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Dear Pippa Whitehouse, 

We thank you very much for your comments and insights on the manuscript. We have addressed all your 

comments one by one and made the necessary modifications in the updated version of the manuscript. Please find 

below our responses (in blue) to the comments (in black). A marked-up version of the updated manuscript is 

provided for your convenience below the responses. Throughout our responses, page and line numbers relate to 5 

this document. Should you require any further information, please do not hesitate to contact me. 

On behalf of all authors, 

Vincent Verjans 

 

Minor points – page/line numbers relate to version2 of the manuscript (no track changes) 10 

p.1 l.31: most points in this paragraph document why each application is important rather than recommending 

specific steps for improvement – the text on line 31 is a little misleading since it could be taken to suggest that 

you will investigate sensitivity to climate conditions in this study 

We have slightly changed the phrasings in the paragraph to underline the direct role of firn models in these 

applications. We have also removed the mention to sensitivity to climatic conditions in order to avoid any 15 

misunderstanding. However, it should be noted that firn models simulate densification as a function of climate, 

and their inherent objective is thus to capture the climatic sensitivity of the densification process. 

Changes in the text (p.8): 

"Consequently, uncertainties in modelled densification rates have a direct impact on mass balance estimates, 

which rely on a correct conversion from measured volume changes to mass changes" 20 

"Model estimates of current and future surface mass balance of the AIS and GrIS are thus dependent on accurate 

models of firn evolution." 

 

p.2 l.16: check throughout whether it is appropriate use to use ‘AIS/GrIS’ or ‘the AIS/GrIS’ 

Indeed, the previous manuscript was inconsistently alternating between both wordings. We now exclusively use 25 

"the AIS/GrIS" when used as a noun (e.g. "locations of the AIS"). We keep the use of "AIS/GrIS" when used as 

an adjective (e.g. "14 AIS cores"). 

 

p.4 l.5-7: text seems a little out of place here, information would fit better at the end of the final paragraph of p.3 

We moved the paragraph as suggested (p.11 l.1). 30 

 

p.4 l.25-26: the statement that you use a constant site-specific value is slightly at odds with the statement on lines 

29-30 that you add random noise at every model time step. It would be useful to mention the approach used to 

account for uncertainty earlier in this paragraph 

We rephrased the paragraph in order to remove the mention to constant values. We also mention our treatment of 35 

uncertainty in 𝜌0 earlier, as suggested (p.11 l.28): 

"At each site, the 𝜌0 value is taken in agreement with the shallow densities measured in the corresponding core of 

the dataset. However, measurements of fresh snow density are highly variable (e.g. Fausto et al., 2018). We 

account for uncertainty in this parameter by adding normally distributed random noise with standard deviation 25 

kg m-3 to 𝜌0 at every model time step (see Supplementary Information)." 40 
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p.6 l.9-11: do Li and Zwally (2015) use a different formulation of the equation, or do they just determine different 

parameter values compared with Li and Zwally (2011)? 

The Li and Zwally (2015) model uses a formulation very close, but still different to the Li and Zwally (2011) 

model. We clarified this aspect in the manuscript (p.13 l.14): 

" Later, Li and Zwally (2015) developed a densification model calibrated for Antarctic firn. The latter model uses 5 

the same governing equations as LZ for 𝑐0 and 𝑐1 but different formulations for 𝛽0 and 𝛽1 (Eq. (6))." 

 

p.6 l.25: to data -> with data 

Changed (p.14 l.2) 

 10 

p.7 l.23: several steps are described prior to the mention of figure 2a; please indicate how the text on lines 20-23 

relates to steps shown in figure 2. Also, please clarify whether calculations are carried out for both θi and θi* on 

each iteration 

The confusion stems from the first iteration (at 𝑖 = 0), which must be executed to start the Random Walk 

Metropolis algorithm. We have clarified that the first step must compute an initial posterior probability 15 

distribution for the algorithm to start because the acceptance step (Fig. 2e) requires a ratio 𝑃 (𝜃𝑖
∗|𝑌) 𝑃⁄ (𝜃𝑖|𝑌). 

This first step is executed by using the original models parameter values (from HL, Ar and LZ). This has been 

included in the description of the algorithm. 

We have also emphasised that calculations for 𝜃𝑖 must not be performed at each iteration, since they were 

performed at a previous stage. As such, the posterior probability value 𝑃(𝜃𝑖|𝑌) is kept in memory and only 20 

𝑃(𝜃𝑖
∗|𝑌) must be computed. 

We hope that the adjustments made in the text now provide better clarity (p.14 l.25). We also hope that Figure 2 

will be next to the relevant text after the typesetting. 

 

p.8 l.1: variance -> covariance (as defined on l.25 of the previous page) 25 

Changed (p.15 l.10) 

 

p.8 l.16: ‘a 500 random sample’ – rephrase 

Changed (p.15 l.25): "from 500 random samples" 

 30 

p.9 l.22: the DML plots are figs. 5g-i 

Thank you for pointing this out. The text has been changed (p.16 l.30). 

 

p.9 l.28: ‘the better performance at the GrIS evaluation sites…’ – make it clear that this text relates to the 

performance of the original model 35 

Changed (p17. l.5): "As such, the better performance at the GrIS evaluation sites of the original HL is likely due 

to its parameterisation being better suited for the particular temperature range corresponding to the conditions of 

the latter sites." 

 

p.10 l.7: it is not clear to me how the LZ dual model was constructed; do you determine different parameters for 40 

each ice sheet by dividing the calibration data set, or is the whole formulation of the model different? Refer to 

Table 2 when quoting results for the LZ dual model 
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The whole formulation of the model is different. (The formulations are close but not the same). We hope that our 

changes related to the comment above clarifies this aspect. 

Furthermore, we clarified the construction of LZ dual (p.17 l.16): " We compute results at the AIS and GrIS 

evaluation sites using the Li and Zwally (2015) model for the AIS and the Li and Zwally (2011) model for the 

GrIS, so that both models are applied to the ice sheet for which they were originally developed. We call this 5 

pairing of models LZ dual and evaluate its general performance." 

We now refer to Table 2 when stating the RMSE values of LZ dual (p.17 l.21). 

 

p.10: if feasible, it would be useful to include a figure showing the results for LZ dual and IMAU-FDM (e.g. 

similar to figure 4) in the supplementary information 10 

We have added similar scatter plots for the LZ dual and IMAU models in the Supplementary Information: Figure 

S6. We inform the reader about this in the main text; in the caption of Figure 4, we added: 

"Similar scatter plots for the LZ dual and IMAU results are shown in the Supplementary Information (Fig. S6)." 

 

p.10 l.23: please include information on how uncertainty intervals were constructed in the captions to figures 4 15 

and 5 

We added in both captions: "The 95% credible intervals are computed from results of 500 randomly selected 

parameter combinations from the posterior ensembles of each model (HL, Ar, LZ)." 

 

p.11 l.5: ‘indicate a weaker increase…’ – weaker than what? 20 

We specified (p.18 l.16): "Our results of stage-1 exponents (𝑎, 𝛼) smaller than 1 indicate a weaker increase in 

densification rates with pressure than assumed in the original versions of Ar and HL." 

 

p.11 l.12: ‘The same can be applied…’ – not clear what ‘The same’ refers to 

Changed (p.18 l.23): "The difference in sensitivities of stage-1 and stage-2 densification to accumulation also 25 

holds in the LZ model (…)" 

 

p.11, l.13: please refer to a figure or table when quoting correlation coefficient values 

We now refer to the Figure S5 of the posterior correlation matrices (p.18 l.26). 

 30 

p.11 l.22: over-sensitivity -> over-sensitivity in Ar 

Added (p.18 l.3) 

 

p.12 l.25: what is the reference period? If it is 2000-2017 this should be explicitly stated 

The reference periods for both ice sheets are different and the information is provided in Section 2.2. Because this 35 

section is in the earlier parts of the manuscript, we agree that it is better to remind the reader about it. We have 

added a reference to Sect. 2.2 in the text (p.20 l.6): "over the reference period (see Sect. 2.2)." 

 

p.12 l.33: make it clearer that uncertainties in the following sentences are calculated using the CV values quote 

above/ in table 3 40 

We clarified this point by mentioning our use of CV to estimate uncertainty ranges before providing the 

uncertainty values (p.20 l.14): 
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" By using the CV values, we can calculate reasonable uncertainty estimates for 𝑐𝑚𝑝𝑎𝑛 and 𝑎𝑔𝑒𝑝𝑐. For instance, 

in the dry snow zone of GrIS, simulated compaction anomalies are typically around 20 cm over 2000-2017, and 

thus come with an uncertainty of the order of ±4 cm. (…)" 

 

p.13 l.5: a couple of clarifications needed: (i) what does ‘it’ refer to, and (ii) what does ‘Such numbers’ refer to? 5 

We changed "it" to specify that we refer to the spatial aggregation of uncertainties (p.20 l.20): 

"Absolute uncertainty is thus reduced but still critical given the large area of the AIS over which uncertainties are 

aggregated when mass balance trends are evaluated." 

We changed our use of "Such numbers" in accordance with the previous comment (p.20 l.20): 

" The uncertainty ranges calculated from the CV values provide an order of magnitude of errors in firn model 10 

outputs that must be accounted for in altimetry-based mass balance assessments and in ice core studies, 

respectively." 

 

p.13 l.7: the purpose of the text (paragraph?) starting on this line is initially unclear. For example, it is not clear 

what you mean by ‘the different sensitivities...’. You mention that compaction is sensitive to variability and 15 

‘general increases’ in temperature and accumulation – can you be more explicit about the climate at the two sites, 

perhaps by including site-specific RACMO2 output in figure 7? 

We changed the starting sentence of the paragraph to relate it more closely to the topic of the study. We explicitly 

mention that we look at the effect of different models and different parameterisations on firn model output and 

we removed the terms "different sensitivities" which were too vague (p.20 l.23): 20 

"We further investigate how using different models and different parameterisations leads to discrepancies in the 

modelled compaction. We compute monthly values of compaction anomalies over the 2000-2017 period with the 

original and MAP models of HL, Ar and LZ (Fig. 7)." 

As suggested, we included the climatic anomalies at the two sites displayed in Figure 7. These mean anomalies 

show both a warming and an increase in accumulation at the sites. We explain the computation of the mean 25 

climatic anomalies in the caption: 

" Mean climatic anomalies are calculated as a difference between mean climatic values over the period 2000-

2017 with respect to the reference period 1960-1979, and based on RACMO2 values." 

We considered adding the entire time series of RACMO2 anomalies in accumulation and temperature but after 

due reflection, we preferred not to do so to avoid overloading the figure. In total, the figure would have included 30 

the compaction anomaly time series, two climatic anomaly time series and three insets for each site. We believe 

that adding the mean climatic anomalies to the figure demonstrates that the original HL and the MAPHL models 

are less sensitive to the general change in climatic conditions. Furthermore, these two models exhibit also much 

less seasonal variability, which shows that they are also less sensitive to changes in climatic conditions specific to 

each month (e.g. less sensitive to summer months getting warmer). 35 

 

p.13 l.14: short-scale -> short-timescale 

Changed (p.20 l.31) 

 

p.13 l.26: ‘at most sites…uncertainty intervals do not cover observed DIP values’ – this is an important result but 40 

I did not see it stated/quantified anywhere in the main text 
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We agree that this important result needs to be mentioned in the text and not only in the conclusion. We have 

added a couple of sentences at the end of the third paragraph of Section 3 (p.16 l.31): 

" However, at a majority of the evaluation sites, the 95% credible intervals computed for the three models do not 

include the observed value (Fig. 4). This highlights that the governing equations of the models, which intend to 

capture densification physics, require improvement, and that parameter calibration in itself cannot overcome this 5 

shortcoming. " 

 

p.14 l.12-13: this link takes you to a folder which contains several files that are unrelated to this study, are you 

able to list a source that just links to the firn data? 

For the purpose of clarity, we have removed this link and replaced it by the statement (p.21 l.26): 10 

"41 of the 91 firn cores are from the dataset compiled by Matt Spencer 10 (Spencer et al., 2001), which is 

available upon request." 

It is important to note that this dataset is only a compilation of firn cores and the rights are not owned by Matt 

Spencer himself. The dataset is often used in the literature, including in The Cryosphere, but no consistent link is 

provided for it. 15 

For examples: 

https://doi.org/10.5194/tc-13-845-2019 

https://doi.org/10.1029/2017JF004597 

 

Tables 1 and S2: some terminology issues for large/small values, e.g. 9 104 should be 9x104 20 

We have added the multiplicative symbol everywhere necessary in Table 1 and Table S2. 

 

Table 2: explicitly mention RMSE in the caption rather than just ‘The errors’ 

Changed: " The Root Mean Squared Errors (RMSE) are calculated with respect to the observations of depth 

integrated porosity until 15 m depth and until pore close-off." 25 

 

Figure 1: what is the difference between a circle and a cross? 

Sorry, we forgot to update the full legend when updating the figure after the first review. The crosses are the 

evaluation sites and the circles are the calibration sites. Figure 1 has been updated. 

 30 

Figure 2: in the box titled ‘If i is multiple of 100’ the second Σ should be Σcov 

Yes, Figure 2 has been updated. 

