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Abstract. Water flowing below glaciers exerts a major control on glacier basal sliding. However, our knowledge of the physics

of subglacial hydrology and its link with sliding is limited because of lacking observations. Here we use a two-year long

dataset made of on-ice measured seismic and in-situ measured glacier basal sliding speed on Glacier d’Argentière (French

Alps) to investigate the physics of subglacial channels and its potential link with glacier basal sliding. Using dedicated theory

and concomitant measurements of water discharge, we quantify temporal changes in channels hydraulic radius and hydraulic5

pressure gradient. At seasonal timescales we find that hydraulic radius and hydraulic pressure gradient respectively exhibit

two- and six-fold increase from spring to summer, followed by comparable decrease towards autumn. At low discharge during

the early and late melt season channels respond to changes in discharge mainly through changes in hydraulic radius, a regime

that is consistent with predictions of channels behaving at equilibrium. In contrast, at high discharge and high short-term

water-supply variability (summertime), channels undergo strong changes in hydraulic pressure gradient, a behavior that is10

consistent with channels behaving out-of-equilibrium. This out-of-equilibrium regime is further supported by observations at

the diurnal scale, which support that channels pressurize in the morning and depressurize in the afternoon. During summer we

also observe high and sustained basal sliding speed, which supports that the widespread inefficient drainage system (cavities)

is likely pressurized concomitantly with the channel-system. We propose that pressurized channels help sustain high pressure

in cavities (and therefore high glacier sliding speed) through an efficient hydraulic connection between the two systems. The15

present findings provide an essential basis for testing the physics represented in subglacial hydrology and glacier sliding

models.

1 Introduction

Subglacial water flow exerts a major control on glacier and ice sheet dynamics and their response to variations in water supply

(e.g. Iken and Truffe, 1997; Zwally et al., 2002; Sundal et al., 2011; Bartholomaus et al., 2011; Chandler et al., 2013; Hewitt,20

2013; Brondex et al., 2017; Joughin et al., 2018). Water flowing at the base of glaciers modulates glacier basal sliding by

lubricating the ice-bed interface. The higher the water pressure the weaker the basal friction, resulting in faster glacier sliding

(Iken and Bindschadler, 1986; Schoof, 2005; Gagliardini et al., 2007). Water pressure does not simply depend on the total
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water input but also on the way the water is conveyed through the subglacial drainage system (Lliboutry, 1968), a system that

has, yet, yielded limited observations (Flowers, 2015).25

The subglacial drainage system of hard-bedded glaciers is considered to be two-fold. First, cavities form on the downstream

lee of bedrock bumps and are thought to enhance basal sliding through reducing the apparent bed roughness (Lliboutry, 1968).

These cavities constitute a widespread inefficient drainage system associated with high basal water pressure, slow water flow

(of the order of 10−2 m.s−1, see e.g. Richards et al. (1996)) and limited hydraulic conductivity. Second, subglacial channels30

form into the ice from conduit melt by flowing water heat dissipation, and close through ice creep (Röthlisberger, 1972; Nye,

1976). These channels constitute a localized efficient drainage system associated with lower basal water pressure, faster wa-

ter flow and higher hydraulic conductivity compared to within cavities. A drainage system for which a steady water input is

routed through channels tends to slow basal sliding compared to if water is predominantly routed through cavities (e.g. Foun-

tain and Walder, 1998; Schoof, 2010). Most of the current subglacial drainage models (Schoof, 2010; Hewitt, 2013; Werder35

et al., 2013; Gagliardini and Werder, 2018) are based on this two-fold representation. These models succeed in capturing the

two-way channel-cavity coupling but still strongly rely on the choice of model parameters (e.g. cavities and channels hydraulic

conductivity, channels opening and closing rates, see de Fleurian et al., 2018). Observational constraints on these parameters

(e.g. water pressure, channel properties) and on the channel-cavity-sliding link are however very limited because of the limited

observations of the drainage system and concomitant measurements of basal sliding speed (Flowers, 2015; de Fleurian et al.,40

2018).

Direct observations of the drainage system on temperate glaciers have been relying on the analysis of water discharge mea-

sured near glacier outlets (Collins, 1979; Hooke et al., 1985; Tranter et al., 1996, 1997; Anderson et al., 2003; Theakstone

and Knudsen, 1989; Chandler et al., 2013), of dye tracing experiments (Seaberg et al., 1988; Willis et al., 1990; Nienow et al.,45

1996, 1998), of recently exposed subglacial environments (Vivian and Bocquet, 1973; Walder and Hallet, 1979), of local water

pressure boreholes measurements (Hantz and Lliboutry, 1983; Copland et al., 1997; Sugiyama et al., 2011; Andrews et al.,

2014; Hoffman et al., 2016; Rada and Schoof, 2018; Gräff et al., 2019) or of radar measurements (Church et al., 2019). These

methods are mostly point-scale and often focus on the cavity-system due to the very narrow extent of the channel-system (Rada

and Schoof, 2018). As a consequence, quantitative information on channels’ long term temporal dynamics is limited, such that50

channels’ properties (e.g. size, water flow velocity) and dynamics (e.g. opening and closure rate) remain poorly constrained.

Interactions between channels and cavities are often inferred from evaluating glacier flow-velocity variations in response to

meltwater supply variability. High and sustained water supply over monthly timescales (e.g. during the peak melt season) has

been linked to glacier deceleration (Bartholomew et al., 2010; Sole et al., 2013; Tedstone et al., 2013, 2015). This behavior55

is related to the fact that channels-development increases the drainage system capacity and is, therefore, expected to reduce

the average basal water pressure (Fountain and Walder, 1998). On the contrary, during short term water supply increase (e.g.

at the early melt season or at diurnal scales), glacier velocity changes have been observed to occur concomitantly with wa-
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ter supply changes (Parizek and Alley, 2004; Palmer et al., 2011; Sole et al., 2013; Doyle et al., 2014; Vincent and Moreau,

2016). This behavior is mostly related to the pressurization of the cavity-system, causing average basal water pressure rise and60

subsequent basal sliding speed increase (e.g. Nienow et al., 2005; Schoof, 2010; Rada and Schoof, 2018). During periods of

well-developed channelized system (e.g. in summer), this behavior has also been observed because of a channelized system

drainage capacity being overwhelmed by the water input changes (Bartholomaus et al., 2008; Andrews et al., 2014) causing

pressurized channel flow. These studies have been capable to underline the overall differences between cavity and channel con-

trol on subglacial water pressure over different timescales. However, the lack of dedicated channels observations independent65

of those on cavities and concomitant with glacier sliding speed measurements renders difficult a more quantitative characteri-

zation of the physics of subglacial hydrology and its link with sliding.

Here we use on-ice seismology to explore the evolution of subglacial channels over two complete melt seasons. Over the last

decade an increasing number of studies have shown the high potential of analyzing high-frequency (>1 Hz) ambient seismic70

noise to investigate turbulent water flow and sediment transport in terrestrial rivers and streams (e.g. Burtin et al., 2008, 2011;

Tsai et al., 2012; Schmandt et al., 2013; Gimbert et al., 2014). The recent work of Gimbert et al. (2016) based on observations

of Bartholomaus et al. (2015) suggests that passive seismology may help filling the observational gap on the physics of sub-

glacial channels. Gimbert et al. (2016) adapted to subglacial channels a physical framework that describes how turbulent water

flow generates seismic waves and that was initially developed for rivers by Gimbert et al. (2014). Contrary to rivers, subglacial75

channels have the capability to be full and thus to undergo pressurized situations. By applying this modified framework to the

Mendenhall glacier (Alaska) over a two-month long summer period, the authors demonstrate that one can use concomitant

seismic noise and water discharge measurements to continuously and separately quantify relative changes in channel hydraulic

pressure gradient and channel hydraulic radius. They inferred that channels mainly evolve through changes in hydraulic ra-

dius over long time scales (multi-weekly), whereas changes in hydraulic pressure gradient are often short-lived (sub-daily to80

weekly). The use of such an approach to investigate channel physics on relevant glaciological timescales (e.g. diurnal and

seasonal) yet remains to be conducted, and the resulting channels properties remain to be compared to other independent ob-

servations, such as basal sliding speed. This is the objective of our study.

We conduct a unique and almost uninterrupted two-years passive seismic survey on Glacier d’Argentière (French Alps),85

together with continuous measurements of subglacial water discharge, glacier basal sliding speed and local subglacial wa-

ter pressure. First, we characterize the subglacial channel-flow-induced seismic power signature and use the model of Gimbert

et al. (2016) to derive timeseries of hydraulic pressure gradient and hydraulic radius. We then compare these channel properties

to the other independent measurements of glacier sliding speed and basal water pressure. We also compare our seismically-

derived observations with the theory for subglacial channels physics proposed by Röthlisberger (1972) to assess the implica-90

tions of these analysis for channels physics. Finally, we investigate the equilibrium state of subglacial channels to discuss the

channel-cavity interactions and their potential link with basal sliding throughout the melt season. Doing so will also allow us
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to discuss the applicability of such an approach to improve our general knowledge on subglacial hydrology mechanisms of

mountain glaciers and ice sheets.

