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Abstract.  10 

Firn densification modelling is key to understanding ice sheet mass balance, ice sheet surface elevation change, and the age 

difference between ice and the air in enclosed air bubbles. This has resulted in the development of many firn models, all relying 

to a certain degree on parameter calibration against observed data. We present a novel Bayesian calibration method for these 

parameters, and apply it to three existing firn models. Using an extensive dataset of firn cores from Greenland and Antarctica, 

we reach optimal parameter estimates applicable to both ice sheets. We then use these to simulate firn density and evaluate 15 

against independent observations. Our simulations show a significant decrease (25 and 55%) in observation-model discrepancy 

for two models and a small increase (11%) for the third. As opposed to current methods, the Bayesian framework allows for 

robust uncertainty analysis related to parameter values. Based on our results, we review some inherent model assumptions and 

demonstrate how model- and parameter-related uncertainties potentially affect ice sheet mass balance assessments. 

1 Introduction 20 

On the Antarctic and Greenland ice sheets (AIS and GrIS), snow falling at the surface progressively compacts into ice, passing 

through an intermediary stage called firn. The process of firn densification depends on local conditions, primarily the 

temperature and the snow accumulation rate, and accurate modelling of densification is key to several applications in 

glaciology. Firstly, variability in firn densification affects altimetry measurements of ice sheet surface elevation changes. 

Consequently, it is a large contributor of uncertainty in mass balance estimates that rely on a correct conversion from measured 25 

volume changes to mass changes (Li and Zwally, 2011; Shepherd et al., 2012; McMillan et al., 2016). Errors in the firn related 

correction can lead to over- or underestimation of mass changes related to surface processes, and to misinterpreting elevation 

change signals as changes in mass balance and in ice flow dynamics. Secondly, firn models are used to estimate the partitioning 

of surface meltwater into runoff off the ice sheet, and refreezing within the firn column, which strongly influences mass loss 

rates (van den Broeke et al., 2016). Model estimates of current and future surface mass balance of the AIS and GrIS would 30 

thus benefit from an improved knowledge of the sensitivity of the densification process to climatic conditions. And finally, the 
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densification rate determines the firn age at which air bubbles become trapped in the ice matrix. Knowing this age is crucial 

for precisely linking samples of past atmospheric composition, which are preserved in these bubbles, to paleo-temperature 

indicators, which come from the water isotopes in the ice (Buizert et al., 2014).  

 

Firn densification has been the subject of numerous modelling studies over the last decades (e.g. Herron and Langway, 1980; 5 

Goujon et al., 2003; Helsen et al., 2008; Arthern et al., 2010; Ligtenberg et al., 2011; Simonsen et al., 2013; Morris and 

Wingham, 2014; Kuipers Munneke et al., 2015). However, there is no consensus on the precise formulation that such models 

should use. Most models adopt a two-stage densification process with the first stage characterising faster densification for firn 

with density less than a critical value, and then slower densification in the second stage. The firn-model intercomparison of 

Lundin et al. (2017) demonstrated that, even for idealised simulations, inter-model disagreements are large in both stages. Firn 10 

compaction is driven by the pressure exerted by the overlying firn layers. Dry firn densification depends on numerous 

microphysical mechanisms acting at the scale of individual grains, such as grain-boundary sliding, vapour transport, dislocation 

creep and lattice diffusion (Maeno and Ebinuma, 1983; Alley, 1987; Wilkinson, 1988). Deriving formulations closely 

describing the densification of firn at the macroscale as a function of these mechanisms is challenging. Consequently, most 

models rely on simplified governing formulations that are calibrated to match with observations. The final model formulations 15 

have usually been tuned to data either from AIS (Helsen et al., 2008; Arthern et al., 2010; Ligtenberg et al., 2011) or from 

GrIS (Simonsen et al., 2013; Morris and Wingham, 2014; Kuipers Munneke et al., 2015), consisting of drilled firn cores from 

which depth-density profiles are measured. However, the calibration of firn densification rates to firn depth-density profiles 

requires the assumption of a firn layer in steady state. To overcome this limitation, some models have been calibrated against 

other type of data such as strain rate measurements (Arthern et al., 2010; Morris and Wingham, 2014) or annual layering 20 

detected by radar reflection (Simonsen et al., 2013), but such measurements remain scarce and do not extend to firn at great 

depths below the surface. Ultimately, firn model calibration is an inverse problem that relies on using observational data to 

infer parameter values.  

 

In this study, we adopt a Bayesian approach in order to address firn model calibration. This provides a rigorous mathematical 25 

framework for estimating distributions of the model parameters (Aster et al., 2005; Berliner et al., 2008). Bayesian inversion 

has been applied in several glaciological studies, and it has been demonstrated that this methodology improves our ability to 

constrain poorly known factors such as basal topography (Gudmundsson, 2006; Raymond and Gudmundsson, 2009; 

Brinkerhoff et al., 2016a), basal friction coefficients (Gudmundsson, 2006; Berliner et al., 2008; Raymond and Gudmundsson, 

