ANN (12.31%) wasis less than that of MARS (16.39%), both 

numbers exceed 0.5 million. The results from Kuter et al. (2018), which estimated fractional snow cover using MARS and 15 

ANN techniques, also yielded the similar out-of-range values. The performance of the linear regression method had the poorest 

performance in estimating fractional snow cover from passive microwave data, with is the worst; it shows the lowest R and 

the largest number of out-of-range records. These results indicate thatus, nonlinear methods should thus are first encouraged 

to be used. Xiao et al. (2018) demonstrated the nonlinear relationship between passive microwave brightness and snow depth. 

Besides, De Lannoy et al. (2012) provided an exponential function for converting from snow water equivalent SWE to 20 

fractional snow cover. Thus, it is reasonable that a for the non-linear-relationship exists between fractional snow cover and 

passive microwave brightness temperature. 

4.3 Evaluation of fractional snow cover 

To further investigate the predictive capability of the random forest models , we conducted the evaluation using The 

independent data, which was randomly selected from the datasets in 2008 – 2009 and 2017 and the selecting rule is same as 25 

the training sample, was used to further evaluate the predictive capability of random forest models  in all range values. In this 

part, we analyzed the results from the training and evaluation stage results for the four land cover types (Table 6, Fig. 7). As 

shown in Fig. 7A and 7a show that, the fractional snow cover values around 1 are distinctly underestimated and few are above 

the 1:1 line. The model for forest type exhibits had the worst poorest performance with the lowest R (0.636932) and the highest 

RMSE (0.221199) on for the validation evaluation dataset (Table 6). The retrieval model on the shrub prairie type obtained 30 

had the best performance on the validation evaluation data (R: 0.752971; MAE: 0.1482; RMSE: 0.18967). In addition to forest, 
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prairie shows more underestimation (around 0) and overestimation (around 1) records (R = 0.946, MAE = 0.163, RMSE = 

0.198) than the other two land cover types (shrub and bare land) (Table 6; Fig. 7b - 7d). For In shrub and bare land types (Fig. 

7B, 7b, 7D and 7d; Table 6), the retrieval models have similar performance in evaluation datasets (R: 0.712 and 0.719; MAE: 

0.160 and 0.165; RMSE: 0.212 and 0.216, respectively); "true" fractional snow cover values values in the training andor 

validation datasets are were more distributed at two polar ends (0.0~0.3 and; 0.9~1.0) in these two land cover types . When 5 

comes to the results in the training stage and the evaluation stage, we can found that the estimation performance of the retrieval 

model in evaluation datasets  are highly dependent on the quality of training sample which was used to establish the retrieval 

models. Fig. 7 show that the established models  in four land cover types can properly capture the characteristics of all range 

of fractional snow cover values . 

Apart from the scatter plots and statistical analysis, Fig. 8 showss the spatial distribution patterns of snow cover from a 10 

spatial perspective, including MODIS composite binary snow cover (Fig. 8A), the calculated MODIS fractional snow cover 

(Fig. 8B), and the estimated fractional snow cover by the proposed algorithmfrom passive microwave brightness temperature 

data (Fig. 8C). When the most rigorous pixel filtering rule at the 15*15 pixel window was applied (see Section 3.2), the large 

number of cloud covered pixels (yellow) in Fig. 8A resulted in most areas of the MODIS fractional snow cover image (Fig. 

8B) being represented by a “fill value”. Additionally,, athe number of intermediate values for MODIS fractional snow cover 15 

in winter would be much lower than the number of values near the two extreme values (0 and 1). In contrast, the estimated 

fractional snow cover from passive microwave brightness temperature data can provide almost complete coverage and 

continuous spatial information on snow cover (Fig. 8C; Fig. S-7 in the Appendix). Fig. 8 shows the comparison between our 

estimated fractional snow cover and the reference MODIS fractional snow cover, and more importantly, provides another 

perspective for snow cover identification in Section 4.4. Thus, Fig. 8B and 8C used 0.3 as the threshold of fractional snow 20 

cover to define snow-covered and snow-free area, and this was adopted through the experiments in Section 4.4. This means 

that the pixel was identified as snow cover when fractional snow cover value was less than 0.3. From Fig. 8A – C, tThe spatial 

