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Abstract. This work evaluates the statistical predictability of the Arctic sea ice volume (SIV) anomaly – here defined as the

detrended and deseasonalized SIV – on the interannual time scale. To do so, we made use of 6
::
six

:
datasets, from 3

::::
three

different atmosphere-ocean general circulation models, with 2
:::
two different horizontal grid resolutions each. Based on these

datasets, we have developed a statistical empirical model which in turn was used to test the performance of different predictor

variables, as well as to identify optimal locations from where the SIV anomaly could be better reconstructed and/or predicted.5

We tested the hypothesis that an ideal sampling strategy characterized by only a few optimal sampling locations can provide

in situ
::
in

:::
situ data for statistically reproducing and/or predicting the SIV interannual variability. The results showed that, apart

from the SIV itself, the sea ice thickness is the best predictor variable, although total sea ice area, sea ice concentration, sea

surface temperature, and sea ice drift can also contribute to improving the prediction skill. The prediction skill can be enhanced

further by combining several predictors into the statistical model. Feeding the statistical model with predictor data from 4
::::
four10

well-placed locations is enough
:::::::
sufficient

:
for reconstructing about 70% of the SIV anomaly variance. An improved model

horizontal resolution allows a better trained statistical model so that the reconstructed values approach better to the original

SIV anomaly. On the other hand, if we look at the interannual variability, the predictors provided by numerical models with

lower horizontal resolution perform better when reconstructing the original SIV variability. As per 6 well-placed locations, the

statistical predictability does not substantially improve by adding new sites. As suggested by the results, the 4
:::
four

:
first best15

locations are placed at the transition Chukchi Sea–Central Arctic–Beaufort Sea (158.0◦W, 79.5◦N), near the North Pole (40◦E,

88.5◦N), at the transition Central Arctic–Laptev Sea (107◦E, 81.5◦N), and offshore the Canadian Archipelago (109.0◦W,

82.5◦N), in this respective order.
::::::
Adding

::::::
further

::
to

:::
six

::::
well

::::::
placed

::::::::
locations,

::::::
which

:::::::
explains

:::::
about

::::
80%

::
of

:::
the

::::
SIV

::::::::
anomaly

:::::::
variance,

:::
the

::::::::
statistical

::::::::::::
predictability

::::
does

:::
not

:::::::::::
substantially

:::::::
improve

:::::
taking

::::
into

:::::::
account

:::
that

:::
ten

::::::::
locations

::::::
explain

:::::
about

:::::
84%

::
of

:::
that

::::::::
variance.

:::
An

:::::::::
improved

:::::
model

:::::::::
horizontal

:::::::::
resolution

:::::
allows

::
a
:::::
better

::::::
trained

:::::::::
statistical

:::::
model

:::
so

:::
that

:::
the

::::::::::::
reconstructed20

:::::
values

::::::::
approach

:::::
better

::
to

:::
the

:::::::
original

::::
SIV

:::::::
anomaly.

:::
On

:::
the

:::::
other

:::::
hand,

::
if

:::
we

::::
look

::
at

:::
the

:::::::::
interannual

:::::::::
variability,

:::
the

:::::::::
predictors

:::::::
provided

:::
by

::::::::
numerical

::::::
models

::::
with

:::::
lower

:::::::::
horizontal

::::::::
resolution

:::::::
perform

:::::
better

:::::
when

::::::::::::
reconstructing

::
the

:::::::
original

::::
SIV

:::::::::
variability.

We believe that this study provides recommendations for the ongoing and upcoming observational initiatives, in terms of an

Arctic optimal observing design, for studying and predicting not only the SIV values but also its interannual variability.
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1 Introduction

The continuous melting of the Arctic sea ice observed in the last decades (e.g., ?????????), associated with the respective

reduction in total sea ice area (SIA) and volume (SIV), has proven to bring
::
led

:::
to significant impacts at regional and global

scales. Regionally,
:::::
global

::::
and

:::::::
regional

:::::
scales.

::::::::
Globally,

:::
the

:::
sea

:::
ice

::::::::
depletion

::
is

:::::::
reported

::
to

::::::
impact

:::::
some

::::::
aspects

::
of

:::
the

:::::::
weather

:
at
:::::

low-
:::
and

:::::::::::
mid-latitude

:::::::
regions,

::
by

::::::
means

::
of
:::::

both
::::::::::::
oceanographic

:::::::
(??) and

:::::::::::
atmospheric

:::::::::::::
teleconnections

::::
(??),

:::::::::
including

:::
the5

:::::
higher

:::::::::
occurrence

::
of

:::::::
extreme

::::::
events

::::::
(????).

:::::::::
Regionally,

:::::::::::
high-trophic

::::::::
predators

::::
such

::
as

:::::::
seabirds

:::::::
(??) and

::::::::
mammals

::::::::::
(?????) are

:::::::
changing

::::
their

::::::::
foraging

:::::::
behavior

:::
and

::::::
dietary

::::::::::
preferences.

:::
At

:::
the

::::
same

:::::
time, native communities have experienced a disturbance

of
::
in

:
subsistence activities like fishing, crabbing and hunting (?), which have also impacted other predators from seabirds

(??) to mammals (?????). Other pressing local issues are also bringing important implications for the Arctic countries such

as the opening of new sailing
:::
ship

:
routes (?), the development of the tourism industry (?) and the mineral resource extraction10

(?). At global scale, the sea ice depletion is reported to impact some aspects of the weather at low- and mid-latitude regions,

by means of both oceanographic (??) and atmospheric teleconnections (??), including the higher occurrence of extreme events

(????).

Since this meltdown
:::::
intense

::::
sea

:::
ice

::::
loss

:
is projected to continue throughout the twenty-first century (e.g., ?), the in-

terest of the scientific community and policy makers on the sea ice variability and predictability is exponentially increas-15

ing, mainly in terms of SIV. The SIV is a primary sea ice diagnostic because it accounts for the total mass of sea ice. In

situmeasurements of sea ice thickness, that are needed for calculating the SIV , are far too expensive, being spatially
::::::::
However,

::
in

:::
situ

:
-
:::::
and/or

::::::::::::
satellite-based

::::::::
estimates

::
of

::::
SIV

:::
are

::::
still sparse and temporally sporadic (??). In addition, satellite observations

present well-known limitations in the warmer seasons and, therefore, sea ice thickness is not made available year-round from

the classical satellite campaigns, namely: ICESat (?) and CryoSat-2 (?).20

Due to the lack of
:::
Due

:::
to

:::
this

::::
lack

::
of

:::::::::
continuous

:
long-term observations, the answer to the question of whether or not this

negative trend
:::::
decline

:
in sea ice affects

:
is

:::::::
affecting

:
the interannual variability of the pan-Arctic SIV, and the other way around,

is not clear yet, although it has been already shown that trends in the pan-Arctic sea ice extent can be masked by its long-term

variability (?). Up to now, most of the long-term SIV variability and predictability studies rely on reanalyses and/or model

outputs (e.g., ?). Even though
:
.
::::::::
Although,

:::::
recent

::::::
model

:::::::
analyses

:::::::
suggest

:::
that

:::
this

::::::
might

::
be

::::::
indeed

:::
the

::::
case

:::
(?).

::::::
Despite

:::
the

::::
fact25

:::
that atmosphere-ocean general circulation models (AOGCMs), including their sea ice component, are more and more complex

nowadays, in situ
::::
being

:::::
even

::::
used

::
to
::::::::

estimate
:::
the

::::::
quality

:::
of

:::::
global

::::::::::::
observational

:::::::
datasets

:::
(?),

:::
in

:::
situ observations are still

required for a more comprehensive model validation and also for assimilation purposes.

In order to respond to the need of having an improved observational system for better understanding the SIV variability, but at

the same time minimize the costs required to do so, this work raises the hypothesis that “an ideal sampling strategy characterized30

by only few optimal sampling locations can provide in situ
::
in

:::
situ data for statistically reproducing and/or predicting the SIV

interannual variability”. To test the hypothesis, this study follows three main directions
:::::
goals. First, we propose a statistical

empirical model for predicting the SIV. Since we are mainly interested in predicting the interannual variability rather than the

trivial seasonal cycle and the long-term trends, we will focus on the SIV without these two components – hereafter defined as

2



SIV anomaly. Second, we aim at inspecting the performance of a set of ocean- and ice-related predictor variables for feeding

::
as

::::
input

::::
into

:
the empirical model. Third, we intend to localize a reduced number of optimal sampling locations from where

the predictor variables could be systematically sampled using oceanographic moorings and/or buoys. Sampling in situ
:
in

::::
situ

data at optimal locations or, in order words, by collecting data at locations in which most of the pan-Arctic SIV anomaly

variability is captured by the predictor variables, makes it much more feasible to sustain a long-term programme of operational5

oceanography both from logistical and financial points of view.

To the knowledge
:::
best of the authors

:
’
:::::::::
knowledge, this study is the first to apply an empirical statistical model for supporting

an optimal observing system of the pan-Arctic SIV anomaly, albeit a similar study was conducted by ? a decade ago. However,

these authors focused on the predictability of averaged Arctic sea ice thickness, based their results on a single model approach,

as well as considered two predetermined sampling locations. Other previous works also applied statistical empirical models for10

predicting a range of Arctic sea ice properties (e.g., sea ice extent, area and concentration), for lead periods of up to one year,

at regional and/or pan-Arctic scales (?????????). Unlike the statistical prediction of sea ice extent and area, which have longer

and more reliable records of observations allowing the statistical models to be built on this data, the statistical prediction of

SIV
:::::::::
necessarily requires information from models.

:
In

::::
situ

::::::::::::
measurements

::
of

:::
sea

:::
ice

:::::::::
thickness,

:::
that

:::
are

::::::
needed

:::
for

::::::::::
calculating

::
the

:::::
SIV,

:::
are

::
far

::::
too

::::::::
expensive,

::::::
while

::::::
satellite

:::::::::::
observations

::::::
present

::::::::::
well-known

::::::::::
limitations

::
in

:::
the

:::::::
warmer

:::::::
seasons.

:::::::::
Therefore,15

:::
sea

::
ice

::::::::
thickness

::
is
::::
not

::::
made

::::::::
available

:::::::::
year-round

:::::
from

:::
the

:::::::
classical

:::::::
satellite

::::::::::
campaigns,

:::::::
namely:

::::::
ICESat

::::
(?),

::::::::
CryoSat-2

::::
(?),

:::
and

::::::
SMOS

::::
(??).

:

Thus, even though we claim that in situ
:
in

::::
situ observations are crucial for understanding the SIV variability, our study

makes use of outputs from 3
::::
three

:
AOGCMs. This is the only way to have continuous and broadly

::::
well distributed data of the

predictand and some predictor variables, such as sea ice thickness. Here we assume that the AOGCMs
:::
The

::::::::
AOGCMs

:::::
used

::
in20

:::
this

:::::
work

:::
are

::::::
cutting

::::
edge

::
in
::::::

terms
::
of

:::::
model

:::::::
physics

::::
and

::::::::
resolution

:::::
(?) so

::::
that

::::
they

:
fairly represent the thermodynamic and

dynamic processes linking predictors to predictand, while the use of 3 .
::::
The

:::
use

::
of

:::::
three different models attempts to assess

the model dependence of our results.

To fully address the three overall goals described above, this study is guided by the following open questions: (i) What are
::
is

the performance of different pan-Arctic predictors for predicting pan-Arctic SIV anomalies? (ii) What are the best in situ
:
in
::::
situ25

locations for sampling predictor variables to optimize the statistical predictability of SIV anomalies in terms of reproducibility

and variability? (iii) How many optimal sites are needed for explaining a large amount , that is to say, at least
::::::::
substantial

:::::::
amount

::::
(e.g.,

:
70% (

:
– an arbitrarily chosen threshold) of the original SIV anomaly variance? (iv) Are the results model dependent, in

particular, are they sensitive to horizontal resolution? Following this introduction (Section 1), the manuscript is organized as

follows: Section 2 describes the AOGCMs, datasets and the methods (including the development of the statistical empirical30

model) used in our analyses. Section 3 presents the results which are further discussed in Section 5. This last section also

highlights the main conclusions and draw some recommendations for an observing sampling design.
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2 Data and methods

2.1 Model outputs

As argued above, this work can not be performed with actual observations and it follows therefore

::::
This

::::
work

:::::::
follows

:
a multi-model approach. It takes advantage of 6

::
six

:
coupled historical runs from 3

::::
three

:
different

AOGCMs, all conducted within the context of the High Resolution Model Intercomparison Project (HighResMIP; ?). The5

HighResMIP is inserted in the framework of
:::::::
endorsed

:::
by the Coupled Model Intercomparison Project 6 (CMIP6; ?) and its

main goal is to systematically study the role of horizontal resolution in the simulation of the climate system. In our study, we

use 2 different model configurations for each of the 3 models. These configurations differ by their horizontal grid resolution

(in both the atmosphere and ocean). The runs
:::::
These

::::::::
historical

:::::::
coupled

:::::::::::
experiments,

:::::::
referred

::
to
:::

as
::::::::::
“hist-1950”

:::
(?),

:
start in

the early 1950s , spanning
:::
and

:::::
span for about 65 years until mid-2010s. We extract monthly outputs from these model10

simulations
::::
They

::::
are

:::
not

::::::
pegged

:::
to

::::::::
observed

:::::::::
conditions

::::
and

::::
their

:::::
initial

:::::
state

::
is

::::::::
achieved

:::
by

::::::
control

:::::::
coupled

:::::::::::
experiments

::::::
referred

::
to
:::
as

:::::::::::::
“control-1950”,

:::
also

::::::::
produced

::
in

:::
the

:::::::
context

::
of

:::::::::::
HighResMIP.

:::::::::::::
“control-1950”

::::
runs

::
are

::::::::::
CMIP6-like

::::::::::::
pre-industrial

::::::
control

:::::::::::
(“piControl”)

::::::::::
experiments,

:::
but

:::::
using

:::::
fixed

:::::
1950s

::::::
forcing

::::::::
(?) rather

::::
than

:::::
1850s

::::::
forcing

::
as

::
in

::::::::::
“piControl”

:::
(?).

::::
The

::::::
forcing

::::::
consists

:::
of

:::::::::
greenhouse

:::::
gases

:::::::
(GHG),

::::::::
including

:::
O3 :::

and
::::::
aerosol

:::::::
loading

:::::::
provided

:::
by

:
a
:::::::
10-year

:::::
mean

::::::::::
climatology

::
for

:::
the

::::::
1950s

:::
(?).