2009), ice viscosity (Berliner et al., 2008) and the role of the subglacial hydrology systems on ice dynamics (Brinkerhoff et 30 

al., 2016b). In the Bayesian framework, model parameters are considered as random variables for which we seek an a posteriori 

probability distribution that captures the probability density over the entire parameter space. This distribution allows not only 

to identify the most likely parameter combination, but also allows us to set confidence limits on the range of values in each 

parameter that is statistically reasonable. This enables us to quantify uncertainty in model results, to challenge the assumptions 
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inherent to the model itself and to assess correlation between different parameters. Calculations rely on Bayes' theorem (see 

Sect. 2.4 and Eq. (7)), but because of the high-dimensional parameter space and the non-linearity of firn models, solutions 

cannot be computed in closed form. As such, we apply rigorously designed Monte Carlo methods to approximate the target 

probability distributions efficiently. By exploiting the complementarity between the Bayesian framework and Monte Carlo 

techniques, we recalibrate three benchmark firn models and improve our understanding of their associated uncertainty. 5 

2 Data and Methods 

2.1 Firn densification data  

In order to calibrate three firn densification models, we use observations of firn depth-density profiles from 91 firn cores 

located in different climatic conditions on both the GrIS (27 cores) and the AIS (64 cores) (Fig. 1). Using cores from both ice 

sheets is important since we seek parameter sets that are generally-applicable and not location-specific. We only consider dry 10 

densification since meltwater refreezing is poorly represented in firn models and wet-firn compaction is absent (Verjans et al., 

2019). As such, we select cores from areas with low mean annual melt (<0.006 m w.e. yr-1) but spanning a broad range of 

annual average temperatures (-55 to -20℃) and accumulation rates (0.02 to 1.06 m w.e. yr-1). For each core, we use the depth-

integrated porosity (𝐷𝐼𝑃), also called firn air content. We calculate 𝐷𝐼𝑃 until 15 m depth (𝐷𝐼𝑃15, Eq. (1)). For sufficiently 

deep measurements, we also calculate 𝐷𝐼𝑃𝑝𝑐, Eq. (2), taken below 15 m and until pore close-off depth (𝑧𝑝𝑐, where a density 15 

of 830 kg m-3 is reached). These are the observed quantitative values used for the calibration: 

𝐷𝐼𝑃15 = ∫
𝜌𝑖−𝜌

𝜌𝑖
𝑑𝑧

15

0
   (1) 

𝐷𝐼𝑃𝑝𝑐 = ∫
𝜌𝑖−𝜌

𝜌𝑖
𝑑𝑧

𝑧𝑝𝑐

15
 (2) 

where 𝑧 (m) increases downwards, 𝜌 is the density of firn (kg m-3) and 𝜌𝑖 is the density of ice (917 kg m-3). In Eq. (2), we 

consider porosity only below 15 m to avoid dependency between 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐. We choose to use both 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 20 

in order to account for first- and second-stage densification. We note that 48 cores are too shallow to reach 𝑧𝑝𝑐 and so cores 

which do reach this depth provide a stronger constraint to the Bayesian inference method. This is sensible because these deep 

cores carry information about both stages of the densification process. 

We separate the dataset into calibration data (69 cores) and independent evaluation data (22 cores). The latter is selected semi-

randomly; we ensure that it includes a representative ratio of GrIS-AIS cores and that it covers all climatic conditions, including 25 

an outlier of the dataset with high accumulation and temperature (see Supplementary Information). The resulting evaluation 

data has 8 GrIS and 14 AIS cores; 11 of the 22 cores extend to 𝑧𝑝𝑐. 
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2.2 Climate model forcing  

At the location of each core, we simulate firn densification under climatic forcing provided by the RACMO2.3p2 regional 

climate model (RACMO2 hereafter) at 5.5 km horizontal resolution for GrIS (Noël et al., 2019) and 27 km for AIS (van 

Wessem et al., 2018). Results of the calibration would depend on the particular climate model used for forcing. Each firn 

model simulation consists of a spin-up by repeating a reference climate until reaching a firn column in equilibrium, which is 5 

followed by a transient period until the core-specific date of drilling. The reference climate is taken as the first 20-year period 

of RACMO2 forcing data (1960-1979 and 1979-1998 for GrIS and AIS respectively). The number of iterations over the 

reference period depends on the site-specific accumulation rate and mass of the firn column (mass from surface down to 𝑧𝑝𝑐). 

We ensure that the entire firn column is refreshed during the spin-up but fix the minimum and maximum number of iterations 

to 10 (200 years spin-up) and 50 (1000 years spin-up). We note that at 33 sites, the core was drilled before the last year of the 10 

reference climate and so the transient period is effectively a partial iteration of the spin-up period. 

In addition to the climatic forcing, another surface boundary condition is the fresh snow density, 𝜌0. It is taken as a constant 

site-specific value. Each value is taken in agreement with the shallow densities measured in the corresponding core of the 

dataset. We prefer this approach to the use of available parameterisations of 𝜌0 (Helsen et al., 2008; Kuipers Munneke et al., 

2015) to avoid any error in the fresh snow parameterisation to affect the calibration process. 15 

 

2.3 Firn densification models  

We use the Community Firn Model (Stevens, 2018) as the framework of our study because it incorporates the formulations of 

all three densification models investigated: HL (Herron and Langway, 1980), Ar (Arthern et al., 2010) and LZ (Li and Zwally, 