2 Rational95

Here we provide a brief background on the theoretical framework of Gimbert et al. (2016), which relates seismic noise and

water discharge to subglacial channel-flow properties, and that of Röthlisberger (1972), which predicts subglacial channel

hydraulic pressure gradient and hydraulic radius scaling as a function of water discharge under certain assumptions. Refer to

table C1 in Appendix C for a summary of all variables, physical quantities, and mathematical functions defined in the following

sections.100

2.1 Theory of subglacial channel-flow-induced seismic noise

Turbulent water flow in a river or a subglacial channel generates frictional forces F acting on the near boundaries (e.g. river

bed or conduit wall), which in turn cause seismic waves with given amplitude and spectral signature (Gimbert et al., 2014). By

propagating through a medium (e.g. rock, gravel or ice), seismic waves cause ground motion at any location x away from the

source location x0 (Fig. 1). The relationship between the force timeseries F (t,x0) applied at x0 in a channel and the ground105

velocity timeseries U(t,x) measured at x can be described from Aki and Richards (2002) as

U(t,x) = F (t,x0)⊗
dG(t,x;x0)

dt
, (1)

where G(t) is the displacement Green’s function that converts the force applied at x0 into ground displacement at x and the

notation ⊗ stands for the convolution operator. The seismic power P of such signal is defined over a time period T as

P(f,x) =
U(f,x)2

T
. (2)110

where U(f) = F(U(t)) is the Fourier transform of the ground velocity timeseries and f is the frequency. We note Pw the

seismic power induced by turbulent water flow. Based on a description of the force F (f) as a function of flow parameters,

Gimbert et al. (2014) demonstrated that Pw scales as

Pw(f)∝ ζ(
H

ks
)Wu

14/3
∗ (3)

where u∗ is river wall shear velocity, W is river width and ζ is a function that accounts for turbulence intensity changes with115

changes in the apparent roughness that depends on H the flow depth and ks the wall roughness size (Fig. 1).
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Figure 1. Schematic representation of subglacial channel-flow-induced seismic noise. Representation of an idealized conduit of hydraulic
radius R with a wall shear velocity u∗ (see Eq.(3)). Turbulent flow generates frictional forces F causing seismic waves and resulting in a
ground velocity U that is recorded at a distant seismic station (see Eq.(1)).

To relate Pw to subglacial channels properties, Gimbert et al. (2016) expressed the shear velocity as u∗ =
√
gRS where g is

gravitational acceleration, R the hydraulic radius and S the hydraulic pressure gradient. The hydraulic radius R is defined as the

ratio of the cross-sectional area of the channel flow to its wet perimeter (Fig. 1). This parameter scales with flow depth for open120

channel-flow. The hydraulic pressure gradient S is a function of both the water pressure rate of change in the flow direction

and the bed slope. For free surface flow S equals channel slope. In a case of constant channel slope and channel geometry,

increasing S means closed and pressurizing channel-flow.

Gimbert et al. (2016) then expressed water discharge Q as a function of water flow velocity Vw using the Manning-Strickler125

relation Vw = R2/3S1/2

n′ with n′ is the Manning’s coefficient (Manning et al., 1890; Strickler, 1981). To study Pw for a subglacial

channel flow configuration, Gimbert et al. (2016) considered that the source-to-station distance is constant, such that changes

in Pw are not caused by changes in source (channel) position. Gimbert et al. (2016) then assumed a constant number N of

channels and thus neglected the dependency of Pw on N. Here we include the dependency of Pw on N by considering that

all channels have equal hydraulic radius and hydraulic pressure gradient (i.e. are of similar size and position compared to the130

seismic station) such that

Pw ∝ NβR14/3S7/3 (4)

Q∝ NβR8/3S1/2, (5)
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where β is a function of conduit shape and fullness that may be neglected (see supporting materials of Gimbert et al. (2016)

for details). Combining Eqs.(4) and (5) and neglecting changes in β leads to the two following formulations for Pw,135

Pw ∝ R−82/9Q14/3N−11/3 (6)

Pw ∝ S41/24Q5/4N−1/4. (7)

From Eqs.(6) and (7) two end-member cases can be evaluated. If changes in discharge occur at constant channel geometry

(i.e. constant R and N) from Eq.(6) we have

Pw ∝ Q14/3, (8)140

In contrast, if changes in discharge occur at constant hydraulic pressure gradient and channel number (regardless of whether

the conduit is full or not) from Eq.(7) we have

Pw ∝ Q5/4. (9)

Beyond these end-member scenarii, one can use measurements of Pw and Q to invert for relative changes in R and S using

Eqs.(6) and (7) as:145

S = Sref

(
Pw

Pw,ref

)24/41( Q
Qref

)−30/41( N
Nref

)6/41

, (10)

R = Rref

(
Pw

Pw,ref

)−9/82( Q
Qref

)21/41( N
Nref

)−33/82
, (11)

where the subset ref stands for a reference state, which has to be defined over the same time period for both Q and Pw,

but not necessarily for R and S. Details on the derivation from Eqs.(6) and (7) to Eqs.(10) and (11) can be found in Gimbert

et al. (2016). In the following we consider N as constant to invert for R and S, and later we support that our inversions are not150

significantly biased by potential changes in N (Sect. 6.1).

2.2 R-channels theory

To date, state-of-the art subglacial drainage models use the theories of Röthlisberger (1972) to describe subglacial channel

dynamics (see de Fleurian et al. (2018) for model inter-comparisons). Channels described in these theories are assumed to be

of semi-circular shape and to form into the ice through melt by heat dissipation from the flowing water and close through ice155
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creep. A channel evolves at steady state with water discharge Q if melt and creep rates change instantaneously with changes in

Q. A steady-state channel is at equilibrium with Q if melt (opening) rate equals creep (closure) rate, in which case Röthlisberger

(1972) predicts

R∝ Q9/22 (12)

S∝ Q−2/11. (13)160

For a steady-state channel not at equilibrium with Q and that responds solely through changes in pressure gradient S (i.e. R

is constant) Röthlisberger (1972)’ equations show that:

S∝ Q2. (14)

Further details on the derivation of these equations from Röthlisberger (1972) can be found in Supplementary Sect. S2. Later

we compare our inversions of changes in R and S (using seismic observations) with changes in R and S as predicted by the165

theory of Röthlisberger (1972) for steady-state channels at equilibrium or not at equilibrium with water discharge.

3 Field setup

3.1 Site and glaciological context

Glacier d’Argentière is a temperate glacier located in the Mont Blanc mountain range (French Alps, see Fig. 2). The glacier is

c. 10 km long and covers an area of c. 12.8 km2. It extends from an altitude of c. 1700 m above sea level (asl) up to c. 3600170

m asl in the accumulation zone. Its cumulative mass balance has been continuously decreasing from -6 m water equivalent

(w.e) in 1975 to -34 m w.e presently compared to in the beginning of the twentieth century (Vincent et al., 2009). This site is

ideal to study subglacial channels properties since it presents a typical U-shaped narrow valley (Hantz and Lliboutry, 1983)

and hard bed conditions (Vivian and Bocquet, 1973), two conditions that favor a well-developed R-channel subglacial network

(Röthlisberger, 1972).175

In the present study we analyze the data recorded from spring 2017 to autumn 2018 with seismometers located between

2350 and 2400 m asl (Fig. 2). This location corresponds to the cross-section No. 4 monitored by the French glacier-monitoring

program GLACIOCLIM (https://glacioclim.osug.fr/). There the glacier is up to c. 280 m thick (Hantz and Lliboutry, 1983,

updated from a radar campaign conducted in 2018). Subglacial water discharge is monitored 600 m downstream of the seis-180

mometers at 2173 m asl near the glacier ice fall in subglacial excavated tunnels maintained by the hydroelectric power company

Emosson S.A. Subglacial water is almost entirely evacuated through one major snout, as supported by direct observations of

very limited water flowing elsewhere. Thus discharge measured at this location is well representative of discharge subglacially

routed under the seismometers location. Discharge measurements are conducted from mid-spring to early autumn with an ac-
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Figure 2. Monitoring setup of Glacier d’Argentière. (a) Aerial view of Glacier d’Argentière field site (France) and location of the instruments
used in this study. The aerial photography was taken in 2015. The seismic network is composed of the GDA (red circles) and ARG (red stars)
borehole stations and is located according to positions in summer 2018. Station ARG.B02 is installed c. 70 m deep in the ice whereas the
four other stations are installed c. 5 m deep. The GLACIOCLIM (https://glacioclim.osug.fr/) automatic weather station (green star, AWS)
provides air temperature and precipitation. Basal sliding speed (orange circle) and water discharge (blue circle) are measured thanks to
direct access to the glacier base from excavated tunnels. Basal water pressure is measured at a similar location as that of basal sliding speed
measurements. (b) Picture of the seismic instrumental setup used in this study. (c) Picture of the subglacial observatory with the bicycle
wheel used to measure basal sliding speed. [Photo credits: (a) IGN France, https://www.geoportail.gouv.fr/, (b) N. Maier, (c) L. Moreau].

curacy of 0.01 m3s−1 every 15 min by means of a Endress Hauser sensor measuring the water level in a conduit of known185

geometry. The minimum measurable value for water discharge is limited by the measurement accuracy and the maximum one

is of 10 m3s−1 due to the capacity of the collector. Because sediments accumulate in the collector, flushes are recorded when

the latter is emptied, causing glitches in the discharge record. We remove these glitches removing Q values that present d(Q)
dt

higher than 0.2 m3 per 15 min. Within the same tunnel network, a subglacial observatory is used to measure basal sliding

speed out of a bicycle wheel placed in contact with the basal ice (Vivian and Bocquet, 1973). Since August 2017 basal sliding190

speed is measured at a time resolution of 5 s over a 0.07 mm’ space segmentation. In the close vicinity a pressure sensor,

of gauged type, is used to measure subglacial water pressure with 10 min time resolution and an accuracy of 400 Pa. The

sensor is installed in a borehole drilled from the excavated tunnels up to the glacier bottom (see Vivian and Zumstein (1973)

for details). Air temperature and precipitation measurements are obtained at a 0.5 h time step through an automatic weather

station maintained by the French glacier-monitoring program GLACIOCLIM and located on the moraine next to the glacier195

at 2400 m asl. Precipitation is measured with an OTT Pluvio weighing rain gauge with a 400 cm2 collecting area. When air

temperature is below zero, only precipitation occurrences are accurate, but not absolute values because of snow clogging.