 

Figure 3: please document what the ‘posterior samples’ are. Do they represent parameters associated with the 500 

parameter sets randomly selected from the ensemble of accepted θ? 35 

We added in the caption: " The posterior samples are 500 randomly selected parameter combinations from the 

posterior ensembles of each model (HL, Ar, LZ)." 

 

Figure 6: mention the difference between the left and right columns in the caption. Also, is it possible to represent 

AIS and GrIS data points differently, to support statements in main text? 40 

The difference between graphs in the left and right column is now explicitly mentioned in the caption: 
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"Graphs in the left column display the mean annual temperature on the x-axis and those in the right column 

display the mean annual accumulation rate." 

We have added black contours to the GrIS sites in order to distinguish between AIS and GrIS sites. We hope that 

this provides better support to the statements in the main text. For example, it shows clearly that the better 

performance of the original HL with respect to MAPHL is related to the GrIS sites being concentrated in a narrow 5 

window of annual mean temperature values. 

 

Figure 7: legend is missing 

The legend has been added, sorry about forgetting it in the previous version. 

 10 

Supp Info section S2: the GrIS RMSE value for surface mass balance flux is quoted as 69 mm w.e. in Noël et al. 

(2019), not 69 m w.e. – check that the units have been correctly converted when applying random noise to the 

boundary conditions 

This was a typo in the text. The value used in the random noise application was indeed 69 mm w.e. The text has 

been corrected (p.34 l.19 and p.35 l.5). 15 

 

Supp Info section S2: equation S5 contains the term cn, should it be cp? 

Yes, this has been corrected. 

 

Supp Info section S2: ‘…must not be iteration specific…’ – needs clarification 20 

We changed the text to clarify our approach (p.35 l.20): 

"In contrast to the climatic perturbation, the perturbation in 𝜌0 can be specific to each single time step 𝑡, and the 

perturbation thus varies throughout the duration of a firn model simulation. Indeed, it is not unrealistic that a 

month with anomalously low fresh snow density is immediately followed by a month of anomalously high fresh 

snow density for example." 25 

 

Supp Info section S2: please include a reference to justify the choice of 25 kg/m3 when defining the perturbation 

to the fresh snow density values 

We have modified the text and included the reference to Reeh et al. (2005) (p.35 l.25): 

"We determine surface density values at each site from the firn cores of our dataset, 𝜌0
𝑐𝑜𝑟𝑒, and we perturb these 30 

values based on a standard deviation of 25 kg m-3. This value goes in line with a typical window of local 

variability of 50 kg m-3 for 𝜌0 (Reeh et al., 2005)." 

The relevant sections in Reeh et al. (2005) are Section 4.2 and Figure 2. It should be noted that observations of 

fresh snow density variability in time but at a same location are scarce. However, it is this value that the 

perturbations in 𝜌0 should represent. In contrast, observations of fresh snow density variability in space are more 35 

common. Therefore, we based our choice on the data of Reeh et al. (2005) that show the variability in 𝜌0 at sites 

of similar average temperature. We believe that this variability better suits our interest than an ice sheet scale 

variability (e.g. Fausto et al., 2018). 

 

Supp Info section S3: please clarify that ‘original values’ refers to parameter values from the original publications 40 

of the HL and Ar models 

Changed (p.36 l.4): 
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"where 𝐻𝐿 and 𝐴𝑟 subscripts denote the values from the original publications of the HL and Ar models, and the 

𝑚𝑣 subscript denotes a modified value of the parameter." 

 

Supp Info section S6: start of second-to-last sentence – clarify what ‘it’ refers to 

We clarified the subject of the sentence (p.37 l.35): 5 

"As a consequence, the normal approximation results in a slight overestimation of uncertainty and thus 

conservative estimates of uncertainty." 

 

Supp Info section S7: second sentence should refer to figure S5 

Thank you, this has been modified (p.38 l.4). 10 

 

Supp Info, Table S1: Please clarify whether accumulation and temperature values are taken from original 

publications or RACMO2 

We added in the caption: "Values for both �̇� and T are computed from the RACMO2 model." 

 15 

We also let you know that a "References" section has been added at the end of the Supplementary Information, 

with the four references used. Three of these references are also cited in the main manuscript. 

 

  



8 

 

Bayesian calibration of firn densification models 

Vincent Verjans1, Amber A. Leeson1, Christopher Nemeth2, C. Max Stevens3, Peter Kuipers Munneke4, 

Brice Noël4 and Jan Melchior van Wessem4 

1
 Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK. 

2 Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, UK 5 
3 Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA 
4 Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands 

 

Correspondence to: Vincent Verjans (v.verjans@lancaster.ac.uk) 

Abstract.  10 

Firn densification modelling is key to understanding ice sheet mass balance, ice sheet surface elevation change, and the age 

difference between ice and the air in enclosed air bubbles. This has resulted in the development of many firn models, all relying 

to a certain degree on parameter calibration against observed data. We present a novel Bayesian calibration method for these 

parameters, and apply it to three existing firn models. Using an extensive dataset of firn cores from Greenland and Antarctica, 

we reach optimal parameter estimates applicable to both ice sheets. We then use these to simulate firn density and evaluate 15 

against independent observations. Our simulations show a significant decrease (24 and 56%) in observation-model discrepancy 

for two models and a smaller increase (15%) for the third. As opposed to current methods, the Bayesian framework allows for 

robust uncertainty analysis related to parameter values. Based on our results, we review some inherent model assumptions and 

demonstrate how firn model choice and uncertainties in parameter values cause spread in key model outputs. 

1 Introduction 20 

On the Antarctic and Greenland ice sheets (AIS and GrIS), snow falling at the surface progressively compacts into ice, passing 

through an intermediary stage called firn. The process of firn densification depends on local conditions, primarily the 

temperature, the melt rate and the snow accumulation rate, and accurate modelling of densification is key to several 

applications in glaciology. Firstly, variability in firn densification affects altimetry measurements of ice sheet surface elevation 

changes. Consequently, it is a large contributor of uncertaintyuncertainties in modelled densification rates have a direct impact 25 

oin mass balance estimates, which that rely on a correct conversion from measured volume changes to mass changes (Li and 

Zwally, 2011; McMillan et al., 2016; Shepherd et al., 2019). Errors in the firn related correction can lead to over- or 

underestimation of mass changes related to surface processes, and to misinterpreting elevation change signals as changes in 

mass balance and in ice flow dynamics. Secondly, firn models are used to estimate the partitioning of surface meltwater into 

runoff off the ice sheet, and refreezing within the firn column, which strongly influences mass loss rates (van den Broeke et 30 

al., 2016). Model estimates of current and future surface mass balance of the AIS and GrIS are thus dependent on would thus 

benefit from an improved knowledge of the sensitivity of the densification process to climatic conditionsaccurate models of 
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firn evolution. And finally, the densification rate determines the firn age at which air bubbles are trapped in the ice matrix. 

Knowing this age is crucial for precisely linking samples of past atmospheric composition, which are preserved in these 

bubbles, to paleo-temperature indicators, which come from the water isotopes in the ice (Buizert et al., 2014).  

 

Firn densification has been the subject of numerous modelling studies over the last decades (e.g. Herron and Langway, 1980; 5 

Goujon et al., 2003; Helsen et al., 2008; Arthern et al., 2010; Ligtenberg et al., 2011; Simonsen et al., 2013; Morris and 

Wingham, 2014; Kuipers Munneke et al., 2015). However, there is no consensus on the precise formulation that such models 

should use. Most models adopt a two-stage densification process with the first stage characterising faster densification for firn 

with density less than a critical value, and then slower densification in the second stage. The firn-model intercomparison of 

Lundin et al. (2017) demonstrated that, even for idealised simulations, inter-model disagreements are large in both stages. Firn 10 

compaction is driven by the pressure exerted by the overlying firn layers. Dry firn densification depends on numerous 

microphysical mechanisms acting at the scale of individual grains, such as grain-boundary sliding, vapour transport, dislocation 

creep and lattice diffusion (Maeno and Ebinuma, 1983; Alley, 1987; Wilkinson, 1988). Deriving formulations closely 

describing the densification of firn at the macroscale as a function of these mechanisms is challenging. Consequently, most 

models rely on simplified governing formulations that are calibrated to agree with observations. The final model formulations 15 

have usually been tuned to data either from the AIS (Helsen et al., 2008; Arthern et al., 2010; Ligtenberg et al., 2011) or from 

the GrIS (Simonsen et al., 2013; Morris and Wingham, 2014; Kuipers Munneke et al., 2015), consisting of drilled firn cores 

from which depth-density profiles are measured. However, the calibration of firn densification rates to firn depth-density 

profiles requires the assumption of a firn layer in steady state. To overcome this limitation, some models have been calibrated 

against other type of data such as strain rate measurements (Arthern et al., 2010; Morris and Wingham, 2014) or annual layering 20 

detected by radar reflection (Simonsen et al., 2013), but such measurements remain scarce and do not extend to firn at great 

depths below the surface. Ultimately, firn model calibration is an inverse problem that relies on using observational data to 

infer parameter values.  

 

In this study, we adopt a Bayesian approach in order to address firn model calibration. This provides a rigorous mathematical 25 

framework for estimating distributions of the model parameters (Aster et al., 2005; Berliner et al., 2008). Bayesian inversion 

has been applied in several glaciological studies, and it has been demonstrated that this methodology improves our ability to 

constrain poorly known factors such as basal topography (Gudmundsson, 2006; Raymond and Gudmundsson, 2009; 

Brinkerhoff et al., 2016a), basal friction coefficients (Gudmundsson, 2006; Berliner et al., 2008; Raymond and Gudmundsson, 

2009), ice viscosity (Berliner et al., 2008) and the role of the subglacial hydrology systems on ice dynamics (Brinkerhoff et 30 

al., 2016b). In the Bayesian framework, model parameters are considered as random variables for which we seek an a posteriori 

probability distribution that captures the probability density over the entire parameter space. This distribution allows not only 

to identify the most likely parameter combination, but also allows us to set confidence limits on the range of values in each 

parameter that is statistically reasonable. This enables us to quantify uncertainty in model results, to challenge the assumptions 
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inherent to the model itself and to assess correlation between different parameters. Calculations rely on Bayes' theorem (see 

Sect. 2.4 and Eq. (7)), but because of the high-dimensional parameter space and the non-linearity of firn models, solutions 

cannot be computed in closed form. As such, we apply rigorously designed Monte Carlo methods to approximate the target 

probability distributions efficiently. By exploiting the complementarity between the Bayesian framework and Monte Carlo 

techniques, we recalibrate three benchmark firn models and improve our understanding of their associated uncertainty. 5 

2 Data and Methods 

2.1 Firn densification data  

In order to calibrate three firn densification models, we use observations of firn depth-density profiles from 91 firn cores (see 

Data Availability and Supplementary Information) located in different climatic conditions on both the GrIS (27 cores) and the 

AIS (64 cores) (Fig. 1). Using cores from both ice sheets is important since we seek parameter sets that are generally-applicable 10 

and not location-specific. We only consider dry densification since meltwater refreezing is poorly represented in firn models 

and wet-firn compaction is absent (Verjans et al., 2019). As such, we select cores from areas with low mean annual melt 

(<0.006 m w.e. yr-1) but spanning a broad range of annual average temperatures (-55 to -20℃) and accumulation rates (0.02 

to 1.06 m w.e. yr-1). For each core, we use the depth-integrated porosity (𝐷𝐼𝑃), also called firn air content. We calculate 𝐷𝐼𝑃 

until 15 m depth (𝐷𝐼𝑃15, Eq. (1)). For sufficiently deep measurements, we also calculate 𝐷𝐼𝑃𝑝𝑐, Eq. (2), taken below 15 m 15 

and until pore close-off depth (𝑧𝑝𝑐, where a density of 830 kg m-3 is reached). These are the observed quantitative values used 

for the calibration: 

𝐷𝐼𝑃15 = ∫
𝜌𝑖−𝜌

𝜌𝑖
𝑑𝑧

15

0
   (1) 

𝐷𝐼𝑃𝑝𝑐 = ∫
𝜌𝑖−𝜌

𝜌𝑖
𝑑𝑧

𝑧𝑝𝑐

15
 (2) 

where 𝑧 (m) increases downwards, 𝜌 is the density of firn (kg m-3) and 𝜌𝑖 is the density of ice (917 kg m-3). In Eq. (2), we 20 

consider porosity only below 15 m to avoid dependency between 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐. We choose to use both 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 

in order to account for first- and second-stage densification. One of the cores has only a single density measurement above 15 

m depth and thus its 𝐷𝐼𝑃15 value is discarded. We note that 48 cores are too shallow to reach 𝑧𝑝𝑐 and so cores which do reach 

this depth provide a stronger constraint to the Bayesian inference method. This is sensible because these deep cores carry 

information about both stages of the densification process. 25 

We use 𝐷𝐼𝑃 as the evaluation metric for the models because of the crucial role of this variable in both surface mass balance 

modelling and altimetry-based ice sheet mass balance assessments (Ligtenberg et al., 2014). We note that it is commonly used 

in firn model intercomparison exercises (Lundin et al., 2017; Stevens et al., 2020) and is a quantity of interest for field 

measurements (Vandecrux et al., 2018). Due to its formulation (Eq. (1) and (2)), 𝐷𝐼𝑃 represents the mean depth-density profile 

and thus is robust to the presence of individual errors and outliers in density measurements. 30 
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Observed firn density can be prone to measurement uncertainty, which previous studies point out is about 10%, though it is 

variable in depth and between measurement techniques employed (Hawley et al., 2008; Conger and McClung, 2009; Proksch 

et al., 2016). We outline our procedure to account for measurement uncertainty in Sect. 2.4.  