::
A

:::
full

:::::::::
description

:::
of

:::
the

::::
GHG

:::::::::::::
concentrations

::::
used

::
by

:::::::
CMIP6

:::
and

:::::::::::
HighResMIP

::
is

::::::::
presented

::
in

::
?.

:
15

::
In

:::
our

:::::
study,

:::
we

:::
use

:::
two

:::::::
different

::::::
model

::::::::
horizontal

:::::
grids

::
for

:::::
each

::
of

:::
the

::::
three

::::::
models. Namely, the AOGCMs are: the version

1.1 of the Alfred Wegener Institute Climate Model (AWI-CM; ??), the European Centre for Medium-Range Weather Forecasts

Integrated Forecast System (ECMWF-IFS) cycle 43r1 (?), and the Global Coupled 3.1 configuration of the Hadley Centre

Global Environmental Model 3 (HadGEM3-GC3.1; ?). Fig. ?? shows the absolute values and the anomalies (no long-term

trend; no seasonal cycle) of the Arctic SIV time series from the 6 model outputs.20

Sea ice volume time series from the 6 model outputs used in this work: (a) absolute values and (b) anomalies (no trend; no

seasonal cycle).

A comprehensive comparison including these 3
::::
three

:
models and their respective specifications are presented by ?. In short,

AWI-CM is composed by the European Centre/Hamburg version 6.3 (ECHAM6.3) atmospheric model and by the version

1.4 of the Finite Element Sea ice-Ocean Model (FESOM; ??). ECMWF-IFS is a hydrostatic, semi-Lagrangian, semi-implicit25

dynamical-core atmospheric model, while the ocean and ice components are composed by the version 3.4 of the Nucleus for

European Modelling of the Ocean model (NEMO; ?) and version 2
:::
two

:
of the Louvain-la-Neuve Sea-Ice Model (LIM2; ?),

respectively. Finally, HadGEM3-GC3.1 is built up with the same ocean model than ECMWF-IFS (NEMO; ?), but version 3.6,

the atmospheric Unified Model (UM; ?) and the version 5.1 of the Los Alamos sea-ice model (CICE; ?). Hereafter the models

are simply referred to as AWI, ECMWF, and HadGEM3.30

Overall, the 2
:::
The

::::
two configurations from the same model keep the parameters identical, except for the resolution-dependent

parameterizations (?). In terms of ocean–sea ice grid, both AWI versions (data source: ??
::
??) use a mesh grid with varying

resolution,
:::

in
:::::
which

:::::::::::
dynamically

:::::
active

::::::
regions

:::::
have

::::
finer

:::::::::
resolution. The low-resolution version (AWI-LR) has a resolution

changing from 24 to 110 km , and
:::::::
nominal

::::::::
resolution

:::
of

:::
250

:::
km

:::::
(e.g.,

::::
129

:::
km

::
at

:::::
50◦N

:::
and

:::
70

:::
km

::
at

::::::
70◦N),

:::::
while the high-
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resolution version (AWI-HR) changes from 10 to 60 km (?)
::
has

::::::::
nominal

::::::::
resolution

::
of

::::
100

:::
km

::::
(e.g.,

:::
67

:::
km

::
at

:::::
50◦N

:::
and

:::
36

:::
km

:
at
:::::::
70◦N).

:::::::::::
Nevertheless,

::::
both

:::::::
versions

::::
have

::
a
::::::
similar

:::::::::
resolution

:::
of

::::
∼25

:::
km

::
in

:::
the

::::::
Arctic

::::::
Ocean.

:::
For

::
a

:::::
better

::::::::::::
understanding

::
of

:::::
AWI’s

::::
grid,

::::
the

:::::
reader

::
is
:::::::
referred

::
to

:::::::
? (their

::::
Fig.

::::
4a,b). Both ECMWF (data source: ??

::
??) and HadGEM3 (data source: ??)

adopt the tripolar ORCA grid (?). The configurations with coarser resolution (ECMWF-LR and HadGEM3-LL) use ORCA1

with a resolution of 1◦, while the versions with finer horizontal grid (ECMWF-HR and HadGEM3-MM) use ORCA025 with5

a resolution of 0.25◦.
::
In

:::::
terms

::
of

::::
time

:::::::::
resolution,

:::
our

::::::
results

:::
are

:::
all

:::::
based

::
on

:::::::
monthly

:::::::
outputs

::::
from

:::::
these

:::::
model

::::::::::
simulations.

:

2.2 Potential predictors

The next step for proceeding with the statistical predictions of the SIV anomalies is to identify potential predictor variables to be

used in the empirical statistical model
:::
For

:::
the

::::
three

:::::::
models,

:::
the

::::
SIV

::::
time

:::::
series

::::
from

:::
the

:::::::
versions

::::
with

:
a
::::::
coarser

:::::::::
horizontal

::::
grid

::::::
present

:::::
higher

:::::
mean

::::::
values

:::::::::
compared

::
to

::::
their

:::::::::
respective

::::
finer

::::::::
resolution

::::::::
versions

::::
(Fig.

::::
1a).

:::
The

::::::::::
differences

:::::::
between

:::
the

::::
two10

:::::::
versions

:::
are

::::
about

:::::::::
4.52×103

::::
km3

:::
and

:::::::::
2.56×103

::::
km3

::
for

:::::
AWI

:::
and

::::::::::
HadGEM3,

:::
but

:::::
much

:::::
larger

::
to

::::::::
ECMWF

::::::::::
(26.17×103

:::::
km3).

:::
The

::::::::
standard

::::::::
deviations

::::::
(STD)

:::::
from

:::
the

::::
SIV

::::::::
anomalies

:::::::
indicate

::::
that

::::::::::
interannual

::::::::::
variabilities

:::
are

::::
also

:::::
higher

:::
for

:::
the

:::::::
coarser

:::
grid

:::::::
versions

:::::
(Fig.

:::
1b).

::::
The

:::::::::
difference

:::::::
between

::::::
coarser

:::
and

:::::
finer

:::::::::
resolutions

:::
for

::::
AWI,

:::::::::
ECMWF,

:::
and

:::::::::
HadGEM3

:::
are

:::::::::
0.30×103

::::
km3,

:::::::::
1.78×103

::::
km3,

::::
and

::::::::
0.43×103

::::
km3. We recall that the term “anomaly ”

:::::::
anomaly

:
in this work refers to the detrended

and deseasonalized time series. In practical terms, the anomaly is calculated by excluding the individual trend (provided by a15

second-order polynomial fit ) of each individual month.

2.2
:::::::

Potential
:::::::::
predictors

In this section, as a first assessment, we test the performance of different predictors by estimating their correlation against

the predictand. This test is performed individually for each model output, which means to say that predictor variables from

a certain model configuration are only used for predicting the SIV anomaly from this respective configuration
:::
we

:::::::
identify20

:::::::
potential

::::::::
predictor

::::::::
variables

:::
for

:::::
using

::
as

:::::
input

::::
into

:::
the

::::::::
empirical

::::::::
statistical

::::::
model

::::
that

:::::::
predicts

::::
SIV

:::::::::
anomalies.

:::::
Apart

:::::
from

::
the

:::::::::
condition

:::
that

:::
all

::::::::
predictor

:::::::
variables

:::::
could

:::
be

::::::::
regularly

:::::::
sampled

::::
from

::::::::::::
observational

::::::::
platforms

::
in

:::
the

::::::::::
real-world,

:::
we

::::
only

::::::::::
pre-selected

:::::::
variables

:::::
which

:::::
have

::
the

::::::::
potential

::
to

::::::
impact

::
the

:::
sea

:::
ice

:::::::
through

:::::::
dynamic

:::::
and/or

:::::::::::::
thermodynamic

::::::::
processes. Overall,

two categories of predictors are tested: global variables, intrinsically represented by a single pan-Arctic time series, and local

predictors, represented by gridded data. Nevertheless, for this first assessment,
:::::
several

:::::::
gridded

::::
time

:::::
series

::
of

:::
the

::::
same

::::::::
variable.25

::::
Here,

::::::::
predictor

::::::::
variables

:::
are

:::
also

::::::::::
considered

::
in

:::::
terms

::
of

::::
their

::::::::
anomaly.

::
In

::::
total,

::
a

::
set

:::
of

:::::
seven

::::::::
predictors

:::
are

:::::::::
considered

:::
for

::::
this

:::::::::
preliminary

::::::::::
inspection.

::::
three

::
of

:::::
them

:::
are

:::::
global

:::::::::
variables,

:::
that

::::
are:

:::::::::
pan-Arctic

:::
SIV

:::::
itself,

:::::::::
pan-Arctic

:::
sea

:::
ice

::::
area

::::
(SIA)

::::
and

:::::::
Atlantic

::::
basin

:::::
ocean

::::
heat

::::::::
transport

:::::
(OHT)

:::::::::
estimated

:
at
::::::
60◦N.

:::
The

:::::
other

:::
four

:::::::::
predictors

:::
are

::::
local

::::::::
variables

::::::::
organized

::
in

::
a
::::::
gridded

:::::::
format,

:::
that

::::
are:

:::
sea

:::
ice

::::::::
thickness

:::::
(SIT),

:::
sea

:::
ice

:::::::::::
concentration

::::::
(SIC),

:::
sea

::::::
surface

::::::::::
temperature

:::::
(SST)

:::
and

::::
sea

::
ice

::::
drift

::::::
(Drift).

::::
Fig.

::
2

:::::
shows

::
an

::::::::
example

::::
case

::::::::
(AWI-LR)

::
in
::::::
which

:::
the

:::::::::
predictand

:::::
(SIV)30

:
is
:::::::::
compared

::::::
against

:::
the

:::
two

:::::::
intrinsic

:::::::::
pan-Arctic

:::::::::
predictors

::::
(Fig.

:::::
2a,b)

:::
and

::::::
against

:::
the

::::
four

:::::::
gridded

::::::::
predictors

:::::
(Fig.

:::::
2c–j).

::
As

::
a

:::
first

::::
test,

:::
we

::::::
inspect

:::
the

::::::::::
performance

:::
of

:::::::::
pan-Arctic

::::::::
predictors

:::
by

:::::::::
estimating

::::
their

::::
lag-0

::::::::::
correlation

::::::
against

:::
the

:::::::::
predictand.

::::
The
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Figure 1.
::
Sea

:::
ice

::::::
volume

::::
time

:::::
series

::::
from

:::
the

::
six

:::::
model

::::::
outputs

::::
used

::
in
::::

this
::::
work:

:::
(a)

:::::::
absolute

:::::
values

:::
and

:::
(b)

::::::::
anomalies

::
in

:::::
which

:::
the

:::::::
long-term

:::::
trends

:::
and

:::
the

::::::
seasonal

:::::
cycles

::::
were

::::::::
subtracted

::::
from

:::
the

::::::
original

:::
time

:::::
series.

:::::::::
correlation

:::::::::
coefficients

:::::::
showed

::
in

:::
the

::::::
second

:::::
(SIA)

::::
and

::::
third

::::::
(OHT)

:::::::
columns

:::
of

::::
Table

::
1
:::::::
indicate

:::
that

::::
SIA

::
is

:
a
:::::

valid
::::::::
predictor

::
for

:::
all

:::::
model

:::::::
outputs,

:::::
while

:::::
OHT

::
is

::::::::::
significantly

::::::::
correlated

:::::
only

::
for

:::
the

::::::::::::
low-resolution

::::::::
versions

::
of

:::
the

::::::
models.

:

::
To

::::::
obtain

:::
the

:::::
same

:::
first

::::::::::
assessment

::
to

:
the local predictorsare considered as ,

::::
the

::::::
gridded

::::::
values

:::
are

:::::::
reduced

::
to

:
their pan-

Arctic means
::::::
average. To do so, the gridded values

:::
time

::::::
series are twice normalized: first, by the grid area of each grid cell

and, second, by the correlation maps with the predictand (?). As suggested by ? in
:
,
::
as

::::::
shown

::
in

::::
Fig.

::::::
2e,f,i,j.

::
In

:
the second5

normalization, the significant correlation coefficients from the different grid cells are used as normalizing factors (as it is

the grid-cell area in the first normalization). The idea behind this second normalization is to take the best advantage of the

correlations between predictand and predictors since the former is not necessarily correlated to the latter over the entire Arctic

domain(Fig. ??). Notice that non–significant .
::::::
Notice

::
in

:::
the

::::
maps

::::
that

::::::::::
insignificant

:
correlation coefficients are set to zero

:::::
(white

6



:::::::
regions) so that they do not weight

:::::
weigh

:
in the normalization . Predictor variables are also used in terms of their anomaly (no

trend; no seasonal cycle).

Apart from the condition that all predictor variables could be regularly sampled from observational platforms,we also

considered only variables that have the potential to impact the sea ice through dynamic and/or thermodynamic processes.

A set of 7 predictors are considered for this preliminary inspection. 3 of them are global variables,that are: pan-Arctic SIV5

itself,pan-Arctic SIA and Atlantic basin ocean heat transport (OHT)estimated at 60◦N. The other 4 predictors are local variables

provided by the AOGCMs in a gridded format and reduced to single time series as mentioned above, that are: sea ice thickness

(SIT), sea ice concentration (SIC), sea surface temperature (SST) and sea ice drift (Drift). As an example, Fig. ?? compares the

time series of predictand against pan-Arctic predictors (
:::
(Fig.

:::::::
2e,f,i,j).

::::
The

:::
red

::::
lines

::
in

:
Fig. ??a,b,c,e

::::
2c,d,g,i), and also displays

the respective correlation maps used for normalizing the regional predictors (Fig. ??d,f, h, j), for the AWI-LR output.
:
h
:::::
show10

::
the

:::::::::
respective

::::
SIT,

::::
SIC,

::::
SST

:::
and

::::
Drift

:::::::::
anomalies

::::::
reduced

::
to
::::
their

:::::::::
pan-Arctic

::::::::
averages,

::::::
which

::
are

::
in
::::
turn

::::::::::
significantly

:::::::::
correlated

::::
with

::
the

:::::::::
predictand

::
in
:::
all

:::::
model

:::::::
outputs

:
(Table 1shows the correlation coefficient estimated between predictand and predictors

for all the models
:
).