pattern of  estimated fractional snow cover from the proposed method seems to accurately capture the distribution of snow 

cover from MODIS under clear-sky conditions, such as the snow-free area in most areas of North America, and snow-covered 

areas in northern Canada (Fig. 8). Fig. 8D presents a specific example comparisong example of these two fractional snow 25 

cover datasets and MODIS composite binary snow cover products in the cCentral Canada area on February 27th, 2017. Based 

on this example, we find that our estimated fractional snow cover was capable of obtaining snow cover distribution when most 

of the area was covered by cloud, which was not the case for MODIS. TIn addition, this case example also show that the extent 

of snowline observed in the MODIS binary snow cover image (500 m), which was the boundary between snow-covered and 

snow-free, can bewas well described and exhibited by the estimated fractional snow cover (6.25- km).The spatial pattern of 30 

estimated fractional snow cover from the proposed method seems to accurately capture the distribution of snow cover from 
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MODIS under clear-sky condition (Fig. 8).  

Thus far, we have evaluated the performance of random forest-based models on independent datasets from 2010 and 2017 

on each land cover type. Seeing Tthe results from the random forest (Table 5; Fig. 6D; Figs.ure S-4 –- 6; Fig. 7) show that, we 

find the minimum estimates wereare higher than 0 and approximately 0.01. This may be because the random forest uses a 

results output principle where the regression output results are obtained by averaging results from multiple trees One possible 5 

reason is that the results output principle of random forest that the regression  output results are obtained by averaging the 

results from multiple trees (see Ssection 3.4.4) (Breiman, 2001; Belgiu and Drăguţ, 2016). Although MODIS snow cover 

products have are highly accuratecy in snow cover identification (Tran et al., 2019), the estimated results indicate that a large 

number of fractional snow cover values were overestimated (~0) around 0 and underestimated (~0)around 1. Some fractional 

snow cover estimates , atin the individual pixel level, shows a large discrete distribution near the 1:1 line (Fig. 7). These 10 

misestimates are not confined toappear not just in the results of the random forest model, but also appear in results of the other 

three methods result (Fig. 6; Fig. S-4 – 6 in the Aappendix). Other non-snow scatterers (i.e., precipitation, cold desert, frozen  

ground) may potentiallylargely control  contribute to the overestimation ofes snow cover areain low snow coverage region 

as because in this regions these non-snow scatters were easily be misclassified into as snow cover. As we all know, permafrost 

widely distributed in North America , and it would offer great contributions to the misclassification of snow cover in less snow 15 

cover conditions (Grody and Basist, 1996). AThe more detailed analysis of on the misclassification is discussed provided in 

Ssection 4.4. Moreover, the difference in satellite overpass time may also result in Satellite sensors may provide completely  

different snow cover information because of different satellite overpass timemeasured by satellite sensors. In this study, the 

difference in the equator crossing time between MODIS and passive microwave sensor was close to 6.5 and 9.5 h (refer to 

Section 2.1 and 2.3.1). Generally, tThe error caused byis the differences in the satellite overpass time can bemay easily 20 

neglected when using multi-sensor observations for data fusion. We know the difference of equator crossing time between 

MODIS sensors and passive microwave is close to 6.5 hours and 9.5 hours (refer to section 2.1 and section 2.3.1). Time‐lapse 

photography from camera network was utilized to monitor snow processes in the Upper Rhine Region  . According to  

measurements, snow depth may exhibit great dynamics within hours under a snowstorm, continuous snowfall conditions , 

resulting in fractional snow cover changes rapidly . Thereby, the inconsistent observations occurred between the passive 25 

microwave sensor and MODIS. 