3.2 Seismic instrumentation

We use five seismic stations installed in the lower part of the glacier (Fig. 2). The instruments belong to two seismic networks,200

denoted as GDA (3 stations) and ARG (2 stations). Stations GDA.01, GDA.02 and GDA.03 were deployed in Spring 2017 with

c. 200 m inter-station distances. These stations have digitizers of the type Nanometrics Taurus, set to 16 Vpp sensitivity and a
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500 Hz sampling rate, and borehole type sensors (model Lennartz 3D/BH), with an Eigen frequency of 1 Hz. Station ARG.B01

was installed in October 2017 at the center of the GDA network at about 100 m from each GDA stations. The digitizer used for

that station is a Geobit-SRi32L set to a 10 Vpp sensitivity and a 1000 Hz sampling rate. The sensor is of borehole type (model205

Geobit-C100) with an Eigen frequency of 0.1 Hz. Station ARG.B02 was installed in April 2018 about 50 m upglacier from

station ARG.B01. The digitizer used for that station is a Geobit-SRi32 set to a 0.625 Vpp sensitivity and a 1000 Hz sampling

rate. The sensor is of borehole type (model Geobit-S400), with an Eigen frequency of 1 Hz. All stations were installed c. 5 m

deep below the ice surface, except ARG.B02 which was placed c. 70 m deep. A few data gaps occurred during our study due

to difficulties in ensuring continuous power supply and data storage on glaciers.210

4 Methodology

Refer to table C1 in Appendix C for a summary of all variables, physical quantities, and mathematical functions defined in the

following sections.

4.1 Calculation of seismic power at a ‘virtual’ station215

The raw seismic record at each station is first corrected from the sensor and digitizer responses. Then, the frequency-dependent

seismic noise power P is computed using the vertical component of ground motion (see Eq.(2)). P is calculated with the

Welch’s method over time windows of duration dt with 50 % overlap (Welch, 1967). The longer dt, the more likely highly

energetic impulsive events occur and overwhelm the background noise within that time window (Bartholomaus et al., 2015).

To maximize sensitivity to the continuous, low amplitude, subglacial channel-flow-induced seismic noise and minimize that220

of short-lived but high energy impulsive events, we use a short time window of dt = 2 s to calculate P, and average it over

time windows of 15 min in the decimal logarithmic space. We express P in decibel (dB, decimal logarithmic), which allows

properly evaluating its variations over several orders of magnitude.

We reconstruct a two-year long timeseries by merging records from the five available stations into one unique record at a225

‘virtual’ station. To minimize site and instrumental effects on seismic power we shift the average power at each station to a

reference one taken at ARG.B01. The seismic signal at our ‘virtual’ station is composed of the GDA seismic signals between

May 2017 end December 2017, and of the ARG seismic signals between December 2017 and December 2018 (see Fig. S1).

4.2 Evaluating bias due to anthropogenic noise

Later in section 5 we show that when water discharge Q is low (in the early and late melt season) seismic power from anthro-230

pogenic noise (PA) is comparable to the subglacial channel-flow-induced seismic power (Pw). Here we evaluate how much PA

adding to Pw can bias the evaluation of scaling predictions of Gimbert et al. (2016). We calculate a synthetic seismic power

P as P = PA + Pw and a synthetic Pw from a synthetic Q as Pw = Qn with n being equal to 5
4 or 14

3 as expected from theory
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Figure 3. Synthetic predictions of scaling bias due to anthropogenic noise superimposing to subglacial channel-flow-induced seismic noise.
(a) Synthetic anthropogenic seismic power (green line, PA), synthetic subglacial channel-flow-induced seismic power Pw = Qn with Q the
synthetic water discharge for n= 5

4
(grey line) and n= 14

3
(orange line) and synthetic seismic power P = PA + Pw for n= 5

4
(black line)

and n= 14
3

(red line). (b) Evolution of Sr (see Sect. 4.2) ratio with respect to P-PA for n= 5
4

(grey line) and n= 14
3

(red line). Note that
the two curves overlap.

(see Eqs.(8) and (9)). We quantify the relative contributions of Pw and PA to P through the parameter Sr, which we define as

Sr = log
[( Q

P

)n]
. When Sr tends to 1, subglacial channel-flow-induced seismic power dominates the synthetic seismic power235

and when Sr tends to 0 anthropogenic noise power does.

In Fig. 3(a) we show the temporal evolution of synthetic P with a constant value for PA and with a Pw that responds to

a synthetic evolving water supply Q. The value of P is normalized by PA, resulting in P = 0 dB in winter. For Pw ∝ Q14/3

(Fig. 3(a), red and orange lines), Pw dominates the contribution to P within c. 10 days from the onset of water supply. For240

Pw ∝ Q5/4 (Fig. 3(a), black and green lines) P contains both Pw and PA contributions during a period that is three times

longer than for Pw ∝ Q14/3. The evolution of Sr with respect to P-PA (Fig. 3(b)) is the same for both the constant hydraulic

pressure gradient (red line) and constant hydraulic radius (grey line) scenarii. For P-PA > 2 dB, Sr is higher than 0.8, meaning

that subglacial channel-flow-induced seismic power contributes by more than 80% to the synthetic seismic power. Later in

Sect. 5.2 we measure PA during winter and use the condition P-PA > 2 dB to define the periods where evaluate Pw directly245

from the measurement of P and investigate the subglacial hydraulic properties.

4.3 Definition of metrics to evaluate sub-diurnal dynamics

Since the Pw versus Q relationship is not unique and may vary with time (see Sect. 2), we expect that the diurnal timeseries of

Pw versus Q may exhibit different patterns throughout the melt season; and that these patterns reveal changes in the subglacial

hydraulic properties. To systematically quantify the diurnal variability of Pw, Q, R and S throughout the melt season we define250

10



three metrics that we calculate on an hydrological daily basis (defined as the period between two minimum Q within a 24 h

time window). To focus on the diurnal variability only, we bandpass filter our timeseries within a [6-36] h range (see Appendix

Fig. A1 for details). Our first metric quantifies the diurnal variability of a given variable X during a given day and corresponds

to the coefficient of variation Cv defined as:

Cv =
(Xday)max− (Xday)min

Xday
(15)255

with (Xday)max and (Xday)min the maximum and minimum value of Xday, respectively, and Xday its average. Our second metric

φ quantifies daily hysteresis between Pw and Q by evaluating the difference between Pw when Q is rising, e.g. in the morning,

and Pw when Q is falling, e.g. in the afternoon. Following the approach of Roth et al. (2016) we define φ as:

φ=
(Pw,day)rising− (Pw,day)falling

(Pw,day)falling
. (16)

The larger φ, the more seismic energy is recorded during the rising discharge period with respect to the falling one. Hysteresis260

can occur either because of an asymmetry between (Pw,day)rising and (Pw,day)falling or because of a time lag between Pw and Q.

To avoid ambiguity between these two hysteresis sources our third metric corresponds to the daily time lag δt between the time

t((Pw,day)max) when Pw is maximum and the time t((Qday)max) when Q is maximum and is defined as:

δt= t((Qday)max)− t((Pw,day)max). (17)

We set the condition that for δt to be calculated, t((Pw,day)max) has to correspond to both the time when Pw is maximum and265

has a null-derivative within a [-8, 8] h’ time window around t((Qday)max). We note that a time delay of about 0.04 h is expected

due to water flowing at c. 1 m.s−1 over the c. 600 m separating our seismic stations to where Q is measured (see Fig. S2 for

details). This means that any values of δt greater than ± 0.04 h are not attributable only to water transfer time lags.