Table 1. Correlation
::::

Lag-0
::::::::
correlation

:
coefficient estimated between the predictand (SIV anomaly) and a set of pan-Arctic potential pre-

dictors: SIA, OHT, SIT, SIC, SST, and Drift.
:::
The

::::::::
correlation

:::::::::
coefficients

:::::::
between

::::
OHT

:::
and

::::
SIV

::::::
anomaly

:::
for

:::
the

::::::::::::
high-resolution

:::::
model

::::::
versions

:::
are

:::
not

:::::
shown

::::
since

::::
only

:::::::::
statistically

::::::::
significant

:::::::::
coefficients

:::
are

:::::::
displayed

::
in
:::

the
:::::
table. Regional predictors (SIT, SIC, SST and

Drift) are represented by pan-Arctic averages. As for the predictand, all predictors are used with monthly time-resolution and in terms of

their anomaly(no seasonal cycle; no long-term trend).

Models
Predictors

SIA OHT SIT SIC SST Drift

AWI-LR 0.64 -0.08 0.86 0.29 -0.57 0.15

AWI-HR 0.69 – 0.89 0.26 -0.50 0.31

ECMWF-LR 0.20 0.28 0.95 0.31 -0.12 -0.20

ECMWF-HR 0.24 – 0.63 0.37 -0.22 -0.13

HadGEM3-LL 0.63 -0.33 0.91 0.71 -0.54 -0.28

HadGEM3-MM 0.63 – 0.94 0.62 -0.45 -0.31

2.3 Statistical empirical models

The basis of our statistical empirical model (SEM) is a multiple linear regression model where the time series of the dependent15

variable (y) could be described as a function of the time series of the independent explanatory variables (xi), as follows:

y = β0 +β1x1 +β2x2 + · · ·+βkxk + ε, (1)

where β0 is the constant y-intercept, βk is the slope coefficients for each explanatory variable and ε is the error term (or

residual) of the empirical model.
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Figure 2. Comparison
::::
Lag-0

:::::::::
comparison

:
between the time series from the predictand (SIV [103km3]; black lines) and predictors: (a) SIA

[106km2], (b) OHT [PW], (c) SIT [m], (e
:
d) SIC [%], (g) SST [◦C] and (ih) Drift [km day−1] (red lines). The correlation maps used for

normalizing the regional predictors,
::
as

::::::::
suggested

::
by

::
?,

:
are also shown: (d

:
e) SIT, (f) SIC, (h

:
i) SST and (j) Drift.

::::
Here,

::::::
AWI-LR

::
is
::::::
merely

:::
used

::
as

::
an

:::::::
example

:::
case

::::
and

::
not

:::
for

:
a
::::::
specific

::::::
reason.
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In our case, the reconstructed time series of SIV anomaly (SIVrec:::::
SIVrec) is based on the linear relationship between this

variable and the predictors aforementioned in Section 2.2. If the SIV itself is also considered as a predictor, the multiple linear

regression in Eq. 1 can be written as:

SIVrec = β0 +β1SIV +β2SIA+β3OHT +β4SIT +β5SIC +β6SST +β7Drift. (2)

To bring robustness to the statistical reconstructions, the SEM is applied within a Monte-Carlo loop with 500 repetitions.5

In every repetition, 70% of the data are randomly selected for training (NT ) the SEM, while the remaining 30% are used for

comparing (NC) the original and the reconstructed SIV. In practical terms, ECMWF and HadGEM3 have 780 data points in

time equivalent to the 780 months between Jan-1950 and Dec-2014 (720 for AWI; from Jan-1951 to Dec-2010) so that NT =

546 monthly values are used for building the SEM andNC = 234
:::::
values are used to evaluate how good is the SIV reconstruction

(NT = 504 and NC = 216 for AWI). Since our main interest lies in the reconstruction of the SIV values, the metric used for10

comparing the original and reconstructed time series is the root mean squared error (RMSE). In this way, the score (Sc) of the

reconstructed SIV can be represented by

Sc=
1

R

R∑
r=1

√∑NC

n=1(SIVrec(P )−SIV )2

NC
, (3)

where R = 500 indicates the number of interactions in the Monte Carlo loop, P represents the (set of) employed predictor(s)

and the index NC emphasizes that only 30% of the data are used for comparison between original (SIV) and reconstructed SIV15

(SIVrec) time series. An estimate of the Sc error (Scer) is given by the standard deviation calculated from the set of RMSEs

given at every step of the Monte-Carlo scheme.

Two different approaches for applying the SEM are used in this work. In
:
:
:::::
First,

::
in Section 3.1, we evaluate the individual and

combined performances of the pan-Arctic predictors
:::::::
(intrinsic

:::
and

::::::::
averaged

:::::
ones;

:::
see

::::::
Section

::::
2.2)

:
for reconstructing the SIV

anomaly at different months of the year (March and September), with a lag of 1
:::
one

:
to up to 12 months upfront. In

::::
Here,

::::
SIV20

::::
itself

::
is

:::
also

:::::::
allowed

::
as

:::
an

::::::::
individual

::::::::
predictor

::
to

:::
test

:::
the

:::::::::::::
auto-prediction

:::::
ability

::
of

::::
this

:::::::
variable

::::
from

::::::
lagged

:::::::
months.

::::::::
However,

::
we

:::
are

::::::
aware

:::
that

::::
SIV

::
as

::
a
::::::::
predictor

:::::
could

::::::::
dominate

:::
the

:::::
results

:::::
since

:::::::::::::
autocorrelation

::
is

:::::::
expected

:::
to

::
be

:::::::
stronger

:::::::::
compared

::
to

::
the

::::::::::
correlation

::::
with

:::::
other

::::::::
variables.

:::::::::
Therefore,

::::
SIV

::::
itself

::::
will

:::
not

:::
be

::::
used

::
as

::
a

:::::::
predictor

:::
in

::::::::::
combination

::::
with

:::::
other

::::::::
variables

::
as

:::::::::
generically

::::::::
described

::
in

::::
Eq.

:
2
::::
(see

::::::
further

::::
Figs.

:::
4h

:::
and

::::
5h).

:::::::
Second,

::
in Section 3.2,

:
we make use of the SEM to support an

optimal sampling strategy, but using the local predictors in their gridded format rather than their pan-Arctic averages, as the25

methodology described in Section 2.4.
::
In

:::
this

:::::
case,

:::
SIV

:::::
itself

::
is

:::
not

::::
used

::
as

::
a

:::::::
predictor

::
at
:::
all.

:

2.4 Identifying optimal sampling locations

By identifying optimal sampling locations, we
::
We

:
intend to spot a reduced number of sites from which predictor variables

could offer an optimal representation of the
:::::::::
pan-Arctic SIV anomaly. To identify

::::::::
identifying

:
the 1st best location, a Score Map

(Sc[i,j]) is generated by calculating the Sc
::::::
created

:::
by

:::::::
applying

:::
the

:::::::::::
methodology

::::::::
described

::
in

:::::::
Section

:::
2.3 at each grid cell[i,j],30

but now taking into account regional .
::::::::

However
:::
not

:::
all

:::::::::
grid-point

:
predictors (SIT[i,j], SIC[i,j], SST[i,j], Drift[i,j]) rather

9



than
:::
are

:::::::::
necessarily

:::::
used,

:::
but

:::::
only

:::
the

::::
valid

:::::
ones.

:::::
That

::::::
means,

::::
only

:::::::::
predictors

::::::::::
significantly

:::::::::
correlated

::::
with

::::
the

:::::::::
predictand

::
are

:::::
used.

::::
For

:::::::
instance,

:::
for

:::
the

::::::::
AWI-LR

:::::::
product,

:::
the

:::::
SEM

:::::::
applied

:::
for

:
a
::::
grid

:::::
point

:::::
placed

:::
off

:::
the

:::::::
eastern

::::
coast

:::
of

:::::::::
Greenland

:::
will

::::::::::
incorporate

::::
SIT,

::::
SST

::::
and

::::
Drift

::
as

:::::::::
predictors

:::::
while

::::
SIC

::
is

::::::::::
disregarded,

:::
as

::::::::
suggested

:::
by

:::
the

:::::::::
correlation

:::::
maps

:::::::
plotted

::
in

:::
Fig.

::::::
2e,f,i,j.

::::
SIA

::
is
:::
the

::::
only

::::::::
intrinsic pan-Arctic averages. From the predictors intrinsically represented by single time series

(SIV,SIA,OHT),only SIA will be used because in the real world this variable is provided monthly from satellite measurements.5

SIV is disregarded for an obvious reason since this is the variable that we want to predict while having OHT from observations

is a more complex task as it would require oceanic observations broadly distributed both in space and depth. Additionally,

:::::::
predictor

::::
kept

::
at
::::

this
:::::
stage.

::::
The

:::::::::
motivation

:::
for

:::::
using

::::
SIA

:::
as

:
a
::::::::
predictor

::
is
:::::::
justified

:::
by

:::
the

::::
fact

:::
that

::::
this

:::::::
variable

::
is
:::::::
already

:::::::
provided

:::::::::
year-round

:::
by

::::::::
satellites

::
so

:::
that

::
it
:::::
could

:::
be

::::::::
combined

::::
with

::
in

::::
situ

:::::::::
parameters

::
in

::
a
:::
real

::::::::::
monitoring

::::::::::
programme.

:
OHT

is not a good predictor, at least not when it is used with monthly time-resolution
:::
used

::
at
::::

this
:::::
stage

::::
since

::
it
::::::
turned

:::
out

:::
that

::::
this10

:::::::
predictor

:::::::
provides

::
a
::::::::
relatively

::::
poor

::::::::
prediction

::
to

:::
the

:::::::::
predictand, as discussed further in Section 3.1.

::::
Also,

::::
from

:::
an

:::::::::::
observational

::::
point

::
of

:::::
view,

::::::::
sampling

::::
OHT

::
is

:
a
::::
very

:::::::
complex

::::
task

:::
that

:::::::
requires

::::::::::::
oceanographic

:::::::::::
observations

::::
well

:::::::::
distributed

::::
both

::::::::::
horizontally

:::
and

::
in

::::::
depth.

:::
SIV

::
is
::::::::::
disregarded

:::
for

:::
an

:::::::
obvious

:::::
reason

:::::
since

::::
this

:
is
:::

the
:::::::

variable
::::

that
:::
we

::::::::::
supposedly

::
do

:::
not

:::::
have

:::
and

:::::
want

::
to

::::::
predict.

:

This method allows us to build Sc
::
By

:::::::::
following

:::
the

:::::::
approach

::::::
above,

:::
the

::::
goal

::
is

::
to

:::::
create

:
a
::::
first

:::::
Score

::::
Map

:::
(Sc[i,j]where the15

smaller the score, the better the representation of )
:::::
from

:::::
which

:
the pan-Arctic SIV anomaly. Hence, the most optimal location

is here defined by the grid point where
::
1st

::::
best

:::::::
location

::::
can

::
be

:::::::::
identified.

::
In

::::
that Sc[i,

:
i,jis minimum. In practical terms, the

score maps will reveal clusters of grid points defining one region (or more) from where the SIV anomalies would be optimally

reconstructed. After determining and fixing ]
::
the

:::::::
smaller

:::
the

::::::
score, the

:::::
better

:::
the

::::
grid

:::::
point

::::
can

::::::::
reproduce

:::
the

::::::::::
pan-Arctic

:::
SIV.

::::
The

:
1st ideal location i1,j1, we can look for a 2nd i2,j2, a 3rd i3,j3, and so on

::::
best

:::::::
location

::
is

:::
the

:::
one

::::::::::
represented

:::
by20

::
the

::::::::
smallest

:::::
score

::
in

:::
the

::
Sc[ik,jk::

i,j], best locations. However, every time that a location is identified, a region of influence

surrounding this location is identifiedto avoid that different stations are placed nearby each other (see details below). In this

approach, the regression described in Eq. 2, with k optimal locations, takes the following format:

SIVrec = β0 +β2SIA+
∑

βP1[i1,j1]P1[i1, j1]+
∑

βP2[i2,j2]P2[i2, j2]+ · · ·+
∑

βPk[ik,jk]Pk[ik, jk],

where the term βPk[ik,jk]Pk[ik, jk] represents the product between the valid predictors Pk[ik, jk], at the optimal location25

number k, and their respective slope coefficients βPk[ik,jk]. It is worthwhile mentioning that only valid predictors,which means

only predictors significantly correlated with the predictand, are used to feed the Eq. 5. For instance, for the AWI-LR product,

if a grid point placed off the eastern coast of Greenland is one of the N locations, the SEM incorporates SIT, SST and Drift as

predictors while SIC is disregarded, as suggested by the correlation maps plotted in Fig. ??d,f,h,j.

For determining the 1st optimal location,this procedure is repeated independently for each of the 6 model outputs .
:::::
Each

::
of30

::
the

:::
six

::::::
model

::::::
outputs

:::
has

::
its

::::
first

:::::
Score

::::
Map. That means that each of the datasets provides its first optimal location (Sc[i1,j1]).

Not necessarily all the models will suggest the same locationas ideal. However, further
::
In

:::::::
practical

::::::
terms,

:::
the

::::
score

:::::
maps

::::
will

:::::
reveal

:::
not

::::
only

:
a
:::::
single

::::
best

:::::::
location,

::
but

:::::::
clusters

::
of

::::
grid

:::::
points

:::::::
defining

:::
one

:::
(or

:::::
more)

::::::::
region(s)

::::
from

::::::
where

:::
the

:::
SIV

:::::::::
anomalies

10



:::::
would

:::
be

::::::::
optimally

::::::::::::
reconstructed

::::
(see

::::::
further

:
in Section 3.2.1, it will be shown that the different model outputs suggest

relatively similar clusters of grid-points that can provide a skillful representation of the pan-Arctic SIV anomaly. Subsequently,

aiming
:
).
:

::::::
Aiming

:
at spotting a single first

:::
1st optimal location that better represents all datasets

::::::::
(ensemble

:::
1st

:::::::
optimal

:::::::
location), we

take the average of the 6
:::
six score maps. To give the same weight for all datasets in the averaging, the individual score maps5

are scaled between 0 and 1
:::
zero

::::
and

:::
one

:
(ScNorm[i,j];::

?), as follows (Eq. 4):

ScNorm[i,j] =
Sc[i,j] −Scmin

Scmax −Scmin
, (4)

where the indexes min and max indicate the minimum and maximum values in the score map, respectively. Afterward, for

having a coherent gridded average, the 6
::::
grid

:::
for

::::::::
averaging

::
all

::::::::::
normalized

:::::
score

:::::
maps,

:::
the

:::
six

:
models are interpolated into a

common grid.
:::::
1◦×1◦

:::::
grid.