We separate the dataset into calibration data (69 cores) and independent evaluation data (22 cores). The latter is selected semi-

randomly; we ensure that it includes a representative ratio of GrIS-AIS cores and that it covers all climatic conditions, including 5 

an outlier of the dataset with high accumulation and temperature (see Supplementary Information). The resulting evaluation 

data has 8 GrIS and 14 AIS cores; 11 of the 22 cores extend to 𝑧𝑝𝑐. 

Observed firn density can be prone to measurement uncertainty, which previous studies point out is about 10%, though it is 

variable in depth and between measurement techniques employed (Hawley et al., 2008; Conger and McClung, 2009; Proksch 

et al., 2016). We outline our procedure to account for measurement uncertainty in Sect. 2.4.  10 

2.2 Climate model forcing  

At the location of each core, we simulate firn densification under climatic forcing provided by the RACMO2.3p2 regional 

climate model (RACMO2 hereafter) at 5.5 km horizontal resolution for the GrIS (Noël et al., 2019) and 27 km for the AIS 

(van Wessem et al., 2018). Each firn model simulation consists of a spin-up by repeating a reference climate until reaching a 

firn column in equilibrium, which is followed by a transient period until the core-specific date of drilling. The reference climate 15 

is taken as the first 20-year period of RACMO2 forcing data (1960-1979 and 1979-1998 for the GrIS and AIS respectively). 

The number of iterations over the reference period depends on the site-specific accumulation rate and mass of the firn column 

(mass from surface down to 𝑧𝑝𝑐). We ensure that the entire firn column is refreshed during the spin-up but fix the minimum 

and maximum number of iterations to 10 (200 years spin-up) and 50 (1000 years spin-up). We note that at 33 sites, the core 

was drilled before the last year of the reference climate and so the transient period is effectively a partial iteration of the spin-20 

up period. 

Results of the calibration would depend on the particular climate model used for forcing. We thus propagate uncertainty in 

modelled climatic conditions into our calibration of firn model parameters by perturbing the temperature and accumulation 

rates of RACMO2 with normally distributed random noise. Standard deviations of the random perturbations are based on 

reported errors of RACMO2 (Noël et al., 2019; van Wessem et al., 2018 – see more details in the Supplementary Information). 25 

By introducing these perturbations, uncertainty intervals on our parameter values encompass the range of values that would 

result from using other model-based or observational climatic input. 

In addition to the climatic forcing, another surface boundary condition is the fresh snow density, 𝜌0. It is taken as a constant 

site-specific value. Each At each site, the 𝜌0 value is taken in agreement with the shallow densities measured in the 

corresponding core of the dataset. However, measurements of fresh snow are highly variable (e.g. Fausto et al., 2018). We 30 

account for uncertainty in this parameter by adding normally distributed random noise with standard deviation 25 kg m-3 to 𝜌0 

at every model time step (see Supplementary Information). We prefer this approach to the use of available parameterisations 
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of 𝜌0 (Helsen et al., 2008; Kuipers Munneke et al., 2015) to avoid any error in the fresh snow parameterisation to affect the 

calibration process. Fresh snow density is a poorly constrained boundary condition (e.g. Fausto et al., 2018). We account for 

uncertainty in this parameter by adding normally distributed random noise with standard deviation 25 kg m-3 to 𝜌0 at every 

model time step. 

 5 

2.3 Firn densification models  

We use the Community Firn Model (Stevens et al., 2020) as the framework of our study because it incorporates the 

formulations of all three densification models investigated: HL (Herron and Langway, 1980), Ar (Arthern et al., 2010) and LZ 

(Li and Zwally, 2011). The Robin hypothesis (Robin, 1958) constitutes the fundamental assumption of HL, Ar and LZ. It states 

that any fractional decrease of the firn porosity, 
𝜌𝑖−𝜌

𝜌𝑖
, is proportional to an increment in overburden stress. This translates into 10 

densification rates depending on a rate coefficient 𝑐, assumed different for stage-1 and stage-2 densification: 

{

𝑑𝜌

𝑑𝑡
= 𝑐0 (𝜌𝑖 − 𝜌), 𝜌 ≤ 550 𝑘𝑔 𝑚−3

𝑑𝜌

𝑑𝑡
= 𝑐1 (𝜌𝑖 − 𝜌), 𝜌 > 550 𝑘𝑔 𝑚−3

  (3) 

The formulations of the rate coefficients rely on calibration and thus differ between the three models investigated: 

 

HL 15 

{
𝑐0 = �̇�𝑎𝑘0

∗exp (
−𝐸0

𝑅𝑇
)

𝑐1 = �̇�𝑏𝑘1
∗exp (

−𝐸1

𝑅𝑇
)

 (4) 

Ar 

{
𝑐0 = 𝜌𝑤�̇�𝛼𝑘0

𝐴𝑟𝑔exp (
−𝐸𝑐

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)

𝑐1 = 𝜌𝑤�̇�𝛽𝑘1
𝐴𝑟𝑔exp (

−𝐸𝑐

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)
 (5) 

LZ 

{
𝑐0 = 𝛽0𝑙𝑧𝑎(273.15 − 𝑇)𝑙𝑧𝑏�̇� 

𝑐1 = 𝛽1𝑙𝑧𝑎(273.15 − 𝑇)𝑙𝑧𝑏�̇�
  (6) 20 

𝑤𝑖𝑡ℎ {
𝛽0 = 𝑙𝑧11 + 𝑙𝑧12�̇� + 𝑙𝑧13𝑇𝑎𝑣

𝛽1 = 𝛽0(𝑙𝑧21 + 𝑙𝑧22�̇� + 𝑙𝑧23𝑇𝑎𝑣 )
−1 

 

where �̇� is the accumulation rate (m w.e. yr-1), 𝑇 the temperature (K), 𝑇𝑎𝑣  the annual mean temperature, 𝑅 the gas constant, 𝑔 

gravity and 𝜌𝑤 the water density (1000 kg m-3). All remaining terms are model-specific tuning parameters. For �̇�, we use the 

mean accumulation rate over the lifetime of each specific firn layer because it better approximates the overburden stress than 25 
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the annual mean (Li and Zwally, 2011). HL and Ar use Arrhenius relationships with activation energies (𝐸 terms) capturing 

temperature sensitivity and exponents characterising the exponential proportionality of the rate coefficients to the accumulation 

rate. Originally, Herron and Langway (1980) inferred all values from calibration based on 17 firn cores, from which they 

inferred the values for the six free parameters (Table 1) of HL. In contrast, Arthern et al. (2010) fixed the accumulation 

exponents in advance (𝛼 = 𝛽 = 1) and took activation energies (𝐸𝑐 , 𝐸𝑔) from measurements of microscale mechanisms: 5 

Nabarro-Herring creep for 𝐸𝑐 and grain-growth for 𝐸𝑔. Still, they noted a mismatch with the activation energy fitting their data 

best. The 𝑘0
𝐴𝑟  and 𝑘1

𝐴𝑟  parameters were tuned to three measured time series of strain rates collected in relatively warm and 

high accumulation locations of the AIS. Here, we consider all five 𝛼, 𝛽, 𝑘0
𝐴𝑟 , 𝑘1

𝐴𝑟 , 𝐸𝑔 as free parameters (Table 1) but keep 𝐸𝑐 

fixed because of its strong correlation with 𝐸𝑔; our use of monthly model time steps and depth-density profiles as calibration 

data is not suitable for differentiating effects of 
𝐸𝑔

𝑅𝑇𝑎𝑣
 and 

𝐸𝑐

𝑅𝑇
. Equation (6) shows that LZ has eight free parameters (Table 1), 10 

all denoted by 𝑙𝑧 in this paper. In contrast to our approach to Ar, we do not add additional accumulation rate exponents to �̇� in 

Eq. (6) because the dependence of 𝑐0 and 𝑐1 on �̇� also involves the coefficients 𝑙𝑧12 and 𝑙𝑧22 in the definition of 𝛽0 and 𝛽1. Li 

and Zwally (2011) performed their calibration of Eq. (6) against firn cores only from the GrIS. Later, Li and Zwally (2015) 

proposed a new parameterisation for 𝛽0 and 𝛽1, but developed a densification model calibrated for Antarctic firn. The latter 

model uses the same governing equations as LZ for 𝑐0 and 𝑐1 but different formulations for 𝛽0 and 𝛽1 (Eq. (6)). Since one of 15 

the goals of this study is to find a densification formulation applicable to firn in both the GrIS and AIS, we choose to apply 

our calibration method only to the formulations of 𝛽0 and 𝛽1Eq. (6) specified in Li and Zwally (2011) (Eq. (6)). However, in 

our results' analysis (Sect. 3), we also consider the performance of the Li and Zwally (2015) model on the AIS cores of our 

dataset. 

 20 

2.4 Bayesian calibration  

In our approach, the free parameters of the firn models are identified as the quantities of interest and we define this parameter 

set as 𝜃. Hereafter, 'original model values' refers to the values originally attributed by Herron and Langway (1980), Arthern et 

al. (2010) and Li and Zwally (2011) to their respective sets of free parameters 𝜃. The calibration process relies on Bayes’ 

theorem (Eq. (7)) which allows to update a prior probability distribution 𝑃(𝜃) for 𝜃 based on observed data 𝑌.  25 

𝑃(𝜃|𝑌) =
𝑃(𝑌|𝜃)𝑃(𝜃)

𝑃(𝑌)
  (7) 

We use normal and weakly informative priors centred about the original model values so that the constraint of the prior on 

𝑃(𝜃|𝑌) is minor (Table 1). As indicated by Morris and Wingham (2014), in HL and Ar, the values of the Arrhenius pre-

exponential factors (𝑘0
∗, 𝑘1

∗, 𝑘0
𝐴𝑟  and 𝑘1

𝐴𝑟) are correlated with their corresponding activation energies (𝐸0, 𝐸1 and 𝐸𝑔). At a given 

temperature, a change of the value in the pre-exponential factor can be compensated by adjusting the activation energy to keep 30 

the densification rates constant. We express our a priori knowledge of these correlations in the prior distributions (see 
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Supplementary Information). No other pair of parameters in HL, Ar or LZ are clearly correlated a priori, but the calibration 

process captures a posteriori correlations by confronting the models to with data.  The data 𝑌 consists of the observed 𝐷𝐼𝑃15 

and 𝐷𝐼𝑃𝑝𝑐 values of the calibration data. The marginal likelihood, 𝑃(𝑌), is a constant term independent of 𝜃 and does not 

influence the calibration. We use a normal likelihood function 𝑃(𝑌|𝜃), which quantifies the match of the modelled 𝐷𝐼𝑃 values 

with the observed: 5 

𝑃(𝑌|𝜃) ∝ exp [
−1

2
(𝑋15 − 𝑌15)

𝑇𝛴15
−1(𝑋15 − 𝑌15) −

1

2
(𝑋𝑝𝑐 − 𝑌𝑝𝑐)

𝑇
𝛴𝑝𝑐

−1(𝑋𝑝𝑐 − 𝑌𝑝𝑐)] (8) 

where 𝑋15 and 𝑌15 are vectors containing all modelled and observed values for the calibration data of 𝐷𝐼𝑃15 respectively, and 

similarly for 𝑋𝑝𝑐 and 𝑌𝑝𝑐. We use diagonal covariance matrices 𝛴15 and 𝛴𝑝𝑐 with site-specific variances. The variances 

determine the spread allowed for the model outputs compared to the observed values and are calculated by taking 10% and 

20% margins around 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 measurements respectively. Allowing for such spread is necessary because multiple 10 

causes may lead to model-observation discrepancy such as firn model errors, measurement uncertainties and discrepancies 

induced by the random perturbations applied to RACMO2 forcing and to 𝜌0. This particular form of the likelihood function 

assumes independence between model errors in 𝐷𝐼𝑃15 and in 𝐷𝐼𝑃𝑝𝑐, which is ensured by our calculation of 𝐷𝐼𝑃𝑝𝑐 only from 

15 m depth to 𝑧𝑝𝑐 (Eq. (2)). It also assumes normally distributed model errors with respect to the observed values. Both these 

aspects were verified with preliminary assessments, along with our calculations for the covariance matrices  𝛴15 and 𝛴𝑝𝑐, as 15 

discussed in the Supplementary Information. The posterior distribution 𝑃(𝜃|𝑌) gives a probability distribution over the 

parameter space of a given model conditioned on the calibration data. In our case, with weakly informative priors (Table 1), 

the distribution 𝑃(𝜃|𝑌) is essentially governed by the likelihood function (Eq. (8)). We note here that extreme parameter 

combinations in the LZ model can lead to negative densification rates. In such cases, we set the modelled 𝐷𝐼𝑃 values to 0, 

which leads to extremely low values for the likelihood and for the posterior probability of such parameter sets. 20 

 

There is no analytical form of 𝑃(𝜃|𝑌) and we must investigate the parameter space to generate an ensemble of 𝜃𝑖 approximating 

