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Abstract: The regional role and trends of freshwater ice are critical factors for aquatic 

ecosystems, climate variability, and human activities. The ice regime has been scarcely 

investigated in the Songhua River Basin of Northeast China. Using daily ice records of 156 

hydrological stations across the region, we examined the spatial variability in the river ice 15 

phenology and river ice thickness from 2010 to 2015, and explored the role of snow depth 

and air temperature on the ice thickness. The river ice phenology showed a latitudinal 

distribution and a changing direction from southeast to northwest. We identified four spatial 

clusters based on Moran's I spatial autocorrelation, and results showed that the completely 

frozen duration with high values clustered in the Xiao Hinggan Mountains and that with 20 

low values clustered in the Changbai Mountains at the 95% confidence level. The 

maximum ice thickness over 125 cm was distributed along the ridge of Da Hinggan 

Mountain and Changbai Mountains, and the maximum ice thickness occurred most often 

in February and March. In three sub-basins of the Songhua River Basin, we developed six 

Bayesian regression models to predict ice thickness from air temperature and snow depth. 25 

The goodness of the fit (R2) for these regression models ranged from 0.80 to 0.95, and the 

root mean square errors ranged from 0.08 to 0.18 meter. Results showed significant and 

positive correlations between snow cover and ice thickness when freshwater was 
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completely frozen. Ice thickness was influenced by cumulative air temperature of freezing 

through the heat loss of ice formation and decay, instead of just air temperature. 30 

Keywords. River ice phenology, ice thickness, snow depth on ice, cumulative air 

temperature of freezing, Bayesian linear regression 

1 Introduction 

The freeze-thaw process of temperate lakes and rivers’ surface ice plays a crucial role in 

the interactions among the climate system (Yang et al., 2020), the freshwater ecosystem 35 

(Kwok and Fahnestock, 1996) and the biological environment (Prowse and Beltaos, 2002). 

The presence of freshwater ice is closely associated with social and economic activities, 

such as from human-made structures, water transportation, and winter recreation 

(Lindenschmidt et al., 2017; Williams and Stefan, 2006). Ice cover on rivers and lakes 

exerts large forces due to thermal expansion and could cause extensive infrastructure losses 40 

to bridges, docks, and shorelines (Shuter et al., 2012). Ice cover on waterbodies also 

provides a natural barrier between the atmosphere and the water. Besides, ice cover also 

blocks the solar radiation, which is necessary for photosynthesis to provide enough 

dissolved oxygen for fish, thus posing a negative effect on freshwater ecosystems. In 

extreme cases, it can lead to the winter kill of fish (Hampton et al., 2017). Generally, the 45 

duration of freshwater ice has shown a declining trend, with later freeze-up and earlier 

break-up throughout the northern hemisphere. For example, the freeze-up has been 

occurring 0.57 days later per decade and the break-up 0.63 days earlier per decade during 

the periods of 1846-1995 (Beltaos and Prowse, 2009; Magnuson et al., 2000; Sharma et al., 

2019). Despite the growing importance of river ice under global warming, very little work 50 

has been undertaken to explain the considerable variation of ice characteristics in Northeast 

China, where lakes and rivers are frozen for as long as five to six months a year. A robust 

and quantitative investigation on the variations of rive ice regime associated with changes 

in snow depth on ice and air temperature, are fundamental for understanding climate 

changes on regional scales.  55 

 

The earliest ice record in the literatures dates back to 1840s throughout the northern 

hemisphere (Magnuson et al., 2000). Ice development and ice diversity scales have been 

regarded as sensitive climate indicators. Ice phenology and ice thickness have been studied 
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to obtain a deeper understanding of ice processes. The optical remote sensing data at 60 

medium and large scales are widely adopted for deriving ice phenology (Šmejkalová et al., 

2016; Song et al., 2014). In contrast, microwave remote sensing are used to estimate ice 

thickness and snow depth over ice (Kang et al., 2014; Zhang et al., 2019). Wide-range 

satellites make it possible to link ice characteristic with climate indices, such as air 

temperature (Yang et al., 2020) or large-scale teleconnections (Ionita et al., 2018). Still, 65 

their spatial resolutions are too coarse to detect ice thickness and the snow depth over ice 

at local scales accurately. For example, the microwave satellite data of AMSR-E have a 

spatial resolution of 25 km, but the largest width of the Nenjiang River only ranges from 

1700 to 1800 meters. The spatial resolution limits the application of satellite observations 

to inverse ice thickness precisely, let alone the snow depth.  70 

 