4.4 Validation using ground measurements  

In winter with clouds and snow cover, the MCTD10A1 data still contained a large number of clouds (Fig. 8A; yellow) 

despiteeven after the implementation of the cloud removal and filling process for MODIS snow cover data, MCTD10A1 data 

still presents a large number of clouds (Fig. 8A; yellow). After When applying the rigorous pixel filters (see Ssection 3.2), 30 

there wasis very little snow cover data for further model training and results analysis in one imagery (Fig. 8B). To evaluate 
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and validate the estimated fractional snow cover Under in the absence of reference MODIS fractional snow cover, how can 

we evaluate and validate the estimated fractional snow cover conducted? fFurther analysis from onthe snow cover detection 

capability aspect was performed. The ground snow depth measurements were utilized to investigate the accuracy of snow 

cover identification from two snow cover data;: the snow cover detected by Grody’s algorithm and the fractional snow cover 

derived from random forest. We collected all available meteorological station snow depth measurements of 2017 (January and 5 

February) over North America, obtaining more than 311 000 pairs of records., which This includes the snow depth 

measurements, the snow cover area converted from the estimated fractional snow cover (hereafter referred to Random forest 

FSCrandom forest SCA), and, snow cover area derived from Grody’s snow cover mapping algorithm (hereafter referred to 

Grody’s algorithm SCA). 

The sensitivity to ground-based snow depth in the snow cover detection results were tested by computing the accuracy 10 

metrics. Fig. 9 presents shows that the accuracy metrics vary with increasing snow depth, whereby. We can see that the accuracy 

metrics change significantly when snow depth exceeds 2 cm, and they reach a relative optimum value when snow depth is 

equal to 2 cm. Che et al. (2008) stated that snow cover can may be detected by passive microwave sensors  when snow depth 

is greater than 2 cm. ConsequentlyFor this reason, we adopted 2 cm as the optimum depth threshold to transform ground snow 

depth measurements to snow-covered or snow-free information. Moreover, we We also conducted a series of sensitivity 15 

experiments were conducted to search the optimum threshold for converting fractional snow cover to binary snow cover (Fig. 

10). Fig. 10 shows that recall and precision have oppos ingite variation trends; the. F1-score is up to the maximum value when 

FSC = 0.3. In additional, the other two indicators (OA, kappa) also reached their maximum value when the FSC value were 

ranginges between 0.3 and 0.4. As expected, 0.3 was taken used as the conversion threshold for fractional snow cover. 

Nevertheless, the conversion thresholds of snow depth and fractional snow cover need to be optimized with more data in the 20 

future. 

We used a 2 cm snow depth threshold and a 0.3 fractional snow cover threshold to calculate the confusion matrix for 

Grody’s algorithm SCA and Random forest FSCrandom forest SCA against ground snow depth measurements (Fig. 11 and 

Fig. S-8). Fig. 11 illustrates that the overall accuracy of snow cover identification is had significantly improved by 18%, from 

0.71 for Grody’s algorithm SCA to 0.84 for Random forest FSCrandom forest SCA, indicating that the latter’sRandom forest 25 

FSC results have a promisingwere in goo agreement with ground snow cover measurements (kappa = 0.67). For the Random 

forest FSCrandom forest SCA, the precision (0.83) wasis lower than the recall (0.87), which means that snow cover area wasis 

more likely to be overestimated (CE = 0.17) than to be underestimated (OE = 0.13), with respect to in-situ measurements. In 

contrast,; fFor Grody’s algorithm SCA, on the contrary, the precision (0.87) wasis larger than the recall (0.52). By utilizing the 

proposed method, the OE of snow cover identification is had reduced by 71% in comparicomparedson to the OE for Grody’s 30 

algorithm SCA. The snow cover identification accuracy for the four land cover types were are illustrated in Fig.ure S-8 (in the 
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Appendix) by radar charts. Additionally, Fig. 8 presentsovide a simple example of the snow cover identification results of the 

Random forest FSCrandom forest SCA (Fig. 8C) compared with MODIS composite binary snow cover products (Fig. 8A) on 

February 27th, 2017. From Fig. 8 shows, we can find that the cloud-free area (snow-cover and snow-free area) in MODIS was 

almost be captured by our estimated results. 