2011). The Robin hypothesis (Robin, 1958) constitutes the fundamental assumption of HL, Ar and LZ. It states that any 20 

fractional decrease of the firn porosity, 𝜌/(𝜌 − 𝜌𝑖), is proportional to an increment in overburden stress. This translates into 

densification rates depending on a rate coefficient 𝑐, assumed different for stage-1 and stage-2 densification: 

{

𝑑𝜌

𝑑𝑡
= 𝑐0 (𝜌𝑖 − 𝜌), 𝜌 ≤ 550 𝑘𝑔 𝑚−3

𝑑𝜌

𝑑𝑡
= 𝑐1 (𝜌𝑖 − 𝜌), 𝜌 > 550 𝑘𝑔 𝑚−3

  (3) 

The formulations of the rate coefficients rely on calibration and thus differ between the three models investigated: 

 25 

HL 

{
𝑐0 = 𝑏̇𝑎𝑘0

∗exp (
−𝐸0

𝑅𝑇
)

𝑐1 = 𝑏̇𝑏𝑘1
∗exp (

−𝐸1

𝑅𝑇
)

 (4) 

Ar 
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{
𝑐0 = 𝜌𝑤𝑏̇𝛼𝑘0

𝐴𝑟𝑔exp (
−𝐸𝑐

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)

𝑐1 = 𝜌𝑤𝑏̇𝛽𝑘1
𝐴𝑟𝑔exp (

−𝐸𝑐

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)
 (5) 

LZ 

{
𝑐0 = 𝛽0𝑙𝑧𝑎(273.15 − 𝑇)𝑙𝑧𝑏𝑏̇ 

𝑐1 = 𝛽1𝑙𝑧𝑎(273.15 − 𝑇)𝑙𝑧𝑏𝑏̇
  (6) 

𝑤𝑖𝑡ℎ {
𝛽0 = 𝑙𝑧11 + 𝑙𝑧12𝑏̇ + 𝑙𝑧13𝑇𝑎𝑣

𝛽1 = 𝛽0(𝑙𝑧21 + 𝑙𝑧22𝑏̇ + 𝑙𝑧23𝑇𝑎𝑣 )
−1 

 5 

where 𝑏̇ is the accumulation rate (m w.e. yr-1), 𝑇 the temperature (K), 𝑇𝑎𝑣 the annual mean temperature, 𝑅 the gas constant, 𝑔 

gravity and 𝜌𝑤 the water density (1000 kg m-3). All remaining terms are model-specific tuning parameters. For 𝑏̇, we use the 

mean accumulation rate over the lifetime of each specific firn layer because it better approximates the overburden stress than 

the annual mean (Li and Zwally, 2011). HL and Ar use Arrhenius relationships with activation energies (𝐸 terms) capturing 

temperature sensitivity and exponents characterising the exponential proportionality of the rate coefficients to the accumulation 10 

rate. Originally, Herron and Langway (1980) inferred all values from calibration based on 17 firn cores, from which they 

inferred the values for the six free parameters (Table 1) of HL. In contrast, Arthern et al. (2010) fixed the accumulation 

exponents in advance (𝛼 = 𝛽 = 1) and took activation energies (𝐸𝑐 , 𝐸𝑔) from measurements of microscale mechanisms: 

Nabarro-Herring creep for 𝐸𝑐 and grain-growth for 𝐸𝑔. Still, they noted a mismatch with the activation energy fitting their data 

best. The 𝑘0
𝐴𝑟 and 𝑘1

𝐴𝑟 parameters were tuned to three measured time series of strain rates collected in relatively warm and 15 

high accumulation locations of AIS. Here, we consider all five 𝛼, 𝛽, 𝑘0
𝐴𝑟 , 𝑘1

𝐴𝑟 , 𝐸𝑔 as free parameters (Table 1) but keep 𝐸𝑐 fixed 

because of its strong correlation with 𝐸𝑔; our use of monthly model time steps and depth-density profiles as calibration data is 

not suitable for differentiating effects of 
𝐸𝑔

𝑅𝑇𝑎𝑣
 and 

𝐸𝑐

𝑅𝑇
. Equation (6) shows that LZ has eight free parameters (Table 1), all denoted 

by 𝑙𝑧 in this paper. In contrast to our approach to Ar, we do not add additional accumulation rate exponents to 𝑏̇ in Eq. (6) 

because the dependence of 𝑐0 and 𝑐1 on 𝑏̇ also involves the coefficients 𝑙𝑧12 and 𝑙𝑧22 in the definition of 𝛽0 and 𝛽1. Li and 20 

Zwally (2011) performed their calibration of Eq. (6) against firn cores only from the GrIS. Later, Li and Zwally (2015) 

proposed a new parameterisation for 𝛽0 and 𝛽1, but calibrated for Antarctic firn. Since one of the goals of this study is to find 

a densification formulation applicable to firn in both GrIS and AIS, we choose to apply our calibration method only to Eq. (6) 

specified in Li and Zwally (2011). However, in our results' analysis (Sect. 3), we also consider the performance of the Li and 

Zwally (2015) model on the AIS cores of our dataset. 25 
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2.4 Bayesian calibration  

In our approach, the free parameters of the firn models are identified as the quantities of interest and we define this parameter 

set as 𝜃. Hereafter, 'original model values' refers to the values originally attributed by Herron and Langway (1980), Arthern et 

al. (2010) and Li and Zwally (2011) to their respective sets of free parameters 𝜃. The calibration process relies on Bayes’ 

theorem (Eq. (7)) which allows to update a prior probability distribution 𝑃(𝜃) for 𝜃 based on observed data 𝑌.  5 