::::::
Besides

:::
the

:::::::
inherent

::::::::
different

::::::
spatial

::::::::::::
grid-resolution

::
of

:::
the

:::::::
models,

::::
this

:::
step

::::
has

::
no

::::::
impact

:::
on

:::
the10

:::::
results

:::::
since

:::
the

:::::::::::::
best-performing

::::::
regions

::
in
:::
the

:::::
Score

:::::
Maps

:::
are

::::::::
preserved

::::
(not

:::::::
shown). Finally, the 1st best

::::::::
ensemble sampling

location is defined as the geographical coordinate where the mean ScNorm map presents its minimum value. The advantage

of this approach is to reduce
:::
This

::::::::
approach

:::
has

:::
the

:::::::::
advantage

::
of

::::::::
reducing the model dependence of the results by relying on

different datasets.

Notwithstanding, before departure for the identification of the 2nd ideal location
:::::
After

::::::::::
determining

:::
and

:::::
fixing

:::
the

:::
1st

:::::
ideal15

::::::
location

:
[
:
i1,we borrow the concept of length scale (??)

::
j1]

:
,
:::
we

:::
can

:::::
look

:::
for

:
a
::::
2nd

:
[
::::
i2,j2],

::
a
:::
3rd

:
[
:::
i3,j3],

::::
and

:::
so

::
on

:
[
::::
ik,jk]

:
,

:::
best

:::::::::
locations.

::::::::
However,

:::::
every

::::
time

:::
that

::
a
::::
new

:::::::
location

::
is

:::::::
spotted,

:
a
::::::
region

::::::::::
surrounding

::::
this

::::
point

::
is
::::
also

:::::::
defined

::
in

:::::
order to

avoid that 2
:::
two

:
optimal sites are placed near each other.

::
To

::
do

:::
so,

:::
we

::::::
follow

:::
the

:::::::
concept

::
of

::::::
length

:::::
scale

::::
(??).

:
The length

scale defines a radius where a certain gridded variable is well-correlated to the same variable from the neighboring grid points.

In this work we do not use a radius, but a very similar approach: the correlation coefficient of our best local predictor at the20

selected location (SIT[i1,j1]::::[ik,jk]; see Section 3.1) is calculated against the equivalent time series from all the other grid points

(SIT[i,j]). The region defined by the grid points with a correlation higher than 1/e, a threshold for correlations below which the

SIT is assumed to be uncorrelated to the point of interest, is used as a buffer region–
::::::::
restricting

::::::
region.

::::
This

:::::
region

::
is

:
hereafter

defined as “region of influence”. So, all the grid points enclosed by
:::
into the region of influence are automatically disregarded

from being selected as a 2nd location. Figure ?? shows how would be
:::
the

::::
next

::::::
optimal

::::::::
location.

:::
As

::
an

::::::::
example,

:
the region25

of influence for a station arbitrarily placed at the North Pole
:
, as defined by the ensemble of datasets. Once the 2nd location

is identified for all datasets, we repeat the procedure described above for determining a single 2nd optimal location . This

iterative approach is also followed for the identification of the 3rd optimal site, and so on. ,
:::::::
exhibits

:::::::::
departures

::::
from

:::::::::
concentric

::::::::
reflecting

::
the

:::::::::
transpolar

::::
drift

::::
(Fig.

:::
3).

::
In

:::
this

::::::::
approach,

:::
the

:::::::::
regression

::::::::
described

::
in

:::
Eq.

::
2,
:::::
with

:
k
:::::::
optimal

::::::::
locations,

:::::
takes

::
the

:::::::::
following

::::::
format:

:
30

SIVrec = β0 +β2SIA+
∑

βP1[i1,j1]P1
:::::::::::::::::::::::::::::::::

[i1, j1
::::

]+
∑

βP2[i2,j2]P2
::::::::::::::

[i2, j2
::::

]+ · · ·+
∑

βPk[ik,jk]Pk
:::::::::::::::::::

[ik, jk
::::

], (5)

:::::
where

:::
the

:::::
term

::::::::::::::::
βPk[ik,jk]Pk[ik, jk]:::::::::

represents
:::
the

:::::::
product

:::::::
between

::::
the

::::
valid

:::::::::
predictors

:::::::::
Pk[ik, jk],::

at
::::

the
:::::::
optimal

:::::::
location

::::::
number

::
k,
::::

and
:::::
their

::::::::
respective

:::::
slope

::::::::::
coefficients

:::::::::
βPk[ik,jk].::

It
::
is
::::::::::

worthwhile
::::::::::
mentioning

::::
that

::::
only

:::::
valid

:::::::::
predictors,

::::::
which

11



Figure 3. Region of influence for a station arbitrarily placed at the North Pole (black star) as defined by each model (colorful lines) and by

the averaged region of influence from the different models (shades of green to yellow).

:::::
means

::::
only

:::::::::
predictors

::::
from

::::
grid

::::::
points

:::::
placed

:::::::
outside

:::
the

:::::
region

:::
of

::::::::
influence

::::::
defined

:::
by

:::::::::
previously

:::::::
selected

::::::
points,

:::
and

::::
that

::
are

::::::::
validated

:::
by

:::
the

:::::::::
correlation

::::
map

::::::::
criterion,

::
are

:::::
used

::
in

:::
Eq.

::
5.

3 Results

3.1 Statistical predictability of SIV anomaly: pan-Arctic predictors

In this section, the statistical predictability of the SIV anomaly is quantitatively evaluated by considering leading periods of5

1
:::
one to 12 months upfront. Also, the predictive performance of 7

:::::
seven pan-Arctic predictors is tested. The predictors are

SIV itself, SIA, OHT, SIT, SIC, SST and Drift. Here, we focus on the months with relatively large (March; Section 3.1.1) and

reduced (September; Section 3.1.2) SIV at the end of the winter and summer, respectively.

3.1.1 Statistical predictability of March SIV anomaly: pan-Arctic predictors

Figure ??
:
4
:

displays the predictive performance (quantified by the RMSE) of different predictors for estimating March SIV10

anomalies. The SIV itself is the best predictor variable and its score gradually increases from 12 (Sc = 1.0 ×103km3) to 4
::::
four

(Sc = 0.68 ×103km3) leading months. During this period the mean performance for the ensemble of models increases by about

12



32%. As per 3
::::
three leading months, from December to February, the predictive capacity substantially improves by 43% (Sc =

0.57 ×103km3), 59% (Sc = 0.41 ×103km3) and 77% (Sc = 0.23 ×103km3), respectively (Fig. ??
:
4a).

The second best predictor is the SIT, which has performance similar to the SIV predictor from about 12 to 9
:::
nine

:
lead-

ing months (ensemble mean Sc = 1.02 ×103km3, 1.03 ×103km3, 1.0 ×103km3; Fig. ??
:
4d). Nevertheless, its score remains

relatively stable and improves only by about 25%, from May to February (Sc = 1.0 and 0.75 ×103km3). SIC (Fig. ??
:
4e),5

SST (Fig. ??
:
4f) and Drift (Fig. ??

:
4g) have poorer performance compared to SIT, but similar behavior with the score slightly

improving over time until 1
::
one

:
leading month.

SIA (Fig. ??
:
4b) is a valid predictor for AWI and HadGEM3 models, but it does not seem to be the case for ECMWF versions.

Finally, OHT showed to be a poor predictor in terms of monthly predictability. For most of the leading months and models, the

statistical reconstruction is not significant when provided by this predictor (Fig. ??
:
4c).10

A way of improving further the statistical predictability is to use several predictors at once. Figure ??
:
4h shows the case where

all the aforementioned predictors (except SIV) are used by the empirical model. For this configuration, the predictive skill is

still 10% lower than the case where SIV is standing alone as a predictor, but it is about 10% better than the reconstructions

provided only by the SIT.

The inter-model comparison does not show a conclusive answer to the question of whether or not the model resolution plays15

a role in the statistical predictability of March SIV anomalies. Overall, AWI-HR predictors are more skilled than AWI-LR

predictors, though the opposite is observed for HadGEM3. For the ECMWF versions, the SIV anomalies from EMCWF-

HR present better reproducibility, while ECMWF-LR presents much larger errors. Note that ECMWF-LR has a mean state

characterized by a much thicker sea ice and, consequently, higher variance (see Fig. ??
:
1). This is the reason that makes

ECMWF-LR an outlier compared to the other 5
:::
five

:
model outputs for this and other results found in this manuscript (see20

further discussion in Section 5
:
4).

3.1.2 Statistical predictability of September SIV anomaly: pan-Arctic predictors

A similar scenario compared to March is found for the September SIV anomaly predictability (Fig. ??
:
5). The best predictor is

the SIV itself (Fig. ??
:
5a) for which the predictive skill improves by about 83.6% from June to August (Sc = 1.16 ×103km3

and 0.19 ×103km3). This improvement is mainly attributed to the 3
::::
three months before September: Sc = 0.71 ×103km3,25

0.44 ×103km3 and 0.19 ×103km3 for June, July and August, respectively. The second best predictor is SIT (Fig. ??
:
5d),

while SIC (Fig. ??
:
5e), SST (Fig. ??

:
5f) and Drift (Fig. ??

:
5g) present an intermediate performance. For the former 4

::::
four

predictors, the ensemble mean Sc slightly improves from 12 to 1
::
one

:
leading months in about: 28.8% (Sc = 1.04 ×103km3

and 0.74 ×103km3), 15% (Sc = 1.40 ×103km3 and 1.19 ×103km3), 29% (Sc = 1.26 ×103km3 and 0.90 ×103km3) and 24%

(Sc = 1.46 ×103km3 and 1.11 ×103km3), respectively. Not all tested predictors are statistically significant for reproducing the30

SIV anomalies. Again, this is the case for OHT (Fig. ??
:
5c). SIA also presents poor performance for some models and leading

months (Fig. ??
:
5b). Another resemblance to March predictability is the relatively poor performance presented by the predictor

variables from ECMWF-LR.

13



Figure 4. Statistical predictability of the March SIV anomalies, estimated from 12-leading months and quantified by the RMSE (103km3)

calculated between the original and reconstructed time series (Sc), as prescribed by 7
::::
seven predictors: (a) SIV itself, (b) SIA, (c) OHT,

(d) SIT, (e) SIC, (f) SST, (g) Drift. The predictions employing ALL
::
all predictor variables (except the SIV itself) are displayed in (h). The

vertical black lines indicate the error as provided by the 500 Monte Carlo simulations. The statistical predictability follows the methodology

introduced in Section 2. Missing vertical bars mean that the statistical reconstruction is not statistically significant. The long-term trend and

seasonal cycle are excluded from both predictand and predictors.
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Figure 5. Statistical predictability of the September SIV anomalies, estimated from 12-leading months and quantified by the RMSE (103km3)

calculated between the original and reconstructed time series (Sc), as prescribed by 7
::::
seven

:
predictors: (a) SIV itself, (b) SIA, (c) OHT, (d)

SIT, (e) SIC, (f) SST, (g) Drift. The predictions employing ALL
:

all
:

predictor variables (except the SIV itself) are displayed in (h). The

vertical black lines indicate the error as provided by the 500 Monte Carlo simulations. The statistical predictability follows the methodology

introduced in Section 2. Missing vertical bars mean that the statistical reconstruction is not statistically significant. The long-term trend and

seasonal cycle are excluded from both predictand and predictors.
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3.2 Statistical predictability of SIV anomaly: regional predictors

In this section, the empirical statistical model is used for supporting an optimal sampling strategy by following the methodology

described in Section 2.4. To do so, we combine the local predictors at every grid-point rather than use their pan-Arctic averages.

The reasoning behind this approach lies in the hypothesis that the statistical empirical model can fairly reproduce and/or predict

the SIV anomalies if a few optimal locations provide in situ
::
in

:::
situ measurements from the predictor variables. These in situ

::
in5

:::
situ observations can be applied concomitantly with predictors that are continuously measured by satellites as the pan-Arctic

SIA and the local SIC.

Here we assume that numerical models are able to reproduce the main physical processes behind the interactions among

predictand and predictors. Practically, we will take into account 4
:::
four

:
local predictors that are SIT, SIC, SST and Drift, and

1
::
one

:
pan-Arctic predictor that is SIA, although it is worthwhile reminding that only predictors significantly correlated with10

the predictand will be incorporated to the statistical model. As per the results of Section 3.1, the OHT will not be included as

predictor variable due to its poor capacity to provide a skillful prediction, being reinforced by the difficulties associated with

the in situ
::
in

:::
situ sampling and estimation of this variable.

3.2.1 Optimal sampling locations

For each of the 6 models
::
six

::::::
model

::::::::::
realizations, score maps (Sc[i,j]; Eq. 3) were determined with the aim of spotting the15

location that can better reproduce the SIV anomalies as shown in Fig. ??
:
6. This location is so defined as the grid point

with minimum RMSE calculated between the original and reconstructed time series (Sc[i1,j1]; black stars in Fig. ??
:
6). The

spotted ideal location for AWI-LR, AWI-HR, and HadGEM-LL (Fig. ??
:
6a,b,e) are relatively close to each other, separated

by a maximum of ∼600 km. Even though ECMWF-LR, ECMWF-HR, and HadGEM3-MM (Fig. ??
:
6c,d,f) suggest optimal

locations that are placed farther from the sites suggested by the other datasets, their score maps still suggest a relatively good20

skill (low RMSE values) at the common region occupied by the 3
::::
three previous referred models. This fact justifies further the

multi-model approach used in this work.

The RMSEs (and associated STD from the Monte-Carlo scheme) calculated between the original SIV anomalies and the SIV

anomalies reconstructed by the ESM
::::
SEM, feed with predictor variables from the 1st optimal location (black stars in Fig. ??

:
6),

are shown in the mid column of Table 2. Based on those values, predictor variables from the AWI systems can better reproduce25

the SIV anomalies compared to the predictors from HadGEM and ECMWF. For the 3
::::
three

:
models, the high-resolution version

provides better statistical predictability.

A common score map, with the indication of a common 1st optimal location placed at the transition Chukchi Sea – Central

Arctic – Beaufort Sea (158.0◦W, 79.5◦N), is shown in Fig. ??
:
7a. This common location is found through the ensemble mean

of the scaled individual score maps, following the methodology described in Sec.
::::::
Section 2.4. If we now come back to the30

score maps in Fig. ??
:
6
:
and retrieve the RMSE from that common location in Fig. ??

