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Abstract. Melt ponds are key elements in the energy balance of Arctic sea ice. Observing their temporal evolution is crucial 5 

for understanding melt processes and predicting sea ice evolution. Remote sensing is the only technique that enables large-

scale observations of Arctic sea ice. However, monitoring vertical melt pond evolution in this way is challenging because most 

of the optical signal reflected by a pond is defined by the scattering characteristics of the underlying ice. Without knowing the 

influence of melt water on the reflected signal, the water depth cannot be determined. To solve the problem, we simulated the 

way melt water changes the reflected spectra of bare ice. We developed a model based on the slope of the log-scaled remote 10 

sensing reflectance at 710 nm. We validated the model using 49 in situ melt pond spectra and corresponding depths from ponds 

on dark and bright ice. Retrieved pond depths are precise (𝑅𝑀𝑆𝐸 = 2.81 cm) and highly correlated with in situ measurements 

(𝑟 = 0.89; 𝑝 = 4.34e-17). The model further explains a large portion of the variation in pond depth (𝑅2 = 0.74). Our results 

indicate that pond depth is retrievable from optical data under clear sky conditions. This technique is potentially transferrable 

to hyperspectral remote sensors on UAVs, aircraft and satellites. 15 

1 Introduction 

Melt ponds on sea ice are key elements for the Arctic energy budget. They are a main driver of the ice-albedo-feedback 

mechanism (Curry et al., 1995). Pond evolution can be linked to observations of ocean and atmosphere, for validation of ice 

and climate models and future sea ice prediction, e.g. Schröder et al. (2014) show that spring melt pond fraction can be used 

to forecast September sea ice area.  20 

Synoptic observations of melt pond evolution are only possible with satellite remote sensing. Optical sensors with an adequate 

spatial resolution that operate in the visible and near infrared (NIR) wavelength region enable a monitoring of pond water 

characteristics.  

The reflected optical signal from open melt ponds contains information on the pond water, the pond bottom, i.e. underlying 

ice, and skylight reflected at the water surface. The color of melt ponds ranges from bright blue to almost black and is primarily 25 

defined by the scattering and to a lesser degree by the absorption characteristics of the pond bottom (Lu et al., 2016, 2017). 

Different radiative transfer models for melt ponds on sea ice exist (e.g. Lu et al., 2017; Malinka et al., 2018) but their capability 

to derive pond depth varies. To our knowledge, the most accurate model is the one presented in Malinka et al. (2018) resulting 

in an 𝑅2 of 0.62 (𝑁 = 26) for pond depths between 6 cm and 50 cm under and different illumination conditions. Their model 
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links pond albedo at various sky conditions to pond depth and transport scattering coefficient and thickness of the bottom ice. 30 

Inverse computations accurately reproduced in situ albedo spectra (relative root mean square difference (𝑟𝑅𝑀𝑆𝐷) < 1.5%) but 

pond depth retrieval was more uncertain (𝑟𝑅𝑀𝑆𝐷 = 65%). Therefore, our motivation is to 1) improve the limited accuracy of 

existing models and 2) develop an easy-to-use approach for deriving melt pond depth using hyperspectral data.  

We hypothesize that instead of using the entire spectrum, selecting bands at certain wavelengths improves the retrieval of pond 

depth from optical data. The penetration depth of light into water is highest in the blue region of the electromagnetic spectrum 35 

and decreases with increasing wavelength. This means that with increasing wavelength the influence of the water column’s 

attenuation on the optical signal increases (Pope and Fry, 1997). Morassutti and Ledrew (1996) stated that the influence of 

water absorption on the pond albedo increases towards the infrared wavelength region and Lu et al. (2016) found that pond 

albedo significantly depends on pond depth in the wavelength region between 600 nm and 900 nm. In this paper, we present a 

simple model, based on the absorption of near infrared light in water to retrieve pond depth from hyperspectral optical 40 

measurements under clear sky conditions. 

2 Methods 

We use spectral data of bare ice surfaces to simulate melt pond spectra for model development, and validate the model with in 

situ melt pond measurements acquired during RV Polarstern cruise PS106 in summer 2017.  