𝑃(𝜃|𝑌) =
𝑃(𝑌|𝜃)𝑃(𝜃)

𝑃(𝑌)
  (7) 

We use normal and weakly informative priors centred about the original model values so that the constraint of the prior on 

𝑃(𝜃|𝑌) is minor (Table 1). The data 𝑌 consists of the observed 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 values of the calibration data. The marginal 

likelihood, 𝑃(𝑌), is a constant term independent of 𝜃 and does not influence the calibration. We use a normal likelihood 

function 𝑃(𝑌|𝜃), which quantifies the match of the modelled 𝐷𝐼𝑃 values with the observed: 10 

𝑃(𝑌|𝜃) ∝ exp [
−1

2
(𝑋15 − 𝑌15)𝑇𝛴15

−1(𝑋15 − 𝑌15) −
1

2
(𝑋𝑝𝑐 − 𝑌𝑝𝑐)

𝑇
𝛴𝑝𝑐

−1(𝑋𝑝𝑐 − 𝑌𝑝𝑐)] (8) 

where 𝑋15 and 𝑌15 are vectors containing all modelled and observed values for the calibration data of 𝐷𝐼𝑃15 respectively, and 

similarly for 𝑋𝑝𝑐 and 𝑌𝑝𝑐. We use diagonal covariance matrices 𝛴15 and 𝛴𝑝𝑐 with site-specific variances. The variances 

determine the spread allowed for the model outputs compared to the observed values and we calculate them taking 5% and 

10% margins around 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 measurements respectively. Allowing for such spread is necessary because multiple 15 

causes may lead to model-observation discrepancy such as firn model errors, measurement uncertainties, potential errors in 

the climatic forcing and approximations in fixing 𝜌0. This particular form of the likelihood function assumes independence 

between model errors in 𝐷𝐼𝑃15 and in 𝐷𝐼𝑃𝑝𝑐, which is ensured by our calculation of 𝐷𝐼𝑃𝑝𝑐 only from 15 m depth to 𝑧𝑝𝑐 (Eq. 

(2)). It also assumes normally distributed model errors with respect to the observed values. Both these aspects were verified 

with preliminary assessments, along with our calculations for the covariance matrices  𝛴15 and 𝛴𝑝𝑐, as discussed in the 20 

Supplementary Information. The posterior distribution 𝑃(𝜃|𝑌) gives a probability distribution over the parameter space of a 

given model conditioned on the calibration data. We note here that extreme parameter combinations in the LZ model can lead 

to negative densification rates. In such cases, we set the modelled 𝐷𝐼𝑃 values to 0, which leads to extremely low values for 

the likelihood and for the posterior probability of such parameter sets. 

 25 

There is no analytical form of 𝑃(𝜃|𝑌) and we must investigate the parameter space to generate an ensemble of 𝜃𝑖 approximating 

𝑃(𝜃|𝑌). Such an investigation is achieved efficiently using Markov Chain Monte Carlo methods. We apply the well-known 

Random Walk Metropolis (RWM) algorithm (Hastings, 1970) and summarize it in Fig. 2, on which we base the brief following 

description. A given model starts with a certain parameter set 𝜃𝑖 and simulates firn profiles at all the calibration sites. Its 𝐷𝐼𝑃15 

and 𝐷𝐼𝑃𝑝𝑐 results are compared with observations and the general performance of the model using 𝜃𝑖 is quantified by the 30 

likelihood. From there and with the prior distributions assumed, the posterior probability 𝑃(𝜃𝑖|𝑌) is computed following Eq. 
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(7). At this point, the state of the chain is 𝜃𝑖 (Fig. 2a). The RWM then proposes a new 𝜃𝑖
∗ from a proposal distribution (Fig. 

2b). For the latter, we use the symmetric multivariate normal (MVN) distribution which is centred about 𝜃𝑖. This implies that 

the random choice of 𝜃𝑖
∗ depends only on the current state 𝜃𝑖 and on the proposal covariance in the MVN, 𝛴𝑝𝑟𝑜𝑝, which is 

discussed below. Using the parameter combination 𝜃𝑖
∗, the model simulates profiles at all calibration sites again (Fig. 2c) and 

𝑃(𝜃𝑖
∗|𝑌) is computed (Fig. 2d). From there, we either accept or reject the proposed 𝜃𝑖

∗ in the ensemble approximating 𝑃(𝜃|𝑌). 5 

The probability of accepting 𝜃𝑖
∗ depends on the ratio 𝑃 (𝜃𝑖

∗|𝑌) 𝑃⁄ (𝜃𝑖|𝑌) (Fig. 2e). The set saved in the ensemble (Fig. 2g) is 

𝜃𝑖
∗ if accepted or 𝜃𝑖 if 𝜃𝑖

∗ was rejected. The saved set becomes the updated current status for the next iteration 𝜃𝑖+1 (Fig. 2a) 

and the algorithm iterates this process. The RWM has the property that the chain will ultimately converge to a stationary 

distribution that represents the posterior 𝑃(𝜃|𝑌). Thus, after a sufficiently high number of iterations of the algorithm, the 

ensemble of parameter sets is representative of 𝑃(𝜃|𝑌). We verify adequate convergence using a number of tests, which are 10 

shown in the Supplementary Information. The proposal variance 𝛴𝑝𝑟𝑜𝑝 must account for dependence between the different 

components of 𝜃, i.e. the value of one free parameter can influence the value of another free parameter for the model to reach 

a good match with the observed data. 𝛴𝑝𝑟𝑜𝑝 can capture this dependence between parameters and, for optimality, it is updated 

every given number of iterations (100 in our study) using Eq. (9) (Rosenthal, 2010): 