:
7a, we find the values displayed in the

right column of Table 2. The predictive skill drops by about 10% when the common point is chosen for all models, except for

AWI-LR which presents similar results for the two locations. Those values also reinforce that, at least for this 1st location, the
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Figure 6. Score Maps (Sc[i,j]) represented by the RMSE (103km3) calculated at every grid cell between the original and the reconstructed

SIV anomalies. The smaller the RMSE error (shades of yellow), the higher the performance of the grid point for reconstructing the SIV

anomaly. The black star indicates the 1st optimal location for each model Sc[i1,j1]. Notice that the colormap scale is different for each map.

predictors from the high-resolution outputs lead to a better predictive skill compared to the low-resolution predictors from their

counterpart. Note that this was not the case when using pan-Arctic predictors in Section 3.1.

Once a 1st common optimal site is determined, we fix it for all datasets and so look for the 2nd best location. For that,

the neighboring grid points which fell into the region of influence of the 1st best site are not considered as a second option.

Fig. ??
:
7b shows the 1st location’s region of influence.5

The procedure followed for identifying the 1st site is so repeated for the nth next locations. Aiming at improving the

reconstruction of the SIV anomalies, every time that a new location is set, the valid predictors from this new point add to the

predictors from the previous stations into the SEM. Fig. ??
:
7c,e,g,i show the 2nd to the 5th optimal sites accompanied by their

respective regions of influence (Fig. ??
:
7d,f,h,j). The 2nd site is the one closest to the North Pole, from where it is separated by

a distance of about 167 km. The 3rd, 4th and 5th points are placed at the offshore domain of the Laptev Sea in the transition10

with the Central Arctic, in the Central Arctic to the north of the Canadian Islands, and in the central domain of the Beaufort

Sea, respectively.

If we think of an optimal observing framework, in which only a few observational platforms are deployed, Fig. ??
:
8
:
rep-

resents an idealized scenario with the 10
:::
ten best locations and their respective regions of influence. In such a context, the
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Table 2. Mean RMSEs (and associated STDs) from the 500-Monte-Carlo realizations calculated between the original SIV anomalies and the

SIV anomalies reconstructed by the ESM
:::
SEM. We recall that in each Monte-Carlo realization 70% of the data is randomly used for training

the SEM, while 30% is used for calculating the error. The first column shows the values for the case where the predictors are extracted from

the individual optimal locations, while the second column shows the values found with predictors from the common optimal location.

Models

RMSE (Error) ×103km3

1st Optimal Location

Individual location

RMSE (STD) ×103km3

1st Optimal Location

Common location

AWI-LR 0.66 (±0.03) 0.67 (±0.03)

AWI-HR 0.49 (±0.02) 0.54 (±0.02)

ECMWF-LR 1.95 (±0.06) 2.11 (±0.09)

ECMWF-HR 0.81 (±0.03) 0.91 (±0.04)

HadGEM3-LL 0.97 (±0.04) 1.09 (±0.05)

HadGEM3-MM 0.86 (±0.05) 0.95 (±0.04)

selection of points respects the hierarchy of the regions of influence in a way that the 2nd site can not be placed within the

region of influence
:
#1 (shades of red), the 3rd point can not be placed within the regions of influence

:
#1 and

:
#2 (shades of

red and purple), and so on. Note that with the proposed methodology, the regions of influence from the 10
::
ten

:
first locations

are covering almost the entire Arctic Ocean and adjacent seas, with exception of the Canadian Archipelago, the Kara Sea, and

the Greenland Sea (see Fig. ??
::
9).

::::
But

::::
even

:::
for

:::
the

::::
two

::::
later

:::::
cases,

:::
the

::::::
region

::
of

::::::::
influence

:::::
from

:::::
other

:::::::
locations

:::
are

::::::::
partially5

:::::::
covering

:::::
these

:::
seas

:::::
(Fig.

::
9;

:::::
black

:::
line). The question of whether or not is indeed required all 10

:::
ten locations to fairly predict

the SIV anomalies, both in terms of anomaly values and variability, will be answered in the next sections.

Table 3 displays the geographical coordinates of the 10
::
ten

:
locations as well as the Arctic sub-regions occupied by them, as

identified in Fig. ??
:
9. The division of the Arctic in sub-regions is based on the classical definition adopted by the broadly used

Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (MASIE-NH) product, which is made available by the National10

Snow & Ice Data Center (NSIDC). Most of the stations are placed within the Central Arctic (2nd, 4th, and 8th), or in the

transition of this region with the Chukchi Sea (1st) and Laptev Sea (3rd), where the sea ice tends to be perennial. The 5th

location is placed at the central part of the Beaufort Sea, the 6th and 9th stations are located at the offshore and inshore limits

of the East Siberian Sea respectively, the 7th site is suggested to be at the Barents Sea off the Severny Island and, finally, the

10th station is occupying the near-coast side of the Laptev Sea.15

3.2.2 Reconstructed SIV anomaly

Once the set of ideal locations are established, these sites are used to effectively reconstruct the entire time series of SIV

anomalies from the 6
::
six

:
model outputs, by taking into account only the valid predictors from each location. Again, we will

make use of the RMSE to evaluate how good is our statistical prediction in terms of absolute values, but here we are also
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Figure 7. (a) Ensemble mean–normalized score map (ScNorm) for the 1st best sampling location. (b) The region of influence is defined for

the 1st best location. The panels (c,d), (e,f), (g,h) and (i,j) represent the same as (a,b) but for the 2nd, 3rd, 4th and 5th best sampling locations,

respectively.
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Figure 8. Optimal observing framework, as suggested by the ensemble of model outputs, for sampling predictor variables in order to

statistically reconstruct and/or predict the Pan-Arctic SIV anomaly. The numbers indicate the 1st up to the 10th best observing locations in

the respective order. The hatched area around each location (same color code) represents their respective region of influence. The selection

of points respects the hierarchy of the regions of influence in a way that the 2nd point can not be placed within the region of influence
:
#1

(shades of red), the 3rd point can not be placed within the regions of influence
:
#1 and

:
#2 (shades of red and purple), and so on.

interested in inspecting the ability of the empirical model to reproduce the full variability of the SIV anomalies. For that, apart

from the RMSE, we also calculate the coefficient of determination (R2) between the original and reconstructed time series.

Figure ?? compares
::
10

::::::::
provides

:
a
::::::::::
comparison

::
at

:::::
lag-0

:::::::
between the original (black lines) and the reconstructed times series

by taking into account the 1st (red lines), the 3
::::
three

:
first (green lines) and the 6

:::
six first (blue lines) locations. For the first

reconstruction, RMSE values are almost identical to the ones shown in the second column of Table 2 (see Fig. ??
::
11a; y-5

axis=1). Again, for all 3
::::
three

:
models, the predictor variables from the higher resolution versions present better performance

in reproducing the SIV anomaly values. The relatively poor skill of the ECMWF-LR predictors compared to the other 5
:::
five

systems is remarkable (Figure ??
:::
Fig.

::
10c).

Figure ??
::
11a summarizes the RMSE values for the reconstructions conducted with data from the only the 1st up to all 10

::
ten

:::::::::
combined

:
locations. The pattern of better prediction skill for the models with higher grid resolution revealed by the 1st10

location remains when more sites are incorporated into the SEM. From the ensemble means the RMSE (×103km3) values are,
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Table 3. Geographical coordinates for the first 10
::
ten optimal sampling locations (second and third columns). The fourth column informs the

sub-regions in which each of the points are placed in (see Fig. ??
:
9). The limits of the sub-regions are suggested by the National Snow & Ice

Data Center (NSIDC).

Optimal Location Latitude Longitude Sub-Region

#1 79.5◦N 158.0◦W Chukchi Sea (CS)

#2 88.5◦N 040.0◦E Central Arctic (CA)

#3 81.5◦N 107.0◦E Central Arctic (CA)

#4 82.5◦N 109.0◦W Central Arctic (CA)

#5 74.5◦N 136.0◦W Beaufort Sea (BeS)

#6 77.5◦N 155.0◦E East Siberian Sea (ESS)

#7 78.5◦N 054.0◦E Barents Sea (BrS)

#8 83.5◦N 001.0◦W Central Arctic (CA)

#9 72.5◦N 176.0◦E East Siberian Sea (ESS)

#10 74.5◦N 134.0◦E Laptev Sea (LS)

respectively, 1.06, 0.95, 0.90, 0.81, 0.78, 0.70, 0.65, 0.63, 0.60 and 0.59 for the reconstruction with 1 to 10
:::
one

::
to

:::
ten

:
locations

(black curve/points in Fig. ??
::
11a). By excluding the outliers from ECMWF-LR, the previous RMSEs reduce to about 20% as

shown by the gray curve-points in Fig. ??
::
11a). For most of the datasets, the statistical reconstruction seems to improve better

until the incorporation of the 5th to 6th locations, from when on the improvement seems to attenuate (Figure ??
:::
Fig.

:::
11a).

Figure ??
::
11b introduces a similar analysis but quantified by the R2. Interestingly, for this metric, the ECMWF-LR is not5

outstanding from the others, and its predictors present a similar performance for reproducing the SIV anomaly variability.

By account the reconstructions with 1 to 10
:::
one

::
to

:::
ten

:
optimal sites, the ensemble means of R2 values are: 0.53, 0.63, 0.67,

0.73, 0.75, 0.80, 0.81, 0.83, 0.84 and 0.84, respectively. These ensemble means suggest that the statistical empirical model

could reproduce more than 60% of the SIV variability by using predictors from only the 3
::::
three first optimal locations. AWI

and HadGEM datasets indicate that 4
:::
four

:
locations are enough for reproducing more than 70% of the variability. With 6

:::
six10

well-positioned sites, about 80% of the SIV anomaly could be explained as suggested by the ensemble mean (Fig. ??
::
11b). As

per the 6th station, the gain from adding new locations seems to be minimal (∼1%). Also interestingly is the fact that for the

R2 metric, the opposite from the RMSE is observed since the best performing predictors are the ones coming from the model’s

version with lower grid resolution.

In terms of used predictor variables, Figure ??
:::
Fig.

::
11c reiterates that SIT is the most skillful of the local predictors. From15

the 60 cases that the SEM was applied (6 datasets, 10
::
six

::::::::
datasets,

:::
ten

:
locations), SIT was used 59 times. SIT was not a

valid predictor only for the 9th location in ECMWF-HR. SST and Drift were used in about two thirds (20 and 22 times,

respectively), while SIC was used only in half (31 times) of the cases. If we look at the individual model outputs, HadGEM

(the 2
:::
two

:
resolutions comprised) is the one in which the empirical model takes the best advantage of the available gridded
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Figure 9. Optimal observing framework for sampling predictor variables in order to statistically reconstruct and/or predict the Pan-Arctic

SIV anomaly. The numbers indicate the 1st up to the 10th optimal sites. Each of the colored areas represent an Arctic sub-region according

to the Arctic subdivision suggested by the National Snow & Ice Data Center (NSIDC).
:::
The

::::
black

:::
line

:::::::
indicates

:::
the

:::::
global

:::::
region

::
of

:::::::
influence

:::::
defined

::
in
::::
Fig.

:
8
::::::::::
(color-shaded

::::::
areas).

::::::::
Acronyms:

:::::::
Beaufort

:::
Sea

:::::
(BeS);

:::::::
Chukchi

:::
Sea

::::
(CS);

::::
East

::::::
Siberian

::::
Sea

:::::
(ESS);

:::::
Laptev

:::
Sea

:::::
(LS);

::::
Kara

:::
Sea

::::
(KS);

::::::
Barents

::::
Sea

:::::
(BrS);

::::::::
Greenland

:::
Sea

:::::
(GS);

:::::
Baffin

:::::::
Bay/Gulf

::
of

:::
St.

:::::::
Lawrence

::::::
(BeS);

:::::::
Canadian

::::::::::
Archipelago

::::::
(CaAr);

::::::
Hudson

::::
Bay

::::
(HB);

::::::
Central

:::::
Arctic

:::::
(CA);

:::::
Bering

:::
Sea

:::::
(BrS);

:::::
Baltic

:::
Sea

:::::
(BaS);

:::
Sea

::
of

::::::
Okhotsk

:::::
(SO);

::::
Cook

::::
Inlet

::::
(CI).

predictors, having neglected one of them in only 15 out of 80 cases, while ECMWF and AWI have ignored predictors in 29

and 30 out of 80 cases, respectively.

::
To

:::::::
evaluate

:::
the

::::::::::
performance

::::
and

::::::::
robustness

::
of

:::
our

:::::
SEM,

:::
the

::::::
RMSE

:::
and

:::
R2

::::::::
calculated

::::::::
between

::
the

:::::::
original

:::
and

::::::::::::::::::::
our-methodology-based

:::::::::::
reconstructed

::::
SIV

::::::::
anomalies

:::::
(Fig.

:::::
11a,b)

:::
are

:::::::::
compared

::::::
against

:::
the

::::
same

::::
two

::::::
metrics

:::
but

::::
now

:::::::::
estimated

::
by

::
a

::::::
simple

:::::::
multiple

:::::
linear

:::::::::
regression

:::::
model

:::::::
having

::
as

:::::
input

::::::::
predictor

::::
data

:::::
from

:::::::::
randomly

::::::
chosen

::::::::
locations

:::::
(Fig.

::::
12).

:::
For

::::
that

::::::::
purpose,

::::
1005

:::::::::::
combinations

::
of

:::
ten

:::::::::
randomly

::::::
chosen

::::::::
locations

::::
were

:::::::::::
determined.

:::
For

::::
each

::::::::::::
combination,

:::
the

::::
SIV

:::::::
anomaly

::
is
::::::::::::
reconstructed

::::
with

:::::::
predictor

::::
data

:::::
from

::
the

:::
1st

::::::::
location,

:::
the

:::::::
1st–2nd,

:::
the

:::::::
1st–3rd,

::
...,

:::
the

::::::::
1st–10th

::::::::
locations.

:::
For

:::
the

::::
sake

::
of
::::::::
fairness,

:::
we

::::
have

::::
used

:::
the

::::
same

::::::::
predictor

::::::::
variables

::::
from

:::::::::
randomly

:::::::
locations

::::::
placed

::::
only

::::
into

:::
the

::::::
global

:::::
region

::
of

::::::::
influence

::::::::::
represented

:::
by

:::
the

::::
black

::::
line

::
in

:::
Fig.