5 Results

5.1 Overview of observations270

Seismic power P as calculated at our ‘virtual’ station based on records from our 5 stations (see Sect. 4) is shown in Fig. 4(a) as a

function of time (May 2017 to December 2018) and frequency (2 to 100 Hz). Large seasonal changes in P are observed within

the [2-10] Hz frequency range, in which P is higher by more than 2 orders of magnitude during the melt season (mid-May

to September) compared to in winter. Changes in P are also observed within the [10-20] Hz frequency range with P during

the melt season being about an order of magnitude larger than in winter. Significant changes of smaller amplitude are also275

observed at higher frequency ([20-100] Hz). Spectral distributions of P presented in Figs. 4(b) and (c) show widely spread

P-values during the melt season (Fig. 4(b), variations over more than 10 dB), as opposed to being comparatively much nar-
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Figure 4. (a) Spectrogram of the observed seismic power P as a function of time (x-axis, May 2017 to December 2018) and frequency (y-
axis, 1-100 Hz log-scale). Colors represent seismic power in decimal logarithmic (dB) relative to (m.s−1) 2.Hz−1. White bands correspond
to data gaps. (b) and (c) Spectral distribution of seismic power during the melt seasons (b) and the winter seasons (c). Colors represent
occurrence probability and colorbars are identical for (b) and (c).

rower in winter (Fig. 4(c), variations within 1-3 dB). Seismic power within the [3-7] Hz frequency range shows the highest

range of variations from winter to summer (Figs. 4(a) and (b)). Over the two years, the overall spectral pattern remains simi-

lar, although intra-seasonal variations of P during the 2017 melt season are more pronounced compared to the 2018 melt season.280

The observed meteorological and hydrological conditions at Glacier d’Argentière together with the measured basal sliding

speed and the seismic power P[3-7] Hz as averaged within the [3-7] Hz frequency range are shown as a function of time (May

2017 to December 2018) in Fig. 5. Water discharge Q shows a strong seasonal signal with discharge lower than 0.1 m3.s−1

in winter and up to values higher than 10 m3.s−1 in summer. These changes are consistent with air temperature values, and285

occur concomitantly with the evolution of P[3-7] Hz (Fig. 5(b)). Further details on the comparison between P[3-7] Hz and Q are

presented in Sect. 5.2. Over the first months of the melt season (early May to mid-June 2017 and late April to mid-June 2018)

Q increases by about 2 orders of magnitude from 0.1 to 10 m3.s−1. At the same time, the amplitude of the diurnal variations

in Q increases up to 3 m3.s−1 over the summer. The evolution of basal sliding speed presented in Fig. 5(c) depicts a rapid

acceleration from 5 mm.h−1 in May 2017 and April 2018 to 7 mm.h−1 over the following month. Sliding speed then stays al-290

most constant through the summer, and slowly decreases down to a minimum of 4.5 mm.h−1 in February (see also comparable
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Figure 5. Timeseries of physical quantities measured from spring 2017 to winter 2018 at Glacier d’Argentière. All data are smoothed over
a 6 h time-window. (a) Surface air temperature (purple line) and precipitation (green line) at the GLACIOCLIM AWS (Fig. 2). The dashed
purple line shows T= 0◦C. (b) Averaged seismic power within the [3-7] Hz frequency range at the ‘virtual’ seismic station (red line, P[3-7] Hz,
see Sect. 5.2 for details) and subglacial water discharge Q (blue line). (c) Basal sliding speed (orange line) and subglacial water pressure
(light blue line) measured at Glacier d’Argentière subglacial observatory (Fig. 2). Note that temporal resolution in the sliding speed is lower
in [May-July] 2017 and from October 2018 because of instrumental issues. Red shaded areas represent the winter season; blue shaded areas
represent the periods when diurnal changes in anthropogenic noise are too pronounced to study Pw on a diurnal basis.

observations made by Vincent and Moreau (2016) over the past decade). Basal water pressure measurements (Fig. 5(c)) show

that at the seasonal timescale the basal water pressure tends to be higher in winter than in summer by c. 2.5 1e+4 Pa. In sum-

mer 2017 the short-term (diurnal) variability in the basal water pressure is more pronounced than in winter, as also observed

for the water discharge (Fig. 5(b) and Fig. A1). During heavy rainfall (Fig. 5(a)) and consequent discharge (Fig. 5(b)), basal295

water pressure variations are in phase with sliding speed (Fig. 5(c); e.g in August 1st, August 7th, August 18th, August 30th,

September 13th or October 2nd of 2017). This evolution of the measured basal water pressure rather depicts a local behavior

whereas changes in the basal sliding speed (Fig. 5(c)) rather represent average changes in the average basal water pressure

conditions over our study area and therefore better represent the global cavity-system pressure conditions.

300

Measurement artifacts are observed for Q with values being thresholded at 10 m3.s−1, and for P in July 2018 when unusually

high seismic power values are observed over the whole frequency range, which we associate with the initially weak ice-

sensor coupling of ARG.B02. Site specificity of the GDA network used in 2017 causes higher seismic power in the [8-20] Hz
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frequency band in 2017 than in year 2018. These artifacts appear to not significantly affect P (at least not within the [2-10] Hz

frequency range), nor the concomitant temporal evolution of P and Q over the two years.305

5.2 Seismic power induced by subglacial channel-flow

We consider seismic power P[3-7] Hz averaged within the [3-7] Hz frequency range (Fig. 5(b) (red line)) as best representative

of subglacial channel-flow-induced seismic power Pw because it shows the highest variations with changes in Q (Figs. 4 and 5).

A similar frequency-signature of the subglacial channel-flow-induced seismic noise as been observed by Bartholomaus et al.

(2015), Preiswerk and Walter (2018) and Lindner et al. (2019). This frequency range is also comparable to those observed for310

water flow in rivers (Schmandt et al., 2013; Gimbert et al., 2014). As Q increases from less than 0.1 m3.s−1 in early May to

about 10 m3.s−1 end of July, Pw increases by up to 30 dB (i.e. 3 orders of magnitude). Differences in relative variations of

Pw across stations are lower than 0.5 dB including during periods of high discharge (Fig. S2). This supports the accuracy and

validity of our ‘virtual’ station reconstruction to study the subglacial channel-flow-induced seismic power (Sect. 4). Variations

in Pw follow those of Q during the melt season and over seasonal to weekly times scales (Fig. 5(b)). Both the high sub-monthly315

variability in Q and air temperature observed in 2017 and the rapid changes in Q occurring in fall 2017 and 2018 are also

observed in the temporal evolution of Pw. In winter we observe high seismic power bursts from December to mid-January

occurring when Q is null but concomitantly with the beginning of heavy snowfall events. These bursts are not associated with

subglacial channel-flow-induced seismic noise but likely correspond to repeating stick-slip events triggered by snow loading

similar to those observed previously by Allstadt and Malone (2014). When Q is lower than 2 m3.s−1 during winter, early spring320

and fall, we observe regular weekly and daily variations in P[3-7] Hz that superimpose to the background variations (Fig. 5(b)).

This regular pattern corresponds to anthropogenic noise, as previously observed by Preiswerk and Walter (2018) in a similar

setup.

Based on the condition proposed in Sect. 4.2 (P-PA > 2 dB) we use the periods [May 14th - November 1st] 2017 and325

[April 21th - November 10th] 2018 to investigate the subglacial hydraulic properties (white and blue areas in Figs. 5 and 8).

During these periods we subtract the mean winter diurnal pattern of PA (defined between January 29th and April 4th 2018)

from P[3-7] Hz to obtain Pw (Fig. S3). At the diurnal scale, because PA can slightly vary from day to day depending on the

anthropic activity (e.g higher anthropic activity during working days than holidays), the periods of very early and very late

melt season are still strongly influenced by day-to-day changes in PA. To study diurnal changes in Pw without being biased by330

anthropogenic noise we limit our analysis to the periods [May 15th - September 22st] 2017 and [May 27th - October 28th]

2018 (white areas in Figs. 5 and 8; based on direct observation shown in Fig. S3). Later in Sect. 5.4 we filter Pw with a 5-day

lowpass filter (i.e. removing variability lower than 5 days) when inverting for the hydraulic properties. Doing so allows to study

with confidence the early and late melt-season by reducing the influence of the diurnal variability in PA on Pw while keeping

sub-weekly variations in Pw and Q (see Fig. S4 for details).335
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Figure 6. Observed (dots) and predicted (lines) changes in subglacial channel-flow-induced seismic power Pw
(Pw)ref

versus changes in water

discharge Q
Qref

during the melt season of years 2017 (a) and 2018 (b). Temporal signals are filtered with a 1-h lowpass filter. The color scale
differs for the two years and varies with time from early April to mid-November. Lines show predictions calculated from Eqs.(8) and (9) for
constant hydraulic radii and varying hydraulic pressure gradient (red lines) and for constant hydraulic pressure gradient and varying hydraulic
radii (black lines). Blue shaded areas represent the period when Q is lower than 1 m3.s−1. Arrows show the direction of time and circled
numbers refer to periods described in the main text. Reference values (Pw)ref and Qref are taken the first day of the 2017 melt-season (May
10th 2018).