𝛴𝑝𝑟𝑜𝑝 =
2.382

𝑝
 𝛴𝑐𝑜𝑣  (9) 15 

where 𝛴𝑐𝑜𝑣 is the covariance matrix between the free parameters of the model at this stage of the iterative chain and 𝑝 is the 

number of free parameters. 

 

From the posterior probability distributions, we can infer the Maximum a Posteriori (MAP) estimates of each model (MAPHL, 

MAPAr, MAPLZ). These are the modes of the multi-dimensional distributions over the space of free parameters and have been 20 

identified as the most likely sets by the RWM. The MAP estimates can be compared to the corresponding original model 

values of the parameters. The posterior distributions additionally incorporate the uncertainty in the parameter values. By 

performing posterior predictive simulations on the evaluation data, we can assess this remaining uncertainty (Gelman et al., 

2013). More specifically, we can assume that a large (500) random sample of the ensemble of accepted 𝜃 is representative of 

the posterior distribution. As such, model results computed with all sets of this sample inform about model performance 25 

accounting for uncertainty. Intuitively, a large spread in results from a 500 random sample would indicate a large range of 

possible sets for the free parameters and thus a high uncertainty in parameter values. 

3 Results 

We present the results of the calibration process after 30000 algorithm iterations and compare the MAP and original models' 

performances against the 22 evaluation cores. We also evaluate the uncertainty of the posterior distributions and compare 30 

performances between the different MAP models. 
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For both HL and Ar, the posterior distributions for the parameters demonstrate some strong disagreements with the original 

values (Figs. 3a, 3b). The 95% credible intervals for each parameter incorporate 95% of the marginal probability density in 

the posterior. Two original parameter values of HL (𝑎, 𝑏) and three of Ar (𝐸𝑔, 𝛼, 𝛽) lie outside these intervals, and one of HL 

(𝑘0
∗) is at the lower edge of the interval (Figs. 3a, 3b). This indicates that our analysis provides strong evidence against these 5 

original values. The strongest disagreements relate to the accumulation exponents of both models (𝑎, 𝑏, 𝛼, 𝛽). In contrast, the 

original LZ values agree better with the posterior distribution and all lie within the 95% credible intervals (Fig. 3c). 

 

We use the original models and the MAP estimates to simulate firn profiles at the evaluation sites and we compare 𝐷𝐼𝑃 results 

with the observed values. This is an effective way to assess possible improvements in parameter estimates reached through 10 

our method since the evaluation sites were not used in the calibration process. The match between observations and the model 

is improved for MAPHL (Fig. 4a) and even more for MAPAr (Fig. 4b), with the original Ar strongly underestimating 𝐷𝐼𝑃 values. 

These improvements translate into significantly reduced root mean squared errors (RMSE) in modelled values of both 𝐷𝐼𝑃15 

(-26% for HL and -45% for Ar) and 𝐷𝐼𝑃𝑝𝑐 (-22% and -60%) (Table 2).  

For LZ, the evaluation against the test set is inconclusive, with a worse performance of the MAPLZ model for 𝐷𝐼𝑃𝑝𝑐 (+22 % 15 

in RMSE) and a slight improvement for 𝐷𝐼𝑃15 (-1 %) (Table 2 and Fig. 4c). The relative agreement in parameter values 

between MAPLZ and the original LZ explains more moderate differences in RMSE. Comparing modelled and observed depth-

density profiles of evaluation data illustrates the differences in performance visually (e.g. Fig. 5). Profiles of the original 

models of HL and Ar frequently lie outside the credible intervals of their respective MAP models. In contrast, profiles of 

MAPLZ and of the original LZ tend to be close together. At the climatic outlier of our evaluation data (DML in Fig. 5), MAPLZ 20 

performs slightly worse than the original LZ (Fig. 5i) but improvements are reached for MAPHL and MAPAr (Figs. 5c, 5f). This 

demonstrates benefits of this method even at the limits of the calibration range. 