Subsequently, Wwe subsequently explored the influence of non-snow scatterers in estimating fractional snow cover. The 5 

CE of Grody’s algorithm (CE = 0.13) wasis lower than rthat of Random forest FSCandom forest SCA (CE = 0.17). Fig. 11 

shows that the overall snow-free identification capability of Grody’s algorithm SCA (specificity = 0.92) wasis significantly 

superior to the Random forest FSCrandom forest SCA (specificity = 0.81), which wasis also apparent for the four land cover 

types (Fig.ure S-8). ThIt is may possibly be due to the Grody’s algorithm filtering out non-snow scatter signature (precipitation, 

cold desert, and frozen ground) (Grody and Basist, 1996). Thereby, Wwe counted the number of records that in which a pixel 10 

had beenwas detected as snow-free by the station and the Grody’s algorithm, however, was considered but snow-covered by 

the Random forest FSCrandom forest SCA. The records, which, which arewere misclassified as snow cover by Random forest 

FSCrandom forest SCA, although they arebut should be non-snow scatter components (precipitation, cold desert, and frozen  

ground),, account for 70.1% of total number of misclassification records (CE = 0.17), of which 63.0% comes from precipitation, 

6.4% from cold desert, and 0.7% from frozen ground by Random forest FSC. This proportion of For forest, shrub, prairie and, 15 

bare land types, this misclassification proportion because of the non-snow scatters wereis 77.78%, 93.5%, 70.61% and 67.3%, 

respectively (Table 7). .For different results for these two snow cover mapping algorithms, we have used an example to show 

the inconsistencies and consistencies in mapping between the random forest SCA and Grody’s algorithm SCA (Fig. S-9) . 

These resultsIn conclusion, demonstrate that the non-snow scatterer is the major source of snow cover misclassification for 

random forest FSC results  (Grody and Basist, 1996). Therefore, it is necessary to first distinguish the scattering signature of 20 

snow cover from other non-snow scattering signatures when using passive microwave data to identify snow cover. Similar 

preprocessing has been applied into snow depth estimation to minimize its uncertainties (Xiao et al., 2018; Wang et al., 2019;  

Tedesco and Jeyaratnam, 2016). 

5. Discussions 

5.1 Sensitivity to training sample size and quality 25 

The size and quality of training samples may contribute to a large error at the individual pixel level (Dobreva and Klein, 

2011; Kuter et al., 2018; Nguyen et al., 2018; Belgiu and Drăguţ, 2016). Previous studiesresearches have investigated the 

sensitivity to sample size and sample quality (Nguyen et al., 2018; Colditz, 2015; Lyons et al., 2018). While some studies 

indicate that a larger training sample size of training sample improves the accuracy of estimatesd results accuracy, we found 

that a training sample dataset covering about 0.3% of the total study area is enoughwas sufficient to achieve high accuracy in 30 
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the estimation of fractional snow cover. When comparing to previous sensitivity tests on sample size (Nguyen et al., 2018), 

the major difference wasis taking the modeling time as one an index in this study. 

The estimation results of the random forest model on training and evaluation (test) datasets (Ssections 4.2 and 4.3) showed 

that, in generally, the prediction performance of the random forest model wasis closely related to the quality of training sample. 

In this study’s datasets, a greater number of more records wereare located near the extreme values of the fractional snow cover 5 

(0 and 1). Thus, it is reasonable to employ usethe stratified random sampling (Dobreva and Klein, 2011), however, but not the 

proportional distribution of the target values suggested by previous studies (Nguyen et al., 2018; Millard and Richardson, 

2015). Even then in this cases,, the overestimation and underestimation often occur near 0.0 and 1.0 in the results of training 

datasets (Fig. 7 A – -D) and in evaluation datasets (Fig. 7 a – -d), respectively. This is mainly because the established fractional 

snow cover retrieval model using the training sample with relatively low diversity of fractional snow cover values  does not 10 

well learn the snow cover distribution characteristics of the various surface condition. For future studiesTherefore, it iswill be 

necessary for future studies to increase the amount of samples data by extending the study period to the the snow accumulation 

and snow ablation stagess (Xiao et al., 2018), in where there is which have much more of shallow snow and "patchy" snow 

cover. Another option is using data from multi-source sensors data to generate the reference snow cover data, (e.g., Sentinel -

1 SAR (Synthetic Aperture Radar) data). By doing this, the proportion of the fractional snow cover values in the training 15 

sample can may be distributed as evenly as possible (Colditz, 2015; Jin et al., 2014; Lyons et al., 2018). 