𝑃(𝜃|𝑌). Such an investigation is achieved efficiently using Markov Chain Monte Carlo methods. We apply the well-known 

Random Walk Metropolis (RWM) algorithm (Hastings, 1970) and summarize it in Fig. 2, on which we base the brief following 

description. A given model (HL, Ar or LZ) starts with a certain parameter set 𝜃𝑖 the original model parameter values and 25 

simulates firn profiles at all the calibration sites. Its 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 results are compared with observations and the general 

performance of the model using 𝜃𝑖 is is quantified by the likelihood. From there and with the prior distributions assumed, the 

posterior probability is probability 𝑃(𝜃𝑖|𝑌) is computed following Eq. (7). At this point, the RWM algorithm starts and the 

state of the chain, is 𝜃𝑖 (Fig. 2a), is set to the original model values and its posterior probability is saved as 𝑃(𝜃𝑖|𝑌). It should 

be noted that the 𝑖 subscript designates the iteration number, which is equal to 0 at this initial step. The RWM then proposes a 30 

new 𝜃𝑖
∗ from a proposal distribution (Fig. 2b). For the latter, we use the symmetric multivariate normal (MVN) distribution 

which is centred about 𝜃𝑖. This implies that the random choice of 𝜃𝑖
∗ depends only on the current state 𝜃𝑖 and on the proposal 
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covariance in the MVN, 𝛴𝑝𝑟𝑜𝑝, which is discussed below. Using the parameter combination 𝜃𝑖
∗, the model simulates profiles 

at all calibration sites again (Fig. 2c) and 𝑃(𝜃𝑖
∗|𝑌) is computed (Fig. 2d). From there, we either accept or reject the proposed 

𝜃𝑖
∗ in the ensemble approximating 𝑃(𝜃|𝑌). By using the previously computed 𝑃(𝜃𝑖|𝑌), tThe probability of accepting 𝜃𝑖

∗ 

depends on the ratio 𝑃 (𝜃𝑖
∗|𝑌) 𝑃⁄ (𝜃𝑖|𝑌) (Fig. 2e). The set saved in the ensemble (Fig. 2g) is 𝜃𝑖

∗ if accepted or 𝜃𝑖 if 𝜃𝑖
∗ was 

rejected. The saved set becomes the updated current status for the next iteration 𝜃𝑖+1 (Fig. 2a) with its associated posterior 5 

probability, 𝑃(𝜃𝑖+1|𝑌).  and theThe algorithm iterates this process and reaches a final posterior distribution over 𝜃. The RWM 

has the property that the chain will ultimately converge to a stationary distribution that represents the posterior 𝑃(𝜃|𝑌). Thus, 

after a sufficiently high number of iterations of the algorithm, the ensemble of parameter sets is representative of 𝑃(𝜃|𝑌). We 

verify adequate convergence using a number of tests, which are shown in the Supplementary Information. The proposal 

covariance 𝛴𝑝𝑟𝑜𝑝 must account for dependence between the different components of 𝜃, i.e. the value of one free parameter can 10 

influence the value of another free parameter for the model to reach a good match with the observed data. 𝛴𝑝𝑟𝑜𝑝 can capture 

this dependence between parameters and, for optimality, it is updated every given number of iterations (100 in our study) using 

Eq. (9) (Rosenthal, 2010): 

𝛴𝑝𝑟𝑜𝑝 =
2.382

𝑝
 𝛴𝑐𝑜𝑣  (9) 

where 𝛴𝑐𝑜𝑣 is the covariance matrix between the free parameters of the model at this stage of the iterative chain and 𝑝 is the 15 

number of free parameters. 

 

From the posterior probability distributions, we can infer the Maximum a Posteriori (MAP) estimates of each model (MAPHL, 

MAPAr, MAPLZ). These are the modes of the multi-dimensional distributions over the space of free parameters and have been 

identified as the most likely sets by the RWM. The MAP estimates can be compared to the corresponding original model 20 

values of the parameters. The posterior distributions additionally incorporate the uncertainty in the parameter values. By 

performing posterior predictive simulations on the evaluation data, we can assess this remaining uncertainty (Gelman et al., 

2013). More specifically, we can assume that a large (500) random sample of the ensemble of accepted 𝜃 is representative of 

the posterior distribution. As such, model results computed with all sets of this sample inform about model performance 

accounting for uncertainty. Intuitively, a large spread in results from a 500 random samples would indicate a large range of 25 

possible sets for the free parameters and thus a high uncertainty in parameter values. 

Since there is no analytical form of our posterior distributions, and to facilitate future firn model uncertainty assessments, we 

can approximate the posterior distributions with MVN distributions whose means and covariances are set to the posterior 

means and posterior covariance matrices of the calibration. This allows straightforward sampling of random parameter sets 

instead of relying on posterior samples of the MCMC. We provide information about the normal approximations and assess 30 

their validity in the Supplementary Information. Such normal approximations are asymptotically exact and are commonly 

applied to analytically intractable Bayesian posterior distributions (Gelman et al., 2013). 
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3 Results 

We present the results of the calibration process after 15000 algorithm iterations and compare the MAP and original models' 

performances against the 22 evaluation cores. We also evaluate the uncertainty of the posterior distributions and compare 

performances between the different MAP models. All the evaluation simulations are performed without climatic and surface 

density noise in order to make the evaluation fully deterministic. 5 

 

For HL and even more so for Ar, the posterior distributions for the parameters demonstrate some strong disagreements with 

the original values (Figs. 3a, 3b). The 95% credible intervals for each parameter (Table 1) incorporate 95% of the marginal 

probability density in the posterior. Two original parameter values of HL (𝑎, 𝑏) and three of Ar (𝐸𝑔, 𝛼, 𝛽) lie in the tails of the 

posterior distributions (Figs. 3a, 3b) and even outside these intervals in the case of 𝑏, 𝐸𝑔 , 𝛼 and 𝛽. This indicates that our 10 

analysis provides strong evidence against these original values. The strongest disagreements relate to the accumulation 

exponents of both models (𝑎, 𝑏, 𝛼, 𝛽). In contrast, the original LZ values agree better with the posterior distribution and all lie 

within the 95% credible intervals (Table 1 and Fig. 3c). The posterior distributions show some strong correlation between 

certain pairs of parameters (Fig. 3). Notable examples are the pre-exponential factors and their corresponding activation energy 

in HL and Ar, for which the posterior correlations are even stronger than in the prior distributions. The complete correlation 15 

matrices and a detailed analysis of all posterior correlation features are provided in the Supplementary Information. 

 

We use the original models and the MAP estimates to simulate firn profiles at the evaluation sites and we compare 𝐷𝐼𝑃 results 

with the observed values. This is an effective way to assess possible improvements in parameter estimates reached through 

our method since the evaluation sites were not used in the calibration process. The match between observations and the model 20 

is improved for MAPHL (Fig. 4a) and even more for MAPAr (Fig. 4b), with the original Ar strongly underestimating 𝐷𝐼𝑃 values. 

These improvements translate into significantly reduced root mean squared errors (RMSE) in modelled values of both 𝐷𝐼𝑃15 

(-24% for HL and -45% for Ar) and 𝐷𝐼𝑃𝑝𝑐 (-22% and -61%) (Table 2).  

For LZ, the relative performance of the MAPLZ model for both 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 is worse (+2% and +24% in RMSE) but 

differences are of smaller magnitude (Table 2 and Fig. 4c). Parameter values of MAPLZ and the original LZ are closer, which 25 

explains more moderate differences in RMSE compared to HL and Ar. Comparing modelled and observed depth-density 

profiles of evaluation data illustrates the differences in performance visually (e.g. Fig. 5). Profiles of the original models of 

HL and Ar frequently lie outside the credible intervals of their respective MAP models. In contrast, profiles of MAPLZ and of 

the original LZ tend to be close together. At the climatic outlier of our evaluation data (DML in Fig. 5), improvements are 

reached for the three MAP models (Figs. 5c5g, 5f5h, 5i). This demonstrates benefits of this method even at the limits of the 30 

calibration range. However, at a majority of the evaluation sites, the 95% credible intervals computed for the three models do 

not include the observed value (Fig. 4). This highlights that the governing equations of the models, which intend to capture 

densification physics, require improvement, and that parameter calibration in itself cannot overcome this shortcoming. 
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Compared to the original HL, MAPHL reaches improvements in 𝐷𝐼𝑃15 for 12 of the 22 evaluation cores and in 𝐷𝐼𝑃𝑝𝑐 for 5 

of the 11 evaluation cores (Fig. 6a). Generally, MAPHL performs better at AIS sites and worse at GrIS sites. An analysis of the 

improvement of MAPHL as a function of climatic variables (Fig. 6a) shows that the original HL gives better results in a narrow 

range of 𝑇𝑎𝑣: from -30 to -25 ℃. As such, the better performance at the GrIS evaluation sites of the original HL is likely due 5 

to to the original HLits parameterisation being better suited for the particular temperature range corresponding to the conditions 

of the latter sites. In contrast, MAPHL seems more appropriate for covering a wider range of climatic conditions. For Ar, the 

original model shows better performance than MAPAr at few evaluation sites (6 for 𝐷𝐼𝑃15 and 2 for 𝐷𝐼𝑃𝑝𝑐) which are only 

in AIS and confined to low-accumulation conditions (Fig. 6b). This is counterintuitive given that Arthern et al. (2010) tuned 

the original Ar to measurements from high accumulation sites of the AIS. Finally, the original LZ performs better than MAPLZ 10 

at most GrIS sites (Fig. 6c), which is unsurprising given that its original calibration was GrIS-specific. Again, this seems 

related to the original LZ performing significantly better in the same narrow range of temperatures as for HL. In total, MAPLZ 

performs better for 10 of the 22 𝐷𝐼𝑃15 and 4 of the 11 𝐷𝐼𝑃𝑝𝑐 evaluation measurements. 

 

As explained in Sect. 2.3, the original LZ model was developed for GrIS firn only (Li and Zwally, 2011) and later 15 

complemented by an AIS-specific model (Li and Zwally, 2015). We compute results at the AIS and GrIS evaluation sites using 

the Li and Zwally (2015) model for the AIS and the Li and Zwally (2011) model for the GrIS, so that both models are applied 

to the ice sheet for which they were originally developed. We call this pairing of models LZ dual and evaluate its general 

performance Using both of these on the evaluation sites of their respective calibration ice sheet, we construct an LZ dual model, 

which thus really consists of two different models. The RMSE for 𝐷𝐼𝑃15 of LZ dual is slightly larger (+8 %) than that of 20 

MAPLZ and significantly larger (+38 %) for 𝐷𝐼𝑃𝑝𝑐 (Table 2). We note that the higher RMSE values of LZ dual are strongly 

affected by its densification scheme performing very poorly at the climatic outlier of the evaluation data, with conditions that 

are outside of the calibration range of Li and Zwally (2015). 

 

We also compare MAP results with the IMAU firn densification model (IMAU-FDM), which has been used frequently in 25 

recent mass balance assessments from altimetry (Pritchard et al., 2012; Babonis et al., 2016; McMillan et al., 2016; Shepherd 

et al., 2019). IMAU-FDM was developed by adding two tuning parameters to both densification stages of Ar. All four extra-

parameters are different for the AIS (Ligtenberg et al., 2011) and for the GrIS (Kuipers Munneke et al., 2015), thus also 

resulting in two separate models. On the evaluation data, its performance for 𝐷𝐼𝑃15 is slightly better than MAPAr and MAPLZ 

but worse than MAPHL, and its performance for 𝐷𝐼𝑃𝑝𝑐 is significantly worse than all three MAP models (Table 2). 30 

 

To assess the uncertainty captured by the Bayesian posterior distributions, we compute results on the evaluation data with the 

500 parameter sets randomly selected from each of the three posterior ensembles. For all three models, the average performance 

of their random sample is similar to the corresponding MAP performance, with a maximum RMSE change of 6% (Table 2). 