 

Compared to the original HL, MAPHL reaches improvements in 𝐷𝐼𝑃15 for 12 of the 22 evaluation cores and in 𝐷𝐼𝑃𝑝𝑐 for 5 

of the 11 evaluation cores (Fig. 6a). Generally, MAPHL performs better at AIS sites and worse at GrIS sites. An analysis of the 25 

improvement of MAPHL as a function of climatic variables (Fig. 6a) shows that the original HL gives better results in a narrow 

range of 𝑇𝑎𝑣: from -30 to -25 ℃. As such, the better performance at the GrIS evaluation sites is likely due to the original HL 

being better suited for the particular temperature range corresponding to the conditions of the latter sites. In contrast, MAPHL 

seems more appropriate for covering a wider range of climatic conditions. For Ar, the original model shows better performance 

than MAPAr at few evaluation sites (5 for 𝐷𝐼𝑃15 and 1 for 𝐷𝐼𝑃𝑝𝑐) which are only in AIS and confined to low-accumulation 30 

conditions (Fig. 6b). This is counterintuitive given that Arthern et al. (2010) tuned the original Ar to measurements from high 

accumulation sites of AIS. Finally, the original LZ performs better than MAPLZ at most GrIS sites (Fig. 6c), which is 

unsurprising given that its original calibration was GrIS-specific. Again, this seems related to the original LZ performing 
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significantly better in the same narrow range of temperatures as for HL. In total, MAPLZ performs better for 11 of the 22 𝐷𝐼𝑃15 

and 4 of the 11 𝐷𝐼𝑃𝑝𝑐 evaluation measurements. 

 

As explained in Sect. 2.3, the original LZ model was developed for GrIS firn only (Li and Zwally, 2011) and later 

complemented by an AIS-specific model (Li and Zwally, 2015). Using both of these on the evaluation sites of their respective 5 

calibration ice sheet, we construct an LZ dual model, which thus really consists of two different models. The RMSE for 𝐷𝐼𝑃15 

of LZ dual is slightly lower (-9 %) than that of MAPLZ but significantly larger (+37 %) for 𝐷𝐼𝑃𝑝𝑐. We note that the 𝐷𝐼𝑃𝑝𝑐 

RMSE of LZ dual is strongly affected by the stage-2 densification performing very poorly at the climatic outlier of the 

evaluation data, with conditions that are outside of the calibration range of Li and Zwally (2015). 

 10 

We also compare MAP results with the IMAU firn densification model (IMAU-FDM), which has been used frequently in 

recent mass balance assessments from altimetry (Pritchard et al., 2012; Babonis et al., 2016; McMillan et al., 2016; Shepherd 

et al., 2018). IMAU-FDM was developed by adding two tuning parameters to both densification stages of Ar. All four extra-

parameters are different for AIS (Ligtenberg et al., 2011) and GrIS (Kuipers Munneke et al., 2015), thus also resulting in two 

separate models. On the evaluation data, its performance for 𝐷𝐼𝑃15 is slightly better than MAPAr and MAPLZ but worse than 15 

MAPHL, and its performance for 𝐷𝐼𝑃𝑝𝑐 is significantly worse than all three MAP models (Table 2). 

 

To assess the uncertainty captured by the Bayesian posterior distributions, we compute results on the evaluation data with the 

500 parameter sets randomly selected from each of the three posterior ensembles. For all three models, the average performance 

of their random sample is similar to the corresponding MAP performance, with a maximum RMSE change of 6% (Table 2). 20 

This demonstrates a low uncertainty in the optimal parameter combinations identified by calibration. Furthermore, the best 

performing 95th percentile of the random selection allows the construction of the uncertainty intervals shown in Figs 4, 5. Of 

the original models, LZ reaches the lowest RMSE values. MAPHL performs better in both 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 than any model 

tested (Table 2). Comparing the performances of MAP models, MAPHL is followed by MAPAr and then MAPLZ. This order is 

still valid for the 500-samples random selections, which account for uncertainty (Table 2). 25 

4 Discussion and Implications 

This calibration method is potentially applicable to models of similar complexity in a broad range of research fields. We exploit 

it here to investigate the parameter space of HL, Ar and LZ, and to re-estimate optimal parameter values conditioned on 

observed calibration data; no further complexity is introduced since the number of empirical parameters remains the same. We 

treat the accumulation exponents of Ar (𝛼, 𝛽) as free parameters whereas Arthern et al. (2010) decided to fix their values to 1. 30 

Analogous to 𝑎 and 𝑏 in HL, these exponents capture the mathematical relationship between densification rates and the 

accumulation rate, used as a proxy for load increase on any specific firn layer. No physical argument favours a linear 
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proportionality between densification and load increase and any prescribed value for these exponents is a choice of the model 

designer. Unlike Arthern et al. (2010), Herron and Langway (1980) previously inferred 𝑎 = 1 and 𝑏 = 0.5. Our calibration 

data shows strong evidence against both these pairs of values; all four are outside the posterior 95% credible intervals (Fig. 3a, 

3b). Our results of stage-1 exponents (𝑎, 𝛼) smaller than 1 indicate a weaker increase in densification rates with pressure. In 

firn, the load is supported at the contact area between the grains, which increases on average due to grain rearrangement (in 5 

stage-1) and grain growth. As such, firn strengthens in time and the actual stress on ice grains increases slower than the total 

load (Anderson and Benson, 1963). Morris and Wingham (2014) incorporated this by including a temperature-history function, 

causing slower densification of firn previously exposed to higher temperatures. This is consistent with both grain 

rearrangement and grain growth because these processes are enhanced at higher temperatures (Alley, 1987; Gow et al., 2004). 