5.2 Effects of vegetation 

Snow cover detection can be partially or completely obscured (or intercepted) by dense vegetation canopies. This 

introduces majorIt bring great uncertainties in accurate detection of on snow cover accurate detection (Che et al., 2016; Hall 

et al., 2001; Parajka et al., 2012). Forest cover is an influential factor that cannot be ignored in optical and microwave remote 20 

sensing studies (Metsämäki et al., 2005; Cohen et al., 2015). It is evident that the fractional snow cover retrievals almost 

typically have the least accuracy under the forest type with respect toin comparison to under other land cover types (Table 5; 

Figs. 6 and Fig. 7). There are two reasons that may be attribute to can explain this error initially;: one is the accuracy of the 

reference “true” fractional snow cover data in a forested area (Riggs and Hall, 2016), and the other is the microwave radiation 

attenuation caused by forests (Che et al., 2016). 25 

Previous studies have reported that lower accuracy of MODIS snow cover products wasis found in forest covered areas 

and complex terrain (Hall and Riggs, 2007; Tran et al., 2019; Coll and Li, 2018). There are few Several studies have that 

validated and evaluated the accuracy of MODIS snow cover products , particularly  in forested areas (Parajka et al., 2012;  

Zhang et al., 2019; Arsenault et al., 2014; Kostadinov and Lookingbill, 2015). In term ofAs for the NDSI threshold in forested 

areas (Ssection 3.2), we used 0.4 as a conservatively took 0.4 as the threshold. According to previous studies, our operation 30 

(merely using NDSI as the criterion) in forest-covered areas would produce greaterresult in more commission errors in 
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compared with using the Normalized Difference Vegetation Index (NDVI) as auxiliary information (Hall and Riggs, 2007). 

The retrieval results indicated thate the NDSI threshold of NDSI in forested areas needs to be optimizationed using  numerous 

data (Riggs et al., 2017; Xin et al., 2012). In addition to the influence of forests influence on MODIS data, forests also hampers 

the upwelling microwave radiation emitted from the ground. Snow cover in forested areas can may be divided into under-

forested and over-forested snow cover (Xin et al., 2012). This apparently distinguishesereby, the interference effects of 5 

evergreen forests and deciduous forests on snow cover are apparently different (Gascoin et al., 2019; Romanov and Tarpley, 

2007). Additionally, there are major differences in forested area, the observation way ofmeans for optical and passive 

microwave sensors in forested areas has great differences. The capacity for oOptical sensors capability to observe over-forested 

snow cover is mainly dependents on the vegetation canopy density (Kuter et al., 2018), while microwave sensor may can 

obtain information of on snow cover under vegetation canopy (under-forested snow cover) (Che et al., 2016; Cohen et al., 10 

2015). Overall, theis combination of these two effects could may cause produce the low estimation accuracy for in estimating 

fractional snow cover. 

6. Conclusions 

Many previous studies have focused on the estimatingon of fractional snow cover utilizing optical remote sensing imagery, 

which suffers from cloud contamination duringin data acquisition. In contrast, the microwave sensors offer attractive 15 

advantages of working under all weather conditions and around the clock.  In this studyThus, we tried attempted to developed 

an algorithm for estimating fractional snow cover from applying the enhanced-resolution passive microwave brightness 

temperature data (6.25  km) to fractional snow cover estimation during January and February of 2010 to 2017. The proposed 

algorithm took into account a series of influential factors, including topography, land cover, and location. Using the reference 

fractional snow cover stem from MODIS snow cover products as the “true” observation, we established the fractional snow 20 

cover retrieval models for four land cover types (forest, shrub, prairie and bare land) inputting 12 variables selected by 24 

sensitivity experiments . Thee proposed algorithm took into accounted for a series of influentialtial factors, including 

topography, land cover, and location information. Compared with the other three methods (linear regression, ANNANN and 