2.1 Observational data 45 

We used two instrument setups for acquisition of optical data. For most measurements, we used a combination of two Ocean 

Optics STS-VIS spectrometers (Ocean Optics Inc., USA). One spectrometer pointing downwards and equipped with a 1° fore 

optic; the other pointing upwards and equipped with a cosine collector. Both instruments cover the wavelength region from ~ 

340 nm to ~ 820 nm with a spectral sampling rate < 1 nm and an spectral resolution of 3.0 nm (Ocean Optics, 2019). We used 

a Labsphere Spectralon 99 % diffuse reflectance standard (Labsphere Inc., USA) as white reference and applied the data from 50 

the second spectrometer to correct the reflectance spectra for changes in downwelling irradiance. For each measurement, we 

computed the average of 30 single spectra. Both instruments were mounted to the end of a pole to avoid influences of the polar 

clothes on the measurements. We also attached a camera to the setup to take photographs of each measurement site (Figure 1). 

Some of the data used in this study was acquired within the scope of a goniometer experiment. For these measurements, we 

used an Ibsen Freedom VIS FSV-305 spectrometer (Ibsen Photonics A/S, Denmark) with a spectral sampling rate < 1 nm and 55 

a spectral resolution of 1.8 nm covering the wavelength range from ~ 360 nm to ~ 830 nm (Ibsen Photonics, 2019). The 

spectrometer has been equipped with an optical fiber and a 1° fore optic that were attached to a field goniometer (Figure 2). 

We used the above-mentioned Spectralon panel as white reference after each azimuthal scan and computed an average 

reflectance from 20 spectra.   

The quantity measured with both spectrometer setups is the remote sensing reflectance [𝑠𝑟−1] (𝑅𝑟𝑠) above the water surface: 60 
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𝑅𝑟𝑠 =
𝐿𝑢

𝐸𝑑
 ,            (1) 

where 𝐿𝑢  is upwelling radiance [𝑊/(𝑚2 𝑛𝑚 𝑠𝑟)]  measured by the downwards-pointing sensor and 𝐸𝑑  is downwelling 

irradiance [𝑊/(𝑚2 𝑛𝑚)] derived from the Spectralon measurement as  

𝐸𝑑 =
𝐿𝑆·𝜋

𝑅𝑆
 ,            (2) 

where 𝑅𝑆  is the isotropic reflectance of the Spectralon panel, and 𝐿𝑆  is a radiance measurement [𝑊/(𝑚2 𝑛𝑚 𝑠𝑟)] of the 65 

Spectralon panel. 

2.1.1 Ice spectra 

On 15 June 2017, we collected spectra from three bright and one dark bare ice surface with the Ocean Optics (Gege et al., 

2019) setup under stable diffuse illumination conditions indicated by the negligible standard deviation (Figure 1).  

 70 

Figure 1: Photos of bright (A) and dark (B) bare ice surfaces and respective reflectance spectra (C). 
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On 2 July 2017 between 22:28 UTC and 23:11 UTC, we performed twelve nadir measurements of a bare ice surface under 

clear sky conditions and a mean sun zenith angle of 74.89° with the Ibsen setup (Gege and König, 2019). Here, we use the 

average spectrum (Figure 2). The large standard deviation may be attributed to surface metamorphism during the measurement.  

 75 

Figure 2: Ibsen bare ice measurement setup (A). Spectra used in this study (B) were taken at nadir.  

2.1.2 Pond measurements 

On 10 June 2017, we collected 49 melt pond spectra (Gege et al., 2019) and corresponding pond depths in three melt ponds. 

Two of the ponds had a bright blue color while the third one was very dark, which is also apparent in Figure 3.  

 80 

Figure 3: Overview of measurement sites in the three ponds. Aerial photo: Gerit Birnbaum. 

At each pond, we referenced the Ocean Optics spectrometers using the Spectralon panel before data acquisition. We performed 

spectral measurements from the edge of the pond or waded through the pond avoiding shading. We did not observe any wind 
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induced disturbances of the water surface and waited for the water surface to settle before performing measurements inside 

the ponds. All measurements were performed under clear sky conditions between 11:45 UTC and 14:05 UTC, and 85 

corresponding sun zenith angles between 58.90° and 61.04°. Directly after each spectral measurement, we used a folding ruler 

to measure pond depth at the same location. Depths ranged between 6 cm and 25 cm with an average of 17.60 cm. Figure 4 

illustrates the melt pond spectra and corresponding pond depths. 