18 

 

This demonstrates a low uncertainty in the optimal parameter combinations identified by calibration. Furthermore, the best 

performing 95th percentile of the random selection allows the construction of the uncertainty intervals shown in Figs 4, 5. Of 

the original models, LZ reaches the lowest RMSE values. Of all models, MAPHL performs best in 𝐷𝐼𝑃15 and MAPAr in 𝐷𝐼𝑃𝑝𝑐 

(Table 2). MAPLZ performs worse than the other MAP models even when accounting for uncertainty by using the 500-samples 

random selections (Table 2). 5 

4 Discussion 

This calibration method is potentially applicable to models of similar complexity in a broad range of research fields. We exploit 

it here to investigate the parameter space of HL, Ar and LZ, and to re-estimate optimal parameter values conditioned on 

observed calibration data; no further complexity is introduced since the number of empirical parameters remains the same. We 

treat the accumulation exponents of Ar (𝛼, 𝛽) as free parameters whereas Arthern et al. (2010) decided to fix their values to 1. 10 

Analogous to 𝑎 and 𝑏 in HL, these exponents capture the mathematical relationship between densification rates and the 

accumulation rate, used as a proxy for load increase on any specific firn layer. No physical argument favours a linear 

proportionality between densification and load increase and any prescribed value for these exponents is a choice of the model 

designer. Unlike Arthern et al. (2010), Herron and Langway (1980) previously inferred 𝑎 = 1 and 𝑏 = 0.5. Our calibration 

data shows strong evidence against both these pairs of values; all four are in the extreme tails of the posterior distributions 15 

(Fig. 3a, 3b). Our results of stage-1 exponents (𝑎, 𝛼) smaller than 1 indicate a weaker increase in densification rates with 

pressure than assumed in the original versions of Ar and HL. In firn, the load is supported at the contact area between the 

grains, which increases on average due to grain rearrangement (in stage-1) and grain growth. As such, firn strengthens in time 

and the actual stress on ice grains increases slower than the total load (Anderson and Benson, 1963). Morris and Wingham 

(2014) incorporated this by including a temperature-history function, causing slower densification of firn previously exposed 20 

to higher temperatures. This is consistent with both grain rearrangement and grain growth because these processes are enhanced 

at higher temperatures (Alley, 1987; Gow et al., 2004). Lower values of the stage-2 exponents (𝑏, 𝛽) illustrate the larger 

strength of high-density firn with larger contact areas between grains. The same can be applied todifference in sensitivities of 

stage-1 and stage-2 densification to accumulation also holds in the LZ model, as illustrated by  by investigating the posterior 

correlation between its free parameters. It showsThe a positive correlation coefficient (0.74) between the accumulation-related 25 

parameters of both stages,; 𝑙𝑧12 and 𝑙𝑧22, is significantly positive (0.74, Fig. S5). High values of 𝑙𝑧12 make 𝛽0 more sensitive 

to �̇� (Eq. (6)). However, 𝛽0 appears in the numerator of the 𝛽1 calculation (Eq. (6)) and higher values of 𝑙𝑧22 thus moderate 

the sensitivity of stage-2 densification to �̇�. As such, positively correlated 𝑙𝑧12 and 𝑙𝑧22 provide further evidence that stage-1 

densification rates are more sensitive to accumulation rates. This example demonstrates how posterior correlations provide 

insights into model behaviour. The posterior correlations of all three models are further discussed in the Supplementary 30 

Information. 
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In the IMAU model introduced in Sect. 3, tuning parameters have been added to Ar in order to reduce its sensitivity to 

accumulation rates (Ligtenberg et al., 2011; Kuipers Munneke et al., 2015). The calibration method presented in this study 

detects and adjusts for this over-sensitivity in Ar without the need for more tuning parameters in the governing densification 

equations. The sensitivity of stage-1 densification to �̇� can be computed from the derivative of the rate coefficient: 

𝜕𝑐0

𝜕�̇�
= 𝜌𝑤 𝑘0

𝐴𝑟𝑔 exp (
−𝐸𝑐

𝑅𝑇
+

𝐸𝑔

𝑅𝑇𝑎𝑣
)𝛼 �̇�𝛼−1 (10) 5 

Similarly, the derivative 
𝜕𝑐1

𝜕�̇�
 is obtained by replacing 𝑘0

𝐴𝑟  and 𝛼 with 𝑘1
𝐴𝑟  and 𝛽. Our calibration process strongly favours 

smaller values of 𝛼, 𝛽 and 𝐸𝑔 with respect to the original values (Fig. 3b). We can compare the magnitudes of the derivatives 

under the original Ar parameterisation and under the MAP parameterisation. The magnitudes vary for particular combinations 

of 𝑇𝑎𝑣  and �̇�. Under all the annual mean climatic regimes of our dataset, the MAP parameters result in a decreased sensitivity 

of both stage-1 and stage-2 densification rates to �̇�. 10 

 

HL, Ar and LZ only use temperature and accumulation rates as input variables. Other models use additional variables 

hypothesised to affect densification rates. These include the temperature-history mentioned above (Morris and Wingham, 

2014), firn grain size (Arthern et al., 2010), impurity content (Freitag et al., 2013) and a transition region between stage-1 and 

stage-2 densification (Morris, 2018). Other models are explicitly based on micro-scale deformation mechanisms (Alley, 1987; 15 

Arthern and Wingham, 1998; Arnaud et al., 2000). These efforts undoubtedly contribute to progressing towards physically 

based models. A potential problem with such approaches is overfitting calibration data by adding parameters to model 

formulations while detailed firn data remain scarce. As long as more firn data is not available to appropriately constrain the 

role of each variable in model formulations, we favour the use of parsimonious models relying on few input variables. It is 

noteworthy that MAPLZ, which relies on eight free parameters, performs worse on the evaluation data than MAPHL and MAPAr 20 

with two fewer free parameters. This highlights that gains in model accuracy should rely not only on better calibration of 

parameters but also on a reconsideration of the governing densification equations. Additionally, firn core data invokes the 

assumption of a steady-state depth-density profile. As such, parameter calibration poorly captures seasonal climatic effects on 

densification. Comprehensive datasets of depth-density profiles (Koenig and Montgomery, 2019) are very valuable to model 

development. Efforts in collecting and publishing strain rate measurements from the field (Hawley and Waddington, 2011; 25 

Medley et al., 2015; Morris et al., 2017), and possibly from laboratory experiments (Schleef and Löwe, 2013), can further 

benefit model calibration and the progress towards more representative equations. 

 

In order to quantify the consequences of our calibration, we investigate two aspects for which firn models are of common use: 

calculating firn compaction rates and predicting the age of firn at 𝑧𝑝𝑐 depth, 𝑎𝑔𝑒𝑝𝑐 (yr). At every site 𝑖 of our dataset, we 30 

compute the 2000-2017 total compaction anomaly, 𝑐𝑚𝑝𝑎𝑛,𝑖 (m), and the 𝑎𝑔𝑒𝑝𝑐,𝑖 value with each of the 500 parameter sets 

randomly drawn from the posterior ensembles of the three different models (HL, Ar, LZ). This allows evaluation of both 



20 

 

parameter-related and model-related uncertainty. Total compaction anomaly (𝑐𝑚𝑝𝑎𝑛) – calculated as the cumulative anomaly 

in surface elevation change due only to firn compaction changes during the 2000-2017 period with respect to the climatic 

reference period – is given by: 

𝑐𝑚𝑝𝑎𝑛,𝑖 = 𝑐𝑚𝑝𝑡𝑜𝑡,𝑖
00−17 − 17𝑐𝑚𝑝𝑟𝑒𝑓,𝑖

𝑦𝑟
 (11) 

where 𝑐𝑚𝑝𝑡𝑜𝑡
00−17 (m) is the total firn compaction over 2000-2017 and 𝑐𝑚𝑝𝑟𝑒𝑓

𝑦𝑟
  (m yr-1) is the annual mean compaction over 5 

the reference period (see Sect. 2.2). At all sites, we compute the coefficients of variation (CV) for both 𝑐𝑚𝑝𝑎𝑛 and 𝑎𝑔𝑒𝑝𝑐 from 

the 500 simulations with each model, and we average the CVs across all sites. CV is the ratio of the standard deviation to the 

mean and provides an effective assessment of relative dispersion of model results. Because low mean values of 𝑐𝑚𝑝𝑎𝑛 can 

inflate its CV, we consider only half of the sites at which the mean computed 𝑐𝑚𝑝𝑎𝑛 is highest. For all three models, the CV 

values for both 𝑐𝑚𝑝𝑎𝑛 and 𝑎𝑔𝑒𝑝𝑐 lie between 5.5 and 7.5% (Table 3). These values give typical uncertainty in firn model 10 

output related to uncertain parameter values. Proceeding to the same calculations but using all three models, i.e. an inter-model 

ensemble of 1500 simulations at each site, gives an overview of the combined parameter- and model-related uncertainty. The 

CVs are 19.5% for 𝑐𝑚𝑝𝑎𝑛 and 7.5% for 𝑎𝑔𝑒𝑝𝑐, demonstrating larger inter-model disagreement on 𝑐𝑚𝑝𝑎𝑛 calculations (Table 

3). By using the CV values, we can calculate reasonable uncertainty estimates for 𝑐𝑚𝑝𝑎𝑛 and 𝑎𝑔𝑒𝑝𝑐. For instance, iIn the dry 

snow zone of GrIS, simulated compaction anomalies are typically around 20 cm over 2000-2017, and thus come with an 15 

uncertainty of the order of ±4 cm. Since pore close-off age here is around 250 years, a reasonable uncertainty range on this 

value is ±19 years. In contrast, on the drier AIS, pore close-off age is about 1000 years thus this range increases to ±75 years. 

Compaction anomalies hover around 0 cm on most of the dry zone of the AIS because it has not experienced the strong recent 

surface warming of the GrIS. Absolute uncertainty is thus reduced but still critical given the large area of the AIS over which 

it must be integrateduncertainties are aggregated when mass balance trends are evaluated. Such numbersThe uncertainty ranges 20 

calculated from the CV values provide an order of magnitude of errors in firn model outputs that must be accounted for in 

altimetry-based mass balance assessments and in ice core studies, respectively. 

We further investigate how using different models and different parameterisations leads to discrepancies in the modelled 

compaction.the different sensitivities in terms of We compute monthly values of compaction anomalies over the 2000-2017 

period withof the original and MAP models of HL, Ar and LZ (Fig. 7). Ar shows the strongest sensitivity to climatic conditions 25 

diverging from these of the reference period; compaction responds strongly to the general increases on GrIS in temperature 

and accumulation rate, especially in late summer. Due to its lower values for 𝛼, 𝛽 and 𝐸𝑔, MAPAr exhibits less extreme 

compaction anomalies than the original Ar and thus less seasonal variability. In sharp contrast to Ar, HL-computed compaction 

rates remain relatively stable, due to low activation energy values that smooth out the seasonal variability. Firn core 

observations provide little information and constraints on seasonal patterns of densification. However, it is noteworthy that 30 

MAPAr and MAPLZ tend to show comparable short-timescale sensitivities (insets in Fig. 7), despite structural differences in 

the models' governing equations. This might indicate that these models fare relatively well in capturing seasonal fluctuations 

of densification rates and their sensitivity to climate shifts.  
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5 Conclusion 

We have implemented a Bayesian calibration method to estimate optimal parameter combinations applicable to GrIS and AIS 

firn for three benchmark firn densification models (HL, Ar, LZ). An extensive dataset of 91 firn cores was separated into 

calibration and independent evaluation data. Two optimised models (MAPHL, MAPAr) showed significant improvement against 

the evaluation data, while MAPLZ reached results close to, but slightly worse, than its original version and inferior to MAPHL 5 

and MAPAr. When compared to other models of greater complexity, the MAP models showed comparable or even improved 

performances. Furthermore, the Bayesian approach provides a robust way to evaluate the uncertainty related to parameter 

value choice, which is a major deficiency of current models. By introducing realistic climatic perturbations in the calibration 

process, the uncertainty intervals obtained account for the effects of an uncertain climatic forcing. However, at most sites 

where we evaluated, all three models' uncertainty intervals do not cover observed 𝐷𝐼𝑃 values. As such, although model results 10 

can be improved by re-calibration methods, model tuning alone is insufficient to reach exact fidelity of firn densification 

models. The formulation of models' governing equations impacts the remaining errors with respect to observations, which 

highlights deficiencies in our understanding of dry firn densification. Developing a well-constrained physically detailed model 

is challenging given the number of mechanisms affecting densification rates and their dependency on microstructural 

properties of firn, which are difficult to observe. Our study demonstrates that, despite these observational limitations, thorough 15 

calibration methods relying only on climatic variables can substantially improve firn model accuracy, and constrain 

uncertainties. 
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Parameter 
Value in 

original model 
Prior distribution MAP 95 % Credible interval 

𝑘0
∗ [m w.e.

-𝑎
] 11 𝑁(11, 100) 17.4 7.58; 28.4 

𝑘1
∗ [m w.e.

-𝑏
] 575 𝑁(575, 9 × 9 104) 524 260; 1060 

𝐸0 [J mol
-1

] 10 160 𝑁(10160, 4 × 106) 10 840 9 000; 12 290 

𝐸1  
[J mol

-1
] 21 400 𝑁(21400, 4 × 106) 20 800 18 900; 22 300 

𝑎 [/] 1 𝑁(1, 0.4) 0.91 0.74; 1.02 

𝑏 [/] 0.5 𝑁(0.5, 0.4) 0.63 0.54; 0.78 

𝑘0
𝐴𝑟  [m w.e.

-𝛼
] 0.07 

𝑁(0.07, 4.9
× 10−3) 

0.077 0.046; 0.137 

𝑘1
𝐴𝑟[m w.e.