MARSMARS), the random forest-based algorithm had the best performance with high accuracy (highest R, and lowest MAE 

and RMSE) and no out-of-range retrievals. The accuracy of the proposed algorithm were further assessed using MODIS 25 

reference fractional snow cover data of 2017, and Tthe results of the evaluation results using the reference fractional snow 

cover data in 2017 showed that random forests modelsour proposed algorithm hadve a good retrieval performance in estimating 

fractional snow cover, with RMSEs ranging from 0.167 to 0.198207. Moreover, iIn-situ snow depth measurements were used 

to validate the accuracy of the estimated proposed fractional snow cover estimation algorithmresults in snow cover mapping 

comparing them with the snow cover detection results from Grody’s algorithm. Snow cover identification detection capability 30 
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of the random random forest-based method wasis superior (OA =0.84, kappa = 0.67) to that of Grody’s algorithm, with overall 

accuracy increasing by 18% (from 0.71 to 0.84), and omission error reducing by 71% (from 0.48 to 0.14), when the fractional 

snow cover threshold was 0.3, indicating that the proposed approach detects snow cover with considerable accuracy. Although 

the random random forest-based models achieved an acceptable accuracy, the fractional snow cover are was more likely to be 

overestimated (CE = 0.17) than to be underestimated (OE = 0.1413). In addition, As Grody’s algorithm yielded good prediction 5 

on snow-free class, the the effect of the non-snow scatterer was evaluated on fractional snow cover predictions by means of 

the good prediction of Grody’s algorithm on snow-free class; the results indicatedit was found that more than 70% of CE was 

caused by misclassifying the non-snow scatterer (precipitation, cold desert, frozen ground) as snow cover. These models 

established using several data sources in January and February had better applicability in dry snow conditions, while estimation 

results could be less accurate in wet snow conditions. 10 

Numerous studies have investigated the relationship between common snowpack physical properties  (e.g., snow depth 

and water equivalent) and passive microwave brightness temperature in at different frequencies and polarizations (Chang et 

al., 1987; Dietz et al., 2011; Kim et al., 2019; Xiao et al., 2018). HoweverUnlike many previous studies , this study innovatively 

used passive microwave data was the first attempt to directly estimate fractional snow cover using passive microwave data. 

The results demonstrated showed that it is possible to directly obtain an estimated fractional snow cover directly with high 15 

accuracy from high- spatial -resolution passive microwave data (6.25- km) under all weather conditions . Thus, Further detailed 

study on the use of high spatial resolution passive microwave data for fractional snow cover estimation it would bepresents 

itself as an interesting research direction for the development of the studies on fractional snow cover estimation  as an extension 

of the present fractional snow cover study. Furthermore, tTo reduce some of the limitations (e.g., forest effects) (Cohen et al., 

2015) and deficiencies (overestimation and underestimation) faced identified in this study, the future works studies should pay 20 

greater more attention to the prediction of the fractional snow cover using passive microwave data. To the best of our 

knowledge, this study is may represent the first attempt to establish a relationship between the microwave brightness 

temperature and the reference “true” fractional snow cover using machine learning methods. However, it presents also contains 

significant strong limitations in the understanding of the physicsal that relates fractional snow cover to the signature of passive 

microwave brightness temperature mechanism (Cohen et al., 2015; Che et al., 2016). Thereby, Ffuture studies need work will 25 

try to use physical snowpack models and radiation transfer theory to explore the physical mechanis ticm relationships between 

microwave brightness temperature and fractional snow cover (Pan et al., 2014). 
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Table 1. The input variables list. Line means this variable is not selected; asterisk indicated the variable is selected. The numbers 

in square brackets denote the number of variables. T19H is the brightness temperature (T) in 19-GHz channel with H 

polarization; T_19V_19H denotes the difference of brightness temperature between 19V and 19H channel; others are similar.  5 
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1 Latitude * - - * * * 

2 Longitude * - - * * - 

3 DEM * - - * * - 

4 Slope * - - * * - 

5 Aspect * - - * * - 

6 T19H * * - * - - 

7 T19V * * * * - - 

8 T37H * * - * - * 

9 T37V * * * * - * 

10 T91H * * - * - * 

11 T91V * * * * - * 

12 T_19V_19H * * - - * - 

13 T_19V_37V * * - - * * 
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Table 2. The description of the revised Grody’s algorithm. The unite is Kelvin (K). 