::
9.
::::
The

::::::
results

::::
show

::::
that

:::
the

:::
SIV

:::::::::::::
reconstructions

:::::
based

::
on

:::
our

:::::::::::
methodology

::::
(and

:::::::::
optimally

::::::
selected

:::::::::
locations)
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Figure 10. Original
::::
Lag-0

:::::::::
comparision

:::::::
between

::
the

:::::::
original (black) and statistically reconstructed SIV anomalies. The reconstruction takes

into account the 1st (red), the 3
:::
three

:
first (1st–3rd; green) and the 6

::
six

:
first (1st–6th; blue) optimal locations: (a) AWI-LR, (b) AWI-HR, (c)

ECMWF-LR, (d) ECMWF-HR, (e) HadGEM-LL and (f) HadGEM-MM. Notice the different scales in the y-axes.

::
are

:::::
more

::::::
skillful

::::
both

::
in

:::::
terms

::
of

::::::
RMSE

::::
and

:::
R2.

::::
This

::
is

::::
valid

:::
for

:::
all

::::::
models,

::::::::::
considering

::
a

:::::
single

:::::::
location

::
or

:::
any

:::::::::::
combination

::
of

::
up

::
to

:::
ten

::::::::
locations

::::
(Fig.

::::
12).
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Figure 11. (a) RMSE (y-axis) estimated between the original and reconstructed time series by taking into account predictor variables from

1
:::
one

:
up to 10

::
ten

:
optimally selected locations (x-axis). (b) Same as (a) but using R2 (y-axis) to compare original and reconstructed time

series. (c) Valid predictors, as determined by the correlation maps, retrieved from each targeted location. If a predictor is valid (y-axis), its

respective symbol, as defined in the inset legend from (b), is plotted. A black cross indicates that the predictor is not valid at the respective

location.
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Figure 12.
:::
Root

:::::
Mean

::::::
Squared

:::::
Error

:::::::
(RMSE;

:::
left

::::::
column)

::::
and

::::::::
coefficient

::
of

:::::::::::
determination

:::
(R2;

:::::
right

::::::
column)

::::::::
calculated

:::::::
between

:::
the

::::::
original

:::
and

::::::::::
reconstructed

:::
SIV

::::::::
anomalies.

::::
The

::::::::::
reconstructed

:::
SIV

::::::
volume

::::::::
anomalies

::
are

:::::
based

::
on

:::
the

:::::::
optimally

::::::
selected

:::::::
locations

::::::::
following

::
our

::::::::::
methodology

::::
(full

::::
dots;

::::
same

::
as
::

in
::::
Fig.

:::::
11a,b),

::
as
::::
well

::
as

::
by

::::::::
randomly

:::::
chosen

:::::::
locations

::::::
(empty

:::::
dots).

::
In

::
the

:::
last

::::
case,

::::
100

:::
sets

::
of

:::
ten

:::::::
randomly

:::::
chosen

::::::::
locations

::
are

:::::
used.

:::
For

::::
each

::
of

::
the

::::
100

:::
sets,

:::
the

::::
SIV

::::::
anomaly

::
is
::::::::::
reconstructed

:::::
using

:::
data

:::::
from

::
the

:::
1st,

:::
the

:::::::
1st–2nd,

:::
the

::::::
1st–3rd,

::
...,

:::
the

:::::::
1st–10th,

:::::::
locations.

:::
The

::::::
random

:::::::
locations

:::
are

::
all

:::::::
enclosed

:::
into

:::
the

:::::
global

:::::
region

::
of

:::::::
influence

:::::
defined

::::
(Fig.

::
9;

::::
black

::::
line).

::::
The

:::::
vertical

::::
bars

::::::::
associated

:::
with

:::
the

:::::
empty

::::
dots

:::::::
represent

::
the

:::
one

:::::::
standard

:::::::
deviation

::::
from

:::
the

:::
100

::::::::::::
reconstructions.

:::
The

::::
inset

:::::::
numbers

:::::::
represent

::
the

::::::
average

::::::::
difference

::::::
between

:::
the

:::
two

:::::
curves

:::::
shown

::
in

::::
each

::::::::
sub-panel.
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4
:::::::::
Discussion

In this work, we have introduced a statistical empirical model for predicting the Arctic SIV anomaly (no trend; no seasonal

cycle). on the interannual time scale. The model was built and tested with data from 3
::::
three

:
AOGCMs (AWI-CM, ECMWF-

IFS, and HadGEM3-GC3.1), each of which provided with 2
:::
two horizontal resolutions, performing a total of 6

::
six

:
datasets.

We have first inspected the predictive skill of 7
:::::
seven different pan-Arctic predictors, namely: SIV, SIA, OHT, SIT, SIC, SST,5

and Drift. These predictors were tested since they have dynamical and/or thermodynamical influence on the SIV. The 3
::::
three

first are intrinsically represented by single time series, while the remaining are gridded variables that were reduced to mean

pan-Arctic time series. From this first assessment, performed for the months of March and September, the results (Section 3.1)

show that the best predictors are the SIV itself and the SIT, whilst SST, Drift, SIC and SIA provide some intermediate-skill

predictions. In general, such results are valid for predictions performed from 1
:::
one back to 12 leading months. For the SIV10

predictor, the skill substantially increases in the last 3
::::
three

:
leading months. For the remaining aforementioned predictors, the

skill slightly improves from 12 to 1
:::
one leading month. OHT provided a

::
In

:::::::
contrast,

:::::
OHT

:::::::
provided

:
very poor predictive skill. ? recently showed (their Fig. 12) a relatively good correlation between

OHT and the SIV. However, these authors correlated annual averages of OHT against monthly values of SIV, but here we are

considering monthly means for all predictors. Based on that, the results from both manuscripts suggest that the OHT has a15

cumulative impact on the sea ice throughout the year, which is not so remarkable when looking at individual months, even

if several leading months are considered.
:::
One

::::::
might

::::::
wonder

::::
how

:::::
SST

::
is

:
a
::::::::
relatively

:::::::
skillful

::::::::
predictor,

:::::
while

:::::
OHT

:::
not.

::::
We

::::
recall

::::
that

:::
the

::::
OHT

::::::
tested

::
as

:
a
::::::::
predictor

::
in

:::
this

:::::
study

::
is

:
a
::::::
remote

:::::::::
parameter,

:::::
which

:::::
takes

::::
into

::::::
account

:::
the

::::::::
seawater

::::::::::
temperature

::::
(and

:::::::::
meridional

:::::::::
velocities)

:::::::::
throughout

:::
the

:::::
entire

:::::
water

:::::::
column,

:::::::::
calculated

::
at

::::
60◦N

:::
for

:::
the

:::::::
Atlantic

:::::
basin

:::::
ocean

::::
(?).

:::::
There

:::
are

::::
other

::::::::
potential

:::::::::
candidates

::
to

::::::
explain

::::
why

:::::
OHT

::
is

:
a
:::::
poor

::::::::
predictor,

::
as

:::
for

:::::::
instance

::::::
model

:::::
biases

::::
such

:::
as

::
an

::::::::::::
overestimation

:::
of20

::
the

:::::::::::
stratification

::
at

:::
the

::::::::::
near-surface

:::::
layer,

::::::
which

:::::
could

:::::::
attenuate

:::
the

::::
heat

:::::::
content

:::::
being

:::::::::
transported

:::::::
towards

:::
the

::::::
Arctic

::::::
Ocean.

:::::::::::
Nevertheless,

:::
this

::
is

:
a
:::::::
subject

:::
that

:::::::
requires

:
a
:::::
more

:::::::
detailed

:::::::::::
investigation.

:

From Section 3.1’s results is also noticeable that the ECMWF-LR predictors present a relatively poor skill compared to the

others. This is explained by the fact that this model has a mean state characterized by a much thicker sea ice (see Fig. ??
:
1),

impacting the RMSE
:::::
RME used as a metric for evaluating the prediction skill.25
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That being said, we can recapitulate and objectively answer the first open question posed in the introduction of this manuscript:

(i) What are
:
is
:
the performance of different pan-Arctic predictors for predicting pan-Arctic SIV anomalies?

If we take into account the ensemble mean, and use the average RMSE calculated between original and reconstructed SIV

time series (Section 3.1; Figs. ?? and ??
:
4
::::
and

:
5) for the last 3

::::
three leading months as score, the best predictors for March

are sorted in the following order: SIV (0.41×103km3), SIT (0.78×103km3), SIA (1.01×103km3), SIC (1.10×103km3),5

SST (1.15×103km3), Drift (1.32×103km3) and OHT (2.05×103km3). The best predictors for September are sorted as: SIV

(0.45×103km3), SIT (0.76×103km3), SST (0.96×103km3), SIA (1.07×103km3), SIC (1.12×103km3), Drift (1.22×103km3)

and OHT (2.24 ×103 km3). If ALL
::
all

:
predictors are used (except SIV itself), the averaged scores for 3

::::
three leading months

are 0.70×103km3 for both March and September, respectively.

Once the statistical empirical model is developed and the potential predictor variables are identified, we made use of this in-10

formation for recommending an optimal observing system. Such observations could eventually be performed in the framework

of an operational oceanography program to continuously provide predictor data for the statistical model. So, we considered

parameters that could be locally sampled by
::::::::::
autonomous observing platforms (e.g., oceanographic moorings and/or buoys) as

SIT, SST and Drift. It is fair also to consider the SIC and the pan-Arctic SIA since this information is regularly provided from

satellite measurements. The OHT and the SIV are here disregarded as predictors. The first did not turn out to be
::::::
former

:::
did

:::
not15

::
act

:::
as a skillful predictor(

:
, at least not when using monthly means). The second is the variable that we supposedly do not have

and the one we want to predict. From a realistic point of view, our analyses were restricted to a maximum of 10
::
ten

:
optimal

locations, although a reduced number of stations would be already enough
:::::::
sufficient

:
to fairly reproduce the SIV anomaly, and

so to explain a large amount of its variance (see below). The results from Section 3.2 provide us with elements to answer the

other 3
::::
three

:
open questions of this study, as follows:20

(ii) What are the best in situ locations for sampling predictor variables to optimize the statistical predictability of SIV

anomalies in terms of reproducibility and variability?

We have here identified 10
::
ten

:
optimal locations. The exact coordinates of these locations are provided in Table 3 and also

plotted in Figs. ?? and ??
:
8

:::
and

::
9. As suggested by the ensemble of model outputs, the 1st optimal location is placed at

the transition Chukchi Sea–Central Arctic–Beaufort Sea (158.0◦W, 79.5◦N). The 2nd, 3rd and 4th best locations are placed25

near the North Pole (40◦E, 88.5◦N), at the transition Central Arctic–Laptev Sea (107◦E, 81.5◦N) and offshore the Canadian

Archipelago (109.0◦W, 82.5◦N).

(iii) How many optimal sites are needed for explaining a large
:::::::::
substantial

:
amount

:::
(e.g., that is to say, at least 70%

:
–
:::
an

:::::::::
arbitrarily

::::::
chosen

::::::::::
threshold) of the original SIV anomaly variance?

By considering an arbitrary threshold of 70%, the systems AWI-LR (75%), AWI-HR (73%), HadGEM3-LL (79%) and30

HadGEM3-MM (74%) suggest that only 4 stations are enough to overpass
:
as

::::
few

::
as

::::
four

:::::::
stations

:::
are

::::::::
sufficient

::
to

::::
pass

:
this

threshold, what is also confirmed by the ensemble mean (73%). Even though the ECMWF predictors have slightly low skill,
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they are still not far from the threshold: ECMWF-LR (66%) and ECMWF-HR (64%). The ensemble mean indicates that 5 and

6
::
five

::::
and

:::
six well-placed stations could explain about 75% and 80% of the SIV anomaly variance, respectively. As per these

numbers,
::::::
Adding

::::::
further

::
to

:::
six

::::
well

::::
place

::::::::
locations

:
the statistical predictability does not substantially improve by adding new

sites, taking into account that 10 .
::::
Ten locations explain about 84% of the variance. However, as suggested by Fig. ??

:
8, even

though the SEM seems to fairly reproduce the SIV anomaly variance and, therefore, the long-term variability, it found more5

difficulties to reproduce the short-term variabilities.

(iv) Are the results model dependent, in particular, are they sensitive to horizontal resolution?

The results suggest that statistical predictability is affected by model resolution. Notwithstanding, the question of whether or

not a finer horizontal resolution provides better statistical predictability depends on the metric used to evaluate the predictions

(Section 3.2.2 and Fig. ??
::
11). That is the case for RMSE, where the main target is to evaluate the reproducibility of the recon-10

structed values. It seems that an improved horizontal resolution allows a better trained statistical model so that the reconstructed

values approach better to the original SIV anomaly (Fig. ??
::
11a). On the other hand, if we look at the interannual variability,

the predictors provided by numerical models with lower resolution are more able to approach the reconstructed time series to

the original SIV anomaly (Fig. ??
::
11b). In this case, it is possible to argue that the low-resolution versions provide smoother

time series, with less amount of short-term variability, making it easier for
:::
As

:::::
argued

::::::
above,

:::
this

:::::
study

::::::
shows

:::
that

:::::::::::
model-based15

::::::::
statistical

:::::::::::
predictability

::
of

:::
SIV

::::::::
anomaly

::
is

:::::::
sensible

::
to the statistical model to represent the long-term variation of SIV anomaly

over time. Along the same lines,
:::::
model

:::::::::
horizontal

:::::::::
resolution.

::::::
Further

:::::::::::
investigation

::
is

::::::
needed

::
to

:::::
better

::::::::::
understand

:::
the

::::::
impact

::
of

:::::
model

:::::::::
resolution

::
on

:::
the

::::
SIV

:::::::::::
predictability.

:

5 Conclusions

:::
We

:::::::
envisage

:::::
three

::::
main

:::::
ways

:::
by

:::::
which

:::
this

:::::
work

:::::
could

:::::::
support

::::::::::::::
observationalists

::
in

:
a
:::::::::
real-world

:::::::::
observing

::::::
system.

::::
The

::::
first20

:
is
:::::::::

providing
:::::::::::::::
recommendations

:::
for

:::::::
optimal

::::::::
sampling

::::::::
locations.