5.3 Comparison of observations with predictions from Gimbert et al. (2016)

5.3.1 Analysis of seasonal changes

Seasonal scale observations and predictions of the subglacial channel-flow-induced seismic power Pw versus water discharge

Q are shown in Fig. 6. We find that theoretical predictions from Gimbert et al. (2016) (red and black lines) are consistent with340

our observations (colored dots), which exhibit a general trend between that predicted at constant hydraulic pressure gradient

(Fig. 6, see black lines calculated using Eq.(7)) and that predicted at constant hydraulic radius (Fig. 6, red lines calculated using

Eq.(6)). As Q increases at the very onset of the melt season (in end of April), observed Pw-values follow the trend predicted

under constant hydraulic pressure gradient (Fig. 6 1©). As Q increases more rapidly from mid-May to end of June (Fig. 5(b)),

Pw follows a different trend of evolving hydraulic pressure gradient (Fig. 6 2©). The general trend from July to September345

is then dominated by changes in hydraulic radius (Fig. 6 3©). As Q decreases during the melt season termination, observed

Pw values follow the trend of evolving hydraulic pressure gradient in a similar manner as during the early melt season (Fig. 6

4©). At the end of the melt season 2018 (Late October to November) our observations also show a trend of changing hydraulic

radius although this observation is not as clear in 2017 (Fig. 6 5©). A clear counter-clockwise seasonal hysteresis of up to 10

dB power difference is observed in Fig. 6 between Pw and Q. This shows that for a similar water discharge, higher subglacial350

channel-flow-induced seismic power is generated in the late melt season compared to in the earlier melt season. The 10 m3s−1

15



Figure 7. Diurnal observations of the subglacial channel-flow-induced seismic power Pw and water discharge Q and comparison with pre-
dictions from Gimbert et al. (2016). (a) to (d) Daily evolution of the [6-36] h bandpass filtered seismic power Pw,day(red line) and water
discharge Qday (blue line) for four selected hydrological days. Values of Pw,day and Qday are centered on the average respective absolute value
of the corresponding day. Corresponding values of daily δtQ,Pw and φ are shown top of the panels. (e) to (h) Observed (colored dots) and
predicted (red and black lines calculated with Eqs.(6) and (7)) Pw versus Q daily relationships. Note that y-axis bounds differs from panel
to panel. Both variables are normalized by their daily minima. (i) Daily time lag δtQ,Pw between Pw,day and Qday peaks (blue lines) and daily
hysteresis φ between Pw,day and Qday (red lines). Shaded lines are data of year 2017, plain ones of year 2018. Dashed lines show δtQ,Pw = 0
(blue) and φ = 0 (red). Timeseries are smoothed over 5 days. Green vertical bars show times of the four selected hydrological days with the
corresponding panel number. Circled numbers refer to the two phases described in the main text.

measurement threshold in Q is well observable for the two years but does not bias the observed scaling of changing hydraulic

radius observed during summer.

5.3.2 Analysis of diurnal changes

Observations and predictions of the diurnal relationship between the subglacial channel-flow-induced seismic power Pw and355

water discharge Q throughout the melt season are shown in Fig. 7. We quantify the diurnal behaviors over the two melt seasons

by calculating the hysteresis amplitude φ and time lag δt (see Sect. 4.3) and through comparing our observations with the the-

oretical predictions calculated for four selected days (panels (a) to (h) in Fig. 7). We selected these days based on three criteria:

they represent typical variations of Pw and Q over their respective periods (∼± 5 days around their date); they show that our

observations capture diurnal variations from unique days without multi-days averaging; they give a pedagogical support for the360

reader to interpret values of the hysteresis amplitude φ and time lag δt shown in Fig. 7i. We focus on these two indicators as
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they allow to evaluate respective changes of Pw versus Q.

The seasonal evolution of the daily hysteresis amplitude φ presents two peaks in late-May / early-June and in late-August

/ early-September, which are consistently observed in both 2017 and 2018 (phases 1© in Fig. 7(i)). The seasonal evolution of365

the diurnal time lag between δt of Pw to Q is similar to that of φ, with peak values at δt > 2.5 h in late-May / early-June and in

late-August / early-September (Fig. 7(i)). This supports that hysteresis is mainly caused by phase difference between Pw and

Q rather than by asymmetrical changes Pw when Q rises compared to when Q falls Q (Sect. 4.3). The variability of δt over

the season is much larger than the predicted 0.04 h instrumental time lag (see Sect. 4.3), such that its evolution represents real

changes in the relationship between Pw and Q.370

In the early and late melt season (phases 1© in Fig. 7(i)), Pw,day peaks, in average, more than 3 h before Qday (e.g. Fig. 7(e)).

These long time delay δt are concomitant to a pronounced asymmetrical shape in Pw,day with a steeper rising than falling

limb (e.g. Fig. 7(e)). This results to large clockwise hysteresis in Pw,day versus Qday as well pictured by the high hysteresis

values during these periods (φ > 1, phases 1© in Fig. 7(i)). For example, on June 10th our observations follow the trend of375

evolving hydraulic pressure gradient in the morning and the one of changing hydraulic radius in the afternoon and at night.

On September 8th our observations follow the trend of changing hydraulic radius in the early morning and the one of evolving

hydraulic pressure gradient in the afternoon. On the contrary to these periods, in summer (phase 2© in Fig. 7(i)), both φ and

δt are low with φ' 0 and 2 h > δt > -2 h. At this time, δt has a more pronounced seasonal and year-to-year variability than

φ (Fig. 7(i)) with values oscillating within [2 ; -2] h and minimum values reaching δt < -4 h. In July and August (e.g. panels380

(b) and (c) in Fig. 7), Pw peaks nearly at the same time as Q with δt < 0.5 h and with an almost symmetrical diurnal evolution

(Fig. 7(i)). For both summer days (July 6th and September 1st), our observations mainly follow the trend of changing hydraulic

radius throughout the whole day, with a non-null hysteresis that shows that hydraulic pressure gradient may also change. This

two-phases seasonal evolution shows that the early and late melt season diurnal changes in Q cause a pronounced diurnal

variability in the hydraulic pressure gradient and limited diurnal changes in the hydraulic radius, whereas over the summer385

channels show a more marked response to diurnal changes in Q through changes in hydraulic radius.

5.4 Inversions of changes in hydraulic radius and hydraulic pressure gradient

We invert for the relative changes of hydraulic radius R
Rref

and hydraulic pressure gradient S
Sref

using Eqs.(10) and (11) and our

observations of timeseries of Q and Pw once filtered with a 5-day lowpass filter (see Fig. S4 and Sect. 5.2 for details). In the

following for the sake of readability we use the notation R, S and V to refer to R
Rref

, S
Sref

and the relative basal sliding speed V
Vref

.390

Reference values for these three variables are taken as their minimum value over the two years, which occur on May 10th 2017

for R, May 14th 2018 for S and March 28th 2018 for V.
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Figure 8. Seasonal evolution of the hydraulic radius and hydraulic pressure gradient as inferred from seismic observations as well as of
glacier basal sliding speed as measured in-situ. (a) Relative hydraulic pressure gradient S

Sref
(green line), relative hydraulic radius R

Rref
(purple

line) and relative sliding speed (orange line). Red shaded areas represent the winter season. Temporal signals of R and S are calculated using
5-day lowpass filtered timeseries of Q and Pw and are further smoothed applying a 30-day lowpass filter. Shaded lines correspond with period
with no data and show interpolated values of R and S using a cubic spline interpolation. Reference values for the three variables are taken as
their minimum value of the two years (i.e. May 10th 2017 for R, May 14th 2018 for S and March 28th 2018 for V ). Circled numbers refer
to the three phases described in the main text.

5.4.1 Analysis of seasonal changes

The temporal evolution of R, S and V are presented in Fig. 8. We recall here that the changes in V can be considered as a

good proxy for changes in water pressure in the subglacial cavity network (see Sect. 5.1 for details). We find that all three395

variables show a well-marked seasonal evolution, with low values during the early and late melt season and high values in

summer. However, differences between R, S and V exist over the melt season. For both years, R starts increasing from the onset

of the early melt season, until reaching a maximum within two months in late-June to early-July. R is then two times larger in

average than in the early melt season. In contrast, during the first weeks of the melt season 2018, S rapidly decreases (Fig. 8

1©), concomitantly with an abrupt increase in V by a factor of 1.5 compared to winter. This shows that as the average water400

pressure rises in cavities and enhance sliding, channels on the contrary undergo depressurization. During the melt season 2017

we do not observe such behavior possibly because of a timeserie of Pw that starts about three weeks later than in 2018. The

increase in S then occurs with a delay of about one month in 2018 and of about one week in 2017 compared to that in R, and

S reaches a maximum in August (Fig. 8 2©). S is at that time on average five to six times larger than in the beginning of the

melt season. As S increases, V and R have already past their summer maximum. Contrary to the conclusions obtained on the405

Mendenhall Glacier (Alaska) where S presents no significant trend over the two-month long investigated period (Gimbert et al.,