 

Figure 4: Average reflectance spectra (top), standard deviations of 30 measurements (bottom) and corresponding pond depths. 90 

2.1.3 Data smoothing 

Even though the spectra appear smooth at first view, the hardly visible amount of noise in the data becomes relevant for 

calculating derivatives. To smooth the spectra, we therefore resampled all spectra to a 1 nm spectral sampling by linear 

interpolation, and then applied a running average filter with a width of 5 nm.  

2.2 Model development 95 

To develop an approach that does not require expert knowledge, our model must be independent from changes of the bottom 

albedo, i.e. scattering characteristics of the underlying ice. It shall further be applicable to a wide range of pond depths up to 

1.0 m. Because the in situ melt pond dataset is limited to shallow depths and biased towards bright blueish ponds, we used the 

Water Color Simulator (WASI) to create a spectral library covering different bottom type mixtures and depths. WASI is a 
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software tool for the analysis and simulation of deep- and shallow-water spectra that bases on well-established analytical 100 

models (Gege, 2004, 2014, 2015; Gege and Albert, 2006). We used the forward mode of the program WASI-2D (v4.1) to 

generate spectral libraries of melt pond spectra. The procedures are described in the following. 

2.2.1 Simulated data 

We used the Ocean Optics bare ice spectra from overcast sky conditions (Sect. 2.1.1 Ice spectra) as pond bottom reflectance. 

Analyses of optical properties of water samples showed only negligible amounts of chlorophyll-a, colored dissolved organic 105 

matter and total suspended matter. Moreover, Podgorny and Grenfell (1996) report that the signal of scattering in melt water 

is overwhelmed by the scattering in the bottom ice. We therefore defined a pure water column without absorbing or scattering 

water constituents and computed remote sensing reflectance in shallow water above the water surface according to Eq. 2.20b 

in Gege (2015): 

𝑅𝑟𝑠
𝑠ℎ(𝜆) =  

(1−𝜎)(1−𝜎𝐿
−)

𝑛𝑤
2 ∙

𝑅𝑟𝑠
𝑠ℎ−(𝜆)

1−𝜌𝑢∙𝑄∙𝑅𝑟𝑠
𝑠ℎ−(𝜆)

+ 𝑅𝑟𝑠
𝑠𝑢𝑟𝑓(𝜆) ,        (4) 110 

where 𝜎, 𝜎𝐿
− and 𝜌𝑢 are the reflection factors for 𝐸𝑑 and upwelling radiance (𝐿𝑢

−) and irradiance just below the water surface. 

𝜎 and 𝜌𝑢 are 0.03 and 0.54, respectively, while 𝜎𝐿
− is calculated from the viewing angle (0° for a nadir-directed sensor). 𝑛𝑤 is 

the refractive index of water (≈ 1.33) and 𝑄 is a measure of the anisotropy of the light field in water, approximated as 5 sr. 

𝑅𝑟𝑠
𝑠ℎ− is the remote sensing reflectance just below the water surface according to Albert and Mobley (2003): 

𝑅𝑟𝑠
𝑠ℎ−(𝜆) =  𝑅𝑟𝑠

− (𝜆) · [1 − 𝐴𝑟𝑠,1 · exp{−(𝐾𝑑(𝜆) + 𝑘𝑢𝑊(𝜆)) · 𝑧𝐵}]  + 𝐴𝑟𝑠,2 · 𝑅𝑟𝑠
𝑏 (𝜆) · exp {−𝐾𝑑(𝜆) + 𝑘𝑢𝐵(𝜆)) · 𝑧𝐵}, (5) 115 

where 𝐴𝑟𝑠,1  and 𝐴𝑟𝑠,2  are empirical constants, 𝐾𝑑 , 𝑘𝑢𝑊  and 𝑘𝑢𝐵  describe the attenuation of the water body with depth 𝑧𝐵 

defined by its absorption and backscattering, and the viewing and illumination geometry. The first part of Eq. (5) describes the 