In terms of point-based measurements, the most commonly used ground observations 

include the fixed-station observations, the ice charts, the volunteer monitoring and the field 

measurements (Duguay et al., 2015). Ground observations depend on the spatial 

distribution and the representation, which are limited by the accessibility of surface-based 75 

networks. Various models, such as physically-based models (Park et al., 2016), linear 

regressions (Palecki and Barry, 1986; Williams and Stefan, 2006), logistic regressions 

(Yang et al., 2020) and artificial neural networks (Seidou et al., 2006; Zaier et al., 2010), 

have been developed to derive ice phenology and ice thickness. The physically-based  

models mainly consider the energy exchange and physical changes of freshwater ice and 80 

require detailed information and data support, including hydrological, meteorological, 

hydraulic and morphological information (Rokaya et al., 2020). As the relevant information 

on local scales is more readily available, the physically-based models are more suitable for 

small watershed applications (e.g. within 100 km2). On the other hand, empirical models 

are more commonly adopted to predict changes in the ice regime from relatively limited 85 

climate data available over larger basins (Yang et al, 2020). Ice parameters, such as ice 

thickness, freeze-up and break-up dates, differ notably from point to point on a given river 

continuum (Pavelsky and Smith, 2004), and the uneven distribution of hydrological stations 

poses an obstacle for spatial investigation and modelling. Therefore, ssufficient historical 

ice records are necessary to model the ice regime and validate the reliability of remote 90 

sensing data. 
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The ice cover of water bodies experiences three stages: the freeze-up, the ice growth, and 

the break-up (Duguay et al., 2015). The ice phenology, the ice thickness, and the ice 

composition change considerably in different stages. Although air temperature dramatically 95 

influences the freeze-thaw cycle of river ice dramatically, the effect of snow cover cannot 

be ignored. Generally, the effect of snow depth on the ice forming process is more vital 

than the impact of air temperature (Morris et al., 2005; Park et al., 2016). In contrast to 

these studies, Gao and Stefan (1997) found that the air temperature had a more substantial 

effect on the ice thickness formation than the snow depth. Furthermore, in situ observations 100 

at Russian river mouths, where ice thickness decreased, did not show any striking 

correlation between the ice thickness and the snow depth (Shiklomanov and Lammers, 

2014). Previous studies have analysed the relationship in view of spatial distributions but 

ignored the frozen status of ice formation processes. The relative influence of snow depth 

and air temperature on the freshwater ice regimes in Northeast China calls for a detailed 105 

exploration.  

 

To estimate the interaction between the ice regime and the climate systems, a 

comprehensive investigation and robust  analysis on the ice regime are essential, which can 

provide relevant information for projecting future changes in the ice regime. The work is 110 

the first to present continuous river ice records of three sub-catchments of the Songhua 

River Basin from 2010 to 2015, and the study compares the spatial and temporal changes 

of ice phenology and ice thickness. The influence of snow cover and air temperature on the 

ice regime is quantitatively explored with the three sub-catchments considering the frozen 

status of the river ice.  115 

2 Materials and methods 

2.1 Study area 

The Songhua River Basin is located in the middle area of Northeast China (Figure 1), which 

includes Liaoning Province, Jilin Province, Heilongjiang Province, and the eastern part of 

Inner Mongolia Autonomous Region. The Songhua River is the third-longest river in China 120 

and has three main tributaries, namely, Nenjiang River, Main Songhua River, and Second 

Songhua River (Khan et al., 2018; Zhao et al., 2018). The basins of the three tributary rivers 

include the Nenjiang Basin (NJ), the Downstream Songhua River Basin (SD), and the 
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Upstream Songhua River Basin (SU) (Figure 1). The Nenjiang River is 1370 km in length, 

and the corresponding drainage has an area of  2.55 ×106 thousand km2. The Main Songhua 125 

River has a length of 939 km and the downstream catchment of the Songhua River Basin 

(SD) covers an area of 1.86 ×106 km2.The Second Songhua River has a length of 958 km 

and the upstream catchment of the Songhua River Basin (SU) has an area of 6.19×105 km2 

(Chen et al., 2019; Yang et al., 2018). Temperate and cold temperate climates characterize 

the whole Songhua River Basin: winter is long and cold and spring is windy and dry. The 130 

annual average air temperature ranges between 3 to 5℃, while yearly precipitation ranges 

from 400 to 800 mm from the southeast to the northwest region (Wang et al., 2018; Wang 

et al., 2015). 

[Figure 1 is added here] 

2.2 Data Source  135 

2.2.1 Ice phenology 

The ice records were obtained from the annual hydrological report, including ice phenology, 

yearly maximum ice thickness of the river centre and the corresponding DOY. 