2016), seasonal changes in water discharge at Glacier d’Argentière are inferred to cause changes in both R and S. From early

to mid-September, R and S decrease concomitantly and reach their minimum in late October. The summer to winter transition
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Figure 9. Diurnal evolution of the hydraulic radius R and hydraulic pressure gradient S and comparison to glacier dynamics. (a) to (d) Daily
timeseries of R (purple line) and S (green line) for four selected hydrological days across the melt season. Timeseries are band-pass filtered
within [6-36] h. Values of Rday and Sday are centered on the average respective absolute value of the corresponding day. Corresponding daily
values of δtQ,R, δtQ,S, Cv(R) and Cv(S) are shown top of the panels. Note that y-axis bounds differ from panel to panel. (e) Daily time lags
δtQ,R between Rday and Qday peaks (purple lines) and δtQ,S between Sday and Qday peaks (green lines). (f) Sub-diurnal variability Cv of R
(purple lines), S (green lines) and the basal sliding speed V (red line). Timeseries are smoothed over 5 days. Blue vertical bars shows location
of the four selected days with the corresponding panel. Shaded lines are data of year 2017, plain lines are data of year 2018. Circled numbers
refer to the two phases described in the main text.

is most pronounced for S, which decreases by about a factor of 4 within less than a month (September to October) while R

decreases more gently.410

5.4.2 Analysis of diurnal changes

Figure 9 describes how channel and cavity properties behave at the diurnal scale throughout the melt season. We quantify

the diurnal behavior throughout the two melt seasons with the time lag δt between R and Q daily maxima, noted δtQ,R, and

between S and Q daily maxima, noted δtQ,S. We also calculate the amplitude of the diurnal variations Cv for R, S and V (see415

Sect. 4.3 for definitions). In the same scopes as in Sect. 5.3.2 we illustrate in panels (a) to (d) in Fig. 9 the diurnal evolution of

R and S for the same four selected days as in Fig. 7.
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Cv(R) and Cv(S) both present seasonal variation, with maximum values being reached mid-summer. The amplitude of Cv(S)

is however up to three-times larger than that of Cv(R) since Cv(S) reaches up to 80 % in August while Cv(R) only increases420

up to 30 % for (Fig. 9(f)). In contrast, the seasonal evolution of δtQ,R and δtQ,S drastically differs (Fig. 9(e)). On one hand,

the temporal evolution of δtQ,R presents no marked changes throughout the season and generally remains within a range of ±
1 h (Fig. 9(e)) as highlighted by the four selected days (Figs. 9(a) to (c)). This shows that R and Q are consistently in phase

on a diurnal basis throughout the melt season. On the other hand, the temporal evolution of δtQ,S presents average values of

about 5 h with two peaks of δtQ,S > 8 h in June and August (Fig. 9(e) 1©) and a period of low values ranging within [0;5] h in425

mid-summer (Fig. 9(e) 2©). These changes in S are clearly observed in the diurnal snapshots (e.g. Figs. 9(a) to (d)) that show a

marked increase in hydraulic pressure gradient in the morning before the rise in hydraulic radius. Such a difference in diurnal

dynamics between R and S shows that channels exhibit high hydraulic pressure gradients in the early morning time while their

hydraulic radius grows slowly to reach its maximum at the same time as the water discharge does.

430

We also compare in Fig. 9(f) the diurnal dynamics of channel properties to the diurnal dynamics of the average water pressure

conditions in cavities by comparing Cv(R) and Cv(S) with Cv(V). Over the melt season, Cv(V) exhibits a pattern that is similar

to Cv(R) and Cv(S), with higher values observed for the three variables in summer (> 10 %) than during the early and late melt

season (< 10 %). This shows that short-term variability in channels properties (i.e. R and S) correlates well with the short-term

variability in average water pressure condition in cavities. From late August to mid-September 2017, we observe that Cv(S)435

reaches up to 60 % over less than a week, followed c. a week later by a rapid rise in Cv(V) (Fig. 9(f)).

5.5 Comparison of inversions with predictions from Röthlisberger (1972)

Our seismically derived S and R values are shown in Fig. 10 as a function of relative changes in water discharge Q, along with

scaling predictions calculated using the theory of Röthlisberger (1972) assuming channels at equilibrium (melt rate equals creep

rate) with S∝ Q−2/11 and R ∝ Q9/22 (Eqs.(14) and (12), green lines in Fig. 10) and channels out-of-equilibrium that respond440

to changes in Q only through changes in S with S∝ Q2 and R is constant (Eq.(13), purple lines in Fig. 10). We find that R and S

generally exhibit variations with Q that lie between those expected for channels at equilibrium and those expected for channels

evolving at constant hydraulic radius. At low discharge ( Q
Qref

< 4, Q < 1 m3.s−1) during the early and late melt season (Fig. 10

1©) our derived changes in S and R with Q approach the theoretical prediction for channels behaving at equilibrium. At high

discharge ( Q
Qref

> 4, Q > 1 m3.s−1); mid-May to early October, Fig. 10 2©) changes in S and R with changes in Q significantly445

departs from predictions of channels at equilibrium and approaches the one of channels evolving out-of-equilibrium through

changes in S solely. The transition between the two regimes herein observed is quite abrupt for S which switches from being a

decreasing to being an increasing function of Q. For R, the transition is marked by a weaker dependency on Q as thi latter is

high. During the period when Q/Qref > 5, best datafit of R with Q gives R ∝ Q0.27 ∝ Q6/22 and for the periods when Q/Qref <

4 it gives R ∝Q0.36 ∝Q8/22. This latter scaling is similar to the predicted scaling of R ∝Q9/22 calculated using the theory of450

Röthlisberger (1972) assuming channels at equilibrium.
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Figure 10. (a) Relative hydraulic pressure gradient S
Sref

and (b) hydraulic radius R
Rref

as inverted from seismic observations and as shown as a

function of measured relative water discharge Q
Qref

. Timeseries of R and S are calculated from 5-day lowpass filtered timeseries of Q and Pw,
and are then 30-day lowpass filtered (same as in Fig. 8). Timeseries of Q is 30-day lowpass filtered. Reference values for all three variables
are taken as the first day of the 2017 melt-season (May 10th 2017). We compare our data to the predictions of Röthlisberger (1972) for
subglacial channels evolving at equilibrium with Q (green lines, S ∝ Q−2/11 and R ∝ Q9/22) and for subglacial channels evolving through
hydraulic pressure gradient changes only (blue lines, S ∝ Q2 and δR

δQ = 0). Arrows show the direction of time. Blue shaded areas represent
the period when Q is lower than 1 m3.s−1. Line sections without the black edges show interpolated values of R and S using a cubic spline
interpolation as in Fig. 8.

6 Discussion

6.1 Evaluating potential bias from changes in the number and position(s) of channel(s)

As stated in Sect. 2, the subglacial channel-flow-induced seismic power Pw depends on the number of subglacial channels

N (Eqs.(10) and (11)) and on the source-to-station distance, which we both considered as constant in our analysis. Here we455

discuss how much potential changes in N and in channel(s) positions may bias our inversions of S and R. On one hand, given

the glacier configuration in our study area (250 m thick, 500 m wide Fig. 2(a)), channels-to-seismic station distance is similar

regardless of whether channels are located at the glacier center or on its sides. Therefore, we do not expect changes in channel

spatial positions to bias our inverted values of R and S. On the other hand, we estimate how much the observed changes in Pw

would require changes in N if they were to be explained only by an evolving number of channels rather than evolving S or460

R. From Eq.(10) we have that S weakly depends on N compared to on Pw and on water discharge Q. As a result, explaining

the measured variations of Pw while imposing S constant would require N to change by more than 4 orders of magnitude

(541/6), which is unrealistic. From Eq.(11) we have that R weakly depends on N compared to on Q. As a result, explaining Pw

variations while imposing R as constant would require N to change by more than factor of 30 (4−82/33), which is also likely

unrealistic since at the onset of the melt season channels are expected to form an arterial network with few channels being kept465

over summer (Schoof, 2010; Werder et al., 2013). Therefore, we do not expect potential changes neither in channel positions

nor in N to cause significant bias in our inverted values of R and S.
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6.2 Implications for inferring water discharge using seismic noise

As opposed to Gimbert et al. (2016) who inferred little variations in hydraulic pressure gradient over its two-month long period470

of survey on the Mendenhall Glacier, on Glacier d’Argentière we infer high and sustained channel pressurization over the

whole summer and early fall (June-October). This has implications for the physics of subglacial channels, which we further

discuss in Sect. 6.3, and also for our capacity to invert for discharge Q based on observed seismic power P. If one considers

the equilibrium assumption over the melt season this yields, under Röthlisberger (1972) steady-state equilibrium assumptions,

to the scaling Q ∝ P33/31
w (see Eqs.(6) and (12)). When applied over the melt season using our observations of Pw at Glacier475

d’Argentière, this underestimates the measured discharge by more than 65%. As shown in Fig. 10, such assumption is only

valid for the early and late melt season when both discharge and its variability are low. Using the approximation Q ∝ P33/31
w

may be more appropriate for periods of low melt water input and in settings with limited water input variability such as in

Antarctica. If one now considers the empirical relationship Q ∝ P11/24
w obtained from the period of channels being out of

equilibrium (using Eq.(6) and R∝ Q6/22, see Sect. 5.5), this leads to an uncertainty of less than 10% on the estimated water480

discharge over the melt season at Glacier d’Argentière. We therefore suggest that the Q∝ P11/24
w relationship may be preferred

for inverting discharge based on seismic observations during periods of high melt water input and in settings with strong

seasonal variability in water input (e.g. Alpine and Greenland glaciers).