Lower values of the stage-2 exponents (𝑏, 𝛽) illustrate the larger strength of high-density firn with larger contact areas between 10 

grains. The same can be applied to the LZ model by investigating the posterior correlation between its free parameters. It 

shows a positive correlation coefficient (0.6) between the accumulation-related parameters of both stages; 𝑙𝑧12 and 𝑙𝑧22. High 

values of 𝑙𝑧12 make 𝛽0 more sensitive to 𝑏̇ (Eq. (6)). However, 𝛽0 appears in the numerator of the 𝛽1 calculation (Eq. (6)) and 

higher values of 𝑙𝑧22 thus moderate the sensitivity of stage-2 densification to 𝑏̇. As such, positively correlated 𝑙𝑧12 and 𝑙𝑧22 

provide further evidence that stage-1 densification rates are more sensitive to accumulation rates. The posterior correlations of 15 

all three models are further discussed in the Supplementary Information. 

 

HL, Ar and LZ only use temperature and accumulation rates as input variables. Other models use additional variables 

hypothesised to affect densification rates. These include the temperature-history mentioned above (Morris and Wingham, 

2014), firn grain size (Arthern et al., 2010), impurity content (Freitag et al., 2013) and a transition region between stage-1 and 20 

stage-2 densification (Morris, 2018). Other models are explicitly based on micro-scale deformation mechanisms (Alley, 1987; 

Arthern and Wingham, 1998; Arnaud et al., 2000). These efforts undoubtedly contribute to progressing towards physically 

based models. A potential problem with such approaches is overfitting calibration data by adding parameters to model 

formulations while detailed firn data remain scarce. As long as more firn data is not available to appropriately constrain the 

role of each variable in model formulations, we favour the use of parsimonious models relying on few input variables. It is 25 

noteworthy that MAPLZ, which relies on eight free parameters, performs worse on the evaluation data than MAPHL and MAPAr 

with two fewer free parameters. This highlights that gains in model accuracy should rely not only on better calibration of 

parameters but also on a reconsideration of the governing densification equations. Additionally, firn core data invokes the 

assumption of a steady-state depth-density profile. As such, parameter calibration poorly captures seasonal climatic effects on 

densification. Comprehensive datasets of depth-density profiles (Koenig and Montgomery, 2019) are very valuable to model 30 

development. Efforts in collecting and publishing strain rate measurements from the field (Hawley and Waddington, 2011; 

Medley et al., 2015; Morris et al., 2017), and possibly from laboratory experiments (Schleef and Löwe, 2013), can further 

benefit model calibration and the progress towards more representative equations. 
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As an example of consequences of our calibration, we investigate its effects on GrIS firn thickness change under the 2000-

2017 climate. At all 27 GrIS sites of our dataset, we compute the cumulative anomaly in thickness change due to firn 

compaction during the latter period with respect to the reference 1960-1980 period (see Supplementary Information). 

Altimetry-based mass balance surveys could interpret any change in firn thickness not captured by firn models as a net gain or 

loss of ice. The root mean square difference in compaction anomaly between MAPHL and the original HL is 1.5 cm over the 5 

2000-2017 period. If we extrapolate this model-discrepancy to the entire accumulation area of GrIS and convert it to mass, the 

disagreement between both models corresponds to about 20.6 Gt of ice cumulated over 2000-2017. The same process applied 

to the original Ar and LZ and their respective MAP yields discrepancies of about 76.6 and 27.4 Gt respectively. Between all 

six different models, the largest disagreement corresponds to 83.4 Gt, which decreases to 72.1 Gt when considering only MAP 

models. For reference, we note that the absolute compaction anomaly over the period is equivalent to 870 Gt if averaged across 10 

all six models. These discrepancy figures are approximate, since different climatic sensitivities of models and variability in 

climatic changes will cause compensating effects in different areas. Still, they provide an order of magnitude for potential 

errors in mass balance assessments that are related to choices of model and of parameter values if firn densification is exposed 

to a realistic climatic shift. 

In addition to different cumulative responses, the six models show different sensitivities in terms of monthly values of 15 

compaction anomalies over the 2000-2017 period (Fig. 7). Ar shows the strongest sensitivity to climatic conditions diverging 

from these of the reference period; compaction responds strongly to the general increases in temperature and accumulation 

rate, especially in late summer. Due to its lower values for 𝛼, 𝛽 and 𝐸𝑔, MAPAr exhibits less extreme compaction anomalies 

than the original Ar and thus less seasonal variability. In sharp contrast to Ar, HL-computed compaction rates remain relatively 

stable, due to low activation energy values that smooth out the seasonal variability. Firn core observations provide little 20 

information and constraints on seasonal patterns of densification. However, it is noteworthy that MAPAr and MAPLZ tend to 

show comparable short-scale sensitivities (insets in Fig. 7), despite structural differences in the models' governing equations. 

This might indicate that these models fare relatively well in capturing seasonal fluctuations of densification rates and their 

sensitivity to climate shifts.  