-𝛽
] 0.03 𝑁(0.03, 9 × 10−4) 0.025 0.015; 0.048 

𝐸𝑐  
[J mol

-1
] 60 000 Fixed: 60000 / / 

𝐸𝑔  
[J mol

-1
] 42 400 

𝑁(42400, 16
× 106) 

40 900 39 700; 42 000 

𝛼 [/] 1 𝑁(1, 0.4) 0.80 0.66; 0.89 

𝛽 [/] 1 𝑁(1, 0.4) 0.68 0.59; 0.81 

𝑙𝑧𝑎 8.36 𝑁(8.36, 36) 7.31 3.93; 12.82 

𝑙𝑧𝑏 -2.061 𝑁(−2.061, 2) -2.124 -2.319; -1.896  

𝑙𝑧11 -9.788 𝑁(−9.788, 36) -14.710 -20.839; -5.469 

𝑙𝑧12 8.996 𝑁(8.996, 36) 7.269 2.680; 17.724 

𝑙𝑧13 -0.6165 𝑁(−0.6165, 1) -1.019 -1.389; -0.509 

𝑙𝑧21 -2.0178 𝑁(−2.0178, 2) -1.513 -2.970; -0.258 

𝑙𝑧22 8.4043 𝑁(8.4043, 36) 6.0203 4.911; 12.942 

𝑙𝑧23 -0.0932 𝑁(−0.0932, 0.25) -0.0913 -0.133; -0.0460 

Table 1. Information for the free parameters of HL (top), Ar (middle) and LZ (low). 𝑁(𝑥, 𝑦) designates a normal distribution of mean 𝑥 

and variance 𝑦. The variances in the prior distributions are taken to generate weakly informative distributions. Some prior correlation is 

prescribed for the pairs (𝑘0
∗ , 𝐸0), (𝑘1

∗, 𝐸1), (𝑘0
𝐴𝑟 , 𝐸𝑔), (𝑘1

𝐴𝑟 , 𝐸𝑔) and (𝑘0
𝐴𝑟 , 𝑘1

𝐴𝑟) (see Supplementary Information). MAP estimates and 

credible intervals are results from the calibration process. 

 5 

Model RMSE (𝐷𝐼𝑃15) [m] RMSE (𝐷𝐼𝑃𝑝𝑐) [m] 

HL original 0.503 2.395 

HL MAP 0.382 1.862 

HL 500 random sample 0.396 1.899 

Ar original 0.772 4.566 

Ar MAP 0.426 1.780 

Ar 500 random sample 0.448 1.889 

LZ original 0.452 1.812 

LZ dual 0.505 3.883 

LZ MAP 0.463 2.392 

LZ 500 random sample 0.486 2.296 

IMAU-FDM 0.418 2.681 
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Table 2.  Model results on the evaluation data. The errors Root Mean Squared Errors (RMSE) are calculated with respect to the observations 

of depth integrated porosity until 15 m depth and until pore close-off. 

 

Coefficient of Variation HL Ar LZ Combined (HL, Ar, LZ) 

𝑐𝑚𝑝𝑎𝑛 5.8% 5.8% 6.5% 19.5% 

𝑎𝑔𝑒𝑝𝑐 6.5% 5.8% 7.5% 7.5% 

Table 3.  Coefficients of variation for the 2000-2017 cumulative compaction anomaly (𝑐𝑚𝑝𝑎𝑛) and firn age at pore close-off depth (𝑎𝑔𝑒𝑝𝑐). 

Values are computed from results of 500 randomly selected parameter combinations from the posterior ensembles of each model (HL, Ar, 5 

LZ). Coefficients of variation are averaged across all sites of the dataset. 

 

 

Figure 1. Maps of Antarctic (left) and Greenland (right) ice sheets. Background is mean annual air temperature as modelled by RACMO2. 

Note the different colour scales. 10 
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Figure 2. Implementation of the Random Walk Metropolis algorithm. 𝜃 represents a parameter combination of any given firn densification 

model investigated. 
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Figure 3. Posterior probability distributions, shown for pairs of parameters, for (a) HL, (b) Ar, (c) LZ. Where possible, correlated parameters share 

the same graph (see Supplementary Information for full correlation matrices). The posterior samples are 500 randomly selected parameter 

combinations from the posterior ensembles of each model (HL, Ar, LZ). 

 5 
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Figure 4. Comparison of evaluation data 𝐷𝐼𝑃 with model results. The 95% credible intervals are computed from results of 500 randomly selected 

parameter combinations from the posterior ensembles of each model (HL, Ar, LZ). Similar scatter plots for the LZ dual and IMAU results are shown 

in the Supplementary Information (Fig. S6). 
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Figure 5. Depth-density profiles at three evaluation sites. DML is a climatic outlier of our dataset with particularly high temperatures and 

accumulation rates. The 95% credible intervals are computed from results of 500 randomly selected parameter combinations from the posterior 

ensembles of each model (HL, Ar, LZ). 
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Figure 6. Improvements of the MAP models with respect to the original models for the evaluation data. The ratios indicate the ratios of cores for 

which an improvement is achieved by the corresponding MAP. Graphs in the left column display the mean annual temperature on the x-axis and 

those in the right column display the mean annual accumulation rate. 

 5 
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Figure 7. Monthly time-series of compaction anomalies at two sites on the GrIS. Insets show details for particular intervals of the time-series. 

Mean climatic anomalies are calculated as a difference between mean climatic values over the period 2000-2017 with respect to the reference 

period 1960-1979, and based on RACMO2 values. 

 5 
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S1 Separation between the calibration and the evaluation data 

The 91 sites of the dataset span a broad range of temperature and accumulation rate conditions (Table S1 and Fig. 

S1). As explained in the main text, our objective is to select the evaluation data (22 cores) randomly but still 

making it representative of (i) all climatic conditions and (ii) the ratio of GrIS to AIS sites of the dataset. We 

separate the 91 observed cores in three tiers of lowest, middle and highest 𝑇𝑎𝑣 and we select randomly 7 cores in 5 

each tier for the evaluation data. We repeat this random selection until 5 to 10 out of the 21 cores are from GrIS, 

with the remainder from AIS. Finally, our dataset includes two sites that are climatic outliers with respect to the 

others (DML and spencer4 in Table S1) with high 𝑇𝑎𝑣 and �̇� values (Figure S1). We select randomly one of these 

for the evaluation data. Proceeding to the selection based on �̇� rather than 𝑇𝑎𝑣 would be similar given the strong 

correlation between both variables.  10 

S2 Application of random noise in the boundary conditions 

In order to let uncertainty in RACMO2 output affect the calibration process, we perturb the temperature and 

accumulation time series that serve as climatic forcing for the firn models. At each iteration (a round of 

simulations with a given parameter set at all the calibration sites) and for each individual calibration site, we 

randomly draw an individual climatic perturbation value 𝑐𝑝 from a standard Normal distribution (Eq. (S1)). As 15 

such, every calibration site has a specific 𝑐𝑝 value, which changes at each iteration. We use observed statistics of 

RACMO2 errors in temperature and Surface Mass Balance to determine the perturbation. For GrIS, Noël et al. 

(2019) report RMSE values with respect to field observations for temperature and surface mass balance flux of 

2.1 K and 69 mm w.e. yr-1 respectively (in their Supplementary Material). Each monthly value of the RACMO2 

time series is therefore perturbed by the corresponding RMSE value scaled by 𝑐𝑝 (Eq. (S2), (S3), (S4)).  20 

 

We favour this approach rather than drawing a different random perturbation at each time step. The latter method 

would cause perturbations of opposite signs to occur on a very short timescale, which would result in unrealistic 

short term climatic variability (e.g. a very warm perturbation could be immediately followed by a very cold 

perturbation in the next month). Also, using the same 𝑐𝑝 value to quantify the magnitude of the perturbation for 25 

temperature and accumulation preserves the strong correlation between these variables. Warm (cold) temperature 

perturbations coincide with high (low) accumulation perturbations, which keeps our random perturbations 

physically plausible.  

 

The part of the total accumulation perturbation attributed to each monthly time step is weighted by the actual 30 

accumulation at that time step. This attributes larger absolute noise in accumulation to high-accumulation months 

and lower absolute noise to low-accumulation months (Eq. (S3), (S4)).  

 

Our approach is summarized in Eq. (S1), (S2), (S3) and (S4). These equations are applied at all iterations of the 

calibration process. 35 

 

 𝑐𝑝~𝑁(0,1)    at all calibration sites  (S1) 

𝑇𝑡
∗ = 𝑇𝑡 + 𝑐𝑝𝜎𝑇    at all 𝑡 (S2) 

�̇�𝑡𝑜𝑡
∗ = 𝑛𝑦𝑟𝑐𝑝𝜎𝑆𝑀𝐵  (S3) 

�̇�𝑡
∗ = �̇�𝑡 + �̇�𝑡𝑜𝑡

∗ �̇�𝑡

∑ �̇�𝑡𝑡
  (S4) 40 
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where 𝑇𝑡 and �̇�𝑡 are temperature and accumulation rate as computed by RACMO2 at time step 𝑡 and the ∗ 

superscript denotes the perturbed quantity. 𝑛𝑦𝑟 is the total number of years in a given simulation, �̇�𝑡𝑜𝑡
∗  is the total 

accumulation perturbation applied for that simulation and 𝜎𝑇 and 𝜎𝑆𝑀𝐵 are the temperature and surface mass 

balance flux RMSE values (as mentioned above, 𝜎𝑇 = 2.1 K and 𝜎𝑆𝑀𝐵= 69 mm w.e. yr-1 for GrIS). Note that by 5 

using a RMSE value on the surface mass balance flux, we overestimate uncertainty because the observed RMSE 

is mostly driven by errors in melt amounts which do not apply at the sites of our dataset, all from the dry snow 

zone area. For AIS, we apply the exact same process for perturbing the temperature variables. We use the RMSE 

value reported by van Wessem et al. (2018) and set 𝜎𝑇 = 1.3 K. The accumulation conditions of AIS forces the 

use of a slightly different method for perturbing the accumulation rate. In terms of magnitude, RACMO2 errors 10 

are much larger in coastal areas, where accumulation rates are high. In contrast, in the dry interior of the ice sheet 

where most of the cores of our dataset come from, the magnitude of RACMO2 errors is small due to low 

accumulation rates. As such, applying noise based on the ice sheet wide RMSE value would result in noise 

signals larger than actual accumulation values at most of our dry sites. We thus use the average RACMO surface 

mass balance bias of 5% (van Wessem et al., 2018) as a proxy for one standard deviation. For AIS, Eq. (S3) and 15 

(S4) are replaced by Eq. (S5). 

�̇�𝑡
∗ = �̇�𝑡 + 0.05 𝑐𝑝𝑛 �̇�𝑡  (S5) 

 

As explained in Sect. 2.2, we also let uncertainty in fresh snow density, 𝜌0, affect the calibration process by 

applying random perturbations to each 𝜌0
𝑡 . In contrast to the climatic perturbation, the perturbation in 𝜌0 must not 20 

be iteration specific but can be specific to each single time step 𝑡, and the perturbation thus varies throughout the 

duration of a firn model simulation. Indeed, it is not unrealistic that a month with anomalously low fresh snow 

density is immediately followed by a month of anomalously high fresh snow density for example. We determine 

surface density values at each site from the firn cores of our dataset, 𝜌0
𝑐𝑜𝑟𝑒, and we perturb these values based on 

a standard deviation of 25 kg m-3. This value goes in line with a typical window of local variability of 50 kg m-3 25 

for 𝜌0 (Reeh et al., 2005).  As such, adding noise to 𝜌0 simplifies to Eq. (S6). 

𝜌0,𝑡
∗  ~𝑁(𝜌0

𝑐𝑜𝑟𝑒, 25)  (S6) 

We emphasize that the aim of this study is not to conduct a complete sensitivity analysis of firn densification to 

climatic forcing and to fresh snow density. The objective of the perturbations is to let reasonable estimates of 

errors in those fields to be accounted for in the calibration process. 30 

S3 Prior correlations in HL and Ar 

The Arrhenius form of HL and Ar (Eq. (4) and (5)) allows us to include some correlation in the prior distributions 

over the parameters of these models. The values of the Arrhenius pre-exponential factors (𝑘0
∗ , 𝑘1

∗ , 𝑘
0

𝐴𝑟
 and 𝑘1

𝐴𝑟
) are 

correlated with their corresponding activation energies (𝐸0, 𝐸1 and 𝐸𝑔). For any given constant temperature, 

modelled densification rates, 
𝑑𝜌

𝑑𝑡
 , can be kept constant despite a change in the pre-exponential factor if the 35 

corresponding activation energy is changed accordingly and vice versa. As such, changes in these parameters can 

potentially compensate in the calculation of 𝐷𝐼𝑃 values and of the likelihood function (Eq. (8)).  

By enforcing constant 
𝑑𝜌

𝑑𝑡
, exact compensation is ensured by the following equalities: 

𝑘0,𝑚𝑣
∗ = 𝑘0,𝐻𝐿

∗ exp (
𝐸0,𝑚𝑣−𝐸0,𝐻𝐿

𝑅 𝑇
)  (S7) 
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𝑘1,𝑚𝑣
∗ = 𝑘1,𝐻𝐿

∗ exp (
𝐸1,𝑚𝑣−𝐸1,𝐻𝐿

𝑅 𝑇
)  (S8) 

𝑘0,𝑚𝑣
𝐴𝑟 = 𝑘0,𝐴𝑟

𝐴𝑟 exp (
𝐸𝑔,𝐴𝑟−𝐸𝑔,𝑚𝑣

𝑅 𝑇
)  (S9) 

𝑘1,𝑚𝑣
𝐴𝑟 = 𝑘1,𝐴𝑟

𝐴𝑟 exp (
𝐸𝑔,𝐴𝑟−𝐸𝑔,𝑚𝑣

𝑅 𝑇
)  (S10) 

where 𝐻𝐿 and 𝐴𝑟 subscripts denote the original values from the original publications of thein HL and Ar models, 

and the 𝑚𝑣 subscript denotes a modified value of the parameter. Firstly, we generate 10000 random values of 5 

temperature 𝑇 in the range of annual mean temperatures covered by our dataset. Secondly, for each random 

temperature, we generate random values of 𝐸0,𝑚𝑣, 𝐸1,𝑚𝑣 and 𝐸𝑔,𝑚𝑣 in an interval of ±500 J mol-1 around the 

original values. Thirdly, we calculate the corresponding values in the pre-exponential factors from Eq. (S7), (S8), 

(S9) and (S10). This results in 10000 pairs of (𝑘0,𝑚𝑣
∗ , 𝐸0,𝑚𝑣), (𝑘1,𝑚𝑣

∗ , 𝐸1,𝑚𝑣), (𝑘0,𝑚𝑣
𝐴𝑟 , 𝐸𝑔,𝑚𝑣) and (𝑘1,𝑚𝑣

𝐴𝑟 , 𝐸𝑔,𝑚𝑣), 

from which we calculate correlation coefficients. The absolute values of all four correlation coefficients lie in the 10 

interval [0.75; 0.78]. We decide to fix all prior correlation coefficients to -0.75 (HL parameters, negatively 

correlated) and 0.75 (Ar parameters, positively correlated). The process described necessarily results in perfectly 

correlated 𝑘0,𝑚𝑣
𝐴𝑟  and 𝑘1,𝑚𝑣

𝐴𝑟 . We also set the prior correlation between these parameters to 0.75.  