contribution of the water body and the second part the contribution of the bottom. 𝑅𝑟𝑠
−  is the remote sensing reflectance of deep 

water just below the water surface defined by absorption and backscattering of the water body and the viewing and illumination 

geometry. 𝑅𝑟𝑠
𝑏  is the remote sensing reflectance of the bottom that is defined as the sum of the fractional radiances of all 120 

contributing bottom types defined by their albedos and under the assumption of isotropic reflection. 𝑅𝑟𝑠
𝑠𝑢𝑟𝑓

 in Eq. (4) is the 

ratio of radiance reflected by the water surface and 𝐸𝑑. We set 𝑅𝑟𝑠
𝑠𝑢𝑟𝑓

 to zero; thus, the last part of Eq. (4) can be ignored. We 

further used a sun zenith angle of 60°, similar to the in situ measurements, and a viewing angle of 0° (nadir). 

We computed linear mixtures of the two measured bottom albedos in 25 % steps (100 % dark, 0 % bright; 75 % dark, 25 % 

bright; …; 0 % dark, 100 % bright). Using this setup, we generated a spectral look up table (LUT) by increasing pond depth 125 

from 0 to 100 cm in intervals of 1 cm. The final LUT contains 505 spectra (Figure 5). 
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Figure 5: LUT generated with WASI-2D. Each of the five bottom type mixtures consists of 101 spectra (0 cm to 100 cm in 1 cm 

steps). 

2.2.2 Data Processing 130 

According to the Beer–Lambert law, the extinction of light at a certain wavelength in a medium is described by an exponential 

function. Figure 6A illustrates the exponential decrease of 𝑅𝑟𝑠 with water depth at 700 nm for the five different bottom type 

mixtures. To linearize the effect, we computed the logarithm of the spectra (Figure 6B). Lastly, we computed the first derivative 

of the logarithmized spectra (Figure 6C) for each band by applying a Savitzky-Golay filter using a second order polynomial 

fit on a 9 nm window (The Scipy community, 2019b). 135 

 

Figure 6: Processing of spectral data exemplified for λ = 700 nm. 

We then computed Pearson’s correlation coefficient (𝑟) as (The Scipy community, 2019c): 
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𝑟(𝑥, 𝑦) =
∑ (𝑥𝑖−�́�)(𝑦𝑖−�́�)𝑛−1

𝑖=0

√∑ (𝑥𝑖−�́�)²𝑛−1
𝑖=0 ∑ (𝑦𝑖−�́�)²𝑛−1

𝑖=0

 ,         (6) 

where 𝑥𝑖  and �́�  are the depth of the 𝑖 -th sample and the average depth and 𝑦𝑖  and �́�  are the slope of the logarithmized 140 

reflectance at a certain wavelength of the 𝑖-th sample and the average slope of the logarithmized reflectance at a certain 

wavelength; and 𝑛 is the number of samples. 

The orange curve in Figure 7 illustrates the wavelength dependent correlation coefficients of the slope of the logarithmized 

spectra and pond depths in the LUT. We observe an almost perfect negative correlation in bands between 700 nm and 750 nm. 

We performed the same processing as for the simulated spectra for the in situ pond spectra. The blue curve in Figure 8 illustrates 145 

the wavelength dependent correlation coefficients of measured pond depth and the slope of the logarithmized in situ spectra. 

We likewise observe strong negative correlations in the wavelength region around 700 nm. 

 

Figure 7: Wavelength dependent correlation coefficients of pond depth with slope of log-scaled spectra for in situ measurements and 

simulated spectra. 150 

To investigate the similarity of the dark and bright ice spectra, we normalized both bottom spectra at 710 nm and found a high 

spectral similarity between ~ 590 nm and ~ 800 nm (Figure 8). Consequently, the slope of the logarithmized spectra is widely 

independent from the chosen bottom albedo in this wavelength region. Assuming that this also applies to ice spectra recorded 

under clear sky conditions, we used the Ibsen bare ice measurement to develop a model for clear sky conditions accordingly. 

 155 
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Figure 8: Quotient of bright and dark bare ice spectra (top) and 𝑹𝒓𝒔 of bright ice and dark ice normalized at 710 nm (bottom).  