6.3 Implications for subglacial hydrology and ice dynamics

6.3.1 Understanding channels approaching equilibrium at low subglacial water discharge485

During the early melt season ( Q
Qref

< 4, Q < 1 m3.s−1; Figs. 5 and 10) channels are inferred to approach an equilibrium situa-

tion for which hydraulic pressure gradient scales weakly with changes in subglacial water discharge (Fig. 10). This behavior

supports that the channel’s hydraulic capacity is sufficient to accommodate water input at this time of the year. We propose

that, at those times, changes in water supply occur at a rate that is lower than that at which channels adjust their hydraulic

radius. During the early melt season, low rates in water input changes are likely caused by water supply from melt being highly490

damped by the snow cover (Marshall et al., 1994; Fleming and Clarke, 2005). During the late melt season ( Q
Qref

< 4; Fig. 10),

the cause of low rates in water input is less clear. We suggest that such rates could be induced by englacial stored water being

slowly released (Flowers and Clarke, 2002; Jansson et al., 2003). Because of the well-developed drainage system at those

times, channels could also adjust faster their hydraulic radius than during the early melt season and therefore could behave at

equilibrium for higher rates in water input than during the early melt season.495

6.3.2 Using periods when channels approach equilibrium to estimate channel(s) size and number

Using Eqs.(6) and (8) of Hooke (1984) that predict the conditions of equilibrium for steady-state channels and assuming that

total discharge is equally distributed over channels of identical geometry (R-channels), we find that in our case equilibrium is

predicted if the number of channels lies between 4 and 6 (using an ice thickness of 250 m, a down-glacier surface slope of

22



5° and a total water discharge of 1 m3.s−1; see Appendix Sect. B). For a lower (resp. higher) number of channels, discharge500

per channel and thus channel-wall melt is higher (resp. lower) than the expected channel-wall creep, which violates the equi-

librium condition. Our estimate of 4 to 6 channels is consistent with the numerical modelling results of Werder et al. (2013)

of 4 to 5 dominant channels lying below the Gornerglestcher tongue (CH), a glacier which has a geometry similar to that of

the tongue of Glacier d’Argentière (c. 500 m wide, c. 300 m maximum thickness). Further insights on the spatial evolution of

the subglacial drainage system could be gained using seismic arrays to locate the source(s) of subglacial flow-induced-seismic505

noise (Lindner et al., 2019).

We propose to estimate the absolute size of channels at the season initiation based on the channel number previously pro-

posed. With 5±1 channels and 1 m3.s−1 equally distributed discharge, the average discharge per channel is of about 0.20±0.05
m3.s−1 (uncertainty is obtained from that on channels number). Considering that subglacial flow-induced-seismic noise is510

likely sensitive to water flow speed on the order of 1 m.s−1 (Gimbert et al., 2016) we can estimate a minimal channel cross-

section area of about 0.20± 0.05 m2, and a resulting channel radius of 0.35± 0.05 m (for semi-circular R-shaped channels).

We note that absolute inversions of R and S could be done by explicitly formulating the Green function G in Eq.(1), and be

compared to the present estimation using channels at equilibrium. However, this is beyond the scope of this study.

6.3.3 Understanding highly pressurized channels during the summer season515

At water discharges higher than 1 m3.s−1 (Fig. 5(b)) and relative changes in water discharge Q higher than 4 ( Q
Qref

>4; Figs. 8

and 10) ) the hydraulic pressure gradient S in channels remains high (Fig. 10). Considering that bed slope is constant, these

high S-values require channels to be full and pressurized. During these periods of high discharge, as S increases with relative

changes in Q (Fig. 10(a)) channels respond to changes in discharge in the same way as theoretically expected for cavities but

not for channels by Schoof (2010). Such an behaviour is therefore opposed to the theoretical steady-state predictions of Schoof520

(2010) and Werder et al. (2013) that instead support that channels have a water pressure decreasing as they develop over the

summer.

Using Hooke (1984) and our estimate of 5 channels made in Sect. 6.3.2, we find that in our case channel-wall melt (i.e.

opening rate) is expected to dominate ice creep (i.e. closing rate) for Q > 1 m3.s−1 (see Sect. B for details on the calculation).525

At steady-state this should either lead to channel growth and/or to an abrupt decrease in S down to free-flow situation (i.e.

atmospheric pressure). These two scenarii are not observed during summer since R stays mainly constant (i.e. limited channel

growth) and S presents high values supporting closed-flow over hourly timescales. We propose that the summer channel pres-

surization (high S) is due to channels responding to marked diurnal and short-term changes in water supply (as theoretically

described in Schoof (2010)), and that channels behave out-of-equilibrium because changes in water input occur at a rate that is530

higher than that at which channels can adjust their hydraulic radius.
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This interpretation is supported by our diurnal analysis on R and S evolution. In the morning, S is inferred to rise earlier than

R (Fig.9), suggesting that channel-wall melt does not accommodate the increase of Q fast enough and causes pressurized flow.

As water supply increases, channels start to respond to the water input and grow by channel-wall melt leading to a delayed535

hydraulic radius R increases compared to S (Fig. 9). At the same time the channel capacity increases with R (Röthlisberger,

1972) leading to a decrease in S before Q reaches a maximum as shown in Fig. 9. During the afternoon, as the water supply

decreases, R slowly decreases by much less than a percent per hour (Fig. 9). At this rate, ice creep is capable to adjust changes

in R fast enough in order to limit open channel-flow (Fig. S6). This could explain why S does not show an abrupt decreases

down to the early melt season values as one would expect if open channel-flow occurs (Fig. 9). The hydraulic pressure gra-540

dient therefore builds up from day-to-day over the summer. During night-time, as Q is at its minimum, the closure rate still

adjusts channel size and therefore allows R to remain nearly constant through summer. This proposed scenario is consistent

with both the investigated diurnal dynamics in the hydraulic properties and may explain the unexpected pressurized channels

during summer. Estimation of melt and creep rates calculated from Hooke (1984) in a similar manner as in Sect. 6.3.2 supports

the plausibility of such diurnal dynamics (see Appendix Sect. B for details). Further measurements remain to be conducted on545

glaciers with different geometries (e.g. flatter), different bed conditions (e.g soft bed glaciers) and different spatialization of

water input (e.g. discrete water input through moulins) to evaluate the effect of such parameters on the subglacial hydrology

dynamics. For instance, it is possible that our proposed channel’s dynamic is limited to hard-bedded glaciers as soft-bedded

glaciers have the capacity to store water and possibly damper the pronounced short term variability in water supply. In such

setup, sediment erosion would complement ice wall melt and allow channels to be kept a much lower hydraulic pressure gra-550

dient than described in our study.

6.3.4 Channel dynamics, cavity water pressure and basal sliding

Our observations and subsequent analysis (Figs. 8 and 10) indicate that over the summer channels are pressurized and behave

out-of-equilibrium. On the other hand, during summer the glacier sliding speed remain high, especially in 2018, (Fig. 5), which555

shows that the average basal water pressure (which is mainly set by pressure in cavities) is also high. These concomitantly high

pressures in channels and in cavities suggest that the two systems may be well connected.

During summer, because of channel-flow pressurization, the channel-system does not operate under a significantly lower hy-

draulic potential than that of the cavity-system. This would therefore prevent significant water flow from cavities to channels,560

and leads to cavities that are kept pressurized. This sustained high water pressure at the glacier basis favors high glacier sliding

speed over summer. Such channel-cavity-sliding link, has been previously suggested (Hubbard and Nienow, 1997; Andrews

et al., 2014; Rada and Schoof, 2018) but was not based on an independent analysis of the cavities and channels hydraulic

conditions as we propose here through combining seismic and basal sliding speed measurements.

565
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We suggest that during these periods of pronounced short-term variability in water supply, the whole drainage system be-

comes well-connected although with a limited drainage capacity. Thus the channel system may participate in maintaining high

pressure in cavities and thus high sliding speed during periods of high water supply variability. Short-term variability in water

supply may lead to pronounced glacier acceleration even during situations of a well-developed channel network. Such sub-

glacial hydrology/ice dynamics link deserves further investigation through combination of seismic observations and subglacial570

hydrology/ice dynamics models (e.g. Gagliardini and Werder, 2018). Indeed a better understanding of the impact of short-

lived water input on glacier dynamics is necessary as under climate warming short-term climatic variability and extreme event

occurrences are expected to increase (Hynčica and Huth, 2019), potentially causing greater glacier acceleration than previously

thought (e.g. Tedstone et al., 2015).