::::
We

::::::
believe

::::
that

:::
our

:::::::::::
multi-model

::::::::
approach

:::::::
provides

::
a
:::::
solid

::::
view

::
of

:::
the

::::
sites

::::
that

:::::
better

::::::::
represent

:::
the

:::::::::
variability

:::
of

:::
the

:::::::::
pan-Arctic

::::
SIV.

:::::::
Second,

::::
even

::
if
:::::
those

:::::::
regions

:::
are

:::
not

:::::
taken

::::
into

::::::
account

:::
for

:::
any

::::::
reason

::::
(for

:::::::
instance,

:::::::
logistic,

::::::::::::
environmental

:::::::::
harshness,

:::::::::
strategical

::::::::
sampling,

::::
etc),

::::::::::::::
observationalists

:::::
could

::::
still

:::
take

:::::::::
advantage

::
of

:::
the

:::::::
"region

::
of

:::::::::
influence"

:::::::
concept.

:::
By

:::::
doing

:::
so,

::::
they

:::::
avoid

:::::::::
deploying

:::
two

::
or

:::::
more

:::::::::::
observational

:::::::::
platforms

:::
that

::::::
would

::::::
provide

::::::::
relatively

::::::
similar

::::::::::
information

::
in
:::::
terms

:::
of

:::::::::
pan-Arctic

:::
SIV

::::::::::
variability.

:::::
Third,

::::::::::
considering

:::
that

::::::::::::
observational25

::::::::
platforms

:::
are

:::::::
already

::::::::::
operational,

:::
our

:::::
SEM

::::::
could

::
be

:::::::
trained

::::
with

::::::
model

::::::
outputs

:::::
(with

::::
the

:::::
same

::
or

:::::
other

:::::::::::::
state-of-the-art

:::::::::
AOGCMs)

:::
and

:::
so

:::
fed

::::
with

:::::::::::
observational

::::
data

::
to

::::::
project

:::::
future

:::::::::
pan-Arctic

::::
SIV

:::::::::
variability.

::::::
Within

::::
this

:::::::
context,

::
we

::::::
expect

::::
that

:::
this

:::::::::
manuscript

::::
will

:::::::
provide

::::::::::::::
recommendations

:::
for

:::
the

:::::::
ongoing

::::
and

::::::::
upcoming

:::::::::
initiatives

:::::::
towards

::
an

::::::
Arctic

::::::
optimal

:::::::::
observing

::::::
design.

::::::
Despite

:::::
these

:::::::::
promising

:::::::
results,

:::
we

::::::::
recognize

::::
that

:
it might be harder to achieve skillful predictions in the real world30

::::::::
real-world

:
employing statistical tools because the actual SIV variability is likely noisier than the one described by AOGCM

outputs.
:::::
While

:::::
model

::::::
results

::::::
provide

:::
an

::::::
average

::::::::::::
representation

::
of

::::::::
variables

:::::
inside

:
a
::::
grid

::::
cell,

::::::::
real-world

:::::::::::
observations

:::::
would

:::
be
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::::
much

:::::
more

:::::::::::::
heterogeneous.

::::
This

::::
issue

::
is
::::
even

:::::
more

::::::::::
pronounced

:::::
when

:::::::
looking

::
at

:::
our

::::
main

::::::::
predictor

:::::
(SIT)

::::
due

::
to

:::
the

:::::::
inherent

::::::::
roughness

::::
and

:::::::::
short-scale

::::::
spatial

::::::::::::
heterogeneity

::
of

:::
the

:::::::::
real-world

::::
SIT.

:::
As

:::::::::::
consequence,

::::
this

::::::::::::
heterogeneity

::::
may

::
be

::
a
::::::
source

::
of

::::::::::
uncertainties

:::
in

:
a
::::
real

::::::::
observing

::::::
system

::::
and

::::
more

:::::::::::
observations

:::::
would

:::
be

:::::::
required

:::
for

:::::::::
effectively

::::::
predict

:::
the

::::
SIV

::::::::
anomaly.

Some caution should be taken since our findings could be slightly different for other AOGCMs. A good perspective for ad-

dressing this issue is to reapply the methodology developed in this manuscript, but using all models that will be made available5

through the CMIP6. Also, with the sea ice depletion, some of the optimal sampling locations here suggested might be in a

free-ice region in the future
::
be

:::
ice

::::
free.

Finally, it is worthwhile mentioning the recent effort from the scientific community to enhance the Arctic observational

system. This effort takes place through recent observational programs such as the Year Of Polar Prediction (YOPP) (?) and

the MOSAiC International Arctic Drift Expedition (
::::::::::::::
Multidisciplinary

::::::
drifting

:::::::::::
Observatory

:::
for

:::
the

::::::
Study

::
of

::::::
Arctic

:::::::
Climate10

:::::::::
(MOSAiC; https://www.mosaic-expedition.org/; last access: 23 July 2019). Within this context, we expect that this manuscript

will provide recommendations for the ongoing and upcoming initiatives towards an Arctic optimal observing design.
::
01

::::::
March

:::::
2020).

:
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Dear Referee,

Thank you for  the time that  you have spent  on our manuscript.  We are happy with your positive
response and grateful for your comments and suggestions. These certainly contributed to improving the
quality of our manuscript. 

Below you will find a summary of the changes that we have made throughout the manuscript to address
all of your suggestions. The replies to your comments are written in blue, while your comments are
reproduced in black. Please, notice that line, page, and figure numbers mentioned in our rebuttal letter
refer to the new version of the manuscript unless stated otherwise.

Yours sincerely and on behalf of all co-authors,

Leandro Ponsoni

Anonymous Referee #1

GENERAL OVERVIEW

The  manuscript  presents  a  statistical  model  for  predicting  the  pan-Arctic  Sea  Ice  Volume  (SIV)
anomaly  on  an  interannual  timescale.  The long-term variability  and the  seasonal  cycle  have  been
subtracted to focus on the interannual SIV anomalies only, therefore excluding other better-understood
signals. The statistical model is trained on the output of three coupled climate models produced in the
frame of the HighResMIP. A low and high-resolution version of each model is analyzed.

The first part of the study inspects the capability of seven predictors to represent the sea ice volume up
to 12 months in advance. The authors focus on two target months: March (post-winter conditions) and
September (late summer conditions). These predictors are tested and combined, both on a pan-Arctic
and regional scale. The results show that the best predictive skill comes from the SIV itself, and by the
Sea Ice Thickness (SIT), while the other considered variables are progressively less skillful.

The study presents afterward a method to determine some optimal locations that are representative of
the SIV anomaly variance. Those locations are picked in a smart way to avoid clustering of points in
certain regions, while other parts of the Arctic Ocean are underrepresented. The authors show that the
statistical model can reconstruct approximately 70% of the SIV anomaly variance when fed with only 4
well-placed locations.

Even  though  the  results  here  presented  are  in  line  with  our  expectations  and  not  surprising,  the
manuscript tries to establish a robust protocol to predict the SIV anomaly. Furthermore, the fact that a
large part of this variance can be predicted with only a few sparse observations in strategic locations is
certainly interesting and can guide the design of future observation campaign in the Arctic region. The
comparison  of  high  and  low  resolutions  contributes  to  the  ongoing  discussion  in  the  modeling
community about the benefit of resolving small features compared to the computational costs.

The approach followed by the  authors  as  well  as  the  application  of  this  methodology to  the  SIV
anomaly is quite novel. The purpose of the work is well presented and the methodology is adequately



explained. The model data here analyzed are cutting edge in terms of model physics and resolution.
The manuscript is well written and the figures and tables convey the message effectively.

The content of the study is certainly appropriate for The Cryosphere and I recommend the publication
of this manuscript. Below I include a few minor points and suggestions that the authors should be able
to address easily.

Again, we thank the referee for her/his time and detailed revision of our manuscript. We appreciated
very much her/his comments, which were all taken into account in the revised version of the paper.
Below, we answer point-by-point all specific comments.

SPECIFIC COMMENTS

The  manuscript  provides  several  sampling  locations  with  a  multi-model  approach.  In  my
understanding, these locations are computed based on annually-averaged fields. I am wondering if the
sampling locations could be different for different target months. Also, some of the selected sampling
locations might be ice-free in some periods of the year. Could the authors comment on this?
All results of the manuscripts are based on monthly-averaged fields. This point is clarified in the text
[pg. 4, l.18–19] [pg. 4, l. 29–30]. 

Except from Sec. 3.1, where we first assessed the performance of different predictors by focusing on
March and September (Figs. 4 and 5), the other sections do not make a distinction of months. 

However, we understand the referee’s comments since we had posed the same question to ourselves
during the preparation of the manuscript’s first version. We have decided to avoid the distinction of
months for the following reasons: 

i. The motivation of the manuscript is to provide support for a  year-round in situ monitoring
system. Thus, those are sampling locations that better reproduce/predict the pan-Arctic sea ice
volume taking into account continuous monitoring throughout the entire year.

ii. A distinction of months would likely suggest relatively different locations. In the real world,
this would require a re-positioning of observational platforms (e.g., moorings and/or buoys)
every month.

iii. The fact that some sampling locations might be ice-free in some periods of the year is part of
the time-series variability and it brings predictability to the statistical model as well. If the
grid-point is ice-free for long periods, predictors as SIT, SIC and Drift will be disregarded by
the correlation map criterion. The SST predictor can still be useful even from grid-cells which
are mostly of the year ice-free. Nevertheless, the four most performance locations are likely
covered by sea ice during the entire year, for most of the years. 

iv. By splitting the time series into 12 parts, we substantially  reduce the number of points for
training and applying the statistical model. The fact that the statistical model is randomly
trained (70% of the data) and applied (30% of the data) within a Monte Carlo (MC) scheme
(500 reproductions) give us statistical robustness to assume that this configuration is the best
scenario  for  a  year-round  sampling  system.  We  have  tried  to  increase  the  number  of  MC
interactions but it turned out that 500 is already a safe threshold. 



I believe that an interesting exercise would be comparing the performance of the statistical model in the
optimal location to that in randomly chosen locations. This would show that the described method is
robust and in fact, needed. 
We absolutely agree, thanks for the interesting suggestion. To address it, we have compared the RMSE
and R2 calculated between the original and our-methodology-based reconstructed SIV anomalies (as
shown in Fig. 11a,b) against the same two metrics estimated by randomly chosen locations. To do so,
we have determined 100 combinations of 10 randomly chosen locations. For each combination, we
reconstructed the SIV anomaly using data from the 1st location, the 1st–2nd, the 1st–3rd, the 1st–4th,
and so on. Fig. A (this rebuttal letter) shows 2 of the 100 sets of randomly chosen locations. For the
sake of fairness, we have used only predictors from grid points enclosed into the region highlighted by
the red line in Fig. A. This region represents our global region of influence as defined by Fig. 8 (now
this line is also plotted in Fig. 9). It is worthwhile saying that 100 combinations of randomly locations
already provide robust statistics for such a comparison.
 
Fig. B shows that the SIV reconstructions based on our methodology (and optimally selected locations)
are more skillful compared to the predictions provided by the randomly chosen locations, taking into
account both metrics (RMSE and R2). This is valid for all models, considering a single location and/or
any combination of 1 up to 10 locations.

These  results,  and  respective  supporting  Fig.  B,  were  incorporated  into  the  new  version  of  the
manuscript (pg. 23, 1–9, Fig. 12) [pg. 23, l. 1–9, Fig. 12]. 

While the current model results provide an average representation of some variables inside a grid cell
with a substantial extension, and the gradients between different cells are generally small, real-world
observations would be much more localized and heterogeneous. Would this heterogeneity introduce
some  sampling  errors  and  consequently  require  more  observations  to  explain  the  SIV  anomaly
variance?
As the referee highlighted, real-world observations are much more heterogeneous than averaged grid
cell values. Compared to other oceanographic parameters such as temperature and salinity (unless in
regions marked by steep frontal systems), this issue is even more pronounced when looking at the sea
ice due to its inherent roughness. Thus, we indeed expect that this heterogeneity may be a source of
uncertainties in a real observing system. We also agree that more observations could attenuate these
uncertainties. This is a very important point that was quickly addressed in the first manuscript’s version
[former pg. 24, lines 3–4]. We have added a few more words to make this point clear in the manuscript
[pg. 26, l. 14–19] [pg. 26, l. 26–31]. 

Is the whole time period ( 150 years) necessary to reach the described results? I think it would be∼
interesting  to  assess  how many  years  of  observations  would  be  necessary  to  train  adequately  the
statistical model here presented, and robustly reproduce the HighResMIP results.
We have used model outputs from coupled historical runs, referred to as “hist-1950”, performed within
the context of HighResMIP. So, from all model configurations the data spans about 65 years, starting in
the early 1950s and finishing in mid-2010s [pg. 4, l. 6–8] [pg. 3, l. 33–34]. We understand that using
these 65-years is indeed necessary to achieve statistical robustness. 

1 – Line 16: It is worth mentioning also the SMOS sea ice thickness product.
SMOS is now mentioned in the text [pg. 3, l. 16] [pg. 3, l. 15]. 



2.1 – Line 6: Are the analysis on AWI-CM performed on the original FESOM2 grid or was the model
output interpolated to a regular grid?
Sea-ice concentration (SIC) was provided by the AWI group on the original atmosphere grid in the
framework of the PRIMAVERA project. Sea-ice thickness (SIT), sea-surface temperature (SST) and
sea-ice drift  speed (Drift) were also provided by AWI but  on a 1-degree regular  grid also in the
framework of the PRIMAVERA project. Sea-ice area (SIA) was computed from the SIC files and the
atmosphere grid-cell area, while Sea-ice volume (SIV) was computed from the SIT files and the ocean
grid-cell area (Docquier et al., 2019). Finally, ocean heat transport (OHT) was computed by the AWI
group directly from the raw data. Additional information is presented in Section 2.1 of Docquier et al.
(2019).

2.1 – Line 7: I would mention that the resolution difference between HR and LR in the Arctic is much
lower in AWI-CM compared to the other two systems.
This is indeed a good point. We thank the reviewer for spotting that. While the ocean resolution in
AWI-LR and AWI-HR varies between 24 and 110km, and between 10 and 60km, respectively (with
higher resolution in dynamically active regions), the ocean resolution is almost similar in the Arctic
Ocean (~25km). We brought this information to the text [pg. 4, l. 33–34 to pg. 5, l.1–4] [pg. 4, l. 21–
26].  In addition, since the grid used by AWI is not trivial to understand without a supporting plot, we
are directing the reader to Fig. 4 of Sein et al. (2016). 