We emphasize here that any other pair of a priori uncorrelated parameters can certainly be correlated a posteriori 

if the calibration process identifies such quantitative behaviour when the observed data is considered. This is 15 

highlighted and further discussed in Sect. S7. 

S4 The likelihood function, Eq. (8) 

The covariance matrices 𝛴15 and 𝛴𝑝𝑐 that appear in Eq. (8) are diagonal matrices with the site-specific variances 

on the diagonal. At each site, we take 10% of the observed 𝐷𝐼𝑃15 and 20% of the observed 𝐷𝐼𝑃𝑝𝑐 as the 

standard deviation, and the variance value is the square of the standard deviation. We take the higher value of 20 

20% for 𝐷𝐼𝑃𝑝𝑐 because density errors propagate in firn models. Equation (3) shows that densification rates 

depend on the density value itself, resulting in error propagation through time. As such, if a model shows an 

offset compared to observations at 15 m depth, it is likely to show an even stronger offset at 𝑧𝑝𝑐. Taking a higher 

variance alleviates the strength of this effect on the likelihood calculations by allowing a larger spread of model 

results compared to observed 𝐷𝐼𝑃𝑝𝑐 values. 25 

The form of Eq. (8) corresponds to a normal likelihood function. This assumes that model 𝐷𝐼𝑃 results are 

normally distributed around the observed values. To support this assumption, we conducted a preliminary 

verification of errors in 𝐷𝐼𝑃15 (𝑋15 − 𝑌15) and 𝐷𝐼𝑃𝑝𝑐 (𝑋𝑝𝑐 − 𝑌𝑝𝑐) computed with the three original models 

(HL, Ar, LZ) on the entire dataset. We compute a basic Kolmogorov-Smirnov test for both sets of errors: 

residuals in 𝐷𝐼𝑃15 and in 𝐷𝐼𝑃𝑝𝑐. The resulting p-values are very large: 0.94 and 0.86 respectively. The 30 

distributions of these errors are thus in line with a normal distribution. We show the Quantiles-Quantiles plots for 

both sets of residuals in Figure S2. As explained in the main text, the form of Eq. (8) also assumes independence 

between errors in 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐, which is the reason why 𝐷𝐼𝑃𝑝𝑐 is calculated only from depths below 15 m. 

As such, observations-model discrepancies are essentially governed by parameter values of stage-1 densification 

for 𝐷𝐼𝑃15 and by parameter values of stage-2 densification for 𝐷𝐼𝑃𝑝𝑐, with little interaction between both. The 35 

same preliminary verification as mentioned above allows us to evaluate the correlation between 𝐷𝐼𝑃15 and 

𝐷𝐼𝑃𝑝𝑐 errors for all three original models on the entire dataset. This yields correlation coefficients of 0.13, 0.60 

and -0.01 for the original models HL, Ar and LZ respectively. S5 Convergence diagnostics 

For convergence of the RWM algorithm, the chain must traverse between the peaks of the target posterior 

distribution multiple times. Simply examining the trace of the RWM algorithm for each parameter provides an 40 
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effective way to verify this criterion. The trace is the history of accepted parameter values over the entire chain. 

We show this sampling history in Fig. S3. The fuzzy appearance for each parameter of each model indicates an 

efficient exploration of the parameter space as the samples from RWM algorithm oscillate around the posterior 

mode. 

In addition to this, we compute the Gelman-Rubin statistic, which provides a numerical test for convergence 5 

(Gelman et al., 2013). The motivation behind this test is that if each chain (run independently) converges to the 

same posterior distribution, then the variances within each chain should be approximately the same. For each 

model (HL, Ar, LZ), we launch three different chains from different initial parameter values. For each parameter 

of each model, we calculate the mean within sample variance 𝑊: 

𝑊 =
𝑠1
2+𝑠2

2+𝑠3
2

3
  (S1) 10 

where 𝑠2 denotes the variance of an individual chain. We then calculate the between sample variance: 

𝐵 =
𝑛

3−1
∑ (�̅�𝑖 − �̿�)

23
𝑖=1  (S2) 

where 𝑛 denotes the number of iterations within each chain, �̅�𝑖 the mean parameter value within each chain and �̿� 

is the mean of (�̅�1, �̅�2, �̅�3). From there, the estimate of the variance of the posterior distribution is given by: 

  𝜎2 =
𝑛−1

𝑛
𝑊 +

1

𝑛
𝐵 (S3) 15 

And the Gelman-Rubin statistic is defined as: 

𝑅 = √
�̂�2

𝑊
 (S4) 

Large values of 𝑅 indicate that estimates of 𝜃 values between the different chains are significantly different. With 

more iterations, the chains progressively converge to the same stationary distributions and the estimates of 𝜃 

become similar, resulting in values of 𝑅 close to 1. We reach 𝑅 < 1.1 for all parameters, which proves adequate 20 

convergence (Gelman et al., 2013). Two parameters of the LZ model needed a larger number of iterations to 

reach 𝑅 < 1.1. 

S6 Normal approximation to the posterior 

The ensembles of parameter combinations obtained for each model provide large samples, representative of the 

posterior probability distributions over their respective parameter space. The most efficient way to assess 25 

parameter-related uncertainty is to run a model with a high number of random parameter combinations from these 

ensembles, which is demonstrated in Sect. 3. However, this means that for any firn modelling study, access must 

be easy to such posterior ensembles or an MCMC algorithm must be re-executed. To circumvent these practical 

difficulties, it is approximately correct to sample random parameter combinations from a multivariate normal 

distribution centred about the mean of the posterior ensemble and with covariance matrix set to the posterior 30 

ensemble covariance matrix. This is commonly referred to as a normal approximation to the posterior (Gelman et 

al., 2013). Table S2 provides both the posterior mean and posterior covariance for the HL, Ar and LZ models. 

We assess how random samples from the normal approximations compare to samples from the posterior 

ensembles in Fig. S4. Posterior samples and the normal approximations are very similar, with correlations only 

slightly less well captured in the tails of the distributions. It As a consequence, the normal approximation results 35 

in a slight overestimation of uncertainty and thus conservative estimates of uncertainty. This has been confirmed 

by additional model simulations with values sampled from the normal approximations (not shown). 
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S7 Posterior correlation between parameters 

The joint posterior distributions for the parameters of each model also allow us to analyse the models' internal 

structure, i.e. the correlation between their different parameters. The full correlation matrices are given in Fig. 

S4S5. In HL, the strongest correlation coefficients 𝑟 are unsurprisingly found for the pairs of pre-exponential 

factor and activation energy governing densification in stage-1 (𝑘0
∗ and 𝐸0) and in stage-2 (𝑘1

∗ and 𝐸1) with 𝑟 of 5 

0.91 and 0.92 respectively. Higher activation energies (𝐸0 and 𝐸1) imply stronger thermal barriers to the 

densification process and thus slower densification, and the pre-exponential factors (𝑘0
∗ and 𝑘1

∗) counter-balance 

the effect to still match observed 𝐷𝐼𝑃 values. In the same way, the activation energies are negatively correlated 

with their respective accumulation rate exponent (𝑎 and 𝑏), but more moderately (𝑟 values of approximately -

0.5). The negative correlation of -0.28 between 𝑎 and 𝑏 themselves might be linked to the density at 15 m being 10 

the lower boundary and the upper boundary condition for the calculation of 𝐷𝐼𝑃15 and 𝐷𝐼𝑃𝑝𝑐 respectively. 

Higher values of 𝑎 tend to cause lighter firn at 15 m depth. Lower 𝐸0 values compensate for this effect on 𝐷𝐼𝑃15 

because the shallow firn densifies faster due to its greater sensitivity to temperature variations. The lighter 15 m 

depth density also affects 𝐷𝐼𝑃𝑝𝑐, and lower values of 𝑏 compensate for this by enhancing the densification rate, 

which explains the negative correlation between 𝑎 and 𝑏. In Ar, the interpretation is more challenging due to the 15 

use of a same activation energy in both stages. There is a strong correlation between the activation energy 𝐸𝑔 and 

both pre-exponential factors 𝑘0
𝐴𝑟 (𝑟 = -0.89) and 𝑘1

𝐴𝑟 (𝑟 = -0.90), for the same reason as in HL. As such, this 

induces a strong positive correlation between the latter parameters (𝑟 = 0.76). The negative correlation between 𝛼 

and 𝑘1
𝐴𝑟 (𝑟 = -0.41) is more surprising because these parameters apply to different stages, but it reveals an 

interesting pattern. Higher temperatures raise densification rates at warmer sites, where accumulation rates are 20 

also higher thus further amplifying this effect. Higher accumulation rates nevertheless cause light recently 

deposited firn to be buried rapidly, which may cause lower density firn governed by the fast stage-1 densification 

to extend below 15 m. To avoid underestimation of 𝐷𝐼𝑃𝑝𝑐 at such sites, stage-1 densification rates must remain 

low enough but there is no possibility for adjusting a stage-1 specific activation energy. Lower 𝛼 values generate 

this effect while only marginally affecting densification at colder low-accumulation sites. Thus, high 𝑘1
𝐴𝑟 without 25 

a complementary lower 𝛼 would cause 𝐷𝐼𝑃𝑝𝑐 underestimation at warm and high accumulation sites. We note 

here that, through the calibration process, the data enhanced the prior correlations we assigned in the HL and Ar 

models. Analysis of correlation coefficients in LZ is less straightforward because its governing equations, Eq. (6), 

are less interpretable than the plain Arrhenius relationship of HL and Ar. Still, we highlight some correlated pairs 

of parameters. As could be expected from Eq. (6), 𝑙𝑧𝑎 and 𝑙𝑧𝑏 are negatively correlated (𝑟 = -0.80). Also, the 30 

independent term of stage-1 densification 𝑙𝑧11 is strongly correlated with the corresponding temperature-related 

parameter (𝑙𝑧13, 𝑟 = 0.94). The same is valid for stage-2 densification between 𝑙𝑧21 and 𝑙𝑧23 (𝑟 = 0.90). The 

positive correlation between 𝑙𝑧12 and 𝑙𝑧22 (𝑟 = 0.74) is discussed in the main text.  
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Tables 

Site Lat Lon 

Core 

depth 

[m] 

Year Mean �̇� 

[m w.e. yr-1] 

Mean T 

[℃] 

𝜌0 

[kg/m3] 

𝐷𝐼𝑃15 

[m] 

Var 

𝐷𝐼𝑃15 

[m2] 

𝐷𝐼𝑃𝑝𝑐 

[m] 

Var 

𝐷𝐼𝑃𝑝𝑐 

[m2] 