2.2.3 Linear model  

Due to the strong negative correlation in the simulated as well as in the measured data, we chose the slope of the logarithmized 160 

spectrum at 710 nm (𝑟 = -1.0 and -0.86 for simulated and in situ data, respectively) to develop a simple linear model. We used 

scikit-learn’s Linear Regression function (Pedregosa et al., 2011) to fit a linear model to the simulated data with the Ibsen bare 

ice spectrum as bottom albedo using the method of Ordinary Least Squares.   

We found that the solar zenith angle affects the slope and y-intercept of the linear model. Because the model shall be applicable 

to a wide range of sun zenith angles, we implemented a second model to derive slope and y-intercept of the linear model for 165 

various sun zenith angles. We used WASI to generate spectral libraries for different sun zenith angles (0°, 15°, 30°, 45°, 60°, 

75°, 90°) and found that the resulting change of slope and y-intercept can each be described by an s-shaped curve. We used 

SciPy’s optimize.curve_fit function (The Scipy community, 2019a) to fit generalized logistic functions (Richards, 1959) into 

the data. Using these functions, the model’s slope and y-intercept can be computed for different sun zenith angles (Figure 9). 
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 170 

Figure 9: Change of model’s y-intercept and slope with sun zenith angle. Generalized logistic function fit into the simulated data. 

 

The model is 

𝑧 = 𝑎(𝜃𝑠𝑢𝑛) + 𝑏(𝜃𝑠𝑢𝑛) [
𝜕𝑙𝑜𝑔 𝑅𝑟𝑠(𝜆)

𝜕𝜆
]

𝜆=710 𝑛𝑚
          (7) 

 175 

where 𝑧 is the predicted pond depth and 𝜃𝑠𝑢𝑛 is the sun zenith angle. 𝑎 and 𝑏 are offset and slope: 

 

𝑎(𝜃𝑠𝑢𝑛) = −20.6 +
0.79

0.8+5.8 exp(−0.13∙𝜃𝑠𝑢𝑛)
1
2

 [𝑐𝑚]         (8) 

and 

 

𝑏(𝜃𝑠𝑢𝑛) = −1619.8 +
94743.64

255.3+7855 exp(−1.3∙𝜃𝑠𝑢𝑛)
1

19.9

 [𝑐𝑚]        (9) 180 

 

We further computed the coefficient of determination (𝑅2) as recommended by Kvålseth (1985) as: 

𝑅2(𝑦, 𝑦) = 1 −
∑ (𝑦𝑖−𝑦𝑖)²𝑛−1

𝑖=0

∑ (𝑦𝑖−�́�)²𝑛−1
𝑖=0

 ,          (10) 

where 𝑦𝑖 and 𝑦𝑖 are the true (simulated) and predicted value of the 𝑖-th sample, 𝑛 is the number of samples and �́�𝑖 =
1

𝑛
∑ 𝑦𝑖

𝑛−1
𝑖=0  185 

(Pedregosa et al., 2011; scikit-learn developers, 2018b). In addition, we also computed the root-mean-square error (𝑅𝑀𝑆𝐸) 

according to Pedregosa et al. (2011) and scikit-learn developers (2018a) as: 

𝑅𝑀𝑆𝐸(𝑦, 𝑦) = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖)

𝑛−1
𝑖=0 ² ,         (11) 
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For the model described above we obtained a perfect correlation (𝑟 = 1.0; probability value (𝑝) = 8.9e-172), an 𝑅2 of 1.0 and an 

𝑅𝑀𝑆𝐸 of 0.56 cm on the simulated training data.   190 

3 Results 

We validated the model with the in situ melt dataset from dark and bright ponds (Sect. 2.1.2 Pond ) and observed a strong 

linear and statistically significant correlation (𝑟 = 0.86; 𝑝 = 2.36e-15; 𝑅2 = 0.65 and 𝑅𝑀𝑆𝐸 = 3.29 cm). Most of the points 

scatter along the 1:1 line, except for one point where actual depth is 10 cm and predicted depth is 18.17 cm (Figure 10A). The 

externally studentized residual (𝑡) (Kutner et al., 2004; Seabold and Perktold, 2010) classifies this point as an outlier (𝑡 > 3) 195 

and therefore we excluded this point from the data set. The removal of the outlier improves all performance measures (𝑟 = 