(Hydrographic bureau of Chinese Ministry of Water Resources, 2010-2015). There existed 

50, 35 and 71 hydrological stations in the NJ, SU and SD basins, totalling 156 stations. 140 

Five lake ice phenology were available, and the definitions are listed as below (Duguay et 

al., 2015; Hydrographic bureau of Chinese Ministry of Water Resources, 2015) : 

 Freeze-up start is considered the first day when the floating ice can be observed with 

temperatures below 0 ℃;  

 Freeze-up end is the day when a steady ice carapace can be observed on the river, and 145 

the area of ice cover takes up more than 80% in the view range; 

 Break-up start is the first day when ice melting can be observed with surface ponding;  

 Break-up end is the day when the surface is mainly covered by open water, and the 

area of open water exceeds 20%; 

 Complete frozen duration regards the ice cover duration when the lake is completely 150 

frozen during the winter, from freeze-up end to break-up start. 
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2.2.2 Ice thickness 

We used ice thickness, snow depth, and air temperature from 120 stations for the period 

ranging from 2010 to 2015, to study changes in ice thickness and establish the regression 

model described below. 37, 28, and 55 stations were located in the NJ, SU and SD basins, 155 

respectively. The hydrological report also provided ice thickness, snow depth on ice, and 

air temperature on bank every five days from November through April, totalling 37 

measurements in one cold season. The average snow depth ware derived from the mean of 

three or four measurements around the ice hole for ice thickness measurement without 

human disturbance (Hydrographic bureau of Chinese Ministry of Water Resources, 2015). 160 

To enhance the performance of the regression model, cumulative air temperature of 

freezing was derived from air temperature from November to March.  

2.3 Data analysis  

Our overall method can be summarized in the following steps: First, we used Kriging to 

spatially interpolate in situ measurements of ice phenology. Second, we used Moran's I 165 

spatial autocorrelation to identify spatial clusters based on the interpolated ice phenology 

data. Finally, we analysed the drivers of spatial and temporal variability of the river ice 

thickness for each cluster. To do so, we used the Bayesian linear regression to quantify the 

links between the river ice thickness and snow depth and air temperature. 

 170 

2.3.1 Kriging  

Kriging has been widely applied to spatially interpolate in situ measurements of ice 

phenology (Choinski et al., 2015; Jenson et al., 2007), such as freeze-up start, freeze-up 

end, break-up start, break-up end and complete frozen duration. The average values of five 

ice phenology were calculated during the periods from 2010 to 2015 and explored 175 

accordingly with the Geostatistical wizard of ArcGIS software. The interpolation results 

exhibited their spatial distribution. We chose the ordinary Kriging method and set 

variation function as the spherical model. Moreover, isophanes connecting locations with 

the same ice phenology were also graphed with the interpolation results (Paramasivam and 

Venkatramanan, 2019).  180 

 

2.3.2 Moran's I 
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Moran's I aims to observe the spatial autocorrelation developed by Patrick Alfred Pierce 

Moran, and the spatial autocorrelation is characterized by a correlation in a signal among 

nearby locations in space (Li et al., 2020). We calculated the global and Anselin Local 185 

Moran's I of completely frozen duration and ice thickness in ArcGIS software environment. 

The Moran's I indicate whether the distribution of regional values is aggregated, discrete 

or random (Mitchell, 2005). A positive Moran's I indicate a tendency toward clustering 

while a negative Moran's I indicate a tendency of dispersion (Castro and Singer, 2006). The 

Anselin Local Moran's I statistic identified the clustered spots, and the statistically 190 

significant were evaluated by the combined thresholds of the z-score or p-values. 

 

2.3.3 Bayesian linear regression 

Ice thickness had been modelled by the air temperature and the snow depth using Bayesian 

linear regression, which has been widely adopted in hydrological and environmental 195 

analysis (Gao et al., 2014; Zhao et al., 2013). Bayesian linear regression views regression 

coefficients and the disturbance variance as random variables, rather than fixed and 

unknown quantities. This assumption leads to a more flexible model and intuitive 

inferences (Barber, 2008). The Bayesian linear regression model was implemented in two 

models: a prior probability model considered the probability distribution of the regression 200 

coefficients and the disturbance; a posterior model predicted the response using the prior 

probability mentioned below. Using k-fold cross validation, we divided the input dataset 

into 5 equal subsets or folds, and used 4 subsets as the training set and the remaining as the 

testing set. The performance of the regression model was evaluated with the determination 

coefficient (R2) and the root mean square error (RMSE).  205 

  