EGRIP 75.63 -35.98 20.1 2017 0.113 -29.0 285 7.816 0.611 / / 

Summit * 72.58 -38.47 22.1 2017 0.205 -28.4 330 7.500 0.562 / / 

id359 73.94 -37.63 102.4 1993 0.124 -28.8 240 6.708 0.450 11.456 5.250 

id369 75.00 -30.00 19.9 1997 0.135 -27.6 335 7.454 0.556 / / 

id373 75.25 -37.62 100.8 1993 0.106 -29.5 275 7.826 0.612 12.372 6.123 

id385 76.00 -43.49 109.8 1995 0.124 -29.3 315 7.857 0.617 13.186 6.955 

id423 * 76.62 -36.40 143.2 1993 0.093 -29.1 310 7.716 0.595 10.666 4.550 

id514 77.25 -49.22 119.6 1995 0.163 -28.3 300 7.575 0.574 13.217 6.987 

id531 * 77.45 -51.06 75.0 2009 0.198 -27.4 320 7.434 0.553 / / 

id534 80.00 -41.14 96.0 1994 0.105 -28.4 335 7.811 0.610 11.345 5.148 

Basin8 69.80 -36.49 29.8 2003 0.350 -25.6 300 7.396 0.547 / / 

D2 71.80 -46.34 101.3 2003 0.421 -23.4 370 7.051 0.497 14.097 7.949 

D4 71.39 -43.94 143.9 2003 0.390 -24.6 300 7.394 0.547 12.770 6.523 

HumboldtM * 78.47 -56.98 141.9 1995 0.384 -24.8 280 8.062 0.650 10.947 4.794 

NASAE1 * 74.98 -29.97 19.9 1997 0.135 -27.6 340 7.394 0.547 / / 

spencer6 * 72.57 -37.62 82.3 1994 0.176 -29.0 360 4.889 0.239 / / 

spencer16 71.75 -40.75 15.0 1954 0.289 -27.0 340 7.216 0.521 / / 

spencer17 77.95 -39.18 60.0 1973 0.080 -29.3 300 5.002 0.250 7.781 2.421 

spencer66 * 70.75 -35.96 109.0 1987 0.247 -27.3 300 7.340 0.539 14.852 8.823 

spencer67 70.63 -35.83 128.6 1988 0.262 -27.0 325 7.098 0.504 14.114 7.968 

spencer68 * 70.65 -37.48 105.6 1988 0.263 -26.9 325 7.172 0.514 14.505 8.416 

spencer69 70.67 -38.79 24.8 1988 0.252 -27.1 305 7.184 0.516 / / 

spencer70 70.64 -39.62 100.1 1988 0.262 -27.0 290 6.772 0.459 14.026 7.869 
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spencer71 71.76 -35.87 77.8 1988 0.203 -28.2 275 7.043 0.496 13.094 6.858 

spencer72 71.48 -35.88 25.7 1988 0.207 -28.0 330 7.223 0.522 / / 

spencer73 71.15 -35.85 70.8 1988 0.214 -27.7 340 7.230 0.523 / / 

spencer74 70.85 -35.85 26.2 1988 0.264 -26.9 330 7.087 0.502 / / 

SouthPole -90.00 0.00 122.9 2001 0.055 -47.8 325 7.613 0.580 22.312 19.913 

Newall -77.58 162.50 111.1 1989 0.043 -31.2 305 7.160 0.513 4.132 0.683 

Berkner * -79.61 -45.72 178.2 1995 0.124 -28.3 345 6.255 0.391 9.658 3.731 

DML * -71.41 -9.92 78.2 2007 0.902 -20.6 410 6.037 0.364 10.228 4.185 

id9 -76.77 -101.74 111.6 2012 0.313 -24.7 470 6.194 0.384 12.119 5.875 

id10 -76.95 -121.22 62.0 2011 0.213 -28.4 355 6.947 0.483 / / 

id11 -77.06 -89.14 114.5 2001 0.346 -26.5 415 5.879 0.346 11.201 5.019 

id12 -77.61 -92.25 67.8 2001 0.301 -27.8 350 6.019 0.362 / / 

id13 -77.68 -124.00 59.3 2000 0.155 -28.2 350 6.411 0.411 / / 

id14 -77.76 153.38 97.1 2006 0.048 -44.6 360 6.833 0.467 17.516 12.272 

id15 * -77.84 -102.91 70.7 2001 0.486 -25.1 415 5.853 0.343 / / 

id17 -77.88 158.46 98.5 2006 0.058 -41.1 350 6.419 0.412 11.687 5.464 

id18 -77.96 -95.96 57.4 2010 0.354 -28.0 335 6.752 0.456 / / 

id19 -78.08 -120.08 57.8 2000 0.171 -27.7 315 6.253 0.391 / / 

id20 -78.12 -95.65 70.5 2001 0.324 -27.7 385 6.265 0.393 / / 

id22 * -78.33 -124.48 59.9 2000 0.152 -27.7 285 6.509 0.424 8.989 3.232 

id24 -78.43 -115.92 59.8 2000 0.318 -27.8 390 6.295 0.396 / / 

id26 -78.73 -111.50 60.7 2000 0.329 -27.8 350 6.427 0.413 / / 

id28 -79.04 149.68 100.1 2006 0.040 -44.6 405 6.703 0.449 15.584 9.714 

id29 * -79.13 -122.27 63.1 2000 0.127 -27.8 300 6.507 0.423 9.926 3.941 

id30 -79.16 -104.97 72.7 2001 0.306 -28.7 400 5.921 0.351 / / 

id33 -79.38 -111.24 104.8 2000 0.239 -28.2 370 6.159 0.379 12.943 6.701 

id35 * -79.48 -112.09 160.0 2011 0.162 -28.0 460 6.181 0.382 11.824 5.592 

id39 -80.62 -122.63 57.5 1999 0.094 -25.9 370 6.253 0.391 / / 
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id43 -81.20 -126.17 48.3 1999 0.070 -24.5 325 6.268 0.393 4.975 0.990 

id46 -82.00 -110.01 62.2 2002 0.180 -27.8 340 6.161 0.380 / / 

id48 -83.50 -104.99 61.7 2002 0.220 -31.0 360 6.098 0.372 / / 

id49 * -84.40 140.63 50.1 2007 0.023 -45.4 340 6.886 0.474 / / 

id50 -85.00 -105.00 44.9 2002 0.157 -36.3 360 6.422 0.412 / / 

id51 -85.78 145.72 41.7 2007 0.033 -46.1 310 6.767 0.458 / / 

id52 * -86.50 -107.99 71.6 2002 0.147 -38.8 340 6.882 0.474 / / 

id53 -86.84 95.31 20.8 2003 0.042 -53.3 355 6.535 0.427 / / 

id54 * -88.00 -107.98 54.1 2002 0.133 -41.4 355 7.009 0.491 / / 

id55 -88.51 178.53 99.3 2007 0.081 -48.2 320 6.880 0.473 / / 

id56 -89.93 144.39 139.5 2002 0.080 -48.6 345 6.319 0.399 25.046 25.092 

spencer1 -80.00 -120.00 307.0 1968 0.120 -27.2 350 6.987 0.488 10.314 4.255 

spencer4 -66.72 113.18 200.9 1989 1.060 -22.0 380 7.848 0.616 12.847 6.602 

spencer5 -74.50 123.17 49.5 1980 0.037 -51.8 345 8.262 0.683 / / 

spencer7 -85.25 166.50 79.9 19997 0.028 -39.7 305 7.003 0.490 8.202 2.691 

spencer8 -66.77 112.80 180.0 1997 0.488 -22.7 385 7.385 0.545 10.640 4.528 

spencer22 -73.60 -12.43 25.5 1996 0.220 -22.5 380 3.920 0.154 / / 

spencer25 -74.02 -12.02 26.5 1996 0.171 -30.7 390 5.412 0.293 / / 

spencer29 * -75.00 2.00 20.6 1996 0.072 -42.9 320 7.602 0.578 / / 

spencer33 -70.68 44.32 123.5 1978 0.114 -33.1 385 6.385 0.408 7.022 1.972 

spencer34 * -70.68 44.32 109.0 1978 0.114 -33.1 375 6.161 0.380 6.909 1.909 

spencer61 -73.10 39.75 99.7 1978 0.069 -42.3 360 7.005 0.491 16.245 10.556 

spencer62 * -71.18 45.97 100.2 1997 0.091 -38.2 395 7.049 0.497 16.344 10.686 

spencer76 -90.00 0.00 122.1 1997 0.055 -47.8 360 4.906 0.241 25.586 26.185 

spencer77 -75.00 147.00 15.8 1961 0.042 -46.1 385 7.184 0.516 / / 

spencer78 * -74.00 143.00 16.0 1961 0.043 -45.5 375 7.205 0.519 / / 

spencer79 -73.00 142.00 15.7 1961 0.057 -44.0 325 7.148 0.511 / / 

spencer80 -73.00 141.00 16.0 1961 0.057 -44.0 355 6.876 0.473 / / 
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spencer81 -72.00 140.00 16.9 1961 0.080 -42.7 335 6.936 0.481 / / 

spencer82 * -71.00 139.00 15.6 1961 0.120 -41.6 375 6.848 0.469 / / 

spencer83 -72.00 143.00 15.7 1961 0.087 -41.3 405 6.796 0.462 / / 

spencer84 -72.00 146.00 16.2 1961 0.086 -40.9 410 6.876 0.473 / / 

spencer85 -72.00 148.00 15.9 1961 0.096 -40.2 360 6.745 0.455 / / 

spencer86 -72.00 151.00 15.8 1961 0.103 -39.7 400 6.963 0.485 / / 

spencer87 -72.00 154.00 15.9 1961 0.130 -38.0 355 6.430 0.414 / / 

spencer88 -72.00 156.00 15.7 1961 0.130 -37.6 395 7.050 0.497 / / 

spencer89 -72.00 159.00 15.7 1961 0.115 -35.7 370 6.665 0.444 / / 

spencer90 -83.47 138.80 340.5 1994 0.020 -45.2 420 / / 10.046 4.037 

spencer91 -83.47 -138.80 47.0 1987 0.058 -27.1 295 7.037 0.495 3.530 0.499 

spencer92 -78.47 106.80 179.3 1996 0.022 -54.6 360 8.790 0.773 20.368 16.594 

Table S1. The 91 firn core dataset used in this study. * symbols indicate the core is part of the evaluation data. Lat and Lon designate 

latitude and longitude respectively. Year indicates the year of drilling of the core. �̇� is the accumulation rate. T is the temperature. Values 

for both �̇� and T are computed from the RACMO2 model. 𝜌0 is the surface density boundary condition that was derived individually for 

each core by extrapolating density measurements until the surface (random noise is added to 𝜌0 as discussed in Sect. S2). Var designates 

the site-specific variance used for the terms of 𝛴15 and 𝛴𝑝𝑐 (see Text S4 for their calculation). The core spencer90 has only a single density 5 

measurement above 15 m depth and its 𝐷𝐼𝑃15 is discarded. 
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 Parameters Posterior mean Posterior covariance matrix 

HL 
𝑘0

∗ , 𝑘1
∗, 𝐸0, 

𝐸1, 𝑎, 𝑏 
[
16.7, 649, 10760,
 21000, 0.88, 0.66

] 

[
 
 
 
 
 

34.4 40.2 4500 324 −0.0685 −0.0195
40.2 44000 618 161000 1.087 −3.670
4502 618 710000 7080 −29.95 1.94
324 1610000 7080 694000 7.86 −27.51

−0.0685 1.087 −29.95 7.86 0.0051 −0.0012
−0.0195 −3.670 1.94 −27.51 −0.0012 0.0036 ]

 
 
 
 
 

 

Ar 
𝑘0

𝐴𝑟, 𝑘1
𝐴𝑟 , 𝐸𝑔, 

𝛼, 𝛽 
[
0.080, 0.028, 40900,

  0.78, 0.69
] 

[
 
 
 
 

5.62 × 10−4 1.55 × 10−4 −12.66 9.65 × 10−5 −3.23 × 10−4

1.55 × 10−4 7.41 × 10−5 −4.64 −2.04 × 10−4 1.05 × 10−4

−12.66 −4.64 360000 11.0 4.67
9.65 × 10−5 −2.04 × 10−4 11.0 0.00330 −0.00101

−3.23 × 10−4 1.05 × 10−4 4.67 −0.00101 0.00312 ]
 
 
 
 

 

LZ 

𝑙𝑧𝑎 , 𝑙𝑧𝑏 , 𝑙𝑧11, 
𝑙𝑧12, 𝑙𝑧13, 𝑙𝑧21, 

𝑙𝑧22, 𝑙𝑧23 

 

[
7.56,−2.091,−14.71,

  7.269,−1.019,−1.513,
6.0203,−0.09127

] 

[
 
 
 
 
 
 
 

5.27 −0.198 −1.20 −1.68 −0.0239 0.00553 −0.0606 0.00413
−0.198 0.0116 0.218 −0.0612 0.0134 −0.0158 −0.00229 −7.37 × 10−4

−1.20 0.218 14.6 −3.96 0.801 0.368 0.354 0.0129
−1.68 −0.0612 −3.96 13.3 −0.309 −0.0850 5.40 0.0166

−0.0239 0.0134 0.801 −0.309 −0.0502 −0.0173 0.0252 −4.42 × 10−4

0.00553 −0.0158 0.368 −0.0850 −0.0173 0.446 −0.429 0.0131
−0.0606 −0.00229 0.354 5.40 0.0252 −0.429 3.94 −2.59 × 10−4

0.00413 −7.37 × 10−4 0.0129 0.0166 −4.42 × 10−4 0.0131 −2.59 × 10−4 4.80 × 10−4 ]
 
 
 
 
 
 
 

 

Table S2. The posterior means and covariance matrices for the free parameters of HL, Ar and LZ. These statistics can be used to generate 

random parameter combinations following a normal approximation. 
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Figures 

 
Figure S1. Climatic conditions at the 91 sites of the dataset 

 

 5 
Figure S2. Quantiles-Quantiles plots for the errors of the three original models (HL, Ar, LZ) computed on the entire dataset. The 

alignment of the points along the red line informs about the fit to a normal distribution. 
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Figure S3. Sampling chains of each parameter for (a) HL, (b) Ar, (c) LZ. The x-axis displays the iteration number, the y-axis displays the 

parameter value. The dashed pink line shows the value of the original model, which is also the starting point of each chain. 
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Figure S4. Evaluation of the normal approximations to the posterior distributions for (a) HL, (b) Ar, (c) LZ. Where possible, correlated 

parameters share a same graph. 
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Figure S5. Posterior correlation matrices. 

 

 

 5 
Figure S6. Comparison of evaluation data 𝐷𝐼𝑃 with model results for the LZ dual and IMAU models.  
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