0.89; 𝑝 = 4.34e-17, 𝑅2 = 0.68, 𝑅𝑀𝑆𝐸 = 3.11 cm). The slope of the line of best-fit increases to 0.9686 and the intercept indicates 

an offset of 0.878 cm. If we further correct for the offset 𝑅2 increases to 0.74 and 𝑅𝑀𝑆𝐸 improves to 2.81 cm The blue line is 

the line of best fit between actual and predicted pond depths. The linear equation of the line of best fit indicates that the model 

results in a small offset and a slope close to 1.0.  200 

 

Figure 10: Measured vs. predicted depth for the entire dataset (A), with outlier removed and offset correction (B). 

4 Discussion 

Our results show that a simple model based on the derivative of the log-scaled 𝑅𝑟𝑠 at 710 nm allows water depth retrieval of 

dark and bright melt ponds on Arctic sea ice. The model training on simulated data and the independent testing using in situ 205 

measurements prove the universality of our approach.  
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4.1 Observational data 

To our knowledge, the data used in this study is the most comprehensive set of 𝑅𝑟𝑠 and depth measurements from Arctic melt 

ponds acquired under clear sky conditions.  

4.1.1 Spectral measurements 210 

Measurement of albedo have a long tradition in Arctic research (e.g. Grenfell, 2004; Nicolaus et al., 2010; Perovich, 2002; 

Perovich and Polashenski, 2012) because albedo is an important quantity in climate models and can be measured with a single 

irradiance detector. In this study, we conducted measurements of 𝑅𝑟𝑠 because it is the most popular quantity in remote sensing 

and less sensitive to external environmental conditions while being sensitive to the inherent optical properties of a water body 

(Mobley et al., 2018). Morassutti and Ledrew (1996) identified changing 𝐸𝑑  as the main error affecting reflectance data 215 

recording. To tackle this issue, we used a combination of two spectrometers described in Sect. 2.1 Observational data.

  

Field spectroscopy is influenced by external factors and the measurement design itself. In contrast to ruler measurements, the 

spectrometer acquires information of an area. To ease comparison and limit the influence of spatial heterogeneities, we used a 

fore optic with a 1° FOV to minimize the footprint (~ 1 cm at a height of 60 cm). However, holding the instruments perfectly 220 

still for a period of several seconds is challenging and even small changes in the position result in changes of the viewing 

angle, which increase the footprint of a measurement. For future campaigns, we therefore recommend using a gimbal to 

minimize the influence of roll and pitch of the hand-held spectrometer setup. Another issue might have been reflections of the 

black spectrometer housings at the water surface possibly contribute to the offset between modeled and measured data.  

Different refraction indices of wet and dry surfaces may cause part of the observed offset. Furthermore, using bottom albedos 225 

obtained from dry surfaces in WASI introduce a systematic offset. However, it remains unclear if the ice surface used to 

compute the spectral library was wet or dry.   

Some of the scattering may be introduced by reflectances at the water surface, which we did not consider in the LUT 

computation because the necessary values for the parametrization are unknown. Another influence may be the different sun 

zenith angle between bare ice and pond measurements. The potential influence of the mentioned factors may be worth further 230 

examination to refine the model.  

4.1.2 Pond depth measurements 

Measuring the depth of a pond may appear trivial but the bottom of a pond is frequently not flat and solid but can be slushy or 

riddled with holes. In addition, hitting the exact same spot of the spectral measurement perpendicularly with a folding ruler is 

tricky. We therefore recommend using a laser pointer at the end of the pole for orientation. These uncertainties explain some 235 

of the scattering in Figure 10. Interpretation of field photographs of the pond bottoms however did not indicate any systematic 

errors associated with pond bottom characteristics.  
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4.2 Model validity 

The majority of the field data used in this study is from bright blue ponds (n=38) while fewer measurements were obtained in 

dark ponds (n=11). We addressed this limited diversity of field data by computing a comprehensive LUT. The model generates 240 

accurate results (𝑅𝑀𝑆𝐸 = 2.81 cm) on the in situ test data set and explains a large portion of its variability (𝑅2 = 0.74), but 

further investigation is necessary to explore its capabilities to derive pond depths > 25 cm. In addition, more tests are necessary 

to explore how the model performs when the assumptions formulated in Sect. 2.2 are violated, e.g. when algae, suspended 

matter or yellow substances are abundant in the pond water or in the ice below the pond. 