In this paper, we treated ice thickness on the river bank as the Y data, and snow depth over 

ice and air temperature as the X data with dataset size of 31. The ice thickness was measured 

on the riverbank every five days from November to March when the river was completely 

covered with ice with air temperature below 0℃. Air temperature and cumulative air 210 

temperature of freezing were considered in modelling. Additionally, the Pearson 

correlation was calculated to analyse the relationship between the five ice phenology events 

and ice-related parameters, including maximum ice thickness, snow depth on ice, and air 

temperature on the bank.  
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3 Results and discussion  215 

3.1 Spatial variations of river ice phenology 

The river ice phenology was analysed herein, including freeze-up start, freeze-up end, 

break-up start, break-up end, and complete frozen duration. The hydrological report only 

supplied one record of river ice phenology each year for all the 156 stations. For each 

hydrological station, the average values of five river ice phenology were calculated from 220 

the ice records from 2010 to 2015 and interpolated by the Kriging method to analyse the 

spatial distribution of the river ice phenology. 

3.1.1 Freeze-up end and break-up process 

Figure 2 illustrates the average spatial distribution of the freeze-up start, the freeze-up end, 

and the isophanes in the Songhua River Basin of Northeast China from 2010 to 2015. 225 

Figure 3 shows the spatial distribution of the break-up start and the break-up end. The 

corresponding statistics are listed in Table 1. Freeze-up start ranged from October 28th to 

November 21st with a mean value of November 7th, and freeze-up end ranged from 

November 7th to December 8th with a mean value of November 22nd. Break-up start ranged 

from March 24th to April 20th with a mean value of April 9th, and break-up end ranged from 230 

March 31th to April 27th with a mean value of April 15th. These four parameters showed a 

latitudinal gradient: freeze-up start and freeze-up end decreased while break-up start and 

break-up end increased with the increase of latitude, except in the NJ basin. The middle 

part of the NJ basin had the highest freeze-up start and freeze-up end and decreased to the 

southern and northern parts. As the latitude decreased, the air temperature tended to 235 

increase, leading to later freeze-up and earlier break-up with shorter ice-covered duration, 

and vice versa. 

[Figure 2 is added here]  

[Figure 3 is added here] 

[Table 1 is added here]  240 

3.1.2 Complete frozen duration 

Figure 4(a) illustrates the average spatial distribution of complete frozen duration 

interpolated by kriging and the isophanes in the Songhua River Basin from 2010 to 2015. 

The complete frozen duration ranged from 110.74 to 163.00 days with a mean value of 

137.86 days, increasing with latitude. Interestingly, the isophanes of complete frozen 245 
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duration had different directionality, increasing from the southeast to northwest, which 

could also be found in the other parameters. Both freeze-up start and freeze-up end 

correlated negatively with the latitude, with coefficients of -0.66 and -0.53, respectively 

(n=156, p < 0.001). However, the break-up start, the break-up end, and the complete frozen 

duration were all positively correlated with latitude with coefficients of 0.48, 0.57, and 0.55, 250 

respectively (n=156, p < 0.001). We built the linear regression equations between the river 

ice phenology and latitude. As the latitude increased by 1°, freeze-up start and freeze-up 

end occurred 2.56 and 2.32 day early, the break-up start and break-up end arrived 2.36 and 

2.37 day late, causing an increase of 4.48 days for the complete frozen duration. This could 

be explained by the decreasing solar radiation with latitude influencing the ice thaw and 255 

melting processes directly. 

 

The Global Moran's I statistic of the complete frozen duration was 1.36 with z scores and 

p value of 2.41 and 0.02, which indicated that complete frozen duration showed a clustered 

pattern with confidence level of 95% for the whole basin. Then Anselin local Moran's I was 260 

calculated to identify statistically significant spatial outliers for each hydrological location 

in Figure 4(c). Results showed that 14 of 156 hydrological stations showed a statistically 

significant cluster of high values, 17 of 156 showed a statistically significant cluster of low 

values and 124 of 156 showed no significant cluster at the 95 percent confidence level. 

Both global and local Moran's I indicated the high values of complete frozen duration 265 

clustered along with the Xiao Hinggan Mountains, and the low values of complete frozen 

duration grouped around the Changbai Mountains.  

 [Figure 4 is added here] 

3.2 Variations of ice thickness  

We explored the spatial pattern of ice thickness using the yearly maximum ice thickness 270 

gathered from 156 stations and examined the seasonal changes of ice thickness, snow depth 

on ice and air temperature based on the time series from November to April. 