Scattering Materials  Description 

Scattering signature (𝑇𝑏19𝑉 − 𝑇𝑏37𝑉) > 0 K 

Precipitation (𝑇𝑏22𝑉 ≥ 259 𝐾) or (254  𝐾 ≤ 𝑇𝑏22𝑉 ≤ 258 𝐾 𝑎𝑛𝑑  (𝑇𝑏19𝑉 − 𝑇𝑏37𝑉) ≤ 2 𝐾) 

Colod desert (𝑇𝑏19𝑉 − 𝑇𝑏19𝐻) ≥ 18 𝐾 and (𝑇𝑏19𝑉 − 𝑇𝑏37𝑉) ≤ 10 𝐾 

Frozen ground (𝑇𝑏19𝑉 − 𝑇𝑏19𝐻) ≥ 8 𝐾 and (𝑇𝑏19𝑉 − 𝑇𝑏37𝑉) ≤ 2 𝐾 
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Table 3. Confusion matrix defining the accuracy of the predicted snow cover map reference to the in -situ snow cover 

observation. The characters (TP, FP, FN, TN) represent the number of records of snow-covered or snow-free in a particular 

conditions. 

 Ground observation (true) 

snow-covered (Positive) snow-free (Negative) 

Prediction snow-covered (Positive) TP (true positive) FP (false positive) 

snow-free (Negative) FN (false negative) TN (true negative) 

𝑂𝐴 = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃)⁄  

𝑂𝐸 = 𝐹𝑁 (𝑇𝑃 + 𝐹𝑁)⁄  

CE = 𝐹𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  

𝑃𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃) = 1 − 𝐶𝐸⁄  

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁) = 1 − 𝑂𝐸⁄  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄  

𝐹1 = (2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)⁄  

 

Table 4. Variable selection tests in 6 scenarios on bare land type data for random forest method. The accuracy indexes of the 5 

estimation are calculated using OOB error estimates and 10-fold cross validation (CV). 

 Indexes  Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5 Scenario-6 

OOB-error 

R 0.776 0.679 0.590 0.778 0.774 0.708 

MAE 0.152 0.178 0.197 0.150 0.152 0.170 

RMSE 0.194 0.224 0.248 0.193 0.194 0.216 

10-fold CV 

R 0.777 0.682 0.596 0.778 0.775 0.710 

MAE 0.152 0.178 0.197 0.151 0.153 0.170 

RMSE 0.193 0.223 0.246 0.193 0.194 0.215 

Time spent modeling / s  7.37 5.57 3.46 5.43 5.26 5.27 
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Table 5. Performance of linear regression, ANN, MARS and random forest model using test datasets  from 2010 for four land 

cover types. FSC indicate fractional snow cover. The number outside brackets indicate the number of pixels; The number 

inside brackets indicate their percentage. 

Method 

Land 

cover 

type 

Time 

spent 

modeling/

s 

R MAE RMSE Max. /Min. 
FSC < 0 

(%) 

FSC > 1 

(%) 

Linear 

regression 

Forest 0.37 0.896 0.225 0.279 
1.204 (-

0.183) 

44978 

(10.21) 
554 (0.13) 

Shrub 0.24 0.956 0.174 0.198 
1.605/-

0.382 
335 (0.06) 

125589 

(24.17) 

Prairie 0.49 0.902 0.179 0.215 
1.524 /-

0.331 

23604 

(0.87) 

632417 

(23.22) 

Bare land 0.29 0.892 0.177 0.213 
1.647 /-

0.087 
912 (0.10) 

30208 

(3.32) 

ANN 

Forest 51.09 0.895 0.315 0.401 
0.949 / -

0.520 

161260 

(36.62) 
0 (0) 

Shrub 21.73 0.966 0.103 0.146 
1.251 / -

0.327 

15267 

(2.94) 

38207 

(7.35) 

Prairie 156.29 0.916 0.197 0.23 
1.527 / -

0.166 
743 (0.03) 

310285 

(11.39) 

Bare land 35.31 0.932 0.174 0.203 
1.730 / 

0.173 
0 (0) 

39491 

(4.34) 

MARS 

Forest 2518.10 0.838 0.208 0.254 
2.132 / -

0.122 
8844 (2.01) 2823 (0.64) 

Shrub 1127.24 0.926 0.149 0.185 
2.053 / -

0.239 
2977 (0.57) 

121693 

(23.42) 

Prairie 23406.76 0.912 0.164 0.197 
1.764 / -

0.733 
4371 (0.16) 

469416 

(17.24) 

Bare land 2518.10 0.911 0.156 0.191 
2.253 / -

0.844 
469 (0.05) 