7 Conclusions575

We investigate the physics of subglacial channels and its link with basal sliding beneath an Alpine glacier (Glacier d’Argentière,

French Alps) through the analysis of a unique two-year long dataset made of on-ice measured subglacial water-flow-induced

seismic power and in-situ measured glacier basal sliding speed. Our study shows that the theory of Gimbert et al. (2016) is

consistent with our observations and that the analysis of the seismic power measured within the [3-7] Hz frequency range

allows to study the subglacial drainage properties over a complete melt season and down to diurnal timescales.580

We quantify temporal changes in channels’ hydraulic radius and hydraulic pressure gradient using the theory of Gimbert

et al. (2016) and measurements of water discharge concomitant to our seismic record. Our approach allows to isolate sub-

glacial water-flow-induced seismic power from that of other seismic sources, and makes possible observing changes at various

timescales (from seasonal to hourly) and water discharge ranges (from 0.25 to 10 m3.sec−1). At seasonal timescales we sup-585

port, for the first time, that hydraulic radius and hydraulic pressure gradient both present at least a two-fold increase from

spring to summer, followed by a comparable decrease towards autumn. Comparing our analysis to the theoretical predictions

of Röthlisberger (1972) we identify that channel dynamics over the season is characterized by two distinct regimes yet un-

precedentedly reported. At low discharge during the early and late melt season our analysis supports that channels respond to

changes in discharge mainly through changes in hydraulic radius, and that the strong changes in hydraulic radius and weak590

changes in pressure gradient are similar to those predicted by theory for channels behaving at equilibrium. We propose that,

at those times, changes in water input occur at a rate that is lower than that at which channels adjust their hydraulic radius.

During the early melt season, these low rates in water input changes are likely caused by water supply from melt being highly

damped by the snow cover. From this equilibrium channel-dynamics condition we are able to estimate the number of channels,

which we find to be between 4 to 6, each channel having a radius of about 0.5 m in the early melt season that may go up to 2 m595

in summer. At high discharge and high short-term water-supply variability (often during summertime) we show that channels

undergo strong changes in hydraulic pressure gradient, a behavior that is not expected for channels at equilibrium. Instead,

those changes in hydraulic pressure gradient are well reproduced by theory under the end-member consideration of no changes
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in channel geometry in response to changes in water input. We propose that, at those times, channels behave out-of-equilibrium

because changes in water input occur at a rate that is much higher than that at which channels adjust their hydraulic radius.600

This interpretation is supported by R and S behaviors at the diurnal scale, which show that channels pressurize in the early

morning and depressurize in the afternoon as their hydraulic radius slowly grow concomitantly with the water supply rise. At

night when water discharge decreases, ice creep then allows channels to recover their initial early morning hydraulic radius.

We do not capture significant decrease of the hydraulic pressure gradient during those days, which indicates that the hydraulic

pressure gradient builds up from day-to-day concomitantly to a hydraulic radius that is kept nearly constant. Channels may605

thus remain pressurized over the whole summer because of the short-term (diurnal, rain) variability in water supply, which

forces channels to respond through a transient-dynamic state. We expect our analysis of subglacial hydrology to be applicable

to glaciers of similar geometry (relatively steep U-shaped valley glaciers) and similar highly variable and distributed water

supply than those of Glacier d’Argentière.

610

Channels behaving out-of-equilibrium during most of the melt season also has implications for the use of subglacial water-

flow-induced seismic power Pw to invert for water discharge Q. The empirical relationship between Q and Pw that we derive

during the period when channels are out-of-equilibrium allows estimating a water discharge from seismic noise with an error

of less than 10 %, while an error of 65 % is obtained when assuming channels at equilibrium. Our presently proposed out-of-

equilibrium relationship for inverting discharge could be applied in settings with strong seasonal variability in water supply615

(e.g. Alpine and Greenland glaciers). During summer we also observe high and sustained basal sliding, supporting that the

widespread inefficient drainage system (cavities) is likely pressurized. We propose that channels being also pressurized may

help sustain high pressure in cavities and thus high glacier sliding speed.

These results demonstrate that on-ice passive seismology is an efficient tool to overcome the classical observational limita-620

tions faced when investigating subglacial hydrology processes. In this respect, our results bring new constraints on channels

physics, on links between channels, cavities and sliding, and on the use of passive seismology to invert for subglacial water

discharge. In the future, an essential step towards strengthening our knowledge on the physics of subglacial processes would

be to assess the applicability of our findings over a wider range of glacier geometries (e.g. soft bed glaciers and ice sheets)

both through extended on-site seismic survey and the use of our seismically-derived observations as constraints for subglacial625

hydrology/ice dynamics models.

Code and data availability. Timeseries of of physical quantities shown in Figs. 5 and 8 can be found at https://doi.org/10.5281/zenodo.

3701520 (Nanni et al., 2020). The complete dataset will be made publicly available in the future. Ongoing work is taking place to meet the

format and documentation required for the release for the complete seismic survey, which is expected to happen fully or partially by mid-

2021. In the meantime, it is available on request from the corresponding author. The Python and SAC codes for seismic power calculation630

are given in the Supplementary Materials.
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Appendix A: Frequency content of the water discharge and the subglacial channel-flow-induced seismic power

We show in Fig. A1 the power spectrum of the water discharge Q (blue lines) and subglacial channel-flow-induced seismic

power Pw as a function of the period. We observe for both variables a well-defined peak at one day and 12 h period. This shows

that these signals present a clear diurnal and sub-diurnal variability, and supports our choice to band-pass-filter these signals635

within [6-36] h to study these short-term variabilities.

Figure A1. Power spectrum of the water discharge Q (blue lines) and subglacial channel-flow-induced seismic power Pw (red lines) shown
a function of the period. Both axis are in logarithmic scale (1 over the frequency.)

Appendix B: Evaluating theoretical melt and creep rates with Hooke (1984)’ equations

We used in this study the equations 6 and 8 of Hooke (1984) to evaluate the theoretical melt rate
.
m and creep rate

.
r, as follows

.
m= C2Q3/5sin(β)6/5, (B1)

.
r= C3

Q2/5

sin(β)1/5
H3, (B2)640

with H the ice thickness, β the down-glacier surface slope, C2 and C3 constant. We use the values of Hooke (1984) for the

two constants: C2 = 3.731e−5 m−4/5 s−2/3 and C2 = 5.71e−14 m−16/5 s−3/5. For the glacier geometry we use using an ice

thickness of 250 m and a down-glacier surface slope of 5°.
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Table C1. Summary of all variables, physical quantities, and mathematical functions used in the main text.

Variable/Symbol(a) Description Units Reference(b)

F Frictional force generated by turbulent water flow N Eq. 1
x0 Seismic source location Eq. 1
x Source-to-sensor distance m Eq. 1
U Ground velocity m.s−1 Eq. 1
t Time s Sect. 2
G Displacement Green’s function Eq. 1

T Time period of the seismic signal s Eq. 2
f Frequency of the seismic signal Hz Eq. 2
dt Time duration of Welch’s window to calculate seismic power s Sect. 4
P Seismic power dB(c) Eq. 2, Figs. 4 and 3
P[3-7] Hz P as averaged within the [3-7] Hz frequency range dB Fig. 5
Pw Seismic power induced by turbulent water flow dB Eq. 3, Figs. 3 and 9
PA Anthropogenic noise dB Sect. 4.2, Fig. 3

Vw Water flow velocity m.s−1 Sect. 2
u∗ River/channel bed shear velocity m.s−1 Eq. 3, Fig. 1
W Water conduit width m Eq. 3
H Water flow depth m Eq. 3
ks Conduit wall roughness size m Eq. 3
β Function of conduit shape and fullness Eq. 4
n′ Manning’s coefficient Sect. 2
g Gravitational acceleration m.s−2 Sect. 2

Q Subglacial water discharge m.s−3 Eq. 5, Figs. 5 and 9
R Hydraulic radius Eq. 11

Relative hydraulic radius from Sect. 5.4 on Eq. 11, Figs. 8 and 9
S Hydraulic pressure gradient Eq. 10

Relative hydraulic pressure gradient from Sect. 5.4 on Eq. 10, Figs. 8 and 9
N Number of subglacial channel(s) Eq. 4
V Glacier basal sliding speed mm.h−1 Figs. 5, 8 and 9

Sr Anthropogenic noise quantificator Sect. 4.2, Fig. 3
Xday Any variable X bandpass filtered within [6-36] h Eq. 15, Figs. 9 and 7
(Xday)max Daily maximum of a given variable X dB Eq. 17
δtQ,X Time lag between (Qday)max and (Xday)max h Eq. 17, Figs. 9 and 7
Cv(X) Coefficient of diurnal variation of a given variable X % Eq. 15, Fig. 9
(Pw,day)rising Pw during the daily increase in Q dB Eq. 16
(Pw,day)falling Pw during the daily decrease in Q dB Eq. 16
φ Daily hysteresis between Pw and Q Eq. 16, Fig. 7
Xref Reference state of a given variable X at a reference time Eqs. 10 and 11

Figs. 6, 7, 8, 9 and 10

(a) First section lists variables characterizing the propagation of seismic wave, second section lists variables characterizing the seismic power properties, third section lists variables
and constants related the physical properties of river flow, fourth section lists variables characterizing the hydraulic and glaciological properties of the subglacial drainage system
and fifth section lists the indicators defined to investigate subglacial water flow properties.
(b) Relevant occurrences in the main text of the variables, physical quantities, and mathematical functions.
(c) Decimal logarithmic relative to (m.s−1) 2.Hz−1.
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