3.2.1 Spatial patterns of ice thickness  

Figure 5 illustrates the spatial distribution of the yearly maximum ice thickness of the river 

centre and the corresponding DOY. Table 2 summarized the statistical result of maximum 275 

ice thickness and the DOY. Maximum ice thickness ranged from 12 cm to 146 meter, with 

an average value of 78 cm. The maximum ice thickness between 76 and 100 cm accounted 
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for the most significant percentage of 43.33%, followed by 31.67% of maximum ice 

thickness between 50 and 75 cm. As shown in Table 2, five stations had a more exceptional 

maximum ice thickness than 125 cm. The DOY of maximum ice thickness had an average 280 

value of February 21st, and maximum ice thickness mainly occurred 59 and 40 times in 

February and March, respectively. Four of the five highest maximum ice thickness greater 

than 125 cm happened in March, which is consistent with the inter-annual changes in ice 

development shown in Figure 6. The results suggested that the river ice was always the 

thickest and the steadiest in February or March, which has important implications for 285 

human activities, such as ice fishing and entertainment. The ice thickness didn't show the 

same latitudinal distribution as ice phenology, which suggested that more climate factors 

should be taken into consideration, such as snow depth and wind speed. 

[Figure 5 is added here] 

[Table 2 is added here] 290 

3.2.2 Seasonal changes of ice thickness 

Figure 6 displays the seasonal changes of ice development using ice thickness, average 

snow depth on ice, and air temperature, which was collected on bank every five days from 

November to April during the period between 2010 and 2015. The variations of ice 

characteristics differed significantly due to time and location. Among the three basins, the 295 

NJ basin had the highest snow depth of -29.15 ± 9.99℃, followed by -25.61 ± 9.02 ℃ of 

the SD basin, and -22.17 ± 7.33 cm of the SU basin. The SD basin had the highest snow 

depth of 9.18 cm ± 3.39 cm on the average level, followed by 8.35 cm ± 4.60 cm of the SU 

basin, and 8.23 cm ± 3.92 cm of the NJ basin. The changes in daily ice thickness and snow 

depth had a similar overall trend, while air temperature followed the opposite pattern. Both 300 

ice thickness and snow depth increased from November and reached a peak in March, then 

dropped at the beginning of April. The air temperature showed a distinct trend and reached 

the bottom in the middle of February, which is earlier than the peaks of maximum ice 

thickness and snow depth. In Figure 6, the day when ice thickness reached the maximum 

value was 50, 54 and 60 days later than the day when air temperature reached the lowest 305 

value in the NJ, SU and SD basin respectively.  

[Figure 6 is added here] 
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3.3 The relationship between ice regime and climate factors 

3.3.1 Correlation analysis  

Figure 7 displays the correlation matrix between lake ice phenology events and three 310 

ground measurements from 120 hydrological stations. The lake ice phenology events 

included the freeze-up start, the freeze-up end, the break-up start, the break-up end, and the 

complete frozen duration. The three ground measurements covered the yearly mean values 

of snow depth, the air temperature on bank, and the maximum ice thickness. The colour 

intensity and sizes of the ellipses are proportional to the correlation coefficients. The 315 

maximum ice thickness had a higher correlation with four of the five indices than snow 

depth and air temperature on the bank, except with freeze-up start. The maximum ice 

thickness and break-up end had the highest correlation of 0.63 (p<0.01, n=120). During the 

freeze-up process, two freeze-up dates had a negative association with the maximum ice 

thickness and snow depth. During the break-up process, two break-up dates had positive 320 

correlations with maximum ice thickness and snow depth. The complete frozen duration 

showed a positive correlation with the maximum ice thickness and the snow depth. The 

situation of air temperature was contrary to that of the maximum ice thickness and air 

temperature. Regarding the annual changes, no significant correlation was found between 

snow depth and five ice phenology events in Figure 7. 325 

[Figure 7 is added here] 

Figure 8 shows the bivariate scatter plots between the yearly maximum ice thickness and 

the ice phenology along with regression equations attached. The break-up process had a 

negative correlation with the maximum ice thickness, while the freeze-up had a positive 

correlation. Besides, the break-up process had a higher correlation with the maximum ice 330 

thickness, and the break-up end had the highest correlation coefficients with the maximum 

ice thickness of 0.65 (p<0.01). The complete frozen duration also had a positive correlation 

with maximum ice thickness of 0.57 (P<0.01), which means that a thicker ice cover in 

winter can lead to a delay for the melting time in spring. The break-up depends on not only 

the spring climate conditions but also influenced by the ice thickness during last winter. A 335 

thicker ice cover stores more heat in winter, taking a longer time to melt in spring (Yang et 

al., 2019). The limited performance of the regression model can be attributed to the 

difficulties in determining river ice phenology. Although a uniform specification for ice 

regime observations was required, the inhomogeneities among different stations could not 

be ignored.  340 
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[Figure 8 is added here] 