5 Conclusion 25 

We have implemented a Bayesian calibration method to estimate optimal parameter combinations applicable to GrIS and AIS 

firn for three benchmark firn densification models (HL, Ar, LZ). An extensive dataset of 91 firn cores was separated into 

calibration and independent evaluation data. Two optimised models (MAPHL, MAPAr) showed significant improvement against 

the evaluation data, while MAPLZ reached results close, but slightly worse, to its original version and inferior to MAPHL and 

MAPAr. When compared to other models of greater complexity, the MAP models showed comparable or even improved 30 

performances, especially MAPHL. Furthermore, the Bayesian approach provides a robust way to evaluate the uncertainty 

related to parameter value choice, which is a major deficiency of current models. However, at most sites where we evaluated, 
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all three models' uncertainty intervals do not cover observed 𝐷𝐼𝑃 values. As such, although model results can be improved by 

re-calibration methods, model tuning alone is insufficient to reach exact fidelity of firn densification models. The formulation 

of models' governing equations impacts the remaining errors with respect to observations, which highlights deficiencies in our 

understanding of dry firn densification. Developing a well-constrained physically detailed model is challenging given the 

number of mechanisms affecting densification rates and their dependency on microstructural properties of firn, which are 5 

difficult to observe. Our study demonstrates that, despite these observational limitations, thorough calibration methods relying 

only on climatic variables can substantially improve firn model accuracy, and constrain uncertainties. 
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Parameter 
Value in 

original model 
Prior distribution MAP 95 % Credible interval 

𝑘0
∗ [m w.e.

-𝑎
] 11 𝑁(11, 25) 16.3 9.57; 21.84 

𝑘1
∗ [m w.e.

-𝑏
] 575 𝑁(575, 2 104) 627 421; 917 

𝐸0 [J mol
-1

] 10 160 𝑁(10160, 1 106) 10 790 9 660; 11 450 

𝐸1 
[J mol

-1
] 21 400 𝑁(21400, 4 106) 21 100 20 200; 21 900 

𝑎 [/] 1 𝑁(1, 0.4) 0.90 0.84; 0.97 

𝑏 [/] 0.5 𝑁(0.5, 0.4) 0.64 0.58; 0.71 

𝑘0
𝐴𝑟 [m w.e.

-𝛼
] 0.07 𝑁(0.07, 1.6 10−3) 0.084 0.059; 0.154 

𝑘1
𝐴𝑟[m w.e.

-𝛽
] 0.03 𝑁(0.03, 4 10−4) 0.031 0.020; 0.052 

𝐸𝑐  
[J mol

-1
] 60 000 Fixed: 60000 / / 

𝐸𝑔  
[J mol

-1
] 42 400 𝑁(42400, 25 106) 40 600 39 500; 41 500 

𝛼 [/] 1 𝑁(1, 0.4) 0.78 0.73; 0.87 

𝛽 [/] 1 𝑁(1, 0.4) 0.70 0.62; 0.74 

𝑙𝑧𝑎 8.36 𝑁(8.36, 9) 8.41 4.01; 13.63 

𝑙𝑧𝑏 -2.061 𝑁(−2.061, 2) -2.087 -2.290; -1.913  

𝑙𝑧11 -9.788 𝑁(−9.788, 16) -8.962 -17.439; -4.798 

𝑙𝑧12 8.996 𝑁(8.996, 16) 6.891 4.961; 15.481 

𝑙𝑧13 -0.6165 𝑁(−0.6165, 1) -0.6775 -1.258; -0.461 

𝑙𝑧21 -2.0178 𝑁(−2.0178, 2) -1.392 -2.394; -0.463 

𝑙𝑧22 8.4043 𝑁(8.4043, 9) 8.1417 7.030; 12.335 

𝑙𝑧23 -0.0932 𝑁(−0.0932, 0.25) -0.0747 -0.100; -0.049 

Table 1. Information for the free parameters of HL (top), Ar (middle) and LZ (low). 𝑁(𝑥, 𝑦) designates a normal distribution of mean 𝑥 

and variance 𝑦. The variances in the prior distributions are taken to generate weakly informative distributions. MAP estimates and 

Credible intervals are results from the calibration process. 

 

Model RMSE (𝐷𝐼𝑃15) [m] RMSE (𝐷𝐼𝑃𝑝𝑐) [m] 

HL original 0.504 2.396 

HL MAP 0.371 1.865 

HL 500 random sample 0.371 2.135 

Ar original 0.770 4.569 

Ar MAP 0.425 1.841 

Ar 500 random sample 0.430 2.179 

LZ original 0.449 1.827 

LZ dual 0.398 3.721 

LZ MAP 0.446 2.352 

LZ 500 random sample 0.473 2.466 

IMAU-FDM 0.419 2.681 

Table 2.  Model results on the evaluation data. The errors are calculated with respect to the observations of depth integrated porosity until 5 

15 m depth and until pore close-off. 
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Figure 1. Maps of Antarctic (left) and Greenland (right) ice sheets. Background is mean annual air temperature as modelled by RACMO2. 

 

 

Figure 2. Implementation of the Random Walk Metropolis algorithm. 𝜃 represents a parameter combination of any given firn densification 5 

model investigated. 
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Figure 3. Posterior probability distributions for (a) HL, (b) Ar, (c) LZ. 5 
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Figure 4. Comparison of evaluation data 𝐷𝐼𝑃 with model results 
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Figure 5. Depth-density profiles at three evaluation sites. DMZ is a climatic outlier of our dataset with particularly high temperatures and 

accumulation rates. 
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Figure 6. Improvements of the MAP models with respect to the original models for the evaluation data. The ratios indicate the ratios of cores for 

which an improvement is achieved by the corresponding MAP. 
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Figure 7. Monthly time-series of compaction anomalies at two sites on the GrIS. Insets show details for particular intervals of the time-series. 

 

https://doi.org/10.5194/tc-2019-274
Preprint. Discussion started: 3 January 2020
c© Author(s) 2020. CC BY 4.0 License.