142155 

(15.62) 

Random 

Forest 

Forest 52.16 0.916 0.202 0.245 
0.960 / 

0.011 
0 (0) 0 (0) 

Shrub 16.76 0.975 0.118 0.162 
0.999 

/0.023 
0 (0) 0 (0) 

Prairie 214.06 0.955 0.134 0.173 
1.000 / 

0.011 
0 (0) 0 (0) 

Bare land 38.73 0.967 0.103 0.148 
0.998 / 

0.027 
0 (0) 0 (0) 

 

Table 6. The performance of random forest models on training and validation data under four land cover types.  5 

Land cover 

type 

Training Validation 

R MAE RMSE R MAE RMSE 

Forest 0.702 0.166 0.207 0.6360.932 0.18054 0.221193 

Shrub 0.772 0.146 0.191 0.712971 0.16042 0.212199 

Prairie 0.807 0.142 0.182 0.752946 0.14863 0.18967 

Bare land 0.807 0.144 0.190 0.719950 0.16552 0.216198 
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Table 7. The effect of precipitation, cold desert and frozen ground in snow cover misclassification. FP is false positive tha t 

means it is the number of pixels that are misclassified as snow cover by Random forest FSCRandom forest SCA. 𝑆𝐷𝑜𝑏𝑠 = 0 

denotes snow-free measured in station; 𝑆𝐶𝐺𝑟𝑜𝑑𝑦 = 0  denotes snow-free (precipitation, cold desert and frozen ground) 

determined by Grody’s algorithm; 𝐹𝑆𝐶 > 0.3 denotes snow cover detected by our method. 5 

Land cover types  FP 𝑆𝐶𝑜𝑏𝑠 = 0 & 𝑆𝐶𝐺𝑟𝑜𝑑𝑦 = 0 & 𝐹𝑆𝐶 > 0.3 Percentage 

Overall 28638 20063 70.06% 

Forest 1966 1528 77.72% 

Shrub 519 485 93.45% 

Prairie 13530 9554 70.61% 

Bare land 12623 8496 67.31% 

 

 

Fig. 1 Topographic map of North America. 

 

 10 
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Fig. 2. Workflow diagram illustrating the processing of fractional snow cover retrieval. 

 

 

Fig. 3. The generation of MODIS fractional snow cover 5 
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Fig. 4. Using OOB error estimates to evaluate Tthe performance of random forest models with increasing the size of training 

sample size for shrub type 

 

 5 

Fig. 5. The variation of the accuracy indexes (MAE, RMSE and R) on four algorithms (linear regression, ANN, MARS and 

Random forest) for four land cover. 
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Fig. 6. The color-density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow 

cover for four algorithms (linear regression, ANN, MARS, and random forest) for forest type. The accuracy metric refer to 

Table 5. [Note: out-of-range fractional snow cover values of linear regression, ANN and MARS were truncated on 0 and 1] 

 5 
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Fig. 7. The color-density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow 

cover for four land cover types (forest: A, a; shrub: B, b; prairie: C, c; bare land: D, d). Left column with capital letters are is 
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the results in the training stage (A-D); right column with lowercase letters are is the results in the evaluation stage (a-d). 

 

Fig. 8. Comparison of our estimated fractional snow cover (C, 6.25-km) with the reference MODIS fractional snow cover 

(B, 6.25-km) with respect to the MODIS composite binary snow cover products (A, 500-m); and a comparison example in 

the Central Canada area (D) on February 27th, 2017 (2017058). [Cf. the results in continuous value (Fig.ure S-7 in the 5 

Appendix)] 

 

 

Fig. 9. The changes of accuracy indicators (OA, precision, recall, specificity, F1-score, kappa) for snow cover detection 

results of two algorithm (A: Grody’ algorithm; B: Random forest) with increasing in situ snow depth value. 10 
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Fig. 10. The changes of accuracy indicators (OA, precision, recall, specificity, F1-score, kappa) for snow cover detection 

results with increasing fractional snow cover value (FSC). 

 

 5 

Fig. 11. The accuracy indicators (OA, precision, recall, specificity, F1-score, kappa) of snow cover detection from two 

algorithm (Grody’ algorithm; Random forest). 

 