To further explore the role of snow cover, the monthly correlation coefficients between the 

ice thickness, the snow depth and the air temperature on bank were calculated and listed in 

Table 3. The correlation coefficients between the ice thickness and the snow depth 

increased from November to March and reached a peak of 0.75 in March when ice was the 345 

thickest. This indicated an increasingly important role of the snow depth on the ice 

thickness as the ice accumulated. The higher correlation coefficients between the ice 

thickness and the air temperature on bank in November and December revealed that the air 

temperature played a more critical role in the freeze-up process. The positive correlation 

coefficient between snow depth and ice thickness (Table 3) showed two opposite effects of 350 

the snow depth during the ice development. During the ice-growth process, snow depth 

protects the ice from cold air and slows down the growth rate of ice thickness. During the 

ice-decay process, the lake bottom ice stops to grow, and the surface snow or ice melts, and 

slush forms accordingly. The melting speed depends on the ability to absorb heat, and the 

slush can absorb more heat, which would promote melting (Kirillin et al., 2012). The slush 355 

often existed in multiple freeze-thaw cycles of river ice before it completely disappears. 

Therefore, when studying the role of snow cover, the status of river ice could not be 

neglected. 

[Table 3 is added here] 

3.3.2 Regression modelling 360 

We carried out cross-validation for Bayesian linear regression using k-fold method and set 

K value as 5. For each iteration, a different fold was held out for testing, and the remaining 

4 subsets were applied for training. The training and testing were repeated for five iterations. 

Table 4 lists the R2 of the training and testing process for each iteration. The best Bayesian 

linear regression was determined when the bias between testing and training regression was 365 

the smallest, and the corresponding R2 were marked as bold and red, as shown in Table 4.  

 

Figure 9 illustrates the scatter plot between the measured and the predicted ice thickness 

with Bayesian linear regression in three sub-basins in Northeast China. From Figure 9, the 

R2 of Bayesian linear regression varies from 0.81 to 0.95, and RMSE varies from 0.08 to 370 

0.18 meters. The model works best in the SU basin, followed by the NJ and the SD basins. 

Figure 9 indicates that the snow depth outweighs the air temperature in terms of the effect 

on ice thickness, which is consistent with previous studies (Magnuson et al., 2000; Sharma 
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et al., 2019). Moreover, replacing air temperature on bank with cumulative air temperature 

of freezing enhanced the model performance in all three basins, revealing a more important 375 

role of cumulative air temperature of freezing than air temperature. For the Bayesian linear 

regressions, we used the field measurements that spanned from November to March, thus 

focusing only on the cold part of the year. During this period, the river surface is completely 

frozen, and the air temperature that falls below 0℃ promotes the ice growth. April is the 

month when the rise of air temperatures above 0℃ enables the river ice to melt. 380 

[Figure 9 is added here]  

 

The correlation between air temperature and ice regime in Figure 7 was not as significant 

as found in some previous studies (Park et al., 2016; Stefan and Fang, 1997). One of the 

reasons is that previous studies often averaged the air temperatures over a longer period 385 

and at a regional scale, therefore losing the signal on seasonality at a local scale (Pavelsky 

and Smith, 2004; Yang et al., 2020). To circumvent this shortcoming, we applied the 

regression analysis on seasonal time series of ice thickness and air temperature. Our work 

considered this and established the regression using the seasonal time series of ice thickness 

and air temperature. When building the Bayesian regression equation, the increasing R2 390 

displayed that the cumulative air temperature of freezing behaved better than the air 

temperature on bank, which suggested that heat exchanges between river surface and 

atmosphere dominated the ice process. Heat loss is mainly made up of sensible and latent 

heat exchange (Beltaos and Prowse, 2009; Robertson et al., 1992) , which is proportional 

to the cumulative air temperature of freezing  during the cooling process. During the 395 

complete frozen duration, the snow depth, along with the wind speed began to influence 

the heat exchange and ice thickening. Air temperature exerted a lesser vital effect on spring 

break-up, which is more dependent on the ice thickness and the snow depth. In summary, 

snow depth dominated the ice process when the river was completely frozen. At the same 

time, the cumulative air temperature dominated during the transition process between open 400 

water and completely frozen condition. 