2.2 – Line 34: Is there a particular reason for choosing AWI-LR?
No, there isn’t a particular reason for choosing AWI-LR. We selected AWI-LR as the example-case.
“AWI” is the first model in our alphabetically-sorted list and, in the other model-comparative figures
(e.g., Fig. 6), we always referred first to the low resolution (LR) version. We clarified this point in Fig.
2’s caption.

2.4 – Line 12: Be specific about the “common grid”. Is it a low or high-resolution grid. Can this have
an impact on the results?
We agree that this point requires clarification. As suggested by the score maps in Fig. 6, each model
configuration indicates its own best sampling location (smallest RMSE in the score map). However, the
RMSE values show that overall  there is  a good agreement on the regions with high scores (small
RMSE values represented by yellow shades). To achieve an ensemble best location we first applied Eq.
4  to  normalize  all  score  maps  between  0  and 1  so  that  the  models  have  the  same weight  in  the
averaging step  (Fig. C, first column). However, since the models have different grid-resolution, we
have interpolated the score maps from the different models into a common 1°×1° grid. By performing
this step, we can calculate an ensemble mean score map.
The interpolation of the individual score maps into a common 1°×1° grid for further computation
of an ensemble mean score map has no impact on the results [pg. 9, l. 32–33] [pg. 9, l. 28–29].  
Notice that the interpolated score maps (Fig. C, second column) preserve the best performance regions.



Fig. A: Map displaying two examples (out of 100) of randomly chosen locations. All random locations are placed into the
area enclosed by the red line. This region represents our global region of influence as defined in Fig. 8.



Fig. B: Root Mean Squared Error (RMSE; left column) and coefficient of determination (R2;  right column) calculated
between the original and reconstructed SIV anomalies. The reconstructed SIV volume anomalies are based on the optimally
selected locations following our methodology (full dots), as well as by randomly chosen locations (empty dots). In the last
case, 100 sets of 10 randomly chosen locations are used. For each of the 100 sets, the SIV anomaly is reconstructed using
data from the 1st location, the 1st–2nd, the 1st–3rd, ..., the 1st–10th. The random locations are all placed into the region
enclosed by the red line shown in Fig. A. The vertical bars associated with the empty dots represent the one standard
deviation.



Fig. C: Normalized score maps calculated for the different model outputs with the original grid (left column) and after the
interpolation to the common 1°×1° grid (right column). Notice that the interpolation has no impact on the best performance
regions (shades of yellow). The interpolation is a required step for calculating an ensemble score map since the models have
different resolutions.



Dear Referee,

Thank you for the time that you have spent on our manuscript and for the detailed “Referee comment”
report. We are happy with the positive response and grateful for your comments and suggestions. These
certainly contributed to improving the quality of our manuscript. 

Below you will find a summary of the changes that we have made throughout the manuscript to address
all of your suggestions. The replies to your comments are written in blue, while your comments are
reproduced in  black. Please, notice that all line, page and figure numbers mentioned in our rebuttal
letter refer to the new version of the manuscript, unless stated otherwise.

Yours sincerely and on behalf of all co-authors,

Leandro Ponsoni

Anonymous Referee #2

Summary statement The motivation for this study is to contribute to an Arctic observing system by
identifying key locations where sea ice thickness should be measured in order to have predictability.
This  study  contributes  to  predictability  and  also  to  a  stake-holder  need  (i.e.,  observationalists)  of
developing an efficient Arctic observing network. I feel the science is strong with really interesting
(and useful) results and worthy of publication. The figures are well-prepared and understandable. My
main critique is  that  the text  needs  to  be smoothed out  and clarified.  I  made detailed suggestions
through about half of the document and these comments can be applied throughout the remaining parts
of the paper. I have a few interpretation suggestions in the major comments. This paper is relevant for a
broad science audience so the clarity of the writing is really critical for it to be broadly accessible.

Again, we thank the referee for her/his thorough review of the manuscript. We appreciated very much
her/his detailed comments not only in terms of science but also regarding the writing style. Below, we
answer point-by-point all major and minor comments.

Major Comments 

1) It may be very useful to include stronger arguments as to why this is a model-only study. This can be
strengthened in the introduction. (Page 3 lines 10-15, expand here in a way that puts it to rest). You
want to be more convincing as to why this will be applicable in real life.
We have slightly changed the introduction to properly address this point. Now we have reinforced in
this part of the text that observations of sea ice thickness, required for calculating the SIV, present
limitations in the warmer seasons. Therefore, this variable is not made available year-round from the
classical satellite campaigns [pg. 3, l. 17–19] [pg. 3, l. 16–18]. In the following paragraph [pg. 3, l. 20–
23] [pg. 3, l. 18–20], we reemphasize that the models used in this work, which are cutting edge in terms
of model physics and resolution, fairly represent the thermodynamic and dynamic sea ice processes
linking predictors and predictand. In Sec. 45, we have added a discussion on how our study could be
used in different ways by observationalists  [pg. 26, l. 26–33] [pg. 26, l. 17–25].



2) It needs to be made clear when the models are described (bottom page 3) that these are coupled
climate models and are not pegged to observed conditions. Also, Discuss the GHG scenarios used for
these particular simulations because all this information will make it easier for the reader to understand
the results. For climate people, these are known but this paper should be accessible by weather and
observational scientists as well as potentially policy experts (since they will help formulate the Arctic
observing network).
That is indeed a good point. These two aspects are now clarified in the first paragraph of Sec. 2.1. [pg.
4, l. 3–13] [pg. 3, l. 29 to pg. 4, l. 6]. 

3) Beginning of Section 2.2. This first paragraph lays out the methodology. I have read it twice and it is
not  easily  understandable.  Please revise this  to be more precise and direct.  I  am not sure what  to
suggest specifically. Some thoughts a. Define anomaly earlier when you refer to fig 1. Just use it here.
b. Move the sentence ‘Overall , two categories of predictors are tested...(line 18, page 5) to be the
second sentence. c. Revise the first sentence of your paragraph (your topic sentence) to something like:
‘Potential  predictor  variables  are  identified  for  the  empirical  statistical  model  that  predicts  SIV
anomalies.’ There are extra words in this sentence and the key point of the paragraph is getting lost.
We agree with the referee. All paragraphs from Sec. 2.2 were rewritten to bring clarity to the text. To
make it easier for the reader, an explanation for the term “anomaly” is provided in the Introduction [pg.
2, l. 31–32] [pg. 2, l. 30] and also in Sec. 2.1 [pg. 4, 20–22] [pg. 5, 1–3].

4) I have some suggestions regarding the structure of the writing. a. Strengthen your ‘topic sentences’
that start each paragraph. This sentence should tell the reader what is in this paragraph without having
to read the paragraph. The sentences in the paragraph provide the evidence or facts to support the topic
sentence. This type of structure makes it easier for the reader to understand your paper quickly.
We thank the referee for the suggestion. We minutely addressed all the comments in this report taking
into account this comment (4) and also the summary statement. We have promoted several changes
throughout  the  text  in  order  to  make it  clearer  and easier  to  read  for  a  non-specialized  audience.
Regarding this, we have asked for a few colleagues from different science fields to check whether or
not the manuscript is understandable. Apparently, we have made the job. In any case, further comments
on how to make this paper more accessible for a broader audience are always welcome.

5) It is not clear to me what the time scale for the predictions is in Section 2? (re: Fig 2, Table 1). It is
one-month lead? Lag-0 is what I think it is but I did not see this explained clearly. In addition, further
interpretation of the panels in Fig. 2 would be helpful because reading the 2.2 and 2.3, which refer back
to Fig. 2, I see that I do not have a clear understanding or appreciation for what Fig 2 shows. It would
be good to discuss each panel and provide interpretation of the panel.
It is indeed a lag-0 correlation. This is now clarified in the text [pg. 6, l. 13; Fig. 2’s caption] [pg. 6, l.
8; Fig. 2’s caption]. As mentioned in the answer to item (3), we have rewritten Sec. 2.2. In the new
text, we are providing a better explanation of Fig. 2, considering all panels.

6)  Could  OHT be  a  poor  predictor  in  these  models  because  of  model  biases  such  as  too  strong
stratification in the Arctic ocean so that ‘heat’ never makes it to the upper layers? This may be worthy
of the discussion.
We agree with the referee. This might be a potential reason why OHT is a poor predictor. This is an
interesting  point  that  could  be  investigated  further  with  more  detailed  analysis.  We  brought  this
discussion to the text [pg. 23, l. 25–28] [pg. 23, l. 28–30]. 



7) Conclusions. The results are summarized very nicely in the model context. As an observationalist
(BTW, I am a modeler), I would want to know how this is relevant in the real world. Some discussion
on linking this to observations would be nice. I know this is not easy and I do not suggest that you do
this research for this paper, but providing these insights will help you link it better to the people you
want to use this work. If you can provide a framework that links this study to the observations, that
would really strengthen the paper.
We envisage  three  main  ways  by  which  this  work  could  support  observationalists  in  a  real-world
observing system. The first is providing recommendations for optimal sampling locations. We believe
that our multi-model approach provides a solid view of the sites that better represent the variability of
the pan-Arctic SIV. Second,  even if  those regions are  not  taken into account  for any reason (e.g.,
logistic, environmental harshness, etc), observationalists could still take advantage of the "region of
influence" concept. By doing so, they avoid deploying two or more observational platforms that would
provide relatively similar information in terms of pan-Arctic SIV variability. Third, considering that
observational platforms are already operational, our SEM could be trained with model outputs (with the
same or other state-of-the-art AOGCMs) and so fed with observational data to project future pan-Arctic
SIV variability.
This discussion is now added to Sec. 45 [pg. 26, l. 26–33] [pg. 26, l. 17–25].

Minor Comments 
1) Page 1, Line 24, change ‘proven to bring’ to ‘led to’
Changed [pg. 2, l. 5].

2) Page 2, Line 1, change ‘disturbance of’ to ‘disturbance in’
Changed [pg. 2, l. 8] [pg. 2, l. 11].

3)  Page 2, line 1,  split  everything ‘which has also...’ into a separate sentence to make it  easier to
understand.
We have slightly reformulated the paragraph to accommodate this suggestion [pg. 2, l. 5–8] [pg. 2, l. 8–
12].

4) Page 2, line 4, change ‘sailing routes’ to ‘ship routes’, not all of the ship may be sailboats.
Changed [pg. 2, l. 9] [pg. 2, l. 13].

5) Page 2, line 5, change ‘At global scale’ to ‘Globally’
Changed [pg. 2, l. 11] [pg. 5, l. 5].

6) Page 3, line 1, change ‘To the knowledge of the authors’ to ‘To the best of the authors’ knowledge’
Changed [pg. 3, l. 4] [pg. 3, l. 3].

7) Page 3, line 15-16, change ‘What are the performance ..’ to ‘What is the performance...’
Changed [pg. 3, l. 23] [pg. 3, l. 22].

8) Page 3, line 17, change ‘a large amount...’ to ‘a substantial (e.g., 70%) of the original..’
We have incorporated this suggestion, but in a slightly different way. We keep the info that 70% is an
arbitrarily chosen threshold [pg. 3, l. 25] [pg. 3, l. 24].

9) Page 4, Figure 1 top panel is not even mentioned in the text. The figure panels have a and b on the
right-hand side. I did not see them at first. It is standard to have them on the left corner. I suggest you
edit this on all your figure panels.



We have made a proper reference to Fig. 1a. in the text [pg. 4, l. 19–22] [pg. 4, l. 31–35]. The panel
index letter is now placed in the right-hand side in Fig. 1. Also in Figs. 4, 5, 11 and 12.
For Figs. 2, 6, 7 and 8 we preferred to keep the letter indicating the panel index centralized. We think
the letters are easily spotted in that way.

10) Page 4, line 3, make it clear that the long-term trend and seasonal cycle has been removed. The text
‘(no long-term trend; no seasonal cycle)’ is somewhat vague. Was there never a trend? It is clear from
the top panel that there are trends but it is helpful for the reader if the language is unambiguous.
We agree with the referee. Indeed the text “(no long-term trend; no seasonal cycle)” is somewhat
vague and confusing. We excluded this piece of text (or similar) from the entire manuscript. In the new
manuscript’s version, we have first defined SIV anomaly in the Introduction [pg. 2, l. 31–32] [pg. 2, l.
30]. This definition is recalled when describing Fig. 1 in Sec. 2.1 [pg. 4, 20–22] [pg. 5, 1–3].

11) Page 5, line 7, Clarify the geographical span of the different resolution. For a student, the changing
resolution is confusing.
Indeed, this is an important point. The ocean resolution of  AWI-LR varies from 24 to 110 km, with

25 km in the Arctic∼ .  The ocean resolution of  AWI-HR varies from 10 to 60 km, with a refined
resolution in dynamically active regions (e.g., 10km in the vicinity of the Gulf Stream), and ∼ 25 km∼
in the Arctic. 
An important point recalled by Referee #1 is that the resolution difference between HR and LR in the
Arctic is much lower in the AWI climate model compared to the other two systems. This point is
clarified in the text. In addition,  since the grid used by AWI is not trivial to understand without a
supporting plot, we are directing the reader to Fig. 4 of Sein et al. (2016) [pg. 4, l. 33–34 to pg. 5, l.1–
4] [pg. 4, l. 21–26]. 

12) Section 2.3 is written very clearly. It may be worth saying something about including SIV in the
SEM. IT seems to me that SIV could dominate the results since the autocorrelation is so strong in SIV.
This is a good point. We have incorporated your suggestion to the last paragraph of Sec. 2.3 [pg. 7, l.
18–20 to pg. 8, l.1–6] [pg. 8, l. 24 to pg. 9, l. 2].

13) Section 2.4, numerous grammar issues in this section. This section is rough and needs revision.
To bring clarity to the text, we reviewed and rewrote the entire Section 2.4.

14) Fig. 10, the lag/lead time for the reconstruction is not clear to me, related to comments about Fig. 1.
As for Fig. 1, this is indeed a lag-0 comparison. This info is clarified in Sec. 3.2.2 [pg. 19, l. 7] and in
the Fig. 10’s caption.

15) Page 22, line 30, remove ‘respectively’. I do not think that is needed here because the numbers are
the same as highlighted by the word ‘both’.
Indeed, “respectively” was removed from the text [pg. 25, l. 9].