We successfully developed a model that is widely independent from the bottom ice characteristics of the pond; yet, we assume 245 

that we cannot entirely avoid any influence. When fitting a model to the Ocean Optics LUT (Figure 6C), we observe scattering 

around the 1:1 line resulting in 𝑅𝑀𝑆𝐸 of 1.88 cm. In the Ocean Optics LUT, however, the only variable parameter is bottom 

type mixture; we therefore conclude that the scattering results from the difference in bottom albedo. Consequently, bottom 

albedo may affect the model, which may explain some of the scattering in the test data.  

Optical satellite data can only be obtained under clear sky conditions but remote sensing images are likewise acquired from 250 

helicopters and UAVs. These platforms also operate under diffuse illumination conditions, which are frequent in the Arctic. 

To check the validity of the model for overcast conditions, we applied the clear sky model to data from the same area acquired 

on 14 June 2017 during diffuse illumination conditions. The performance, however, is low (Figure 11) and shows a moderate 

correlation (𝑟 = 0.64; 𝑝 = 2.6e-4), an 𝑅2 < 0 and an 𝑅𝑀𝑆𝐸 of 12.76 cm. We attribute the low performance to the different 

illumination conditions. Under diffuse conditions a considerable part of the reflectance measured above the water surface is 255 

due to reflection of clouds at the water surface. Further, the optical path length of the incoming light in water changes under 

overcast conditions. 

We therefore conclude that due to the settings of the field measurements, the present model is valid for clear sky conditions 

with sun zenith angles between 58.9° and 61°. To enlarge its validity range more field data covering different weather and 

illumination conditions is necessary. 260 
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Figure 11: Measured vs. predicted water depth for data acquired under overcast conditions on 14 June 2017. 

5 Conclusion 

We present a model based on a slope approach in the spectral region around 710 nm to retrieve the depth of melt ponds on 

Arctic sea ice. The separation of model calibration on simulated data and validation on in situ data proves the universality of 265 

our approach. The final model is valid for hyperspectral data (𝑅𝑟𝑠) acquired under clear sky conditions and has been tested on 

a range of sun zenith angles between 58.9° and 61°. 

We used WASI to generate a LUT of pond spectra for five different bottom albedos and pond depths between 0 and 100 cm 

assuming clear pond water. We found that the slope of the log-scaled 𝑅𝑟𝑠 at 710 nm is widely independent from the bottom 

albedo and highly correlated with pond depth. Thus, we applied a linear model to retrieve pond depth from 𝑅𝑟𝑠  in this 270 

wavelength region. Slope and y-intercept of the linear equation, however, change with sun zenith angle. To overcome this 

limitation, we trained linear models for seven sun zenith angles and found that a general logistic function is able to describe 

the change of slope and y-intercept for each sun zenith angle. The inputs for our model therefore are the slope of the log-scaled 

𝑅𝑟𝑠
𝜆=710 and sun zenith angle. We successfully validated the model on in situ measurements from bright and dark ponds (𝑅2 = 

0.74, 𝑅𝑀𝑆𝐸 = 2.81 cm).  275 

The next step is the transfer to hyperspectral airborne and satellite systems, e.g. EnMAP (Guanter et al., 2016), to enable a 

synoptic view on the evolution of melt ponds in Arctic sea ice. One constraint may be the size of melt ponds, especially during 

melt onset and early pond development, which requires a high spatial resolution. We further assume that the additive signals 

of the water surface and the atmosphere on the spectrum measured at a satellite sensor may complicate the retrieval of pond 

depth. In addition, the sensitivities and band settings of remote sensors also affect the transferability of our approach. Here, 280 

further testing and comprehensive ground truth data is necessary. In these regards, we expect the Multidisciplinary drifting 

Observatory for the Study of Arctic Climate (MOSAiC) expedition to result in further improvements.  
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