4 Conclusions 

Five river ice phenology proxies, including freeze-up end, freeze-up start, break-up end, 

break-up start, and complete frozen duration in the Songhua River Basin of Northeast China, 

have been investigated using in situ measurements for the periods from 2010 to 2015. 405 
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According to the spatial distribution interpolated by the ordinary Kriging method, the river 

ice phenology indicators followed the latitudinal gradient and a changing direction from 

southeast to northwest. As the latitude increased by 1°, the freeze-up start and can freeze-

up end happened 2.56 and 2.32 day earlier, the break-up start and break-up end arrived 2.36 

and 2.37 days later, resulting in 4.48 days increase for complete frozen duration.  410 

 

The spatial autocorrelation of the completely frozen duration and maximum ice thickness 

has been explored by global and Anselin Local Moran's I. The Global Moran's I with a z 

score of 1.36 showed that the complete frozen duration showed a clustered pattern at the 

95% confidence level. In contrast, the maximum ice thickness didn’t show a significantly 415 

clustered pattern. The Anselin local Moran's I result indicated that the high values of 

complete frozen duration clustered along the Xiao Hinggan Mountains, and the low values 

of the complete frozen  clustered in the Changbai Mountains. The maximum ice thickness 

over 125 cm was distributed along with the ridge of Da Hinggan Mountains and Changbai 

Mountains, and maximum ice thickness occurred most often in February and March during 420 

the cold season.  

 

Based on the analysis of monthly time series measurements, snow cover played an 

increasingly important role as the river becomes completely frozen. The temporal 

variability in air temperature was more correlated with the variability in ice phenology 425 

while snow depth was more correlated with ice thickness. Six Bayesian regression models 

were built among the ice thickness and the air temperature and the snow depth in three sub-

basins of the Songhua River, considering air temperature, as well as cumulative air 

temperature. Results showed that snow cover correlated with ice thickness significantly 

and positively during the periods when the freshwater was completely frozen. In line with 430 

the performance metrics (R2, root mean square error), the cumulative air temperature of 

freezing was shown to provide a better predictor than the air temperature in simulating the 

ice thickness changes compared with the air temperature.  

 

This study provides a quantitative investigation of the ice regime in the Songhua River 435 

Basin of Northeast China and established potential regression models for projecting future 

changes in the ice regime. Remote sensing data could provide long-term and wide-range 

information for ice thickness and ice phenology since 1980. Data analysed in this study 

presents a valuable reference for future studies that rely on remote sensing observations of 
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the river ice thickness in this area. Therefore, we plan to use satellite data to enlarge our 440 

study scope in our future work. 
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Tables 

Table 1 Summary statistics of ice phenology interpolated by Kriging from 2010 to 2015. 590 

The ice phenology indicators included freeze-up start (FUS), freeze-up end, break-up start 

(BUS), break-up end (BUE), complete frozen duration (CFD). NJ, SD and SU represent 

the Nenjiang Basin, the downstream Songhua River Basin (SD) and the upstream Songhua 

River Basin (SU). DOY denotes day of year. Std Dev. denotes standard deviation.  

Basins Statistics 
FUS 

(DOY) 

FUE 

(DOY) 

BUS 

(DOY) 

BUE 

(DOY) 

CFD 

(day) 

NJ 

Maximum 319.14 334.98 110.54 117.61 163.00 

Mean 307.02 324.58 98.65 106.64 139.39 

Minimum 301.41 311.30 84.53 90.40 119.11 

Std Dev. 3.91 5.69 8.16 6.80 13.22 

SD 

Maximum 321.08 334.36 110.01 102.84 154.06 

Mean 313.74 326.70 102.55 97.15 140.86 

Minimum 305.64 316.80 93.22 92.37 125.32 

Std Dev. 2.83 3.13 3.92 2.12 5.69 

SU 

Maximum 325.92 342.09 98.25 114.37 133.62 

Mean 320.39 334.35 91.93 106.43 122.61 

Minimum 313.79 327.68 83.46 95.69 110.74 

Std Dev. 2.34 3.09 3.21 4.24 4.85 

Total 

Maximum 325.92 342.09 110.54 117.61 163.00 

Mean 311.16 326.58 99.25 105.38 137.86 

Minimum 301.41 311.30 83.46 90.40 110.74 

Std Dev. 5.74 5.54 7.17 6.34 11.68 

 595 
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Table 2 The frequency of yearly maximum ice thickness from November to April. The 

column represents different months in cold season and the row represents yearly maximum 

ice thickness with the unit of centimeter.  

MIT 
Month 

<50 51-75 76-100 101-125 126-150 

December 4 1 0 1 0 
January 4 4 1 0 0 
February 4 25 26 3 1 

March 1 3 24 8 4 
April 0 2 1 0 0 

After April 0 3 0 0 0 
Total 13 38 52 12 5 

 600 

Table 3 Correlation coefficient between maximum ice thickness (MIT) and average snow 

depth (ASD), and air temperature on bank (BAT) with a dataset size of 120 stations. The 

asterisk indicates the significant level of correlation coefficients, ** means significant at 99% 

level (p<0.01), and * means significant at 95% level (p<0.05). 

Correlation 

Coefficients 
November December January February March 

MIT vs. ASD 0.17 0.66* 0.53* 0.59* 0.75** 

MIT vs. BAT -0.90** -0.80** -0.55* -0.30 -0.45 

 605 
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Table 4 The cross validation of Bayesian linear regression using k-fold method and the K 

value was set as 5. The R2 values of training dataset and testing dataset based on the 

Bayesian regression. Ice thickness was treated as dependent variables, and air temperature, 

snow depth on ice as independent variables. Air temperature and cumulative air 610 

temperature of freezing were considered in the model building.  

Basin 
Air temperature 

Cumulative air 

temperature 

Training  Testing Training Testing 

NJ 

0.80 0.99 0.84 0.99 

0.89 0.80 0.90 0.86 

0.84 0.92 0.89 0.82 

0.90 0.56 0.91 0.61 

0.85 0.91 0.89 0.89 

SU 

0.83 0.92 0.95 0.98 

0.83 0.65 0.96 0.83 

0.81 0.94 0.95 0.99 

0.84 0.79 0.95 0.93 

0.82 0.82 0.94 0.98 

SD 

0.80 0.96 0.82 0.98 

0.84 0.16 0.86 0.25 

0.81 0.84 0.82 0.87 

0.79 0.97 0.79 0.96 

0.81 0.80 0.82 0.83 
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Figures 

 

Figure 1 The geographic location of the Songhua River Basin showing (a) the elevation 615 

and (b) the location of 156 hydrological stations. The Songhua River Basin includes three 

sub-basins: Nenjiang River Basin (NJ), downstream Songhua River Basin (SD) and 

upstream Songhua River Basin (SU). Elevation data are from the Shuttle Radar Topography 

Mission (SRTM) with spatial resolution of 90 meters.  

  620 
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Figure 2 The average spatial distribution of freeze-up start (FUS) (a) and freeze-up end 

(FUE) (b) in the Songhua River Basin of Northeast China from 2010 to 2015. The number 

labels indicate the day of year (DOY) of the isophenes.  

 625 

Figure 3 The average spatial distribution of break-up start (BUS) (a) and break-up end 

(BUE) (b) in the Songhua River Basin of Northeast China from 2010 to 2015. The number 

labels indicate the day of year (DOY) of the isophenes.  
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 630 

Figure 4 The spatial distribution of complete frozen duration (a) interpolated using Kriging 

method and Anselin local Moran's I (b) in the Songhua River Basin of Northeast China.  

 

 

Figure 5 The spatial distribution of yearly maximum ice thickness (MIT) of the river centre 635 

(a) and the corresponding date (b).  
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Figure 6 Average seasonal changes in ice thickness (IT), average snow depth (ASD) and 

air temperature on bank (BAT) from November to April for the period 2010 - 2015.  640 
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Figure 7 Correlation matrix between maximum ice thickness (MIT), snow depth (SD) and 

air temperature on bank (BAT) and lake ice phenology events with data from 120 stations. 

The asterisk indicates the significance level of the correlation coefficients, ** means 645 

significant at 99% level (p<0.01), and * means significant at 95% level (p<0.05). 



27 
 

 

Figure 8 The bivariate scatter plots with linear regression lines between yearly maximum 

ice thickness (MIT) and ice phenology with dataset size of 120; r and p denote the 

correlation coefficient and p value of the regression line. The ice phenology events include 650 

freeze-up start (FUS), freeze-up end (FUE), break-up start (BUS), break-up end (BUE) and 

complete frozen duration (CFD). 
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 655 

Figure 9 Scatter plots between measured and predicted ice thickness using Bayesian linear 

regression in three sub-basins (NJ: Nenjiang Basin, SU: upstream Songhua River Basin, 

and SD: downstream Songhua River Basin) in Northeast China. The model treated ice 

thickness as the independent variable, and snow depth and air temperature as dependent 

variables. Two types of air temperature were used: BAT represents air temperature on bank; 660 

ATC represents cumulative air temperature of freezing. 


